Properties

Label 1089.1.s.b.457.2
Level 10891089
Weight 11
Character 1089.457
Analytic conductor 0.5430.543
Analytic rank 00
Dimension 1616
Projective image S4S_{4}
CM/RM no
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,1,Mod(40,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([10, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.40");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1089=32112 1089 = 3^{2} \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1089.s (of order 3030, degree 88, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5434817987570.543481798757
Analytic rank: 00
Dimension: 1616
Relative dimension: 22 over Q(ζ30)\Q(\zeta_{30})
Coefficient field: 16.0.26873856000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+2x148x1016x832x6+128x2+256 x^{16} + 2x^{14} - 8x^{10} - 16x^{8} - 32x^{6} + 128x^{2} + 256 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.107811.1

Embedding invariants

Embedding label 457.2
Root 0.2940321.38331i0.294032 - 1.38331i of defining polynomial
Character χ\chi == 1089.457
Dual form 1089.1.s.b.112.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.2940321.38331i)q2+(0.1045280.994522i)q3+(0.9135450.406737i)q4+(0.9781480.207912i)q5+(1.345000.437016i)q6+(1.40647+0.147826i)q7+(0.9781480.207912i)q91.41421iq10+(0.500000+0.866025i)q12+(0.209057+1.98904i)q14+(0.1045280.994522i)q15+(0.6691310.743145i)q16+(0.575212+1.29195i)q18+(0.9781480.207912i)q20+1.41421iq21+(0.309017+0.951057i)q27+(1.34500+0.437016i)q28+(1.406470.147826i)q29+(1.406470.147826i)q30+(0.6691310.743145i)q31+(1.22474+0.707107i)q32+(1.34500+0.437016i)q35+(0.809017+0.587785i)q36+(0.8090170.587785i)q37+(1.95630+0.415823i)q421.00000q45+(0.913545+0.406737i)q47+(0.809017+0.587785i)q48+(0.9781480.207912i)q49+(0.309017+0.951057i)q53+(1.22474+0.707107i)q54+(0.2090571.98904i)q58+(0.913545+0.406737i)q59+(0.309017+0.951057i)q60+(1.050970.946294i)q61+(0.8312541.14412i)q62+(1.40647+0.147826i)q63+(0.309017+0.951057i)q64+(0.500000+0.866025i)q67+(0.209057+1.98904i)q70+(0.309017+0.951057i)q71+(0.831254+1.14412i)q73+(0.5752121.29195i)q74+(0.8090170.587785i)q80+(0.913545+0.406737i)q81+(1.050970.946294i)q83+(0.5752121.29195i)q841.41421iq87+(0.294032+1.38331i)q90+(0.6691310.743145i)q93+(0.294032+1.38331i)q94+(0.575212+1.29195i)q96+(0.9781480.207912i)q971.41421iq98+O(q100)q+(0.294032 - 1.38331i) q^{2} +(0.104528 - 0.994522i) q^{3} +(-0.913545 - 0.406737i) q^{4} +(0.978148 - 0.207912i) q^{5} +(-1.34500 - 0.437016i) q^{6} +(-1.40647 + 0.147826i) q^{7} +(-0.978148 - 0.207912i) q^{9} -1.41421i q^{10} +(-0.500000 + 0.866025i) q^{12} +(-0.209057 + 1.98904i) q^{14} +(-0.104528 - 0.994522i) q^{15} +(-0.669131 - 0.743145i) q^{16} +(-0.575212 + 1.29195i) q^{18} +(-0.978148 - 0.207912i) q^{20} +1.41421i q^{21} +(-0.309017 + 0.951057i) q^{27} +(1.34500 + 0.437016i) q^{28} +(1.40647 - 0.147826i) q^{29} +(-1.40647 - 0.147826i) q^{30} +(0.669131 - 0.743145i) q^{31} +(-1.22474 + 0.707107i) q^{32} +(-1.34500 + 0.437016i) q^{35} +(0.809017 + 0.587785i) q^{36} +(0.809017 - 0.587785i) q^{37} +(1.95630 + 0.415823i) q^{42} -1.00000 q^{45} +(-0.913545 + 0.406737i) q^{47} +(-0.809017 + 0.587785i) q^{48} +(0.978148 - 0.207912i) q^{49} +(0.309017 + 0.951057i) q^{53} +(1.22474 + 0.707107i) q^{54} +(0.209057 - 1.98904i) q^{58} +(0.913545 + 0.406737i) q^{59} +(-0.309017 + 0.951057i) q^{60} +(1.05097 - 0.946294i) q^{61} +(-0.831254 - 1.14412i) q^{62} +(1.40647 + 0.147826i) q^{63} +(0.309017 + 0.951057i) q^{64} +(0.500000 + 0.866025i) q^{67} +(0.209057 + 1.98904i) q^{70} +(-0.309017 + 0.951057i) q^{71} +(0.831254 + 1.14412i) q^{73} +(-0.575212 - 1.29195i) q^{74} +(-0.809017 - 0.587785i) q^{80} +(0.913545 + 0.406737i) q^{81} +(1.05097 - 0.946294i) q^{83} +(0.575212 - 1.29195i) q^{84} -1.41421i q^{87} +(-0.294032 + 1.38331i) q^{90} +(-0.669131 - 0.743145i) q^{93} +(0.294032 + 1.38331i) q^{94} +(0.575212 + 1.29195i) q^{96} +(-0.978148 - 0.207912i) q^{97} -1.41421i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q2q32q42q5+2q98q12+4q14+2q152q16+2q20+4q27+2q31+4q36+4q374q4216q452q474q482q494q53++2q97+O(q100) 16 q - 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{9} - 8 q^{12} + 4 q^{14} + 2 q^{15} - 2 q^{16} + 2 q^{20} + 4 q^{27} + 2 q^{31} + 4 q^{36} + 4 q^{37} - 4 q^{42} - 16 q^{45} - 2 q^{47} - 4 q^{48} - 2 q^{49} - 4 q^{53}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1089Z)×\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times.

