Properties

Label 4320.2.m.c.2159.2
Level $4320$
Weight $2$
Character 4320.2159
Analytic conductor $34.495$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(2159,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.2159");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2159.2
Character \(\chi\) \(=\) 4320.2159
Dual form 4320.2.m.c.2159.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.17257 - 0.529077i) q^{5} +1.59486 q^{7} -3.61186i q^{11} -2.18660 q^{13} -2.27828 q^{17} -5.81486 q^{19} -1.07910i q^{23} +(4.44016 + 2.29892i) q^{25} +2.55585 q^{29} +5.93344i q^{31} +(-3.46495 - 0.843804i) q^{35} +2.49682 q^{37} -10.3047i q^{41} +0.983745i q^{43} +10.6532i q^{47} -4.45642 q^{49} -8.26543i q^{53} +(-1.91095 + 7.84703i) q^{55} +2.81213i q^{59} +8.34242i q^{61} +(4.75054 + 1.15688i) q^{65} +6.00359i q^{67} +2.34652 q^{71} +5.96697i q^{73} -5.76041i q^{77} +11.2489i q^{79} -6.40570 q^{83} +(4.94973 + 1.20539i) q^{85} +6.53221i q^{89} -3.48732 q^{91} +(12.6332 + 3.07651i) q^{95} -16.1661i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 16 q^{19} + 48 q^{49}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.17257 0.529077i −0.971605 0.236610i
\(6\) 0 0
\(7\) 1.59486 0.602801 0.301400 0.953498i \(-0.402546\pi\)
0.301400 + 0.953498i \(0.402546\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.61186i 1.08902i −0.838756 0.544508i \(-0.816716\pi\)
0.838756 0.544508i \(-0.183284\pi\)
\(12\) 0 0
\(13\) −2.18660 −0.606452 −0.303226 0.952919i \(-0.598064\pi\)
−0.303226 + 0.952919i \(0.598064\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.27828 −0.552564 −0.276282 0.961077i \(-0.589102\pi\)
−0.276282 + 0.961077i \(0.589102\pi\)
\(18\) 0 0
\(19\) −5.81486 −1.33402 −0.667010 0.745049i \(-0.732426\pi\)
−0.667010 + 0.745049i \(0.732426\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.07910i 0.225009i −0.993651 0.112504i \(-0.964113\pi\)
0.993651 0.112504i \(-0.0358873\pi\)
\(24\) 0 0
\(25\) 4.44016 + 2.29892i 0.888031 + 0.459783i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.55585 0.474609 0.237305 0.971435i \(-0.423736\pi\)
0.237305 + 0.971435i \(0.423736\pi\)
\(30\) 0 0
\(31\) 5.93344i 1.06568i 0.846217 + 0.532838i \(0.178875\pi\)
−0.846217 + 0.532838i \(0.821125\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.46495 0.843804i −0.585684 0.142629i
\(36\) 0 0
\(37\) 2.49682 0.410475 0.205237 0.978712i \(-0.434203\pi\)
0.205237 + 0.978712i \(0.434203\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.3047i 1.60933i −0.593731 0.804664i \(-0.702346\pi\)
0.593731 0.804664i \(-0.297654\pi\)
\(42\) 0 0
\(43\) 0.983745i 0.150020i 0.997183 + 0.0750098i \(0.0238988\pi\)
−0.997183 + 0.0750098i \(0.976101\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.6532i 1.55394i 0.629541 + 0.776968i \(0.283243\pi\)
−0.629541 + 0.776968i \(0.716757\pi\)
\(48\) 0 0
\(49\) −4.45642 −0.636631
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.26543i 1.13534i −0.823255 0.567672i \(-0.807844\pi\)
0.823255 0.567672i \(-0.192156\pi\)
\(54\) 0 0
\(55\) −1.91095 + 7.84703i −0.257672 + 1.05809i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.81213i 0.366108i 0.983103 + 0.183054i \(0.0585983\pi\)
−0.983103 + 0.183054i \(0.941402\pi\)
\(60\) 0 0
\(61\) 8.34242i 1.06814i 0.845441 + 0.534069i \(0.179338\pi\)
−0.845441 + 0.534069i \(0.820662\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.75054 + 1.15688i 0.589232 + 0.143493i
\(66\) 0 0
\(67\) 6.00359i 0.733455i 0.930328 + 0.366728i \(0.119522\pi\)
−0.930328 + 0.366728i \(0.880478\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.34652 0.278480 0.139240 0.990259i \(-0.455534\pi\)
0.139240 + 0.990259i \(0.455534\pi\)
\(72\) 0 0
\(73\) 5.96697i 0.698381i 0.937052 + 0.349191i \(0.113543\pi\)
−0.937052 + 0.349191i \(0.886457\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.76041i 0.656460i
\(78\) 0 0
\(79\) 11.2489i 1.26559i 0.774317 + 0.632797i \(0.218093\pi\)
−0.774317 + 0.632797i \(0.781907\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.40570 −0.703117 −0.351559 0.936166i \(-0.614348\pi\)
−0.351559 + 0.936166i \(0.614348\pi\)
\(84\) 0 0
\(85\) 4.94973 + 1.20539i 0.536874 + 0.130742i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.53221i 0.692413i 0.938158 + 0.346206i \(0.112530\pi\)
