Properties

Label 1098.2.a.e.1.1
Level $1098$
Weight $2$
Character 1098.1
Self dual yes
Analytic conductor $8.768$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1098,2,Mod(1,1098)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1098, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1098.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1098 = 2 \cdot 3^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1098.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.76757414194\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 366)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1098.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +3.00000 q^{5} -3.00000 q^{7} -1.00000 q^{8} -3.00000 q^{10} +1.00000 q^{11} -5.00000 q^{13} +3.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} -8.00000 q^{19} +3.00000 q^{20} -1.00000 q^{22} -5.00000 q^{23} +4.00000 q^{25} +5.00000 q^{26} -3.00000 q^{28} -4.00000 q^{31} -1.00000 q^{32} +2.00000 q^{34} -9.00000 q^{35} +4.00000 q^{37} +8.00000 q^{38} -3.00000 q^{40} -3.00000 q^{41} +4.00000 q^{43} +1.00000 q^{44} +5.00000 q^{46} -2.00000 q^{47} +2.00000 q^{49} -4.00000 q^{50} -5.00000 q^{52} +3.00000 q^{55} +3.00000 q^{56} +7.00000 q^{59} +1.00000 q^{61} +4.00000 q^{62} +1.00000 q^{64} -15.0000 q^{65} -13.0000 q^{67} -2.00000 q^{68} +9.00000 q^{70} +16.0000 q^{71} +9.00000 q^{73} -4.00000 q^{74} -8.00000 q^{76} -3.00000 q^{77} -1.00000 q^{79} +3.00000 q^{80} +3.00000 q^{82} -14.0000 q^{83} -6.00000 q^{85} -4.00000 q^{86} -1.00000 q^{88} +4.00000 q^{89} +15.0000 q^{91} -5.00000 q^{92} +2.00000 q^{94} -24.0000 q^{95} +14.0000 q^{97} -2.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 3.00000 0.801784
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 3.00000 0.670820
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 5.00000 0.980581
\(27\) 0 0
\(28\) −3.00000 −0.566947
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −9.00000 −1.52128
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 8.00000 1.29777
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 5.00000 0.737210
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) −5.00000 −0.693375
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) 0 0
\(59\) 7.00000 0.911322 0.455661 0.890153i \(-0.349403\pi\)
0.455661 + 0.890153i \(0.349403\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −15.0000 −1.86052
\(66\) 0 0
\(67\) −13.0000 −1.58820 −0.794101 0.607785i \(-0.792058\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 9.00000 1.07571
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) −8.00000 −0.917663
\(77\) −3.00000 −0.341882
\(78\) 0 0
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) 3.00000 0.335410
\(81\) 0 0
\(82\) 3.00000 0.331295
\(83\) −14.0000 −1.53670 −0.768350 0.640030i \(-0.778922\pi\)
−0.768350 + 0.640030i \(0.778922\pi\)
\(84\) 0 0
\(85\) −6.00000 −0.650791
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) 15.0000 1.57243
\(92\) −5.00000 −0.521286
\(93\) 0 0
\(94\) 2.00000 0.206284
\(95\) −24.0000 −2.46235
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) −2.00000 −0.202031
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 5.00000 0.490290
\(105\) 0 0
\(106\) 0 0
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) −15.0000 −1.43674 −0.718370 0.695662i \(-0.755111\pi\)
−0.718370 + 0.695662i \(0.755111\pi\)
\(110\) −3.00000 −0.286039
\(111\) 0 0
\(112\) −3.00000 −0.283473
\(113\) −11.0000 −1.03479 −0.517396 0.855746i \(-0.673099\pi\)
−0.517396 + 0.855746i \(0.673099\pi\)
\(114\) 0 0
\(115\) −15.0000 −1.39876
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 −0.644402
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) −1.00000 −0.0905357
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −22.0000 −1.95218 −0.976092 0.217357i \(-0.930256\pi\)
−0.976092 + 0.217357i \(0.930256\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 15.0000 1.31559
\(131\) −10.0000 −0.873704 −0.436852 0.899533i \(-0.643907\pi\)
−0.436852 + 0.899533i \(0.643907\pi\)
\(132\) 0 0
\(133\) 24.0000 2.08106
\(134\) 13.0000 1.12303