nn 244244 848848
χ(n)\chi(n) e(910)e\left(\frac{9}{10}\right) e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.294032 1.38331i 0.294032 1.38331i −0.544639 0.838671i 0.683333π-0.683333\pi
0.838671 0.544639i 0.183333π-0.183333\pi
33 0.104528 0.994522i 0.104528 0.994522i
44 −0.913545 0.406737i −0.913545 0.406737i
55 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
66 −1.34500 0.437016i −1.34500 0.437016i
77 −1.40647 + 0.147826i −1.40647 + 0.147826i −0.777146 0.629320i 0.783333π-0.783333\pi
−0.629320 + 0.777146i 0.716667π0.716667\pi
88 0 0
99 −0.978148 0.207912i −0.978148 0.207912i
1010 1.41421i 1.41421i
1111 0 0
1212 −0.500000 + 0.866025i −0.500000 + 0.866025i
1313 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
1414 −0.209057 + 1.98904i −0.209057 + 1.98904i
1515 −0.104528 0.994522i −0.104528 0.994522i
1616 −0.669131 0.743145i −0.669131 0.743145i
1717 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
1818 −0.575212 + 1.29195i −0.575212 + 1.29195i
1919 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
2020 −0.978148 0.207912i −0.978148 0.207912i
2121 1.41421i 1.41421i
2222 0 0
2323 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
2424 0 0
2525 0 0
2626 0 0
2727 −0.309017 + 0.951057i −0.309017 + 0.951057i
2828 1.34500 + 0.437016i 1.34500 + 0.437016i
2929 1.40647 0.147826i 1.40647 0.147826i 0.629320 0.777146i 0.283333π-0.283333\pi
0.777146 + 0.629320i 0.216667π0.216667\pi
3030 −1.40647 0.147826i −1.40647 0.147826i
3131 0.669131 0.743145i 0.669131 0.743145i −0.309017 0.951057i 0.600000π-0.600000\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
3232 −1.22474 + 0.707107i −1.22474 + 0.707107i
3333 0 0
3434 0 0
3535 −1.34500 + 0.437016i −1.34500 + 0.437016i
3636 0.809017 + 0.587785i 0.809017 + 0.587785i
3737 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
4242 1.95630 + 0.415823i 1.95630 + 0.415823i
4343 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 −1.00000 −1.00000
4646 0 0
4747 −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
4848 −0.809017 + 0.587785i −0.809017 + 0.587785i
4949 0.978148 0.207912i 0.978148 0.207912i
5050 0 0
5151 0 0
5252 0 0
5353 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
5454 1.22474 + 0.707107i 1.22474 + 0.707107i
5555 0 0
5656 0 0
5757 0 0
5858 0.209057 1.98904i 0.209057 1.98904i
5959 0.913545 + 0.406737i 0.913545 + 0.406737i 0.809017 0.587785i 0.200000π-0.200000\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
6060 −0.309017 + 0.951057i −0.309017 + 0.951057i
6161 1.05097 0.946294i 1.05097 0.946294i 0.0523360 0.998630i 0.483333π-0.483333\pi
0.998630 + 0.0523360i 0.0166667π0.0166667\pi
6262 −0.831254 1.14412i −0.831254 1.14412i
6363 1.40647 + 0.147826i 1.40647 + 0.147826i
6464 0.309017 + 0.951057i 0.309017 + 0.951057i
6565 0 0
6666 0 0
6767 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 0 0
6969 0 0
7070 0.209057 + 1.98904i 0.209057 + 1.98904i
7171 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
7272 0 0
7373 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
7474 −0.575212 1.29195i −0.575212 1.29195i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
8080 −0.809017 0.587785i −0.809017 0.587785i
8181 0.913545 + 0.406737i 0.913545 + 0.406737i
8282 0 0
8383 1.05097 0.946294i 1.05097 0.946294i 0.0523360 0.998630i 0.483333π-0.483333\pi
0.998630 + 0.0523360i 0.0166667π0.0166667\pi
8484 0.575212 1.29195i 0.575212 1.29195i
8585 0 0
8686 0 0
8787 1.41421i 1.41421i
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 −0.294032 + 1.38331i −0.294032 + 1.38331i
9191 0 0
9292 0 0
9393 −0.669131 0.743145i −0.669131 0.743145i
9494 0.294032 + 1.38331i 0.294032 + 1.38331i
9595 0 0
9696 0.575212 + 1.29195i 0.575212 + 1.29195i
9797 −0.978148 0.207912i −0.978148 0.207912i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
9898 1.41421i 1.41421i
9999 0 0
100100 0 0
101101 −0.294032 + 1.38331i −0.294032 + 1.38331i 0.544639 + 0.838671i 0.316667π0.316667\pi
−0.838671 + 0.544639i 0.816667π0.816667\pi
102102 0 0
103103 −0.913545 0.406737i −0.913545 0.406737i −0.104528 0.994522i 0.533333π-0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
104104 0 0
105105 0.294032 + 1.38331i 0.294032 + 1.38331i
106106 1.40647 0.147826i 1.40647 0.147826i
107107 −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
108108 0.669131 0.743145i 0.669131 0.743145i
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 −0.500000 0.866025i −0.500000 0.866025i
112112 1.05097 + 0.946294i 1.05097 + 0.946294i
113113 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
114114 0 0
115115 0 0
116116 −1.34500 0.437016i −1.34500 0.437016i
117117 0 0
118118 0.831254 1.14412i 0.831254 1.14412i
119119 0 0
120120 0 0
121121 0 0
122122 −1.00000 1.73205i −1.00000 1.73205i
123123 0 0
124124 −0.913545 + 0.406737i −0.913545 + 0.406737i
125125 −0.809017 + 0.587785i −0.809017 + 0.587785i
126126 0.618034 1.90211i 0.618034 1.90211i
127127 −1.34500 0.437016i −1.34500 0.437016i −0.453990 0.891007i 0.650000π-0.650000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
132132 0 0
133133 0 0
134134 1.34500 0.437016i 1.34500 0.437016i
135135 −0.104528 + 0.994522i −0.104528 + 0.994522i
136136 0 0
137137 −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
138138 0 0
139139 0.575212 1.29195i 0.575212 1.29195i −0.358368 0.933580i 0.616667π-0.616667\pi
0.933580 0.358368i 0.116667π-0.116667\pi
140140 1.40647 + 0.147826i 1.40647 + 0.147826i
141141 0.309017 + 0.951057i 0.309017 + 0.951057i