−0.938158 + 0.346206i \(0.887470\pi\)
\(90\) 0 0
\(91\) −3.48732 −0.365570
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.6332 + 3.07651i 1.29614 + 0.315643i
\(96\) 0 0
\(97\) 16.1661i 1.64142i −0.571348 0.820708i \(-0.693579\pi\)
0.571348 0.820708i \(-0.306421\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.33401 0.928769 0.464385 0.885634i \(-0.346276\pi\)
0.464385 + 0.885634i \(0.346276\pi\)
\(102\) 0 0
\(103\) 19.4431 1.91579 0.957895 0.287120i \(-0.0926977\pi\)
0.957895 + 0.287120i \(0.0926977\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.4680 −1.20532 −0.602662 0.797997i \(-0.705893\pi\)
−0.602662 + 0.797997i \(0.705893\pi\)
\(108\) 0 0
\(109\) 7.46156i 0.714688i 0.933973 + 0.357344i \(0.116318\pi\)
−0.933973 + 0.357344i \(0.883682\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.1420 1.23629 0.618146 0.786063i \(-0.287884\pi\)
0.618146 + 0.786063i \(0.287884\pi\)
\(114\) 0 0
\(115\) −0.570929 + 2.34443i −0.0532394 + 0.218620i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.63354 −0.333086
\(120\) 0 0
\(121\) −2.04551 −0.185955
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.43026 7.34375i −0.754026 0.656845i
\(126\) 0 0
\(127\) −17.9156 −1.58975 −0.794876 0.606772i \(-0.792464\pi\)
−0.794876 + 0.606772i \(0.792464\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.8512i 1.21019i 0.796155 + 0.605093i \(0.206864\pi\)
−0.796155 + 0.605093i \(0.793136\pi\)
\(132\) 0 0
\(133\) −9.27389 −0.804148
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.7529 1.26043 0.630214 0.776422i \(-0.282967\pi\)
0.630214 + 0.776422i \(0.282967\pi\)
\(138\) 0 0
\(139\) −8.56738 −0.726676 −0.363338 0.931657i \(-0.618363\pi\)
−0.363338 + 0.931657i \(0.618363\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.89767i 0.660436i
\(144\) 0 0
\(145\) −5.55277 1.35224i −0.461132 0.112297i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.2194 −1.41067 −0.705335 0.708874i \(-0.749203\pi\)
−0.705335 + 0.708874i \(0.749203\pi\)
\(150\) 0 0
\(151\) 6.38199i 0.519359i 0.965695 + 0.259680i \(0.0836170\pi\)
−0.965695 + 0.259680i \(0.916383\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.13924 12.8908i 0.252150 1.03542i
\(156\) 0 0
\(157\) 24.3034 1.93962 0.969811 0.243857i \(-0.0784129\pi\)
0.969811 + 0.243857i \(0.0784129\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.72102i 0.135636i
\(162\) 0 0
\(163\) 19.9078i 1.55930i −0.626215 0.779650i \(-0.715397\pi\)
0.626215 0.779650i \(-0.284603\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.62227i 0.589829i 0.955524 + 0.294915i \(0.0952912\pi\)
−0.955524 + 0.294915i \(0.904709\pi\)
\(168\) 0 0
\(169\) −8.21880 −0.632215
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.7524i 1.04558i −0.852463 0.522788i \(-0.824892\pi\)
0.852463 0.522788i \(-0.175108\pi\)
\(174\) 0 0
\(175\) 7.08143 + 3.66645i 0.535306 + 0.277158i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.1889i 1.06053i 0.847832 + 0.530265i \(0.177908\pi\)
−0.847832 + 0.530265i \(0.822092\pi\)
\(180\) 0 0
\(181\) 19.4024i 1.44217i 0.692846 + 0.721086i \(0.256357\pi\)
−0.692846 + 0.721086i \(0.743643\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.42453 1.32101i −0.398819 0.0971226i
\(186\) 0 0
\(187\) 8.22882i 0.601751i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.8392 −1.79730 −0.898651 0.438664i \(-0.855452\pi\)
−0.898651 + 0.438664i \(0.855452\pi\)
\(192\) 0 0
\(193\) 6.04021i 0.434784i 0.976084 + 0.217392i \(0.0697549\pi\)
−0.976084 + 0.217392i \(0.930245\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.5571i 1.25089i 0.780269 + 0.625444i \(0.215082\pi\)
−0.780269 + 0.625444i \(0.784918\pi\)
\(198\) 0 0
\(199\) 11.9068i 0.844048i 0.906585 + 0.422024i \(0.138680\pi\)
−0.906585 + 0.422024i \(0.861320\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.07622 0.286095
\(204\) 0 0
\(205\) −5.45199 + 22.3878i −0.380784 + 1.56363i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 21.0024i 1.45277i
\(210\) 0 0
\(211\) 6.86570 0.472654 0.236327 0.971674i \(-0.424056\pi\)
0.236327 + 0.971674i \(0.424056\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.520477 2.13726i 0.0354962 0.145760i
