Properties

Label 1080.3.c.c.809.16
Level $1080$
Weight $3$
Character 1080.809
Analytic conductor $29.428$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,3,Mod(809,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.809");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1080.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.4278685509\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 809.16
Character \(\chi\) \(=\) 1080.809
Dual form 1080.3.c.c.809.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72017 + 4.69478i) q^{5} -13.6186i q^{7} +1.59573i q^{11} -17.2139i q^{13} -21.0854 q^{17} +11.6883 q^{19} -24.4565 q^{23} +(-19.0820 + 16.1517i) q^{25} +40.5058i q^{29} -38.6629 q^{31} +(63.9362 - 23.4263i) q^{35} +32.5152i q^{37} -5.41815i q^{41} -15.7699i q^{43} +32.8867 q^{47} -136.465 q^{49} -97.5723 q^{53} +(-7.49161 + 2.74493i) q^{55} -88.1744i q^{59} +9.07733 q^{61} +(80.8157 - 29.6110i) q^{65} -26.8943i q^{67} +109.861i q^{71} +29.0319i q^{73} +21.7316 q^{77} -18.3005 q^{79} -23.3872 q^{83} +(-36.2705 - 98.9912i) q^{85} -147.211i q^{89} -234.429 q^{91} +(20.1058 + 54.8738i) q^{95} -100.818i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 72 q^{25} - 72 q^{31} - 408 q^{49} - 168 q^{55} - 240 q^{61} - 312 q^{79} - 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.72017 + 4.69478i 0.344035 + 0.938957i
\(6\) 0 0
\(7\) 13.6186i 1.94551i −0.231838 0.972754i \(-0.574474\pi\)
0.231838 0.972754i \(-0.425526\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.59573i 0.145066i 0.997366 + 0.0725332i \(0.0231083\pi\)
−0.997366 + 0.0725332i \(0.976892\pi\)
\(12\) 0 0
\(13\) 17.2139i 1.32415i −0.749438 0.662075i \(-0.769676\pi\)
0.749438 0.662075i \(-0.230324\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −21.0854 −1.24031 −0.620157 0.784477i \(-0.712931\pi\)
−0.620157 + 0.784477i \(0.712931\pi\)
\(18\) 0 0
\(19\) 11.6883 0.615171 0.307586 0.951520i \(-0.400479\pi\)
0.307586 + 0.951520i \(0.400479\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −24.4565 −1.06333 −0.531663 0.846956i \(-0.678433\pi\)
−0.531663 + 0.846956i \(0.678433\pi\)
\(24\) 0 0
\(25\) −19.0820 + 16.1517i −0.763280 + 0.646068i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 40.5058i 1.39675i 0.715732 + 0.698375i \(0.246093\pi\)
−0.715732 + 0.698375i \(0.753907\pi\)
\(30\) 0 0
\(31\) −38.6629 −1.24719 −0.623595 0.781748i \(-0.714328\pi\)
−0.623595 + 0.781748i \(0.714328\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 63.9362 23.4263i 1.82675 0.669323i
\(36\) 0 0
\(37\) 32.5152i 0.878789i 0.898294 + 0.439394i \(0.144807\pi\)
−0.898294 + 0.439394i \(0.855193\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.41815i 0.132150i −0.997815 0.0660751i \(-0.978952\pi\)
0.997815 0.0660751i \(-0.0210477\pi\)
\(42\) 0 0
\(43\) 15.7699i 0.366741i −0.983044 0.183371i \(-0.941299\pi\)
0.983044 0.183371i \(-0.0587008\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 32.8867 0.699717 0.349858 0.936803i \(-0.386230\pi\)
0.349858 + 0.936803i \(0.386230\pi\)
\(48\) 0 0
\(49\) −136.465 −2.78501
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −97.5723 −1.84099 −0.920493 0.390759i \(-0.872213\pi\)
−0.920493 + 0.390759i \(0.872213\pi\)
\(54\) 0 0
\(55\) −7.49161 + 2.74493i −0.136211 + 0.0499079i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 88.1744i 1.49448i −0.664553 0.747241i \(-0.731378\pi\)
0.664553 0.747241i \(-0.268622\pi\)
\(60\) 0 0
\(61\) 9.07733 0.148809 0.0744044 0.997228i \(-0.476294\pi\)
0.0744044 + 0.997228i \(0.476294\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 80.8157 29.6110i 1.24332 0.455553i
\(66\) 0 0
\(67\) 26.8943i 0.401408i −0.979652 0.200704i \(-0.935677\pi\)
0.979652 0.200704i \(-0.0643230\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 109.861i 1.54733i 0.633593 + 0.773666i \(0.281579\pi\)
−0.633593 + 0.773666i \(0.718421\pi\)
\(72\) 0 0
\(73\) 29.0319i 0.397697i 0.980030 + 0.198848i \(0.0637202\pi\)
−0.980030 + 0.198848i \(0.936280\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 21.7316 0.282228
\(78\) 0 0
\(79\) −18.3005 −0.231652 −0.115826 0.993269i \(-0.536952\pi\)