142142 1.22474 + 0.707107i 1.22474 + 0.707107i
143143 0 0
144144 0.500000 + 0.866025i 0.500000 + 0.866025i
145145 1.34500 0.437016i 1.34500 0.437016i
146146 1.82709 0.813473i 1.82709 0.813473i
147147 −0.104528 0.994522i −0.104528 0.994522i
148148 −0.978148 + 0.207912i −0.978148 + 0.207912i
149149 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
150150 0 0
151151 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
152152 0 0
153153 0 0
154154 0 0
155155 0.500000 0.866025i 0.500000 0.866025i
156156 0 0
157157 −0.104528 + 0.994522i −0.104528 + 0.994522i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
158158 0 0
159159 0.978148 0.207912i 0.978148 0.207912i
160160 −1.05097 + 0.946294i −1.05097 + 0.946294i
161161 0 0
162162 0.831254 1.14412i 0.831254 1.14412i
163163 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
164164 0 0
165165 0 0
166166 −1.00000 1.73205i −1.00000 1.73205i
167167 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
168168 0 0
169169 −0.104528 0.994522i −0.104528 0.994522i
170170 0 0
171171 0 0
172172 0 0
173173 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
174174 −1.95630 0.415823i −1.95630 0.415823i
175175 0 0
176176 0 0
177177 0.500000 0.866025i 0.500000 0.866025i
178178 0 0
179179 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
180180 0.913545 + 0.406737i 0.913545 + 0.406737i
181181 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
182182 0 0
183183 −0.831254 1.14412i −0.831254 1.14412i
184184 0 0
185185 0.669131 0.743145i 0.669131 0.743145i
186186 −1.22474 + 0.707107i −1.22474 + 0.707107i
187187 0 0
188188 1.00000 1.00000
189189 0.294032 1.38331i 0.294032 1.38331i
190190 0 0
191191 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
192192 0.978148 0.207912i 0.978148 0.207912i
193193 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
194194 −0.575212 + 1.29195i −0.575212 + 1.29195i
195195 0 0
196196 −0.978148 0.207912i −0.978148 0.207912i
197197 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
198198 0 0
199199 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0 0
201201 0.913545 0.406737i 0.913545 0.406737i
202202 1.82709 + 0.813473i 1.82709 + 0.813473i
203203 −1.95630 + 0.415823i −1.95630 + 0.415823i
204204 0 0
205205 0 0
206206 −0.831254 + 1.14412i −0.831254 + 1.14412i
207207 0 0
208208 0 0
209209 0 0
210210 2.00000 2.00000
211211 −1.05097 0.946294i −1.05097 0.946294i −0.0523360 0.998630i 0.516667π-0.516667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
212212 0.104528 0.994522i 0.104528 0.994522i
213213 0.913545 + 0.406737i 0.913545 + 0.406737i
214214 1.33826 + 1.48629i 1.33826 + 1.48629i
215215 0 0
216216 0 0
217217 −0.831254 + 1.14412i −0.831254 + 1.14412i
218218 0 0
219219 1.22474 0.707107i 1.22474 0.707107i
220220 0 0
221221 0 0
222222 −1.34500 + 0.437016i −1.34500 + 0.437016i
223223 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
224224 1.61803 1.17557i 1.61803 1.17557i
225225 0 0
226226 −1.34500 0.437016i −1.34500 0.437016i
227227 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
228228 0 0
229229 0 0 −0.743145 0.669131i 0.766667π-0.766667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
230230 0 0
231231 0 0
232232 0 0
233233 1.34500 0.437016i 1.34500 0.437016i 0.453990 0.891007i 0.350000π-0.350000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
234234 0 0
235235 −0.809017 + 0.587785i −0.809017 + 0.587785i
236236 −0.669131 0.743145i −0.669131 0.743145i
237237 0 0
238238 0 0
239239 1.40647 + 0.147826i 1.40647 + 0.147826i 0.777146 0.629320i 0.216667π-0.216667\pi
0.629320 + 0.777146i 0.283333π0.283333\pi
240240 −0.669131 + 0.743145i −0.669131 + 0.743145i
241241 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 0 0
243243 0.500000 0.866025i 0.500000 0.866025i
244244 −1.34500 + 0.437016i −1.34500 + 0.437016i
245245 0.913545 0.406737i 0.913545 0.406737i
246246 0 0
247247 0 0
248248 0 0
249249 −0.831254 1.14412i −0.831254 1.14412i
250250 0.575212 + 1.29195i 0.575212 + 1.29195i
251251 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
252252 −1.22474 0.707107i −1.22474 0.707107i
253253 0 0
254254 −1.00000 + 1.73205i −1.00000 + 1.73205i
255255 0 0
256256 −0.104528 + 0.994522i −0.104528 + 0.994522i
257257 −1.82709 0.813473i −1.82709 0.813473i −0.913545 0.406737i 0.866667π-0.866667\pi
−0.913545 0.406737i 0.866667π-0.866667\pi
258258 0 0
259259 −1.05097 + 0.946294i −1.05097 + 0.946294i
260260 0 0
261261 −1.40647 0.147826i −1.40647 0.147826i
262262 0 0
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0.500000 + 0.866025i 0.500000 + 0.866025i
266266 0 0
267267 0 0
268268 −0.104528 0.994522i −0.104528 0.994522i
269269 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
270270 1.34500 + 0.437016i 1.34500 + 0.437016i
271271 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
272272 0 0
273273 0 0
274274 −1.22474 + 0.707107i −1.22474 + 0.707107i
275275 0 0
276276 0 0
277277 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
278278 −1.61803 1.17557i −1.61803 1.17557i
279279 −0.809017 + 0.587785i −0.809017 + 0.587785i
280280 0 0
281281 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
282282 1.40647 0.147826i 1.40647 0.147826i
283283 −1.40647 0.147826i −1.40647 0.147826i −0.629320 0.777146i 0.716667π-0.716667\pi
−0.777146 + 0.629320i 0.783333π0.783333\pi
284284 0.669131 0.743145i 0.669131 0.743145i
285285 0 0
286286 0 0
287287 0 0
288288 1.34500 0.437016i 1.34500 0.437016i