\(216\) 0 0
\(217\) 9.46301i 0.642391i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.98168 0.335104
\(222\) 0 0
\(223\) 4.99364 0.334399 0.167200 0.985923i \(-0.446528\pi\)
0.167200 + 0.985923i \(0.446528\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.3395 0.819000 0.409500 0.912310i \(-0.365703\pi\)
0.409500 + 0.912310i \(0.365703\pi\)
\(228\) 0 0
\(229\) 25.0215i 1.65347i 0.562593 + 0.826734i \(0.309804\pi\)
−0.562593 + 0.826734i \(0.690196\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.88604 −0.451120 −0.225560 0.974229i \(-0.572421\pi\)
−0.225560 + 0.974229i \(0.572421\pi\)
\(234\) 0 0
\(235\) 5.63638 23.1450i 0.367677 1.50981i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.26310 0.534495 0.267248 0.963628i \(-0.413886\pi\)
0.267248 + 0.963628i \(0.413886\pi\)
\(240\) 0 0
\(241\) −18.2659 −1.17661 −0.588304 0.808640i \(-0.700204\pi\)
−0.588304 + 0.808640i \(0.700204\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.68190 + 2.35779i 0.618554 + 0.150634i
\(246\) 0 0
\(247\) 12.7147 0.809019
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.7200i 0.739758i 0.929080 + 0.369879i \(0.120601\pi\)
−0.929080 + 0.369879i \(0.879399\pi\)
\(252\) 0 0
\(253\) −3.89757 −0.245038
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.0351 −0.875484 −0.437742 0.899101i \(-0.644222\pi\)
−0.437742 + 0.899101i \(0.644222\pi\)
\(258\) 0 0
\(259\) 3.98208 0.247435
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.15821i 0.133081i 0.997784 + 0.0665404i \(0.0211961\pi\)
−0.997784 + 0.0665404i \(0.978804\pi\)
\(264\) 0 0
\(265\) −4.37305 + 17.9573i −0.268634 + 1.10311i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −16.4601 −1.00359 −0.501794 0.864987i \(-0.667326\pi\)
−0.501794 + 0.864987i \(0.667326\pi\)
\(270\) 0 0
\(271\) 17.3557i 1.05429i 0.849777 + 0.527143i \(0.176737\pi\)
−0.849777 + 0.527143i \(0.823263\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.30336 16.0372i 0.500711 0.967080i
\(276\) 0 0
\(277\) 4.12691 0.247962 0.123981 0.992285i \(-0.460434\pi\)
0.123981 + 0.992285i \(0.460434\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.04370i 0.241227i −0.992700 0.120613i \(-0.961514\pi\)
0.992700 0.120613i \(-0.0384862\pi\)
\(282\) 0 0
\(283\) 16.6792i 0.991473i 0.868473 + 0.495736i \(0.165102\pi\)
−0.868473 + 0.495736i \(0.834898\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.4346i 0.970104i
\(288\) 0 0
\(289\) −11.8094 −0.694673
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 30.6478i 1.79046i 0.445601 + 0.895232i \(0.352990\pi\)
−0.445601 + 0.895232i \(0.647010\pi\)
\(294\) 0 0
\(295\) 1.48783 6.10956i 0.0866249 0.355712i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.35957i 0.136457i
\(300\) 0 0
\(301\) 1.56894i 0.0904320i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.41378 18.1245i 0.252732 1.03781i
\(306\) 0 0
\(307\) 32.3125i 1.84417i 0.386988 + 0.922085i \(0.373515\pi\)
−0.386988 + 0.922085i \(0.626485\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.05675 −0.286742 −0.143371 0.989669i \(-0.545794\pi\)
−0.143371 + 0.989669i \(0.545794\pi\)
\(312\) 0 0
\(313\) 10.5648i 0.597158i 0.954385 + 0.298579i \(0.0965127\pi\)
−0.954385 + 0.298579i \(0.903487\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.83085i 0.271328i −0.990755 0.135664i \(-0.956683\pi\)
0.990755 0.135664i \(-0.0433167\pi\)
\(318\) 0 0
\(319\) 9.23136i 0.516857i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.2479 0.737132
\(324\) 0 0
\(325\) −9.70882 5.02680i −0.538549 0.278837i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.9904i 0.936713i
\(330\) 0 0
\(331\) −4.14240 −0.227687 −0.113843 0.993499i \(-0.536316\pi\)
−0.113843 + 0.993499i \(0.536316\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.17636 13.0432i 0.173543 0.712629i
\(336\) 0 0
\(337\) 23.5875i 1.28489i −0.766332 0.642445i \(-0.777920\pi\)
0.766332 0.642445i \(-0.222080\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 21.4307 1.16054
\(342\) 0 0
\(343\) −18.2714 −0.986563
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.0100 −0.537365 −0.268683 0.963229i \(-0.586588\pi\)
−0.268683 + 0.963229i \(0.586588\pi\)
\(348\) 0 0
\(349\) 0.434946i 0.0232821i 0.999932 + 0.0116411i \(0.00370555\pi\)
