Properties

Label 3267.1.h.a.1693.1
Level $3267$
Weight $1$
Character 3267.1693
Analytic conductor $1.630$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3267,1,Mod(604,3267)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3267.604");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3267 = 3^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3267.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.63044539627\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1089)
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.107811.1

Embedding invariants

Embedding label 1693.1
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 3267.1693
Dual form 3267.1.h.a.604.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-1.22474 - 0.707107i) q^{7} +O(q^{10})\) \(q+(-1.22474 - 0.707107i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-1.22474 - 0.707107i) q^{7} +1.41421i q^{10} +(1.00000 + 1.73205i) q^{14} +(0.500000 - 0.866025i) q^{16} +(0.500000 - 0.866025i) q^{20} -1.41421i q^{28} +(-1.22474 - 0.707107i) q^{29} +(-0.500000 - 0.866025i) q^{31} +(-1.22474 + 0.707107i) q^{32} +1.41421i q^{35} -1.00000 q^{37} +(-0.500000 + 0.866025i) q^{47} +(0.500000 + 0.866025i) q^{49} -1.00000 q^{53} +(1.00000 + 1.73205i) q^{58} +(0.500000 + 0.866025i) q^{59} +(-1.22474 - 0.707107i) q^{61} +1.41421i q^{62} +1.00000 q^{64} +(0.500000 + 0.866025i) q^{67} +(1.00000 - 1.73205i) q^{70} +1.00000 q^{71} +1.41421i q^{73} +(1.22474 + 0.707107i) q^{74} -1.00000 q^{80} +(1.22474 + 0.707107i) q^{83} +(1.22474 - 0.707107i) q^{94} +(-0.500000 + 0.866025i) q^{97} -1.41421i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 2 q^{5} + 4 q^{14} + 2 q^{16} + 2 q^{20} - 2 q^{31} - 4 q^{37} - 2 q^{47} + 2 q^{49} - 4 q^{53} + 4 q^{58} + 2 q^{59} + 4 q^{64} + 2 q^{67} + 4 q^{70} + 4 q^{71} - 4 q^{80} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3267\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(3026\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(5\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 1.41421i 1.41421i
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.500000 0.866025i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0.500000 0.866025i 0.500000 0.866025i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 1.41421i 1.41421i
\(29\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(30\) 0 0
\(31\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(32\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(33\) 0 0
\(34\) 0 0
\(35\) 1.41421i 1.41421i
\(36\) 0 0
\(37\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) 0 0
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(59\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(62\) 1.41421i 1.41421i
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.00000 1.73205i 1.00000 1.73205i
\(71\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) 0 0
\(73\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) −1.00000 −1.00000
\(81\) 0 0
\(82\) 0 0
\(83\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 1.22474 0.707107i 1.22474 0.707107i
\(95\) 0 0
\(96\) 0 0
\(97\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(98\) 1.41421i 1.41421i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(102\) 0 0
\(103\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(107\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(113\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.41421i 1.41421i
\(117\) 0 0
\(118\) 1.41421i 1.41421i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(123\) 0 0
\(124\) 0.500000 0.866025i 0.500000 0.866025i
\(125\) −1.00000 −1.00000
\(126\) 0 0
\(127\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.41421i 1.41421i
\(135\) 0 0
\(136\) 0 0
\(137\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(140\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(141\) 0 0
\(142\) −1.22474 0.707107i −1.22474 0.707107i
\(143\) 0 0
\(144\) 0 0
\(145\) 1.41421i 1.41421i
\(146\) 1.00000 1.73205i 1.00000 1.73205i
\(147\) 0 0
\(148\) −0.500000 0.866025i −0.500000 0.866025i
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(156\) 0 0
\(157\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(161\) 0 0
\(162\) 0 0
\(163\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.00000 1.73205i −1.00000 1.73205i
\(167\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(186\) 0 0
\(187\) 0 0
\(188\) −1.00000 −1.00000
\(189\) 0 0
\(190\) 0 0
\(191\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 1.22474 0.707107i 1.22474 0.707107i
\(195\) 0 0
\(196\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(197\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1.00000 1.73205i −1.00000 1.73205i
\(203\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(204\) 0 0
\(205\) 0 0