−0.115826 + 0.993269i \(0.536952\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −23.3872 −0.281773 −0.140887 0.990026i \(-0.544995\pi\)
−0.140887 + 0.990026i \(0.544995\pi\)
\(84\) 0 0
\(85\) −36.2705 98.9912i −0.426712 1.16460i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 147.211i 1.65406i −0.562160 0.827028i \(-0.690030\pi\)
0.562160 0.827028i \(-0.309970\pi\)
\(90\) 0 0
\(91\) −234.429 −2.57614
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 20.1058 + 54.8738i 0.211640 + 0.577619i
\(96\) 0 0
\(97\) 100.818i 1.03936i −0.854362 0.519678i \(-0.826052\pi\)
0.854362 0.519678i \(-0.173948\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 103.221i 1.02199i −0.859582 0.510997i \(-0.829276\pi\)
0.859582 0.510997i \(-0.170724\pi\)
\(102\) 0 0
\(103\) 42.0848i 0.408590i −0.978909 0.204295i \(-0.934510\pi\)
0.978909 0.204295i \(-0.0654902\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 151.752 1.41824 0.709121 0.705087i \(-0.249092\pi\)
0.709121 + 0.705087i \(0.249092\pi\)
\(108\) 0 0
\(109\) −65.4958 −0.600879 −0.300439 0.953801i \(-0.597133\pi\)
−0.300439 + 0.953801i \(0.597133\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −133.768 −1.18379 −0.591893 0.806016i \(-0.701619\pi\)
−0.591893 + 0.806016i \(0.701619\pi\)
\(114\) 0 0
\(115\) −42.0694 114.818i −0.365821 0.998417i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 287.152i 2.41304i
\(120\) 0 0
\(121\) 118.454 0.978956
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −108.653 61.8021i −0.869225 0.494417i
\(126\) 0 0
\(127\) 20.3722i 0.160411i −0.996778 0.0802054i \(-0.974442\pi\)
0.996778 0.0802054i \(-0.0255576\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 109.292i 0.834293i 0.908839 + 0.417146i \(0.136970\pi\)
−0.908839 + 0.417146i \(0.863030\pi\)
\(132\) 0 0
\(133\) 159.177i 1.19682i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −30.3772 −0.221732 −0.110866 0.993835i \(-0.535362\pi\)
−0.110866 + 0.993835i \(0.535362\pi\)
\(138\) 0 0
\(139\) 85.7921 0.617210 0.308605 0.951190i \(-0.400138\pi\)
0.308605 + 0.951190i \(0.400138\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 27.4688 0.192090
\(144\) 0 0
\(145\) −190.166 + 69.6770i −1.31149 + 0.480531i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 87.3174i 0.586023i −0.956109 0.293011i \(-0.905343\pi\)
0.956109 0.293011i \(-0.0946574\pi\)
\(150\) 0 0
\(151\) −218.922 −1.44982 −0.724908 0.688846i \(-0.758118\pi\)
−0.724908 + 0.688846i \(0.758118\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −66.5069 181.514i −0.429077 1.17106i
\(156\) 0 0
\(157\) 92.4742i 0.589008i −0.955650 0.294504i \(-0.904846\pi\)
0.955650 0.294504i \(-0.0951544\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 333.062i 2.06871i
\(162\) 0 0
\(163\) 252.317i 1.54796i 0.633211 + 0.773979i \(0.281737\pi\)
−0.633211 + 0.773979i \(0.718263\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 91.0894 0.545445 0.272723 0.962093i \(-0.412076\pi\)
0.272723 + 0.962093i \(0.412076\pi\)
\(168\) 0 0
\(169\) −127.320 −0.753371
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −185.784 −1.07390 −0.536948 0.843616i \(-0.680423\pi\)
−0.536948 + 0.843616i \(0.680423\pi\)
\(174\) 0 0
\(175\) 219.963 + 259.869i 1.25693 + 1.48497i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 150.913i 0.843088i −0.906808 0.421544i \(-0.861488\pi\)
0.906808 0.421544i \(-0.138512\pi\)
\(180\) 0 0
\(181\) 16.5251 0.0912990 0.0456495 0.998958i \(-0.485464\pi\)
0.0456495 + 0.998958i \(0.485464\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −152.652 + 55.9318i −0.825145 + 0.302334i
\(186\) 0 0
\(187\) 33.6465i 0.179928i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.9230i 0.0728953i −0.999336 0.0364476i \(-0.988396\pi\)
0.999336 0.0364476i \(-0.0116042\pi\)
\(192\) 0 0
\(193\) 95.7140i 0.495928i 0.968769 + 0.247964i \(0.0797614\pi\)
−0.968769 + 0.247964i \(0.920239\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −254.417 −1.29145 −0.645727 0.763568i \(-0.723446\pi\)
−0.645727 + 0.763568i \(0.723446\pi\)
\(198\) 0 0
\(199\) −325.493 −1.63564 −0.817821 0.575472i \(-0.804818\pi\)
−0.817821 + 0.575472i \(0.804818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 551.630 2.71739
\(204\) 0 0