−0.999932 + 0.0116411i \(0.996294\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.0388 −1.22623 −0.613115 0.789994i \(-0.710084\pi\)
−0.613115 + 0.789994i \(0.710084\pi\)
\(354\) 0 0
\(355\) −5.09798 1.24149i −0.270573 0.0658913i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.9336 0.682611 0.341306 0.939952i \(-0.389131\pi\)
0.341306 + 0.939952i \(0.389131\pi\)
\(360\) 0 0
\(361\) 14.8126 0.779608
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.15699 12.9637i 0.165244 0.678551i
\(366\) 0 0
\(367\) −21.3144 −1.11260 −0.556301 0.830981i \(-0.687780\pi\)
−0.556301 + 0.830981i \(0.687780\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.1822i 0.684386i
\(372\) 0 0
\(373\) 28.2669 1.46360 0.731802 0.681517i \(-0.238679\pi\)
0.731802 + 0.681517i \(0.238679\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.58861 −0.287828
\(378\) 0 0
\(379\) 22.8586 1.17417 0.587084 0.809526i \(-0.300276\pi\)
0.587084 + 0.809526i \(0.300276\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 26.5168i 1.35494i −0.735549 0.677472i \(-0.763076\pi\)
0.735549 0.677472i \(-0.236924\pi\)
\(384\) 0 0
\(385\) −3.04770 + 12.5149i −0.155325 + 0.637819i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.2240 0.822589 0.411295 0.911502i \(-0.365077\pi\)
0.411295 + 0.911502i \(0.365077\pi\)
\(390\) 0 0
\(391\) 2.45850i 0.124332i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.95151 24.4390i 0.299453 1.22966i
\(396\) 0 0
\(397\) −18.3726 −0.922093 −0.461046 0.887376i \(-0.652526\pi\)
−0.461046 + 0.887376i \(0.652526\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.0115i 0.649761i −0.945755 0.324881i \(-0.894676\pi\)
0.945755 0.324881i \(-0.105324\pi\)
\(402\) 0 0
\(403\) 12.9740i 0.646282i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.01816i 0.447014i
\(408\) 0 0
\(409\) 27.8630 1.37774 0.688869 0.724885i \(-0.258107\pi\)
0.688869 + 0.724885i \(0.258107\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.48496i 0.220690i
\(414\) 0 0
\(415\) 13.9169 + 3.38911i 0.683152 + 0.166365i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.9663i 1.07312i 0.843861 + 0.536562i \(0.180277\pi\)
−0.843861 + 0.536562i \(0.819723\pi\)
\(420\) 0 0
\(421\) 10.0594i 0.490263i −0.969490 0.245132i \(-0.921169\pi\)
0.969490 0.245132i \(-0.0788312\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.1159 5.23758i −0.490694 0.254060i
\(426\) 0 0
\(427\) 13.3050i 0.643874i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.80514 0.472297 0.236148 0.971717i \(-0.424115\pi\)
0.236148 + 0.971717i \(0.424115\pi\)
\(432\) 0 0
\(433\) 14.7117i 0.706997i −0.935435 0.353499i \(-0.884992\pi\)
0.935435 0.353499i \(-0.115008\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.27484i 0.300166i
\(438\) 0 0
\(439\) 20.5609i 0.981319i 0.871352 + 0.490659i \(0.163244\pi\)
−0.871352 + 0.490659i \(0.836756\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.505156 −0.0240007 −0.0120003 0.999928i \(-0.503820\pi\)
−0.0120003 + 0.999928i \(0.503820\pi\)
\(444\) 0 0
\(445\) 3.45604 14.1917i 0.163832 0.672751i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.5637i 0.545726i 0.962053 + 0.272863i \(0.0879706\pi\)
−0.962053 + 0.272863i \(0.912029\pi\)
\(450\) 0 0
\(451\) −37.2192 −1.75258
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.57645 + 1.84506i 0.355190 + 0.0864976i
\(456\) 0 0
\(457\) 13.7815i 0.644670i −0.946626 0.322335i \(-0.895532\pi\)
0.946626 0.322335i \(-0.104468\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.6050 0.540501 0.270250 0.962790i \(-0.412894\pi\)
0.270250 + 0.962790i \(0.412894\pi\)
\(462\) 0 0
\(463\) 23.6187 1.09765 0.548827 0.835936i \(-0.315074\pi\)
0.548827 + 0.835936i \(0.315074\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.1522 1.16390 0.581952 0.813223i \(-0.302289\pi\)
0.581952 + 0.813223i \(0.302289\pi\)
\(468\) 0 0
\(469\) 9.57489i 0.442128i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.55314 0.163374
\(474\) 0 0
\(475\) −25.8189 13.3679i −1.18465 0.613360i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −18.6766 −0.853354 −0.426677 0.904404i \(-0.640316\pi\)
−0.426677 + 0.904404i \(0.640316\pi\)
\(480\) 0 0
\(481\) −5.45954 −0.248933