\(206\) 1.41421i 1.41421i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(212\) −0.500000 0.866025i −0.500000 0.866025i
\(213\) 0 0
\(214\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(215\) 0 0
\(216\) 0 0
\(217\) 1.41421i 1.41421i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(224\) 2.00000 2.00000
\(225\) 0 0
\(226\) 1.41421i 1.41421i
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(234\) 0 0
\(235\) 1.00000 1.00000
\(236\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(237\) 0 0
\(238\) 0 0
\(239\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(240\) 0 0
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 1.41421i 1.41421i
\(245\) 0.500000 0.866025i 0.500000 0.866025i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.00000 1.73205i 1.00000 1.73205i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(258\) 0 0
\(259\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(266\) 0 0
\(267\) 0 0
\(268\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(269\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 1.22474 0.707107i 1.22474 0.707107i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) −2.00000 −2.00000
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 0 0
\(283\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(284\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 1.00000
\(290\) 1.00000 1.73205i 1.00000 1.73205i
\(291\) 0 0
\(292\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(293\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(294\) 0 0
\(295\) 0.500000 0.866025i 0.500000 0.866025i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.41421i 1.41421i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.22474 0.707107i 1.22474 0.707107i
\(311\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(314\) 1.41421i 1.41421i
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.500000 0.866025i −0.500000 0.866025i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(327\) 0 0
\(328\) 0 0
\(329\) 1.22474 0.707107i 1.22474 0.707107i
\(330\) 0 0
\(331\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(332\) 1.41421i 1.41421i
\(333\) 0 0
\(334\) 0 0
\(335\) 0.500000 0.866025i 0.500000 0.866025i
\(336\) 0 0
\(337\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(338\) 1.22474 0.707107i 1.22474 0.707107i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) −0.500000 0.866025i −0.500000 0.866025i
\(356\) 0 0
\(357\) 0 0
\(358\) −1.22474 0.707107i −1.22474 0.707107i
\(359\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(363\) 0 0
\(364\) 0 0
\(365\) 1.22474 0.707107i 1.22474 0.707107i
\(366\) 0 0
\(367\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(368\) 0 0
\(369\) 0 0
\(370\) 1.41421i 1.41421i
\(371\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.22474 0.707107i 1.22474 0.707107i
\(383\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −1.00000 −1.00000
\(389\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 1.00000 1.73205i 1.00000 1.73205i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(399\) 0 0
\(400\) 0 0
\(401\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.41421i 1.41421i
\(405\) 0 0
\(406\) 2.82843i 2.82843i
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(413\) 1.41421i 1.41421i
\(414\) 0 0
\(415\) 1.41421i 1.41421i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(422\) −2.00000 −2.00000
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(428\) 1.22474 0.707107i 1.22474 0.707107i
\(429\) 0 0
\(430\) 0 0
\(431\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 1.00000 1.73205i 1.00000 1.73205i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −1.22474 0.707107i −1.22474 0.707107i
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.500000 0.866025i 0.500000 0.866025i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(462\) 0 0
\(463\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(464\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(465\) 0 0
\(466\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(467\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 0 0
\(469\) 1.41421i 1.41421i
\(470\) −1.22474 0.707107i −1.22474 0.707107i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 2.00000 2.00000
\(479\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000 1.00000
\(486\) 0 0
\(487\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(491\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 −1.00000
\(497\) −1.22474 0.707107i −1.22474 0.707107i
\(498\) 0 0
\(499\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(500\) −0.500000 0.866025i −0.500000 0.866025i
\(501\) 0 0
\(502\) 0 0
\(503\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(504\) 0 0
\(505\) 1.41421i 1.41421i
\(506\) 0 0
\(507\) 0 0