\(205\) 25.4371 9.32017i 0.124083 0.0454642i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 18.6513i 0.0892407i
\(210\) 0 0
\(211\) −93.0330 −0.440915 −0.220457 0.975397i \(-0.570755\pi\)
−0.220457 + 0.975397i \(0.570755\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 74.0361 27.1269i 0.344354 0.126172i
\(216\) 0 0
\(217\) 526.533i 2.42642i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 362.962i 1.64236i
\(222\) 0 0
\(223\) 256.345i 1.14953i −0.818318 0.574765i \(-0.805093\pi\)
0.818318 0.574765i \(-0.194907\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 30.2963 0.133464 0.0667319 0.997771i \(-0.478743\pi\)
0.0667319 + 0.997771i \(0.478743\pi\)
\(228\) 0 0
\(229\) 265.885 1.16107 0.580536 0.814235i \(-0.302843\pi\)
0.580536 + 0.814235i \(0.302843\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 405.182 1.73898 0.869488 0.493953i \(-0.164449\pi\)
0.869488 + 0.493953i \(0.164449\pi\)
\(234\) 0 0
\(235\) 56.5708 + 154.396i 0.240727 + 0.657004i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 369.639i 1.54661i −0.634036 0.773303i \(-0.718603\pi\)
0.634036 0.773303i \(-0.281397\pi\)
\(240\) 0 0
\(241\) 340.021 1.41088 0.705439 0.708771i \(-0.250750\pi\)
0.705439 + 0.708771i \(0.250750\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −234.744 640.675i −0.958139 2.61500i
\(246\) 0 0
\(247\) 201.201i 0.814579i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 103.390i 0.411914i 0.978561 + 0.205957i \(0.0660307\pi\)
−0.978561 + 0.205957i \(0.933969\pi\)
\(252\) 0 0
\(253\) 39.0260i 0.154253i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −367.987 −1.43185 −0.715927 0.698175i \(-0.753996\pi\)
−0.715927 + 0.698175i \(0.753996\pi\)
\(258\) 0 0
\(259\) 442.810 1.70969
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 356.509 1.35555 0.677774 0.735270i \(-0.262945\pi\)
0.677774 + 0.735270i \(0.262945\pi\)
\(264\) 0 0
\(265\) −167.841 458.081i −0.633363 1.72861i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.4804i 0.0910051i −0.998964 0.0455026i \(-0.985511\pi\)
0.998964 0.0455026i \(-0.0144889\pi\)
\(270\) 0 0
\(271\) 492.669 1.81797 0.908984 0.416831i \(-0.136859\pi\)
0.908984 + 0.416831i \(0.136859\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −25.7738 30.4497i −0.0937227 0.110726i
\(276\) 0 0
\(277\) 54.0702i 0.195199i −0.995226 0.0975997i \(-0.968884\pi\)
0.995226 0.0975997i \(-0.0311165\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 84.9003i 0.302136i −0.988523 0.151068i \(-0.951729\pi\)
0.988523 0.151068i \(-0.0482713\pi\)
\(282\) 0 0
\(283\) 527.876i 1.86529i −0.360799 0.932644i \(-0.617496\pi\)
0.360799 0.932644i \(-0.382504\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −73.7875 −0.257099
\(288\) 0 0
\(289\) 155.592 0.538381
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 296.974 1.01356 0.506781 0.862075i \(-0.330835\pi\)
0.506781 + 0.862075i \(0.330835\pi\)
\(294\) 0 0
\(295\) 413.960 151.675i 1.40325 0.514154i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 420.993i 1.40800i
\(300\) 0 0
\(301\) −214.763 −0.713498
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.6146 + 42.6161i 0.0511954 + 0.139725i
\(306\) 0 0
\(307\) 39.8780i 0.129896i 0.997889 + 0.0649479i \(0.0206881\pi\)
−0.997889 + 0.0649479i \(0.979312\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 321.299i 1.03312i 0.856252 + 0.516558i \(0.172787\pi\)
−0.856252 + 0.516558i \(0.827213\pi\)
\(312\) 0 0
\(313\) 79.9726i 0.255504i −0.991806 0.127752i \(-0.959224\pi\)
0.991806 0.127752i \(-0.0407761\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −307.837 −0.971095 −0.485547 0.874210i \(-0.661380\pi\)
−0.485547 + 0.874210i \(0.661380\pi\)
\(318\) 0 0
\(319\) −64.6363 −0.202622
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −246.451 −0.763006
\(324\) 0 0
\(325\) 278.034 + 328.476i 0.855490 + 1.01070i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 447.870i 1.36131i
\(330\) 0 0
\(331\) 445.730 1.34662 0.673308 0.739362i \(-0.264873\pi\)
0.673308 + 0.739362i \(0.264873\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 126.263 46.2630i 0.376905 0.138098i
\(336\) 0 0
\(337\) 252.981i 0.750685i 0.926886 + 0.375343i \(0.122475\pi\)