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) −15.0000 −1.28154 −0.640768 0.767734i \(-0.721384\pi\)
−0.640768 + 0.767734i \(0.721384\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) −9.00000 −0.760639
\(141\) 0 0
\(142\) −16.0000 −1.34269
\(143\) −5.00000 −0.418121
\(144\) 0 0
\(145\) 0 0
\(146\) −9.00000 −0.744845
\(147\) 0 0
\(148\) 4.00000 0.328798
\(149\) 21.0000 1.72039 0.860194 0.509968i \(-0.170343\pi\)
0.860194 + 0.509968i \(0.170343\pi\)
\(150\) 0 0
\(151\) −9.00000 −0.732410 −0.366205 0.930534i \(-0.619343\pi\)
−0.366205 + 0.930534i \(0.619343\pi\)
\(152\) 8.00000 0.648886
\(153\) 0 0
\(154\) 3.00000 0.241747
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) 1.00000 0.0795557
\(159\) 0 0
\(160\) −3.00000 −0.237171
\(161\) 15.0000 1.18217
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −3.00000 −0.234261
\(165\) 0 0
\(166\) 14.0000 1.08661
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 6.00000 0.460179
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) 22.0000 1.67263 0.836315 0.548250i \(-0.184706\pi\)
0.836315 + 0.548250i \(0.184706\pi\)
\(174\) 0 0
\(175\) −12.0000 −0.907115
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −4.00000 −0.299813
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) −15.0000 −1.11187
\(183\) 0 0
\(184\) 5.00000 0.368605
\(185\) 12.0000 0.882258
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) −2.00000 −0.145865
\(189\) 0 0
\(190\) 24.0000 1.74114
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) 0 0
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) −21.0000 −1.49619 −0.748094 0.663593i \(-0.769031\pi\)
−0.748094 + 0.663593i \(0.769031\pi\)
\(198\) 0 0
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) −4.00000 −0.282843
\(201\) 0 0
\(202\) −8.00000 −0.562878
\(203\) 0 0
\(204\) 0 0
\(205\) −9.00000 −0.628587
\(206\) 14.0000 0.975426
\(207\) 0 0
\(208\) −5.00000 −0.346688
\(209\) −8.00000 −0.553372
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −2.00000 −0.136717
\(215\) 12.0000 0.818393
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) 15.0000 1.01593
\(219\) 0 0
\(220\) 3.00000 0.202260
\(221\) 10.0000 0.672673
\(222\) 0 0
\(223\) −21.0000 −1.40626 −0.703132 0.711059i \(-0.748216\pi\)
−0.703132 + 0.711059i \(0.748216\pi\)
\(224\) 3.00000 0.200446
\(225\) 0 0
\(226\) 11.0000 0.731709
\(227\) 15.0000 0.995585 0.497792 0.867296i \(-0.334144\pi\)
0.497792 + 0.867296i \(0.334144\pi\)
\(228\) 0 0
\(229\) −17.0000 −1.12339 −0.561696 0.827344i \(-0.689851\pi\)
−0.561696 + 0.827344i \(0.689851\pi\)
\(230\) 15.0000 0.989071
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 7.00000 0.455661
\(237\) 0 0
\(238\) −6.00000 −0.388922
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 25.0000 1.61039 0.805196 0.593009i \(-0.202060\pi\)
0.805196 + 0.593009i \(0.202060\pi\)
\(242\) 10.0000 0.642824
\(243\) 0 0
\(244\) 1.00000 0.0640184
\(245\) 6.00000 0.383326
\(246\) 0 0
\(247\) 40.0000 2.54514
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) 3.00000 0.189737
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 0 0
\(253\) −5.00000 −0.314347
\(254\) 22.0000 1.38040
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −12.0000 −0.745644
\(260\) −15.0000 −0.930261
\(261\) 0 0
\(262\) 10.0000 0.617802
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −24.0000 −1.47153
\(267\) 0 0
\(268\) −13.0000 −0.794101
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 15.0000 0.906183
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 5.00000 0.299880
\(279\) 0 0
\(280\) 9.00000 0.537853
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 0 0
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) 16.0000 0.949425
\(285\) 0 0
\(286\) 5.00000 0.295656
\(287\) 9.00000 0.531253
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 9.00000 0.526685
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 21.0000 1.22267
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) −21.0000 −1.21650
\(299\) 25.0000 1.44579
\(300\) 0 0
\(301\) −12.0000 −0.691669
\(302\) 9.00000 0.517892
\(303\) 0 0
\(304\) −8.00000 −0.458831
