gp: [N,k,chi] = [1089,4,Mod(1,1089)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1089.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-1,0,-7,4,0,26]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
11 11 1 1
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 1089 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1089)) S 4 n e w ( Γ 0 ( 1 0 8 9 ) ) :
T 2 + 1 T_{2} + 1 T 2 + 1
T2 + 1
T 5 − 4 T_{5} - 4 T 5 − 4
T5 - 4
T 7 − 26 T_{7} - 26 T 7 − 2 6
T7 - 26
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 1 T + 1 T + 1
T + 1
3 3 3
T T T
T
5 5 5
T − 4 T - 4 T − 4
T - 4
7 7 7
T − 26 T - 26 T − 2 6
T - 26
11 11 1 1
T T T
T
13 13 1 3
T − 32 T - 32 T − 3 2
T - 32
17 17 1 7
T − 74 T - 74 T − 7 4
T - 74
19 19 1 9
T − 60 T - 60 T − 6 0
T - 60
23 23 2 3
T − 182 T - 182 T − 1 8 2
T - 182
29 29 2 9
T + 90 T + 90 T + 9 0
T + 90
31 31 3 1
T + 8 T + 8 T + 8
T + 8
37 37 3 7
T + 66 T + 66 T + 6 6
T + 66
41 41 4 1
T − 422 T - 422 T − 4 2 2
T - 422
43 43 4 3
T + 408 T + 408 T + 4 0 8
T + 408
47 47 4 7
T − 506 T - 506 T − 5 0 6
T - 506
53 53 5 3
T + 348 T + 348 T + 3 4 8
T + 348
59 59 5 9
T − 200 T - 200 T − 2 0 0
T - 200
61 61 6 1
T + 132 T + 132 T + 1 3 2
T + 132
67 67 6 7
T + 1036 T + 1036 T + 1 0 3 6
T + 1036
71 71 7 1
T + 762 T + 762 T + 7 6 2
T + 762
73 73 7 3
T − 542 T - 542 T − 5 4 2
T - 542
79 79 7 9
T − 550 T - 550 T − 5 5 0
T - 550
83 83 8 3
T + 132 T + 132 T + 1 3 2
T + 132
89 89 8 9
T + 570 T + 570 T + 5 7 0
T + 570
97 97 9 7
T − 14 T - 14 T − 1 4
T - 14
show more
show less