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.55309 + 35.1220i −0.388376 + 1.59481i
\(486\) 0 0
\(487\) −21.6007 −0.978823 −0.489411 0.872053i \(-0.662788\pi\)
−0.489411 + 0.872053i \(0.662788\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 30.9795i 1.39809i −0.715079 0.699043i \(-0.753609\pi\)
0.715079 0.699043i \(-0.246391\pi\)
\(492\) 0 0
\(493\) −5.82294 −0.262252
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.74237 0.167868
\(498\) 0 0
\(499\) 12.1240 0.542745 0.271372 0.962474i \(-0.412523\pi\)
0.271372 + 0.962474i \(0.412523\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.93957i 0.354008i 0.984210 + 0.177004i \(0.0566405\pi\)
−0.984210 + 0.177004i \(0.943359\pi\)
\(504\) 0 0
\(505\) −20.2788 4.93841i −0.902396 0.219756i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.5479 −0.644826 −0.322413 0.946599i \(-0.604494\pi\)
−0.322413 + 0.946599i \(0.604494\pi\)
\(510\) 0 0
\(511\) 9.51650i 0.420985i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −42.2417 10.2869i −1.86139 0.453296i
\(516\) 0 0
\(517\) 38.4780 1.69226
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 40.9736i 1.79508i −0.440929 0.897542i \(-0.645351\pi\)
0.440929 0.897542i \(-0.354649\pi\)
\(522\) 0 0
\(523\) 0.689354i 0.0301434i 0.999886 + 0.0150717i \(0.00479765\pi\)
−0.999886 + 0.0150717i \(0.995202\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.5180i 0.588855i
\(528\) 0 0
\(529\) 21.8355 0.949371
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 22.5323i 0.975980i
\(534\) 0 0
\(535\) 27.0876 + 6.59651i 1.17110 + 0.285192i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 16.0959i 0.693301i
\(540\) 0 0
\(541\) 2.61438i 0.112401i −0.998420 0.0562004i \(-0.982101\pi\)
0.998420 0.0562004i \(-0.0178986\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.94774 16.2108i 0.169102 0.694394i
\(546\) 0 0
\(547\) 6.89720i 0.294903i −0.989069 0.147452i \(-0.952893\pi\)
0.989069 0.147452i \(-0.0471070\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14.8619 −0.633138
\(552\) 0 0
\(553\) 17.9404i 0.762902i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.1931i 1.23695i −0.785803 0.618477i \(-0.787750\pi\)
0.785803 0.618477i \(-0.212250\pi\)
\(558\) 0 0
\(559\) 2.15105i 0.0909798i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −31.4932 −1.32728 −0.663639 0.748053i \(-0.730989\pi\)
−0.663639 + 0.748053i \(0.730989\pi\)
\(564\) 0 0
\(565\) −28.5519 6.95311i −1.20119 0.292519i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.4551i 1.77981i 0.456145 + 0.889905i \(0.349230\pi\)
−0.456145 + 0.889905i \(0.650770\pi\)
\(570\) 0 0
\(571\) 5.84033 0.244410 0.122205 0.992505i \(-0.461003\pi\)
0.122205 + 0.992505i \(0.461003\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.48077 4.79139i 0.103455 0.199815i
\(576\) 0 0
\(577\) 45.1309i 1.87882i −0.342791 0.939412i \(-0.611372\pi\)
0.342791 0.939412i \(-0.388628\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.2162 −0.423840
\(582\) 0 0
\(583\) −29.8535 −1.23641
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.69464 0.276317 0.138159 0.990410i \(-0.455882\pi\)
0.138159 + 0.990410i \(0.455882\pi\)
\(588\) 0 0
\(589\) 34.5021i 1.42163i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.59700 −0.0655810 −0.0327905 0.999462i \(-0.510439\pi\)
−0.0327905 + 0.999462i \(0.510439\pi\)
\(594\) 0 0
\(595\) 7.89414 + 1.92242i 0.323628 + 0.0788116i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −25.0749 −1.02453 −0.512266 0.858827i \(-0.671194\pi\)
−0.512266 + 0.858827i \(0.671194\pi\)
\(600\) 0 0
\(601\) 2.98059 0.121581 0.0607904 0.998151i \(-0.480638\pi\)
0.0607904 + 0.998151i \(0.480638\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.44401 + 1.08223i 0.180675 + 0.0439989i
\(606\) 0 0
\(607\) 30.2075 1.22608 0.613042 0.790050i \(-0.289946\pi\)
0.613042 + 0.790050i \(0.289946\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 23.2943i 0.942388i
\(612\) 0 0
\(613\) −41.9630 −1.69487 −0.847434 0.530900i \(-0.821854\pi\)
−0.847434 + 0.530900i \(0.821854\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −36.0698 −1.45211 −0.726057 0.687635i \(-0.758649\pi\)
−0.726057 + 0.687635i \(0.758649\pi\)
\(618\) 0 0
\(619\) −18.8294 −0.756817 −0.378408 0.925639i \(-0.623529\pi\)