289289 −0.809017 0.587785i −0.809017 0.587785i
290290 −0.209057 1.98904i −0.209057 1.98904i
291291 −0.309017 + 0.951057i −0.309017 + 0.951057i
292292 −0.294032 1.38331i −0.294032 1.38331i
293293 −0.575212 + 1.29195i −0.575212 + 1.29195i 0.358368 + 0.933580i 0.383333π0.383333\pi
−0.933580 + 0.358368i 0.883333π0.883333\pi
294294 −1.40647 0.147826i −1.40647 0.147826i
295295 0.978148 + 0.207912i 0.978148 + 0.207912i
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 1.34500 + 0.437016i 1.34500 + 0.437016i
304304 0 0
305305 0.831254 1.14412i 0.831254 1.14412i
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 −0.500000 + 0.866025i −0.500000 + 0.866025i
310310 −1.05097 0.946294i −1.05097 0.946294i
311311 −0.104528 + 0.994522i −0.104528 + 0.994522i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
312312 0 0
313313 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
314314 1.34500 + 0.437016i 1.34500 + 0.437016i
315315 1.40647 0.147826i 1.40647 0.147826i
316316 0 0
317317 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
318318 1.41421i 1.41421i
319319 0 0
320320 0.500000 + 0.866025i 0.500000 + 0.866025i
321321 1.05097 + 0.946294i 1.05097 + 0.946294i
322322 0 0
323323 0 0
324324 −0.669131 0.743145i −0.669131 0.743145i
325325 0 0
326326 −1.40647 + 0.147826i −1.40647 + 0.147826i
327327 0 0
328328 0 0
329329 1.22474 0.707107i 1.22474 0.707107i
330330 0 0
331331 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
332332 −1.34500 + 0.437016i −1.34500 + 0.437016i
333333 −0.913545 + 0.406737i −0.913545 + 0.406737i
334334 0 0
335335 0.669131 + 0.743145i 0.669131 + 0.743145i
336336 1.05097 0.946294i 1.05097 0.946294i
337337 −0.575212 + 1.29195i −0.575212 + 1.29195i 0.358368 + 0.933580i 0.383333π0.383333\pi
−0.933580 + 0.358368i 0.883333π0.883333\pi
338338 −1.40647 0.147826i −1.40647 0.147826i
339339 −0.978148 0.207912i −0.978148 0.207912i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0.294032 + 1.38331i 0.294032 + 1.38331i 0.838671 + 0.544639i 0.183333π0.183333\pi
−0.544639 + 0.838671i 0.683333π0.683333\pi
348348 −0.575212 + 1.29195i −0.575212 + 1.29195i
349349 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
354354 −1.05097 0.946294i −1.05097 0.946294i
355355 −0.104528 + 0.994522i −0.104528 + 0.994522i
356356 0 0
357357 0 0
358358 1.05097 0.946294i 1.05097 0.946294i
359359 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
360360 0 0
361361 0.309017 + 0.951057i 0.309017 + 0.951057i
362362 1.22474 + 0.707107i 1.22474 + 0.707107i
363363 0 0
364364 0 0
365365 1.05097 + 0.946294i 1.05097 + 0.946294i
366366 −1.82709 + 0.813473i −1.82709 + 0.813473i
367367 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
368368 0 0
369369 0 0
370370 −0.831254 1.14412i −0.831254 1.14412i
371371 −0.575212 1.29195i −0.575212 1.29195i
372372 0.309017 + 0.951057i 0.309017 + 0.951057i
373373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
374374 0 0
375375 0.500000 + 0.866025i 0.500000 + 0.866025i
376376 0 0
377377 0 0
378378 −1.82709 0.813473i −1.82709 0.813473i
379379 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
380380 0 0
381381 −0.575212 + 1.29195i −0.575212 + 1.29195i
382382 1.40647 + 0.147826i 1.40647 + 0.147826i
383383 0.669131 0.743145i 0.669131 0.743145i −0.309017 0.951057i 0.600000π-0.600000\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0.809017 + 0.587785i 0.809017 + 0.587785i
389389 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 1.95630 + 0.415823i 1.95630 + 0.415823i
395395 0 0
396396 0 0
397397 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 −0.294032 + 1.38331i −0.294032 + 1.38331i
399399 0 0
400400 0 0
401401 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
402402 −0.294032 1.38331i −0.294032 1.38331i
403403 0 0
404404 0.831254 1.14412i 0.831254 1.14412i
405405 0.978148 + 0.207912i 0.978148 + 0.207912i
406406 2.82843i 2.82843i
407407 0 0
408408 0 0
409409 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
410410 0 0
411411 −0.809017 + 0.587785i −0.809017 + 0.587785i
412412 0.669131 + 0.743145i 0.669131 + 0.743145i
413413 −1.34500 0.437016i −1.34500 0.437016i
414414 0 0
415415 0.831254 1.14412i 0.831254 1.14412i
416416 0 0
417417 −1.22474 0.707107i −1.22474 0.707107i
418418 0 0
419419 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
420420 0.294032 1.38331i 0.294032 1.38331i
421421 0.913545 0.406737i 0.913545 0.406737i 0.104528 0.994522i 0.466667π-0.466667\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
422422 −1.61803 + 1.17557i −1.61803 + 1.17557i
423423 0.978148 0.207912i 0.978148 0.207912i
424424 0 0
425425 0 0
426426 0.831254 1.14412i 0.831254 1.14412i
427427 −1.33826 + 1.48629i −1.33826 + 1.48629i
428428 1.22474 0.707107i 1.22474 0.707107i
429429 0 0
430430 0 0
431431 −1.34500 + 0.437016i −1.34500 + 0.437016i −0.891007 0.453990i 0.850000π-0.850000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
432432 0.913545 0.406737i 0.913545 0.406737i
433433 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
434434 1.33826 + 1.48629i 1.33826 + 1.48629i
435435 −0.294032 1.38331i −0.294032 1.38331i
436436 0 0
437437 0 0
438438 −0.618034 1.90211i −0.618034 1.90211i
439439 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
440440 0 0
441441 −1.00000 −1.00000
442442 0 0
443443 0.913545 0.406737i 0.913545 0.406737i 0.104528 0.994522i 0.466667π-0.466667\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
444444 0.104528 + 0.994522i 0.104528 + 0.994522i