−0.926886 + 0.375343i \(0.877525\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 61.6955i 0.180925i
\(342\) 0 0
\(343\) 1191.15i 3.47274i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −240.422 −0.692858 −0.346429 0.938076i \(-0.612606\pi\)
−0.346429 + 0.938076i \(0.612606\pi\)
\(348\) 0 0
\(349\) 434.750 1.24570 0.622851 0.782340i \(-0.285974\pi\)
0.622851 + 0.782340i \(0.285974\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 121.782 0.344992 0.172496 0.985010i \(-0.444817\pi\)
0.172496 + 0.985010i \(0.444817\pi\)
\(354\) 0 0
\(355\) −515.772 + 188.979i −1.45288 + 0.532336i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 376.123i 1.04770i −0.851812 0.523848i \(-0.824496\pi\)
0.851812 0.523848i \(-0.175504\pi\)
\(360\) 0 0
\(361\) −224.385 −0.621564
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −136.298 + 49.9399i −0.373420 + 0.136822i
\(366\) 0 0
\(367\) 388.055i 1.05737i −0.848818 0.528685i \(-0.822685\pi\)
0.848818 0.528685i \(-0.177315\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1328.79i 3.58166i
\(372\) 0 0
\(373\) 498.003i 1.33513i 0.744552 + 0.667565i \(0.232663\pi\)
−0.744552 + 0.667565i \(0.767337\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 697.264 1.84951
\(378\) 0 0
\(379\) 381.165 1.00571 0.502856 0.864370i \(-0.332283\pi\)
0.502856 + 0.864370i \(0.332283\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 83.2956 0.217482 0.108741 0.994070i \(-0.465318\pi\)
0.108741 + 0.994070i \(0.465318\pi\)
\(384\) 0 0
\(385\) 37.3821 + 102.025i 0.0970963 + 0.265000i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 322.027i 0.827832i −0.910315 0.413916i \(-0.864161\pi\)
0.910315 0.413916i \(-0.135839\pi\)
\(390\) 0 0
\(391\) 515.674 1.31886
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −31.4801 85.9171i −0.0796965 0.217512i
\(396\) 0 0
\(397\) 683.223i 1.72097i 0.509479 + 0.860483i \(0.329838\pi\)
−0.509479 + 0.860483i \(0.670162\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 673.555i 1.67969i 0.542828 + 0.839844i \(0.317354\pi\)
−0.542828 + 0.839844i \(0.682646\pi\)
\(402\) 0 0
\(403\) 665.540i 1.65146i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −51.8855 −0.127483
\(408\) 0 0
\(409\) 428.725 1.04823 0.524113 0.851648i \(-0.324397\pi\)
0.524113 + 0.851648i \(0.324397\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1200.81 −2.90753
\(414\) 0 0
\(415\) −40.2301 109.798i −0.0969399 0.264573i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 85.0394i 0.202958i −0.994838 0.101479i \(-0.967643\pi\)
0.994838 0.101479i \(-0.0323575\pi\)
\(420\) 0 0
\(421\) −99.1071 −0.235409 −0.117704 0.993049i \(-0.537554\pi\)
−0.117704 + 0.993049i \(0.537554\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 402.351 340.564i 0.946708 0.801328i
\(426\) 0 0
\(427\) 123.620i 0.289509i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 133.079i 0.308768i 0.988011 + 0.154384i \(0.0493393\pi\)
−0.988011 + 0.154384i \(0.950661\pi\)
\(432\) 0 0
\(433\) 305.104i 0.704628i −0.935882 0.352314i \(-0.885395\pi\)
0.935882 0.352314i \(-0.114605\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −285.854 −0.654128
\(438\) 0 0
\(439\) −745.820 −1.69891 −0.849453 0.527664i \(-0.823068\pi\)
−0.849453 + 0.527664i \(0.823068\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −477.301 −1.07743 −0.538715 0.842488i \(-0.681090\pi\)
−0.538715 + 0.842488i \(0.681090\pi\)
\(444\) 0 0
\(445\) 691.124 253.229i 1.55309 0.569053i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 502.795i 1.11981i 0.828557 + 0.559905i \(0.189163\pi\)
−0.828557 + 0.559905i \(0.810837\pi\)
\(450\) 0 0
\(451\) 8.64592 0.0191705
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −403.259 1100.59i −0.886283 2.41889i
\(456\) 0 0
\(457\) 352.233i 0.770750i −0.922760 0.385375i \(-0.874072\pi\)
0.922760 0.385375i \(-0.125928\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 159.782i 0.346598i 0.984869 + 0.173299i \(0.0554427\pi\)
−0.984869 + 0.173299i \(0.944557\pi\)
\(462\) 0 0
\(463\) 486.215i 1.05014i −0.851059 0.525070i \(-0.824039\pi\)
0.851059 0.525070i \(-0.175961\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 220.960 0.473147 0.236573 0.971614i \(-0.423976\pi\)
0.236573 + 0.971614i \(0.423976\pi\)