−0.378408 + 0.925639i \(0.623529\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.4180i 0.417387i
\(624\) 0 0
\(625\) 14.4300 + 20.4151i 0.577198 + 0.816604i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.68846 −0.226814
\(630\) 0 0
\(631\) 48.3505i 1.92480i −0.271629 0.962402i \(-0.587562\pi\)
0.271629 0.962402i \(-0.412438\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 38.9230 + 9.47873i 1.54461 + 0.376152i
\(636\) 0 0
\(637\) 9.74438 0.386086
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.2377i 0.601853i −0.953647 0.300927i \(-0.902704\pi\)
0.953647 0.300927i \(-0.0972959\pi\)
\(642\) 0 0
\(643\) 22.2897i 0.879019i −0.898238 0.439509i \(-0.855152\pi\)
0.898238 0.439509i \(-0.144848\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.8135i 0.464437i −0.972664 0.232218i \(-0.925402\pi\)
0.972664 0.232218i \(-0.0745984\pi\)
\(648\) 0 0
\(649\) 10.1570 0.398697
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.33196i 0.208656i −0.994543 0.104328i \(-0.966731\pi\)
0.994543 0.104328i \(-0.0332691\pi\)
\(654\) 0 0
\(655\) 7.32836 30.0928i 0.286343 1.17582i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 30.7464i 1.19771i 0.800858 + 0.598854i \(0.204377\pi\)
−0.800858 + 0.598854i \(0.795623\pi\)
\(660\) 0 0
\(661\) 40.7254i 1.58404i −0.610498 0.792018i \(-0.709031\pi\)
0.610498 0.792018i \(-0.290969\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 20.1482 + 4.90660i 0.781314 + 0.190270i
\(666\) 0 0
\(667\) 2.75803i 0.106791i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 30.1316 1.16322
\(672\) 0 0
\(673\) 3.14342i 0.121170i −0.998163 0.0605850i \(-0.980703\pi\)
0.998163 0.0605850i \(-0.0192966\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.1895i 1.35244i 0.736699 + 0.676221i \(0.236384\pi\)
−0.736699 + 0.676221i \(0.763616\pi\)
\(678\) 0 0
\(679\) 25.7826i 0.989447i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.6866 1.13593 0.567964 0.823054i \(-0.307731\pi\)
0.567964 + 0.823054i \(0.307731\pi\)
\(684\) 0 0
\(685\) −32.0518 7.80543i −1.22464 0.298230i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 18.0731i 0.688532i
\(690\) 0 0
\(691\) 33.5824 1.27753 0.638767 0.769400i \(-0.279445\pi\)
0.638767 + 0.769400i \(0.279445\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.6133 + 4.53280i 0.706041 + 0.171939i
\(696\) 0 0
\(697\) 23.4771i 0.889257i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.08892 0.229975 0.114988 0.993367i \(-0.463317\pi\)
0.114988 + 0.993367i \(0.463317\pi\)
\(702\) 0 0
\(703\) −14.5187 −0.547582
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.8865 0.559863
\(708\) 0 0
\(709\) 23.7395i 0.891556i −0.895144 0.445778i \(-0.852927\pi\)
0.895144 0.445778i \(-0.147073\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.40280 0.239787
\(714\) 0 0
\(715\) 4.17847 17.1583i 0.156266 0.641683i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −50.5874 −1.88659 −0.943295 0.331956i \(-0.892292\pi\)
−0.943295 + 0.331956i \(0.892292\pi\)
\(720\) 0 0
\(721\) 31.0091 1.15484
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.3484 + 5.87568i 0.421468 + 0.218217i
\(726\) 0 0
\(727\) −26.3853 −0.978577 −0.489289 0.872122i \(-0.662744\pi\)
−0.489289 + 0.872122i \(0.662744\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.24125i 0.0828955i
\(732\) 0 0
\(733\) 37.4800 1.38435 0.692177 0.721727i \(-0.256652\pi\)
0.692177 + 0.721727i \(0.256652\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.6841 0.798744
\(738\) 0 0
\(739\) −18.7497 −0.689718 −0.344859 0.938655i \(-0.612073\pi\)
−0.344859 + 0.938655i \(0.612073\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.8320i 1.02106i −0.859861 0.510529i \(-0.829450\pi\)
0.859861 0.510529i \(-0.170550\pi\)
\(744\) 0 0
\(745\) 37.4105 + 9.11040i 1.37061 + 0.333779i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19.8847 −0.726570
\(750\) 0 0
\(751\) 8.78033i 0.320399i −0.987085 0.160199i \(-0.948786\pi\)
0.987085 0.160199i \(-0.0512137\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.37657 13.8654i 0.122886 0.504612i
\(756\) 0 0
\(757\) −15.1104 −0.549197 −0.274598 0.961559i \(-0.588545\pi\)