\(508\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) 1.00000 1.73205i 1.00000 1.73205i
\(512\) 1.41421i 1.41421i
\(513\) 0 0
\(514\) 2.82843i 2.82843i
\(515\) 0.500000 0.866025i 0.500000 0.866025i
\(516\) 0 0
\(517\) 0 0
\(518\) −1.00000 1.73205i −1.00000 1.73205i
\(519\) 0 0
\(520\) 0 0
\(521\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.500000 0.866025i 0.500000 0.866025i
\(530\) 1.41421i 1.41421i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(536\) 0 0
\(537\) 0 0
\(538\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(548\) −1.00000 −1.00000
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(557\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(566\) 2.00000 2.00000
\(567\) 0 0
\(568\) 0 0
\(569\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(570\) 0 0
\(571\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) −1.22474 0.707107i −1.22474 0.707107i
\(579\) 0 0
\(580\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(581\) −1.00000 1.73205i −1.00000 1.73205i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −2.00000 −2.00000
\(587\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(588\) 0 0
\(589\) 0 0
\(590\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(591\) 0 0
\(592\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(593\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 1.00000 1.73205i 1.00000 1.73205i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(620\) −1.00000 −1.00000
\(621\) 0 0
\(622\) 1.41421i 1.41421i
\(623\) 0 0
\(624\) 0 0
\(625\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.500000 0.866025i 0.500000 0.866025i
\(629\) 0 0
\(630\) 0 0
\(631\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.22474 0.707107i 1.22474 0.707107i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.500000 0.866025i −0.500000 0.866025i
\(653\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −2.00000 −2.00000
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(662\) 1.22474 0.707107i 1.22474 0.707107i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 2.00000 2.00000
\(675\) 0 0
\(676\) −1.00000 −1.00000
\(677\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(678\) 0 0
\(679\) 1.22474 0.707107i 1.22474 0.707107i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 1.00000 1.00000
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0 0
\(694\) 2.00000 2.00000
\(695\) −1.22474 0.707107i −1.22474 0.707107i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.00000 1.73205i −1.00000 1.73205i
\(708\) 0 0
\(709\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(710\) 1.41421i 1.41421i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(717\) 0 0
\(718\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(719\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) 1.41421i 1.41421i
\(722\) −1.22474 0.707107i −1.22474 0.707107i
\(723\) 0 0
\(724\) −0.500000 0.866025i −0.500000 0.866025i
\(725\) 0 0
\(726\) 0 0
\(727\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2.00000 −2.00000
\(731\) 0 0
\(732\) 0 0
\(733\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(734\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(741\) 0 0
\(742\) −1.00000 1.73205i −1.00000 1.73205i
\(743\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(750\) 0 0
\(751\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.00000 −1.00000
\(765\) 0 0
\(766\) 1.41421i 1.41421i
\(767\) 0 0
\(768\) 0 0
\(769\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.22474 0.707107i 1.22474 0.707107i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(786\) 0 0
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.41421i 1.41421i
\(792\) 0 0
\(793\) 0 0
\(794\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(795\) 0 0
\(796\) −0.500000 0.866025i −0.500000 0.866025i
\(797\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 1.41421i 1.41421i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(810\) 0 0
\(811\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(812\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(813\) 0 0
\(814\) 0 0
\(815\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 1.41421i 1.41421i
\(839\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0 0
\(841\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(842\) 1.22474 0.707107i 1.22474 0.707107i
\(843\) 0 0
\(844\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(845\) 1.00000 1.00000
\(846\) 0 0
\(847\) 0 0
\(848\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(854\) 2.82843i 2.82843i
\(855\) 0 0
\(856\) 0 0
\(857\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(858\) 0 0
\(859\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.00000 1.73205i 1.00000 1.73205i
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(876\) 0 0