\(468\) 0 0
\(469\) −366.262 −0.780943
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 25.1645 0.0532018
\(474\) 0 0
\(475\) −223.035 + 188.785i −0.469548 + 0.397442i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 343.941i 0.718040i −0.933330 0.359020i \(-0.883111\pi\)
0.933330 0.359020i \(-0.116889\pi\)
\(480\) 0 0
\(481\) 559.715 1.16365
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 473.317 173.424i 0.975911 0.357575i
\(486\) 0 0
\(487\) 38.0395i 0.0781098i 0.999237 + 0.0390549i \(0.0124347\pi\)
−0.999237 + 0.0390549i \(0.987565\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 203.703i 0.414874i −0.978248 0.207437i \(-0.933488\pi\)
0.978248 0.207437i \(-0.0665121\pi\)
\(492\) 0 0
\(493\) 854.078i 1.73241i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1496.14 3.01035
\(498\) 0 0
\(499\) 469.710 0.941302 0.470651 0.882319i \(-0.344019\pi\)
0.470651 + 0.882319i \(0.344019\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −213.475 −0.424403 −0.212202 0.977226i \(-0.568063\pi\)
−0.212202 + 0.977226i \(0.568063\pi\)
\(504\) 0 0
\(505\) 484.603 177.559i 0.959609 0.351602i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 535.595i 1.05225i 0.850407 + 0.526125i \(0.176356\pi\)
−0.850407 + 0.526125i \(0.823644\pi\)
\(510\) 0 0
\(511\) 395.372 0.773723
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 197.579 72.3931i 0.383648 0.140569i
\(516\) 0 0
\(517\) 52.4783i 0.101505i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 503.822i 0.967029i 0.875336 + 0.483515i \(0.160640\pi\)
−0.875336 + 0.483515i \(0.839360\pi\)
\(522\) 0 0
\(523\) 370.237i 0.707911i −0.935262 0.353955i \(-0.884836\pi\)
0.935262 0.353955i \(-0.115164\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 815.220 1.54691
\(528\) 0 0
\(529\) 69.1203 0.130662
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −93.2678 −0.174986
\(534\) 0 0
\(535\) 261.040 + 712.443i 0.487925 + 1.33167i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 217.762i 0.404011i
\(540\) 0 0
\(541\) −914.913 −1.69115 −0.845576 0.533856i \(-0.820743\pi\)
−0.845576 + 0.533856i \(0.820743\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −112.664 307.489i −0.206723 0.564199i
\(546\) 0 0
\(547\) 513.322i 0.938431i −0.883084 0.469215i \(-0.844537\pi\)
0.883084 0.469215i \(-0.155463\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 473.442i 0.859241i
\(552\) 0 0
\(553\) 249.227i 0.450682i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −528.051 −0.948028 −0.474014 0.880517i \(-0.657195\pi\)
−0.474014 + 0.880517i \(0.657195\pi\)
\(558\) 0 0
\(559\) −271.461 −0.485620
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −517.680 −0.919503 −0.459752 0.888048i \(-0.652062\pi\)
−0.459752 + 0.888048i \(0.652062\pi\)
\(564\) 0 0
\(565\) −230.104 628.011i −0.407264 1.11152i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 977.375i 1.71771i −0.512222 0.858853i \(-0.671177\pi\)
0.512222 0.858853i \(-0.328823\pi\)
\(570\) 0 0
\(571\) −299.724 −0.524911 −0.262456 0.964944i \(-0.584532\pi\)
−0.262456 + 0.964944i \(0.584532\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 466.679 395.014i 0.811615 0.686981i
\(576\) 0 0
\(577\) 117.212i 0.203140i −0.994828 0.101570i \(-0.967613\pi\)
0.994828 0.101570i \(-0.0323866\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 318.500i 0.548193i
\(582\) 0 0
\(583\) 155.699i 0.267065i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −286.792 −0.488572 −0.244286 0.969703i \(-0.578554\pi\)
−0.244286 + 0.969703i \(0.578554\pi\)
\(588\) 0 0
\(589\) −451.902 −0.767235
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 57.1262 0.0963343 0.0481672 0.998839i \(-0.484662\pi\)
0.0481672 + 0.998839i \(0.484662\pi\)
\(594\) 0 0
\(595\) −1348.12 + 493.952i −2.26574 + 0.830171i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 407.955i 0.681060i −0.940234 0.340530i \(-0.889393\pi\)
0.940234 0.340530i \(-0.110607\pi\)
\(600\) 0 0
\(601\) −442.203 −0.735778 −0.367889 0.929870i \(-0.619919\pi\)
−0.367889 + 0.929870i \(0.619919\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 203.761 + 556.114i 0.336795 + 0.919197i
\(606\) 0 0