445445 0 0
446446 0 0
447447 0 0
448448 −0.575212 1.29195i −0.575212 1.29195i
449449 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
450450 0 0
451451 0 0
452452 −0.500000 + 0.866025i −0.500000 + 0.866025i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.05097 0.946294i 1.05097 0.946294i 0.0523360 0.998630i 0.483333π-0.483333\pi
0.998630 + 0.0523360i 0.0166667π0.0166667\pi
458458 0 0
459459 0 0
460460 0 0
461461 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
462462 0 0
463463 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
464464 −1.05097 0.946294i −1.05097 0.946294i
465465 −0.809017 0.587785i −0.809017 0.587785i
466466 −0.209057 1.98904i −0.209057 1.98904i
467467 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
468468 0 0
469469 −0.831254 1.14412i −0.831254 1.14412i
470470 0.575212 + 1.29195i 0.575212 + 1.29195i
471471 0.978148 + 0.207912i 0.978148 + 0.207912i
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 −0.104528 0.994522i −0.104528 0.994522i
478478 0.618034 1.90211i 0.618034 1.90211i
479479 −1.05097 + 0.946294i −1.05097 + 0.946294i −0.998630 0.0523360i 0.983333π-0.983333\pi
−0.0523360 + 0.998630i 0.516667π0.516667\pi
480480 0.831254 + 1.14412i 0.831254 + 1.14412i
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 −1.00000 −1.00000
486486 −1.05097 0.946294i −1.05097 0.946294i
487487 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
488488 0 0
489489 −0.978148 + 0.207912i −0.978148 + 0.207912i
490490 −0.294032 1.38331i −0.294032 1.38331i
491491 0.575212 1.29195i 0.575212 1.29195i −0.358368 0.933580i 0.616667π-0.616667\pi
0.933580 0.358368i 0.116667π-0.116667\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −1.00000 −1.00000
497497 0.294032 1.38331i 0.294032 1.38331i
498498 −1.82709 + 0.813473i −1.82709 + 0.813473i
499499 0.913545 + 0.406737i 0.913545 + 0.406737i 0.809017 0.587785i 0.200000π-0.200000\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
500500 0.978148 0.207912i 0.978148 0.207912i
501501 0 0
502502 0 0
503503 −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
504504 0 0
505505 1.41421i 1.41421i
506506 0 0
507507 −1.00000 −1.00000
508508 1.05097 + 0.946294i 1.05097 + 0.946294i
509509 0 0 −0.994522 0.104528i 0.966667π-0.966667\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
510510 0 0
511511 −1.33826 1.48629i −1.33826 1.48629i
512512 1.34500 + 0.437016i 1.34500 + 0.437016i
513513 0 0
514514 −1.66251 + 2.28825i −1.66251 + 2.28825i
515515 −0.978148 0.207912i −0.978148 0.207912i
516516 0 0
517517 0 0
518518 1.00000 + 1.73205i 1.00000 + 1.73205i
519519 0 0
520520 0 0
521521 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
522522 −0.618034 + 1.90211i −0.618034 + 1.90211i
523523 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.500000 0.866025i 0.500000 0.866025i
530530 1.34500 0.437016i 1.34500 0.437016i
531531 −0.809017 0.587785i −0.809017 0.587785i
532532 0 0
533533 0 0
534534 0 0
535535 −0.575212 + 1.29195i −0.575212 + 1.29195i
536536 0 0
537537 0.669131 0.743145i 0.669131 0.743145i
538538 −1.22474 0.707107i −1.22474 0.707107i
539539 0 0
540540 0.500000 0.866025i 0.500000 0.866025i
541541 −1.34500 + 0.437016i −1.34500 + 0.437016i −0.891007 0.453990i 0.850000π-0.850000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
542542 0 0
543543 0.913545 + 0.406737i 0.913545 + 0.406737i
544544 0 0
545545 0 0
546546 0 0
547547 −0.575212 1.29195i −0.575212 1.29195i −0.933580 0.358368i 0.883333π-0.883333\pi
0.358368 0.933580i 0.383333π-0.383333\pi
548548 0.309017 + 0.951057i 0.309017 + 0.951057i
549549 −1.22474 + 0.707107i −1.22474 + 0.707107i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 −0.669131 0.743145i −0.669131 0.743145i
556556 −1.05097 + 0.946294i −1.05097 + 0.946294i
557557 −0.831254 1.14412i −0.831254 1.14412i −0.987688 0.156434i 0.950000π-0.950000\pi
0.156434 0.987688i 0.450000π-0.450000\pi
558558 0.575212 + 1.29195i 0.575212 + 1.29195i
559559 0 0
560560 1.22474 + 0.707107i 1.22474 + 0.707107i
561561 0 0
562562 0 0
563563 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
564564 0.104528 0.994522i 0.104528 0.994522i
565565 −0.104528 0.994522i −0.104528 0.994522i
566566 −0.618034 + 1.90211i −0.618034 + 1.90211i
567567 −1.34500 0.437016i −1.34500 0.437016i
568568 0 0
569569 0.575212 + 1.29195i 0.575212 + 1.29195i 0.933580 + 0.358368i 0.116667π0.116667\pi
−0.358368 + 0.933580i 0.616667π0.616667\pi
570570 0 0
571571 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i 0.416667π-0.416667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
572572 0 0
573573 1.00000 1.00000
574574 0 0
575575 0 0
576576 −0.104528 0.994522i −0.104528 0.994522i
577577 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
578578 −1.05097 + 0.946294i −1.05097 + 0.946294i
579579 0 0
580580 −1.40647 0.147826i −1.40647 0.147826i
581581 −1.33826 + 1.48629i −1.33826 + 1.48629i
582582 1.22474 + 0.707107i 1.22474 + 0.707107i
583583 0 0
584584 0 0
585585 0 0
586586 1.61803 + 1.17557i 1.61803 + 1.17557i
587587 −0.104528 0.994522i −0.104528 0.994522i −0.913545 0.406737i 0.866667π-0.866667\pi
0.809017 0.587785i 0.200000π-0.200000\pi
588588 −0.309017 + 0.951057i −0.309017 + 0.951057i
589589 0 0
590590 0.575212 1.29195i 0.575212 1.29195i
591591 1.40647 + 0.147826i 1.40647 + 0.147826i
592592 −0.978148 0.207912i −0.978148 0.207912i
593593 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
594594 0 0
595595 0 0
596596 0 0