−0.274598 + 0.961559i \(0.588545\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16.6305i 0.602854i 0.953489 + 0.301427i \(0.0974629\pi\)
−0.953489 + 0.301427i \(0.902537\pi\)
\(762\) 0 0
\(763\) 11.9001i 0.430814i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.14899i 0.222027i
\(768\) 0 0
\(769\) −10.4045 −0.375195 −0.187598 0.982246i \(-0.560070\pi\)
−0.187598 + 0.982246i \(0.560070\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.04874i 0.109656i −0.998496 0.0548278i \(-0.982539\pi\)
0.998496 0.0548278i \(-0.0174610\pi\)
\(774\) 0 0
\(775\) −13.6405 + 26.3454i −0.489981 + 0.946354i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 59.9205i 2.14687i
\(780\) 0 0
\(781\) 8.47528i 0.303269i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −52.8009 12.8584i −1.88455 0.458935i
\(786\) 0 0
\(787\) 29.9306i 1.06691i 0.845828 + 0.533455i \(0.179107\pi\)
−0.845828 + 0.533455i \(0.820893\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 20.9596 0.745238
\(792\) 0 0
\(793\) 18.2415i 0.647775i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34.7092i 1.22946i −0.788736 0.614731i \(-0.789264\pi\)
0.788736 0.614731i \(-0.210736\pi\)
\(798\) 0 0
\(799\) 24.2711i 0.858649i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 21.5519 0.760548
\(804\) 0 0
\(805\) −0.910553 + 3.73905i −0.0320928 + 0.131784i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 37.9701i 1.33496i 0.744629 + 0.667478i \(0.232626\pi\)
−0.744629 + 0.667478i \(0.767374\pi\)
\(810\) 0 0
\(811\) 5.59781 0.196566 0.0982828 0.995159i \(-0.468665\pi\)
0.0982828 + 0.995159i \(0.468665\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.5328 + 43.2512i −0.368947 + 1.51502i
\(816\) 0 0
\(817\) 5.72033i 0.200129i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.5614 −0.508195 −0.254097 0.967179i \(-0.581778\pi\)
−0.254097 + 0.967179i \(0.581778\pi\)
\(822\) 0 0
\(823\) 4.09828 0.142857 0.0714285 0.997446i \(-0.477244\pi\)
0.0714285 + 0.997446i \(0.477244\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.6559 −1.23988 −0.619938 0.784651i \(-0.712842\pi\)
−0.619938 + 0.784651i \(0.712842\pi\)
\(828\) 0 0
\(829\) 25.9129i 0.899991i −0.893031 0.449995i \(-0.851426\pi\)
0.893031 0.449995i \(-0.148574\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 10.1530 0.351780
\(834\) 0 0
\(835\) 4.03277 16.5599i 0.139560 0.573081i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.17285 −0.316682 −0.158341 0.987385i \(-0.550614\pi\)
−0.158341 + 0.987385i \(0.550614\pi\)
\(840\) 0 0
\(841\) −22.4676 −0.774746
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.8560 + 4.34838i 0.614263 + 0.149589i
\(846\) 0 0
\(847\) −3.26230 −0.112094
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.69433i 0.0923605i
\(852\) 0 0
\(853\) 16.1963 0.554550 0.277275 0.960791i \(-0.410569\pi\)
0.277275 + 0.960791i \(0.410569\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38.3773 1.31094 0.655471 0.755220i \(-0.272470\pi\)
0.655471 + 0.755220i \(0.272470\pi\)
\(858\) 0 0
\(859\) −9.75306 −0.332770 −0.166385 0.986061i \(-0.553209\pi\)
−0.166385 + 0.986061i \(0.553209\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.7874i 0.605489i 0.953072 + 0.302745i \(0.0979029\pi\)
−0.953072 + 0.302745i \(0.902097\pi\)
\(864\) 0 0
\(865\) −7.27608 + 29.8781i −0.247394 + 1.01589i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 40.6292 1.37825
\(870\) 0 0
\(871\) 13.1274i 0.444806i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.4451 11.7123i −0.454527 0.395947i
\(876\) 0 0
\(877\) −5.30899 −0.179272 −0.0896360 0.995975i \(-0.528570\pi\)
−0.0896360 + 0.995975i \(0.528570\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 46.1938i 1.55631i 0.628073 + 0.778154i \(0.283844\pi\)
−0.628073 + 0.778154i \(0.716156\pi\)
\(882\) 0 0
\(883\) 35.4510i 1.19302i 0.802605 + 0.596510i \(0.203447\pi\)
−0.802605 + 0.596510i \(0.796553\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.33801i 0.0449261i 0.999748 + 0.0224631i \(0.00715082\pi\)
−0.999748 + 0.0224631i \(0.992849\pi\)
\(888\) 0 0
\(889\) −28.5729 −0.958304
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 61.9471i 2.07298i
\(894\) 0 0
\(895\) 7.50704 30.8265i 0.250933 1.03042i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.1650i 0.505780i