\(607\) 28.6479i 0.0471958i −0.999722 0.0235979i \(-0.992488\pi\)
0.999722 0.0235979i \(-0.00751215\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 566.110i 0.926529i
\(612\) 0 0
\(613\) 464.159i 0.757192i −0.925562 0.378596i \(-0.876407\pi\)
0.925562 0.378596i \(-0.123593\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 593.277 0.961551 0.480776 0.876844i \(-0.340355\pi\)
0.480776 + 0.876844i \(0.340355\pi\)
\(618\) 0 0
\(619\) 794.099 1.28287 0.641437 0.767176i \(-0.278338\pi\)
0.641437 + 0.767176i \(0.278338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2004.80 −3.21798
\(624\) 0 0
\(625\) 103.245 616.413i 0.165193 0.986261i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 685.594i 1.08998i
\(630\) 0 0
\(631\) 58.8087 0.0931991 0.0465996 0.998914i \(-0.485162\pi\)
0.0465996 + 0.998914i \(0.485162\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 95.6429 35.0437i 0.150619 0.0551869i
\(636\) 0 0
\(637\) 2349.10i 3.68776i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 916.323i 1.42952i 0.699369 + 0.714760i \(0.253464\pi\)
−0.699369 + 0.714760i \(0.746536\pi\)
\(642\) 0 0
\(643\) 94.0391i 0.146251i 0.997323 + 0.0731253i \(0.0232973\pi\)
−0.997323 + 0.0731253i \(0.976703\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −250.055 −0.386484 −0.193242 0.981151i \(-0.561900\pi\)
−0.193242 + 0.981151i \(0.561900\pi\)
\(648\) 0 0
\(649\) 140.703 0.216799
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 716.952 1.09794 0.548968 0.835843i \(-0.315021\pi\)
0.548968 + 0.835843i \(0.315021\pi\)
\(654\) 0 0
\(655\) −513.104 + 188.002i −0.783365 + 0.287026i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 421.359i 0.639391i −0.947520 0.319696i \(-0.896419\pi\)
0.947520 0.319696i \(-0.103581\pi\)
\(660\) 0 0
\(661\) −426.618 −0.645413 −0.322707 0.946499i \(-0.604593\pi\)
−0.322707 + 0.946499i \(0.604593\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 747.303 273.813i 1.12376 0.411748i
\(666\) 0 0
\(667\) 990.629i 1.48520i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.4850i 0.0215871i
\(672\) 0 0
\(673\) 8.65133i 0.0128549i 0.999979 + 0.00642744i \(0.00204593\pi\)
−0.999979 + 0.00642744i \(0.997954\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −69.4880 −0.102641 −0.0513206 0.998682i \(-0.516343\pi\)
−0.0513206 + 0.998682i \(0.516343\pi\)
\(678\) 0 0
\(679\) −1372.99 −2.02208
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 217.382 0.318276 0.159138 0.987256i \(-0.449129\pi\)
0.159138 + 0.987256i \(0.449129\pi\)
\(684\) 0 0
\(685\) −52.2541 142.615i −0.0762834 0.208196i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1679.60i 2.43774i
\(690\) 0 0
\(691\) −1063.94 −1.53971 −0.769853 0.638221i \(-0.779671\pi\)
−0.769853 + 0.638221i \(0.779671\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 147.577 + 402.776i 0.212342 + 0.579533i
\(696\) 0 0
\(697\) 114.244i 0.163908i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1095.79i 1.56318i 0.623795 + 0.781588i \(0.285590\pi\)
−0.623795 + 0.781588i \(0.714410\pi\)
\(702\) 0 0
\(703\) 380.046i 0.540606i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1405.73 −1.98830
\(708\) 0 0
\(709\) −784.926 −1.10709 −0.553545 0.832820i \(-0.686725\pi\)
−0.553545 + 0.832820i \(0.686725\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 945.558 1.32617
\(714\) 0 0
\(715\) 47.2511 + 128.960i 0.0660855 + 0.180364i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1086.25i 1.51078i 0.655274 + 0.755391i \(0.272553\pi\)
−0.655274 + 0.755391i \(0.727447\pi\)
\(720\) 0 0
\(721\) −573.134 −0.794915
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −654.237 772.931i −0.902396 1.06611i
\(726\) 0 0
\(727\) 790.496i 1.08734i −0.839299 0.543670i \(-0.817034\pi\)
0.839299 0.543670i \(-0.182966\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 332.513i 0.454874i
\(732\) 0 0
\(733\) 82.0567i 0.111946i −0.998432 0.0559732i \(-0.982174\pi\)
0.998432 0.0559732i \(-0.0178261\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 42.9161 0.0582309
\(738\) 0 0
\(739\) 119.154 0.161237 0.0806186 0.996745i \(-0.474310\pi\)
0.0806186 + 0.996745i \(0.474310\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1233.25 1.65982 0.829912 0.557894i \(-0.188391\pi\)