597597 −0.104528 + 0.994522i −0.104528 + 0.994522i
598598 0 0
599599 0 0 −0.207912 0.978148i 0.566667π-0.566667\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
600600 0 0
601601 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
602602 0 0
603603 −0.309017 0.951057i −0.309017 0.951057i
604604 0 0
605605 0 0
606606 1.00000 1.73205i 1.00000 1.73205i
607607 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
608608 0 0
609609 0.209057 + 1.98904i 0.209057 + 1.98904i
610610 −1.33826 1.48629i −1.33826 1.48629i
611611 0 0
612612 0 0
613613 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
618618 1.05097 + 0.946294i 1.05097 + 0.946294i
619619 0.913545 0.406737i 0.913545 0.406737i 0.104528 0.994522i 0.466667π-0.466667\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
620620 −0.809017 + 0.587785i −0.809017 + 0.587785i
621621 0 0
622622 1.34500 + 0.437016i 1.34500 + 0.437016i
623623 0 0
624624 0 0
625625 −0.669131 + 0.743145i −0.669131 + 0.743145i
626626 0 0
627627 0 0
628628 0.500000 0.866025i 0.500000 0.866025i
629629 0 0
630630 0.209057 1.98904i 0.209057 1.98904i
631631 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
632632 0 0
633633 −1.05097 + 0.946294i −1.05097 + 0.946294i
634634 0 0
635635 −1.40647 0.147826i −1.40647 0.147826i
636636 −0.978148 0.207912i −0.978148 0.207912i
637637 0 0
638638 0 0
639639 0.500000 0.866025i 0.500000 0.866025i
640640 0 0
641641 −1.82709 + 0.813473i −1.82709 + 0.813473i −0.913545 + 0.406737i 0.866667π0.866667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
642642 1.61803 1.17557i 1.61803 1.17557i
643643 0 0 −0.207912 0.978148i 0.566667π-0.566667\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
644644 0 0
645645 0 0
646646 0 0
647647 −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
648648 0 0
649649 0 0
650650 0 0
651651 1.05097 + 0.946294i 1.05097 + 0.946294i
652652 −0.104528 + 0.994522i −0.104528 + 0.994522i
653653 0.913545 + 0.406737i 0.913545 + 0.406737i 0.809017 0.587785i 0.200000π-0.200000\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
654654 0 0
655655 0 0
656656 0 0
657657 −0.575212 1.29195i −0.575212 1.29195i
658658 −0.618034 1.90211i −0.618034 1.90211i
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
662662 1.05097 + 0.946294i 1.05097 + 0.946294i
663663 0 0
664664 0 0
665665 0 0
666666 0.294032 + 1.38331i 0.294032 + 1.38331i
667667 0 0
668668 0 0
669669 0 0
670670 1.22474 0.707107i 1.22474 0.707107i
671671 0 0
672672 −1.00000 1.73205i −1.00000 1.73205i
673673 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
674674 1.61803 + 1.17557i 1.61803 + 1.17557i
675675 0 0
676676 −0.309017 + 0.951057i −0.309017 + 0.951057i
677677 −1.05097 + 0.946294i −1.05097 + 0.946294i −0.998630 0.0523360i 0.983333π-0.983333\pi
−0.0523360 + 0.998630i 0.516667π0.516667\pi
678678 −0.575212 + 1.29195i −0.575212 + 1.29195i
679679 1.40647 + 0.147826i 1.40647 + 0.147826i
680680 0 0
681681 0 0
682682 0 0
683683 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
684684 0 0
685685 −0.809017 0.587785i −0.809017 0.587785i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i 0.266667π-0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
692692 0 0
693693 0 0
694694 2.00000 2.00000
695695 0.294032 1.38331i 0.294032 1.38331i
696696 0 0
697697 0 0
698698 0 0
699699 −0.294032 1.38331i −0.294032 1.38331i
700700 0 0
701701 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0.500000 + 0.866025i 0.500000 + 0.866025i
706706 0 0
707707 0.209057 1.98904i 0.209057 1.98904i
708708 −0.809017 + 0.587785i −0.809017 + 0.587785i
709709 0.669131 + 0.743145i 0.669131 + 0.743145i 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
710710 1.34500 + 0.437016i 1.34500 + 0.437016i
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 −0.500000 0.866025i −0.500000 0.866025i
717717 0.294032 1.38331i 0.294032 1.38331i
718718 1.82709 0.813473i 1.82709 0.813473i
719719 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
720720 0.669131 + 0.743145i 0.669131 + 0.743145i
721721 1.34500 + 0.437016i 1.34500 + 0.437016i
722722 1.40647 0.147826i 1.40647 0.147826i
723723 0 0
724724 0.669131 0.743145i 0.669131 0.743145i
725725 0 0
726726 0 0
727727 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
728728 0 0
729729 −0.809017 0.587785i −0.809017 0.587785i
730730 1.61803 1.17557i 1.61803 1.17557i
731731 0 0
732732 0.294032 + 1.38331i 0.294032 + 1.38331i
733733 0.575212 1.29195i 0.575212 1.29195i −0.358368 0.933580i 0.616667π-0.616667\pi
0.933580 0.358368i 0.116667π-0.116667\pi
734734 1.40647 + 0.147826i 1.40647 + 0.147826i
735735 −0.309017 0.951057i −0.309017 0.951057i
736736 0 0
737737 0 0
738738 0 0
739739 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
740740 −0.913545 + 0.406737i −0.913545 + 0.406737i
741741 0 0
742742 −1.95630 + 0.415823i −1.95630 + 0.415823i
743743 0.294032 + 1.38331i 0.294032 + 1.38331i 0.838671 + 0.544639i 0.183333π0.183333\pi
−0.544639 + 0.838671i 0.683333π0.683333\pi
744744 0 0
745745 0 0
746746 0 0
747747 −1.22474 + 0.707107i −1.22474 + 0.707107i
748748 0 0
749749 1.00000 1.73205i 1.00000 1.73205i
750750 1.34500 0.437016i 1.34500 0.437016i
751751 0.104528 0.994522i 0.104528 0.994522i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 0.406737i 0.133333π-0.133333\pi
752752 0.913545 + 0.406737i 0.913545 + 0.406737i
753753 0 0
754754 0 0
755755 0 0
756756 −0.831254 + 1.14412i −0.831254 + 1.14412i