\(900\) 0 0
\(901\) 18.8310i 0.627351i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.2654 42.1532i 0.341233 1.40122i
\(906\) 0 0
\(907\) 2.19143i 0.0727653i 0.999338 + 0.0363827i \(0.0115835\pi\)
−0.999338 + 0.0363827i \(0.988416\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.6279 1.61111 0.805557 0.592519i \(-0.201866\pi\)
0.805557 + 0.592519i \(0.201866\pi\)
\(912\) 0 0
\(913\) 23.1365i 0.765706i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 22.0908i 0.729502i
\(918\) 0 0
\(919\) 14.9150i 0.492002i −0.969270 0.246001i \(-0.920883\pi\)
0.969270 0.246001i \(-0.0791166\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.13088 −0.168885
\(924\) 0 0
\(925\) 11.0863 + 5.73998i 0.364514 + 0.188730i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11.8899i 0.390094i 0.980794 + 0.195047i \(0.0624860\pi\)
−0.980794 + 0.195047i \(0.937514\pi\)
\(930\) 0 0
\(931\) 25.9134 0.849278
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.35368 17.8777i 0.142381 0.584664i
\(936\) 0 0
\(937\) 36.1612i 1.18133i −0.806916 0.590667i \(-0.798865\pi\)
0.806916 0.590667i \(-0.201135\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −37.1768 −1.21193 −0.605965 0.795491i \(-0.707213\pi\)
−0.605965 + 0.795491i \(0.707213\pi\)
\(942\) 0 0
\(943\) −11.1199 −0.362113
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.9333 1.03769 0.518846 0.854868i \(-0.326362\pi\)
0.518846 + 0.854868i \(0.326362\pi\)
\(948\) 0 0
\(949\) 13.0474i 0.423535i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.34819 −0.173245 −0.0866224 0.996241i \(-0.527607\pi\)
−0.0866224 + 0.996241i \(0.527607\pi\)
\(954\) 0 0
\(955\) 53.9650 + 13.1419i 1.74627 + 0.425260i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 23.5289 0.759787
\(960\) 0 0
\(961\) −4.20569 −0.135667
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.19573 13.1228i 0.102874 0.422438i
\(966\) 0 0
\(967\) −30.4607 −0.979550 −0.489775 0.871849i \(-0.662921\pi\)
−0.489775 + 0.871849i \(0.662921\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.26310i 0.136809i −0.997658 0.0684046i \(-0.978209\pi\)
0.997658 0.0684046i \(-0.0217909\pi\)
\(972\) 0 0
\(973\) −13.6638 −0.438041
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.4535 0.462410 0.231205 0.972905i \(-0.425733\pi\)
0.231205 + 0.972905i \(0.425733\pi\)
\(978\) 0 0
\(979\) 23.5934 0.754048
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.2658i 0.550694i 0.961345 + 0.275347i \(0.0887928\pi\)
−0.961345 + 0.275347i \(0.911207\pi\)
\(984\) 0 0
\(985\) 9.28903 38.1440i 0.295973 1.21537i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.06156 0.0337558
\(990\) 0 0
\(991\) 48.1671i 1.53008i −0.643984 0.765039i \(-0.722720\pi\)
0.643984 0.765039i \(-0.277280\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.29959 25.8683i 0.199710 0.820081i
\(996\) 0 0
\(997\) −26.3097 −0.833235 −0.416617 0.909082i \(-0.636785\pi\)
−0.416617 + 0.909082i \(0.636785\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.m.c.2159.2 48
3.2 odd 2 inner 4320.2.m.c.2159.48 48
4.3 odd 2 1080.2.m.c.539.7 yes 48
5.4 even 2 inner 4320.2.m.c.2159.3 48
8.3 odd 2 inner 4320.2.m.c.2159.47 48
8.5 even 2 1080.2.m.c.539.6 yes 48
12.11 even 2 1080.2.m.c.539.42 yes 48
15.14 odd 2 inner 4320.2.m.c.2159.45 48
20.19 odd 2 1080.2.m.c.539.41 yes 48
24.5 odd 2 1080.2.m.c.539.43 yes 48
24.11 even 2 inner 4320.2.m.c.2159.1 48
40.19 odd 2 inner 4320.2.m.c.2159.46 48
40.29 even 2 1080.2.m.c.539.44 yes 48
60.59 even 2 1080.2.m.c.539.8 yes 48
120.29 odd 2 1080.2.m.c.539.5 48
120.59 even 2 inner 4320.2.m.c.2159.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.m.c.539.5 48 120.29 odd 2
1080.2.m.c.539.6 yes 48 8.5 even 2
1080.2.m.c.539.7 yes 48 4.3 odd 2
1080.2.m.c.539.8 yes 48 60.59 even 2
1080.2.m.c.539.41 yes 48 20.19 odd 2
1080.2.m.c.539.42 yes 48 12.11 even 2
1080.2.m.c.539.43 yes 48 24.5 odd 2
1080.2.m.c.539.44 yes 48 40.29 even 2
4320.2.m.c.2159.1 48 24.11 even 2 inner
4320.2.m.c.2159.2 48 1.1 even 1 trivial
4320.2.m.c.2159.3 48 5.4 even 2 inner
4320.2.m.c.2159.4 48 120.59 even 2 inner
4320.2.m.c.2159.45 48 15.14 odd 2 inner
4320.2.m.c.2159.46 48 40.19 odd 2 inner
4320.2.m.c.2159.47 48 8.3 odd 2 inner
4320.2.m.c.2159.48 48 3.2 odd 2 inner