Properties

Label 2112.4.a.u
Level $2112$
Weight $4$
Character orbit 2112.a
Self dual yes
Analytic conductor $124.612$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2112,4,Mod(1,2112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2112.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(124.612033932\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} + 4 q^{5} - 26 q^{7} + 9 q^{9} - 11 q^{11} + 32 q^{13} + 12 q^{15} + 74 q^{17} + 60 q^{19} - 78 q^{21} - 182 q^{23} - 109 q^{25} + 27 q^{27} + 90 q^{29} - 8 q^{31} - 33 q^{33} - 104 q^{35}+ \cdots - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 4.00000 0 −26.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2112.4.a.u 1
4.b odd 2 1 2112.4.a.h 1
8.b even 2 1 33.4.a.b 1
8.d odd 2 1 528.4.a.h 1
24.f even 2 1 1584.4.a.l 1
24.h odd 2 1 99.4.a.a 1
40.f even 2 1 825.4.a.f 1
40.i odd 4 2 825.4.c.f 2
56.h odd 2 1 1617.4.a.d 1
88.b odd 2 1 363.4.a.d 1
120.i odd 2 1 2475.4.a.e 1
264.m even 2 1 1089.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.a.b 1 8.b even 2 1
99.4.a.a 1 24.h odd 2 1
363.4.a.d 1 88.b odd 2 1
528.4.a.h 1 8.d odd 2 1
825.4.a.f 1 40.f even 2 1
825.4.c.f 2 40.i odd 4 2
1089.4.a.e 1 264.m even 2 1
1584.4.a.l 1 24.f even 2 1
1617.4.a.d 1 56.h odd 2 1
2112.4.a.h 1 4.b odd 2 1
2112.4.a.u 1 1.a even 1 1 trivial
2475.4.a.e 1 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2112))\):

\( T_{5} - 4 \) Copy content Toggle raw display
\( T_{7} + 26 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 4 \) Copy content Toggle raw display
$7$ \( T + 26 \) Copy content Toggle raw display
$11$ \( T + 11 \) Copy content Toggle raw display
$13$ \( T - 32 \) Copy content Toggle raw display
$17$ \( T - 74 \) Copy content Toggle raw display
$19$ \( T - 60 \) Copy content Toggle raw display
$23$ \( T + 182 \) Copy content Toggle raw display
$29$ \( T - 90 \) Copy content Toggle raw display
$31$ \( T + 8 \) Copy content Toggle raw display
$37$ \( T - 66 \) Copy content Toggle raw display
$41$ \( T - 422 \) Copy content Toggle raw display
$43$ \( T + 408 \) Copy content Toggle raw display
$47$ \( T + 506 \) Copy content Toggle raw display
$53$ \( T + 348 \) Copy content Toggle raw display
$59$ \( T - 200 \) Copy content Toggle raw display
$61$ \( T + 132 \) Copy content Toggle raw display
$67$ \( T - 1036 \) Copy content Toggle raw display
$71$ \( T - 762 \) Copy content Toggle raw display
$73$ \( T + 542 \) Copy content Toggle raw display
$79$ \( T + 550 \) Copy content Toggle raw display
$83$ \( T - 132 \) Copy content Toggle raw display
$89$ \( T - 570 \) Copy content Toggle raw display
$97$ \( T - 14 \) Copy content Toggle raw display
show more
show less