757757 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.05097 0.946294i −1.05097 0.946294i −0.0523360 0.998630i 0.516667π-0.516667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
762762 1.61803 + 1.17557i 1.61803 + 1.17557i
763763 0 0
764764 0.309017 0.951057i 0.309017 0.951057i
765765 0 0
766766 −0.831254 1.14412i −0.831254 1.14412i
767767 0 0
768768 0.978148 + 0.207912i 0.978148 + 0.207912i
769769 −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
770770 0 0
771771 −1.00000 + 1.73205i −1.00000 + 1.73205i
772772 0 0
773773 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0.831254 + 1.14412i 0.831254 + 1.14412i
778778 1.40647 + 0.147826i 1.40647 + 0.147826i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −0.294032 + 1.38331i −0.294032 + 1.38331i
784784 −0.809017 0.587785i −0.809017 0.587785i
785785 0.104528 + 0.994522i 0.104528 + 0.994522i
786786 0 0
787787 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
788788 0.575212 1.29195i 0.575212 1.29195i
789789 0 0
790790 0 0
791791 1.41421i 1.41421i
792792 0 0
793793 0 0
794794 −0.294032 + 1.38331i −0.294032 + 1.38331i
795795 0.913545 0.406737i 0.913545 0.406737i
796796 0.913545 + 0.406737i 0.913545 + 0.406737i
797797 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 1.41421i 1.41421i
803803 0 0
804804 −1.00000 −1.00000
805805 0 0
806806 0 0
807807 −0.913545 0.406737i −0.913545 0.406737i
808808 0 0
809809 −1.34500 0.437016i −1.34500 0.437016i −0.453990 0.891007i 0.650000π-0.650000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
810810 0.575212 1.29195i 0.575212 1.29195i
811811 0.831254 1.14412i 0.831254 1.14412i −0.156434 0.987688i 0.550000π-0.550000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
812812 1.95630 + 0.415823i 1.95630 + 0.415823i
813813 0 0
814814 0 0
815815 −0.500000 0.866025i −0.500000 0.866025i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
822822 0.575212 + 1.29195i 0.575212 + 1.29195i
823823 0 0 −0.743145 0.669131i 0.766667π-0.766667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
824824 0 0
825825 0 0
826826 −1.00000 + 1.73205i −1.00000 + 1.73205i
827827 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
828828 0 0
829829 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
830830 −1.33826 1.48629i −1.33826 1.48629i
831831 0 0
832832 0 0
833833 0 0
834834 −1.33826 + 1.48629i −1.33826 + 1.48629i
835835 0 0
836836 0 0
837837 0.500000 + 0.866025i 0.500000 + 0.866025i
838838 1.34500 0.437016i 1.34500 0.437016i
839839 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
840840 0 0
841841 0.978148 0.207912i 0.978148 0.207912i
842842 −0.294032 1.38331i −0.294032 1.38331i
843843 0 0
844844 0.575212 + 1.29195i 0.575212 + 1.29195i
845845 −0.309017 0.951057i −0.309017 0.951057i
846846 1.41421i 1.41421i
847847 0 0
848848 0.500000 0.866025i 0.500000 0.866025i
849849 −0.294032 + 1.38331i −0.294032 + 1.38331i
850850 0 0
851851 0 0
852852 −0.669131 0.743145i −0.669131 0.743145i
853853 −1.05097 + 0.946294i −1.05097 + 0.946294i −0.998630 0.0523360i 0.983333π-0.983333\pi
−0.0523360 + 0.998630i 0.516667π0.516667\pi
854854 1.66251 + 2.28825i 1.66251 + 2.28825i
855855 0 0
856856 0 0
857857 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
858858 0 0
859859 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0.209057 + 1.98904i 0.209057 + 1.98904i
863863 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
864864 −0.294032 1.38331i −0.294032 1.38331i
865865 0 0
866866 0 0
867867 −0.669131 + 0.743145i −0.669131 + 0.743145i
868868 1.22474 0.707107i 1.22474 0.707107i
869869 0 0
870870 −2.00000 −2.00000
871871 0 0
872872 0 0
873873 0.913545 + 0.406737i 0.913545 + 0.406737i
874874 0 0
875875 1.05097 0.946294i 1.05097 0.946294i
876876 −1.40647 + 0.147826i −1.40647 + 0.147826i
877877 1.40647 + 0.147826i 1.40647 + 0.147826i 0.777146 0.629320i 0.216667π-0.216667\pi
0.629320 + 0.777146i 0.283333π0.283333\pi
878878 −1.33826 + 1.48629i −1.33826 + 1.48629i
879879 1.22474 + 0.707107i 1.22474 + 0.707107i
880880 0 0
881881 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
882882 −0.294032 + 1.38331i −0.294032 + 1.38331i
883883 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
884884 0 0
885885 0.309017 0.951057i 0.309017 0.951057i
886886 −0.294032 1.38331i −0.294032 1.38331i
887887 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
888888 0 0
889889 1.95630 + 0.415823i 1.95630 + 0.415823i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0.913545 + 0.406737i 0.913545 + 0.406737i
896896 0 0
897897 0 0
898898 1.40647 0.147826i 1.40647 0.147826i
899899 0.831254 1.14412i 0.831254 1.14412i
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 −0.104528 + 0.994522i −0.104528 + 0.994522i
906906 0 0
907907 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
908908 0 0
909909 0.575212 1.29195i 0.575212 1.29195i
910910 0 0
911911 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i 0.266667π-0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
912912 0 0
913913 0 0
914914 −1.00000 1.73205i −1.00000 1.73205i
915915 −1.05097 0.946294i −1.05097 0.946294i
916916 0 0
917917 0 0
918918 0 0
919919 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
920920 0 0
921921 0 0
922922 −1.33826 + 1.48629i −1.33826 + 1.48629i
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0.809017 + 0.587785i 0.809017 + 0.587785i
928928 −1.61803 + 1.17557i −1.61803 + 1.17557i
929929 −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
930930 −1.05097 + 0.946294i −1.05097 + 0.946294i
931931 0 0