0.829912 + 0.557894i \(0.188391\pi\)
\(744\) 0 0
\(745\) 409.936 150.201i 0.550250 0.201612i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2066.64i 2.75920i
\(750\) 0 0
\(751\) −39.0008 −0.0519318 −0.0259659 0.999663i \(-0.508266\pi\)
−0.0259659 + 0.999663i \(0.508266\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −376.584 1027.79i −0.498787 1.36131i
\(756\) 0 0
\(757\) 300.471i 0.396923i −0.980109 0.198461i \(-0.936406\pi\)
0.980109 0.198461i \(-0.0635944\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 618.814i 0.813159i 0.913615 + 0.406579i \(0.133279\pi\)
−0.913615 + 0.406579i \(0.866721\pi\)
\(762\) 0 0
\(763\) 891.959i 1.16902i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1517.83 −1.97892
\(768\) 0 0
\(769\) −1333.56 −1.73414 −0.867072 0.498183i \(-0.834001\pi\)
−0.867072 + 0.498183i \(0.834001\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −835.665 −1.08107 −0.540534 0.841322i \(-0.681778\pi\)
−0.540534 + 0.841322i \(0.681778\pi\)
\(774\) 0 0
\(775\) 737.765 624.471i 0.951955 0.805769i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 63.3288i 0.0812950i
\(780\) 0 0
\(781\) −175.308 −0.224466
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 434.147 159.072i 0.553053 0.202639i
\(786\) 0 0
\(787\) 646.301i 0.821221i −0.911811 0.410610i \(-0.865316\pi\)
0.911811 0.410610i \(-0.134684\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1821.73i 2.30307i
\(792\) 0 0
\(793\) 156.257i 0.197045i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −747.026 −0.937297 −0.468649 0.883385i \(-0.655259\pi\)
−0.468649 + 0.883385i \(0.655259\pi\)
\(798\) 0 0
\(799\) −693.428 −0.867869
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −46.3271 −0.0576925
\(804\) 0 0
\(805\) −1563.66 + 572.925i −1.94243 + 0.711708i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 963.606i 1.19111i 0.803315 + 0.595554i \(0.203067\pi\)
−0.803315 + 0.595554i \(0.796933\pi\)
\(810\) 0 0
\(811\) 862.849 1.06393 0.531966 0.846766i \(-0.321453\pi\)
0.531966 + 0.846766i \(0.321453\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1184.58 + 434.030i −1.45347 + 0.532552i
\(816\) 0 0
\(817\) 184.322i 0.225609i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1050.18i 1.27915i −0.768729 0.639575i \(-0.779111\pi\)
0.768729 0.639575i \(-0.220889\pi\)
\(822\) 0 0
\(823\) 216.916i 0.263567i −0.991278 0.131784i \(-0.957930\pi\)
0.991278 0.131784i \(-0.0420704\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1051.87 1.27191 0.635955 0.771726i \(-0.280607\pi\)
0.635955 + 0.771726i \(0.280607\pi\)
\(828\) 0 0
\(829\) 647.285 0.780802 0.390401 0.920645i \(-0.372336\pi\)
0.390401 + 0.920645i \(0.372336\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2877.42 3.45428
\(834\) 0 0
\(835\) 156.690 + 427.645i 0.187652 + 0.512150i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 480.093i 0.572221i −0.958197 0.286110i \(-0.907638\pi\)
0.958197 0.286110i \(-0.0923624\pi\)
\(840\) 0 0
\(841\) −799.718 −0.950913
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −219.012 597.738i −0.259186 0.707383i
\(846\) 0 0
\(847\) 1613.17i 1.90457i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 795.208i 0.934439i
\(852\) 0 0
\(853\) 109.664i 0.128563i 0.997932 + 0.0642815i \(0.0204756\pi\)
−0.997932 + 0.0642815i \(0.979524\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −434.234 −0.506690 −0.253345 0.967376i \(-0.581531\pi\)
−0.253345 + 0.967376i \(0.581531\pi\)
\(858\) 0 0
\(859\) 63.0244 0.0733695 0.0366848 0.999327i \(-0.488320\pi\)
0.0366848 + 0.999327i \(0.488320\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −717.730 −0.831669 −0.415834 0.909440i \(-0.636510\pi\)
−0.415834 + 0.909440i \(0.636510\pi\)
\(864\) 0 0
\(865\) −319.581 872.215i −0.369457 1.00834i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 29.2027i 0.0336050i
\(870\) 0 0
\(871\) −462.958 −0.531524
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −841.656 + 1479.70i −0.961893 + 1.69108i
\(876\) 0 0
\(877\) 874.660i 0.997332i −0.866794 0.498666i \(-0.833824\pi\)
0.866794 0.498666i \(-0.166176\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 338.427i 0.384140i −0.981381 0.192070i \(-0.938480\pi\)