\(877\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(878\) −1.00000 1.73205i −1.00000 1.73205i
\(879\) 0 0
\(880\) 0 0
\(881\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(882\) 0 0
\(883\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 1.00000 1.73205i 1.00000 1.73205i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −0.500000 0.866025i −0.500000 0.866025i
\(896\) 0 0
\(897\) 0 0
\(898\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(899\) 1.41421i 1.41421i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(906\) 0 0
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 2.00000 2.00000
\(929\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.22474 0.707107i 1.22474 0.707107i
\(933\) 0 0
\(934\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(935\) 0 0
\(936\) 0 0
\(937\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(938\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(939\) 0 0
\(940\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(941\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.00000 1.00000
\(945\) 0 0
\(946\) 0 0
\(947\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(954\) 0 0
\(955\) 1.00000 1.00000
\(956\) −1.22474 0.707107i −1.22474 0.707107i
\(957\) 0 0
\(958\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(959\) 1.22474 0.707107i 1.22474 0.707107i
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −1.22474 0.707107i −1.22474 0.707107i
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −2.00000 −2.00000
\(974\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(975\) 0 0
\(976\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.00000 1.00000
\(981\) 0 0
\(982\) 2.00000 2.00000
\(983\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(984\) 0 0
\(985\) 1.22474 0.707107i 1.22474 0.707107i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(993\) 0 0
\(994\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(995\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 1.41421i 1.41421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3267.1.h.a.1693.1 4
3.2 odd 2 1089.1.h.a.241.2 yes 4
9.4 even 3 inner 3267.1.h.a.604.2 4
9.5 odd 6 1089.1.h.a.967.1 yes 4
11.2 odd 10 3267.1.w.b.1855.1 16
11.3 even 5 3267.1.w.b.3016.1 16
11.4 even 5 3267.1.w.b.1909.2 16
11.5 even 5 3267.1.w.b.1207.2 16
11.6 odd 10 3267.1.w.b.1207.1 16
11.7 odd 10 3267.1.w.b.1909.1 16
11.8 odd 10 3267.1.w.b.3016.2 16
11.9 even 5 3267.1.w.b.1855.2 16
11.10 odd 2 inner 3267.1.h.a.1693.2 4
33.2 even 10 1089.1.s.b.403.2 16
33.5 odd 10 1089.1.s.b.844.1 16
33.8 even 10 1089.1.s.b.475.1 16
33.14 odd 10 1089.1.s.b.475.2 16
33.17 even 10 1089.1.s.b.844.2 16
33.20 odd 10 1089.1.s.b.403.1 16
33.26 odd 10 1089.1.s.b.457.1 16
33.29 even 10 1089.1.s.b.457.2 16
33.32 even 2 1089.1.h.a.241.1 4
99.4 even 15 3267.1.w.b.820.2 16
99.5 odd 30 1089.1.s.b.481.2 16
99.13 odd 30 3267.1.w.b.766.2 16
99.14 odd 30 1089.1.s.b.112.2 16
99.31 even 15 3267.1.w.b.766.1 16
99.32 even 6 1089.1.h.a.967.2 yes 4
99.40 odd 30 3267.1.w.b.820.1 16
99.41 even 30 1089.1.s.b.112.1 16
99.49 even 15 3267.1.w.b.118.1 16
99.50 even 30 1089.1.s.b.481.1 16
99.58 even 15 3267.1.w.b.1927.1 16
99.59 odd 30 1089.1.s.b.94.1 16
99.68 even 30 1089.1.s.b.40.1 16
99.76 odd 6 inner 3267.1.h.a.604.1 4
99.85 odd 30 3267.1.w.b.1927.2 16
99.86 odd 30 1089.1.s.b.40.2 16
99.94 odd 30 3267.1.w.b.118.2 16
99.95 even 30 1089.1.s.b.94.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1089.1.h.a.241.1 4 33.32 even 2
1089.1.h.a.241.2 yes 4 3.2 odd 2
1089.1.h.a.967.1 yes 4 9.5 odd 6
1089.1.h.a.967.2 yes 4 99.32 even 6
1089.1.s.b.40.1 16 99.68 even 30
1089.1.s.b.40.2 16 99.86 odd 30
1089.1.s.b.94.1 16 99.59 odd 30
1089.1.s.b.94.2 16 99.95 even 30
1089.1.s.b.112.1 16 99.41 even 30
1089.1.s.b.112.2 16 99.14 odd 30
1089.1.s.b.403.1 16 33.20 odd 10
1089.1.s.b.403.2 16 33.2 even 10
1089.1.s.b.457.1 16 33.26 odd 10
1089.1.s.b.457.2 16 33.29 even 10
1089.1.s.b.475.1 16 33.8 even 10
1089.1.s.b.475.2 16 33.14 odd 10
1089.1.s.b.481.1 16 99.50 even 30
1089.1.s.b.481.2 16 99.5 odd 30
1089.1.s.b.844.1 16 33.5 odd 10
1089.1.s.b.844.2 16 33.17 even 10
3267.1.h.a.604.1 4 99.76 odd 6 inner
3267.1.h.a.604.2 4 9.4 even 3 inner
3267.1.h.a.1693.1 4 1.1 even 1 trivial
3267.1.h.a.1693.2 4 11.10 odd 2 inner
3267.1.w.b.118.1 16 99.49 even 15
3267.1.w.b.118.2 16 99.94 odd 30
3267.1.w.b.766.1 16 99.31 even 15
3267.1.w.b.766.2 16 99.13 odd 30
3267.1.w.b.820.1 16 99.40 odd 30
3267.1.w.b.820.2 16 99.4 even 15
3267.1.w.b.1207.1 16 11.6 odd 10
3267.1.w.b.1207.2 16 11.5 even 5
3267.1.w.b.1855.1 16 11.2 odd 10
3267.1.w.b.1855.2 16 11.9 even 5
3267.1.w.b.1909.1 16 11.7 odd 10
3267.1.w.b.1909.2 16 11.4 even 5
3267.1.w.b.1927.1 16 99.58 even 15
3267.1.w.b.1927.2 16 99.85 odd 30
3267.1.w.b.3016.1 16 11.3 even 5
3267.1.w.b.3016.2 16 11.8 odd 10