932932 −1.40647 0.147826i −1.40647 0.147826i
933933 0.978148 + 0.207912i 0.978148 + 0.207912i
934934 −1.22474 0.707107i −1.22474 0.707107i
935935 0 0
936936 0 0
937937 −1.34500 + 0.437016i −1.34500 + 0.437016i −0.891007 0.453990i 0.850000π-0.850000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
938938 −1.82709 + 0.813473i −1.82709 + 0.813473i
939939 0 0
940940 0.978148 0.207912i 0.978148 0.207912i
941941 −0.294032 1.38331i −0.294032 1.38331i −0.838671 0.544639i 0.816667π-0.816667\pi
0.544639 0.838671i 0.316667π-0.316667\pi
942942 0.575212 1.29195i 0.575212 1.29195i
943943 0 0
944944 −0.309017 0.951057i −0.309017 0.951057i
945945 1.41421i 1.41421i
946946 0 0
947947 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −0.831254 1.14412i −0.831254 1.14412i −0.987688 0.156434i 0.950000π-0.950000\pi
0.156434 0.987688i 0.450000π-0.450000\pi
954954 −1.40647 0.147826i −1.40647 0.147826i
955955 0.309017 + 0.951057i 0.309017 + 0.951057i
956956 −1.22474 0.707107i −1.22474 0.707107i
957957 0 0
958958 1.00000 + 1.73205i 1.00000 + 1.73205i
959959 1.05097 + 0.946294i 1.05097 + 0.946294i
960960 0.913545 0.406737i 0.913545 0.406737i
961961 0 0
962962 0 0
963963 1.05097 0.946294i 1.05097 0.946294i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
968968 0 0
969969 0 0
970970 −0.294032 + 1.38331i −0.294032 + 1.38331i
971971 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
972972 −0.809017 + 0.587785i −0.809017 + 0.587785i
973973 −0.618034 + 1.90211i −0.618034 + 1.90211i
974974 1.05097 0.946294i 1.05097 0.946294i
975975 0 0
976976 −1.40647 0.147826i −1.40647 0.147826i
977977 0 0 −0.743145 0.669131i 0.766667π-0.766667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
978978 1.41421i 1.41421i
979979 0 0
980980 −1.00000 −1.00000
981981 0 0
982982 −1.61803 1.17557i −1.61803 1.17557i
983983 −0.104528 0.994522i −0.104528 0.994522i −0.913545 0.406737i 0.866667π-0.866667\pi
0.809017 0.587785i 0.200000π-0.200000\pi
984984 0 0
985985 0.294032 + 1.38331i 0.294032 + 1.38331i
986986 0 0
987987 −0.575212 1.29195i −0.575212 1.29195i
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 −0.294032 + 1.38331i −0.294032 + 1.38331i
993993 0.809017 + 0.587785i 0.809017 + 0.587785i
994994 −1.82709 0.813473i −1.82709 0.813473i
995995 −0.978148 + 0.207912i −0.978148 + 0.207912i
996996 0.294032 + 1.38331i 0.294032 + 1.38331i
997997 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
998998 0.831254 1.14412i 0.831254 1.14412i
999999 0.309017 + 0.951057i 0.309017 + 0.951057i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.1.s.b.457.2 16
3.2 odd 2 3267.1.w.b.1909.1 16
9.4 even 3 inner 1089.1.s.b.94.2 16
9.5 odd 6 3267.1.w.b.820.1 16
11.2 odd 10 inner 1089.1.s.b.475.2 16
11.3 even 5 1089.1.h.a.241.1 4
11.4 even 5 inner 1089.1.s.b.844.2 16
11.5 even 5 inner 1089.1.s.b.403.2 16
11.6 odd 10 inner 1089.1.s.b.403.1 16
11.7 odd 10 inner 1089.1.s.b.844.1 16
11.8 odd 10 1089.1.h.a.241.2 yes 4
11.9 even 5 inner 1089.1.s.b.475.1 16
11.10 odd 2 inner 1089.1.s.b.457.1 16
33.2 even 10 3267.1.w.b.3016.1 16
33.5 odd 10 3267.1.w.b.1855.1 16
33.8 even 10 3267.1.h.a.1693.1 4
33.14 odd 10 3267.1.h.a.1693.2 4
33.17 even 10 3267.1.w.b.1855.2 16
33.20 odd 10 3267.1.w.b.3016.2 16
33.26 odd 10 3267.1.w.b.1207.1 16
33.29 even 10 3267.1.w.b.1207.2 16
33.32 even 2 3267.1.w.b.1909.2 16
99.4 even 15 inner 1089.1.s.b.481.1 16
99.5 odd 30 3267.1.w.b.766.2 16
99.13 odd 30 inner 1089.1.s.b.112.2 16
99.14 odd 30 3267.1.h.a.604.1 4
99.31 even 15 inner 1089.1.s.b.112.1 16
99.32 even 6 3267.1.w.b.820.2 16
99.40 odd 30 inner 1089.1.s.b.481.2 16
99.41 even 30 3267.1.h.a.604.2 4
99.49 even 15 inner 1089.1.s.b.40.1 16
99.50 even 30 3267.1.w.b.766.1 16
99.58 even 15 1089.1.h.a.967.2 yes 4
99.59 odd 30 3267.1.w.b.118.2 16
99.68 even 30 3267.1.w.b.1927.1 16
99.76 odd 6 inner 1089.1.s.b.94.1 16
99.85 odd 30 1089.1.h.a.967.1 yes 4
99.86 odd 30 3267.1.w.b.1927.2 16
99.94 odd 30 inner 1089.1.s.b.40.2 16
99.95 even 30 3267.1.w.b.118.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1089.1.h.a.241.1 4 11.3 even 5
1089.1.h.a.241.2 yes 4 11.8 odd 10
1089.1.h.a.967.1 yes 4 99.85 odd 30
1089.1.h.a.967.2 yes 4 99.58 even 15
1089.1.s.b.40.1 16 99.49 even 15 inner
1089.1.s.b.40.2 16 99.94 odd 30 inner
1089.1.s.b.94.1 16 99.76 odd 6 inner
1089.1.s.b.94.2 16 9.4 even 3 inner
1089.1.s.b.112.1 16 99.31 even 15 inner
1089.1.s.b.112.2 16 99.13 odd 30 inner
1089.1.s.b.403.1 16 11.6 odd 10 inner
1089.1.s.b.403.2 16 11.5 even 5 inner
1089.1.s.b.457.1 16 11.10 odd 2 inner
1089.1.s.b.457.2 16 1.1 even 1 trivial
1089.1.s.b.475.1 16 11.9 even 5 inner
1089.1.s.b.475.2 16 11.2 odd 10 inner
1089.1.s.b.481.1 16 99.4 even 15 inner
1089.1.s.b.481.2 16 99.40 odd 30 inner
1089.1.s.b.844.1 16 11.7 odd 10 inner
1089.1.s.b.844.2 16 11.4 even 5 inner
3267.1.h.a.604.1 4 99.14 odd 30
3267.1.h.a.604.2 4 99.41 even 30
3267.1.h.a.1693.1 4 33.8 even 10
3267.1.h.a.1693.2 4 33.14 odd 10
3267.1.w.b.118.1 16 99.95 even 30
3267.1.w.b.118.2 16 99.59 odd 30
3267.1.w.b.766.1 16 99.50 even 30
3267.1.w.b.766.2 16 99.5 odd 30
3267.1.w.b.820.1 16 9.5 odd 6
3267.1.w.b.820.2 16 99.32 even 6
3267.1.w.b.1207.1 16 33.26 odd 10
3267.1.w.b.1207.2 16 33.29 even 10
3267.1.w.b.1855.1 16 33.5 odd 10
3267.1.w.b.1855.2 16 33.17 even 10
3267.1.w.b.1909.1 16 3.2 odd 2
3267.1.w.b.1909.2 16 33.32 even 2
3267.1.w.b.1927.1 16 99.68 even 30
3267.1.w.b.1927.2 16 99.86 odd 30
3267.1.w.b.3016.1 16 33.2 even 10
3267.1.w.b.3016.2 16 33.20 odd 10