0.981381 0.192070i \(-0.0615200\pi\)
\(882\) 0 0
\(883\) 1147.73i 1.29981i −0.760014 0.649906i \(-0.774808\pi\)
0.760014 0.649906i \(-0.225192\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1090.15 −1.22903 −0.614516 0.788904i \(-0.710649\pi\)
−0.614516 + 0.788904i \(0.710649\pi\)
\(888\) 0 0
\(889\) −277.440 −0.312081
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 384.388 0.430446
\(894\) 0 0
\(895\) 708.502 259.596i 0.791623 0.290052i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1566.07i 1.74201i
\(900\) 0 0
\(901\) 2057.35 2.28340
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 28.4261 + 77.5819i 0.0314100 + 0.0857258i
\(906\) 0 0
\(907\) 809.177i 0.892147i −0.894996 0.446073i \(-0.852822\pi\)
0.894996 0.446073i \(-0.147178\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 80.7549i 0.0886442i 0.999017 + 0.0443221i \(0.0141128\pi\)
−0.999017 + 0.0443221i \(0.985887\pi\)
\(912\) 0 0
\(913\) 37.3197i 0.0408759i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1488.40 1.62312
\(918\) 0 0
\(919\) −473.589 −0.515331 −0.257665 0.966234i \(-0.582953\pi\)
−0.257665 + 0.966234i \(0.582953\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1891.13 2.04890
\(924\) 0 0
\(925\) −525.175 620.455i −0.567757 0.670762i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 166.653i 0.179390i 0.995969 + 0.0896949i \(0.0285892\pi\)
−0.995969 + 0.0896949i \(0.971411\pi\)
\(930\) 0 0
\(931\) −1595.04 −1.71326
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 157.963 57.8779i 0.168945 0.0619015i
\(936\) 0 0
\(937\) 1128.54i 1.20442i 0.798338 + 0.602210i \(0.205713\pi\)
−0.798338 + 0.602210i \(0.794287\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.17302i 0.00656007i 0.999995 + 0.00328003i \(0.00104407\pi\)
−0.999995 + 0.00328003i \(0.998956\pi\)
\(942\) 0 0
\(943\) 132.509i 0.140519i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1078.59 1.13895 0.569477 0.822007i \(-0.307146\pi\)
0.569477 + 0.822007i \(0.307146\pi\)
\(948\) 0 0
\(949\) 499.753 0.526610
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 230.467 0.241833 0.120917 0.992663i \(-0.461417\pi\)
0.120917 + 0.992663i \(0.461417\pi\)
\(954\) 0 0
\(955\) 65.3655 23.9500i 0.0684455 0.0250785i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 413.694i 0.431381i
\(960\) 0 0
\(961\) 533.817 0.555481
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −449.357 + 164.645i −0.465655 + 0.170616i
\(966\) 0 0
\(967\) 1452.71i 1.50229i 0.660140 + 0.751143i \(0.270497\pi\)
−0.660140 + 0.751143i \(0.729503\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1192.60i 1.22822i −0.789222 0.614108i \(-0.789516\pi\)
0.789222 0.614108i \(-0.210484\pi\)
\(972\) 0 0
\(973\) 1168.37i 1.20079i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 540.885 0.553619 0.276809 0.960925i \(-0.410723\pi\)
0.276809 + 0.960925i \(0.410723\pi\)
\(978\) 0 0
\(979\) 234.909 0.239948
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1508.68 1.53477 0.767386 0.641186i \(-0.221557\pi\)
0.767386 + 0.641186i \(0.221557\pi\)
\(984\) 0 0
\(985\) −437.641 1194.43i −0.444305 1.21262i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 385.676i 0.389965i
\(990\) 0 0
\(991\) −483.637 −0.488030 −0.244015 0.969771i \(-0.578465\pi\)
−0.244015 + 0.969771i \(0.578465\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −559.905 1528.12i −0.562718 1.53580i
\(996\) 0 0
\(997\) 1777.55i 1.78290i 0.453120 + 0.891450i \(0.350311\pi\)
−0.453120 + 0.891450i \(0.649689\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.3.c.c.809.16 yes 24
3.2 odd 2 inner 1080.3.c.c.809.9 24
4.3 odd 2 2160.3.c.q.1889.16 24
5.4 even 2 inner 1080.3.c.c.809.10 yes 24
12.11 even 2 2160.3.c.q.1889.9 24
15.14 odd 2 inner 1080.3.c.c.809.15 yes 24
20.19 odd 2 2160.3.c.q.1889.10 24
60.59 even 2 2160.3.c.q.1889.15 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.3.c.c.809.9 24 3.2 odd 2 inner
1080.3.c.c.809.10 yes 24 5.4 even 2 inner
1080.3.c.c.809.15 yes 24 15.14 odd 2 inner
1080.3.c.c.809.16 yes 24 1.1 even 1 trivial
2160.3.c.q.1889.9 24 12.11 even 2
2160.3.c.q.1889.10 24 20.19 odd 2
2160.3.c.q.1889.15 24 60.59 even 2
2160.3.c.q.1889.16 24 4.3 odd 2