Properties

Label 1089.4.a.e
Level 10891089
Weight 44
Character orbit 1089.a
Self dual yes
Analytic conductor 64.25364.253
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1089,4,Mod(1,1089)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1089, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1089.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 1089=32112 1089 = 3^{2} \cdot 11^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1089.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,0,-7,4,0,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 64.253079996364.2530799963
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 33)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == qq27q4+4q5+26q7+15q84q10+32q1326q14+41q16+74q17+60q1928q20+182q23109q2532q26182q2890q298q31+333q98+O(q100) q - q^{2} - 7 q^{4} + 4 q^{5} + 26 q^{7} + 15 q^{8} - 4 q^{10} + 32 q^{13} - 26 q^{14} + 41 q^{16} + 74 q^{17} + 60 q^{19} - 28 q^{20} + 182 q^{23} - 109 q^{25} - 32 q^{26} - 182 q^{28} - 90 q^{29} - 8 q^{31}+ \cdots - 333 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−1.00000 0 −7.00000 4.00000 0 26.0000 15.0000 0 −4.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.4.a.e 1
3.b odd 2 1 363.4.a.d 1
11.b odd 2 1 99.4.a.a 1
33.d even 2 1 33.4.a.b 1
44.c even 2 1 1584.4.a.l 1
55.d odd 2 1 2475.4.a.e 1
132.d odd 2 1 528.4.a.h 1
165.d even 2 1 825.4.a.f 1
165.l odd 4 2 825.4.c.f 2
231.h odd 2 1 1617.4.a.d 1
264.m even 2 1 2112.4.a.u 1
264.p odd 2 1 2112.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.a.b 1 33.d even 2 1
99.4.a.a 1 11.b odd 2 1
363.4.a.d 1 3.b odd 2 1
528.4.a.h 1 132.d odd 2 1
825.4.a.f 1 165.d even 2 1
825.4.c.f 2 165.l odd 4 2
1089.4.a.e 1 1.a even 1 1 trivial
1584.4.a.l 1 44.c even 2 1
1617.4.a.d 1 231.h odd 2 1
2112.4.a.h 1 264.p odd 2 1
2112.4.a.u 1 264.m even 2 1
2475.4.a.e 1 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1089))S_{4}^{\mathrm{new}}(\Gamma_0(1089)):

T2+1 T_{2} + 1 Copy content Toggle raw display
T54 T_{5} - 4 Copy content Toggle raw display
T726 T_{7} - 26 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1 T + 1 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T4 T - 4 Copy content Toggle raw display
77 T26 T - 26 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T32 T - 32 Copy content Toggle raw display
1717 T74 T - 74 Copy content Toggle raw display
1919 T60 T - 60 Copy content Toggle raw display
2323 T182 T - 182 Copy content Toggle raw display
2929 T+90 T + 90 Copy content Toggle raw display
3131 T+8 T + 8 Copy content Toggle raw display
3737 T+66 T + 66 Copy content Toggle raw display
4141 T422 T - 422 Copy content Toggle raw display
4343 T+408 T + 408 Copy content Toggle raw display
4747 T506 T - 506 Copy content Toggle raw display
5353 T+348 T + 348 Copy content Toggle raw display
5959 T200 T - 200 Copy content Toggle raw display
6161 T+132 T + 132 Copy content Toggle raw display
6767 T+1036 T + 1036 Copy content Toggle raw display
7171 T+762 T + 762 Copy content Toggle raw display
7373 T542 T - 542 Copy content Toggle raw display
7979 T550 T - 550 Copy content Toggle raw display
8383 T+132 T + 132 Copy content Toggle raw display
8989 T+570 T + 570 Copy content Toggle raw display
9797 T14 T - 14 Copy content Toggle raw display
show more
show less