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) 19.0000 1.08439 0.542194 0.840254i \(-0.317594\pi\)
0.542194 + 0.840254i \(0.317594\pi\)
\(308\) −3.00000 −0.170941
\(309\) 0 0
\(310\) 12.0000 0.681554
\(311\) −35.0000 −1.98467 −0.992334 0.123585i \(-0.960561\pi\)
−0.992334 + 0.123585i \(0.960561\pi\)
\(312\) 0 0
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) −6.00000 −0.338600
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) −10.0000 −0.561656 −0.280828 0.959758i \(-0.590609\pi\)
−0.280828 + 0.959758i \(0.590609\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 3.00000 0.167705
\(321\) 0 0
\(322\) −15.0000 −0.835917
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) −20.0000 −1.10940
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 3.00000 0.165647
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) 9.00000 0.494685 0.247342 0.968928i \(-0.420443\pi\)
0.247342 + 0.968928i \(0.420443\pi\)
\(332\) −14.0000 −0.768350
\(333\) 0 0
\(334\) −18.0000 −0.984916
\(335\) −39.0000 −2.13080
\(336\) 0 0
\(337\) −16.0000 −0.871576 −0.435788 0.900049i \(-0.643530\pi\)
−0.435788 + 0.900049i \(0.643530\pi\)
\(338\) −12.0000 −0.652714
\(339\) 0 0
\(340\) −6.00000 −0.325396
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) −22.0000 −1.18273
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 12.0000 0.641427
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −25.0000 −1.33062 −0.665308 0.746569i \(-0.731700\pi\)
−0.665308 + 0.746569i \(0.731700\pi\)
\(354\) 0 0
\(355\) 48.0000 2.54758
\(356\) 4.00000 0.212000
\(357\) 0 0
\(358\) 0 0
\(359\) −36.0000 −1.90001 −0.950004 0.312239i \(-0.898921\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) −26.0000 −1.36653
\(363\) 0 0
\(364\) 15.0000 0.786214
\(365\) 27.0000 1.41324
\(366\) 0 0
\(367\) 36.0000 1.87918 0.939592 0.342296i \(-0.111204\pi\)
0.939592 + 0.342296i \(0.111204\pi\)
\(368\) −5.00000 −0.260643
\(369\) 0 0
\(370\) −12.0000 −0.623850
\(371\) 0 0
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 2.00000 0.103142
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) −24.0000 −1.23117
\(381\) 0 0
\(382\) −15.0000 −0.767467
\(383\) −7.00000 −0.357683 −0.178842 0.983878i \(-0.557235\pi\)
−0.178842 + 0.983878i \(0.557235\pi\)
\(384\) 0 0
\(385\) −9.00000 −0.458682
\(386\) 18.0000 0.916176
\(387\) 0 0
\(388\) 14.0000 0.710742
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 10.0000 0.505722
\(392\) −2.00000 −0.101015
\(393\) 0 0
\(394\) 21.0000 1.05796
\(395\) −3.00000 −0.150946
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) −18.0000 −0.902258
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 20.0000 0.996271
\(404\) 8.00000 0.398015
\(405\) 0 0
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) −20.0000 −0.988936 −0.494468 0.869196i \(-0.664637\pi\)
−0.494468 + 0.869196i \(0.664637\pi\)
\(410\) 9.00000 0.444478
\(411\) 0 0
\(412\) −14.0000 −0.689730
\(413\) −21.0000 −1.03334
\(414\) 0 0
\(415\) −42.0000 −2.06170
\(416\) 5.00000 0.245145
\(417\) 0 0
\(418\) 8.00000 0.391293
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) −20.0000 −0.973585
\(423\) 0 0
\(424\) 0 0
\(425\) −8.00000 −0.388057
\(426\) 0 0
\(427\) −3.00000 −0.145180
\(428\) 2.00000 0.0966736
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) 2.00000 0.0963366 0.0481683 0.998839i \(-0.484662\pi\)
0.0481683 + 0.998839i \(0.484662\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) −12.0000 −0.576018
\(435\) 0 0
\(436\) −15.0000 −0.718370
\(437\) 40.0000 1.91346
\(438\) 0 0
\(439\) −12.0000 −0.572729 −0.286364 0.958121i \(-0.592447\pi\)
−0.286364 + 0.958121i \(0.592447\pi\)
\(440\) −3.00000 −0.143019
\(441\) 0 0
\(442\) −10.0000 −0.475651
\(443\) 16.0000 0.760183 0.380091 0.924949i \(-0.375893\pi\)
0.380091 + 0.924949i \(0.375893\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 21.0000 0.994379
\(447\) 0 0
\(448\) −3.00000 −0.141737
\(449\) 17.0000 0.802280 0.401140 0.916017i \(-0.368614\pi\)
0.401140 + 0.916017i \(0.368614\pi\)
\(450\) 0 0
\(451\) −3.00000 −0.141264
\(452\) −11.0000 −0.517396
\(453\) 0 0
\(454\) −15.0000 −0.703985
\(455\) 45.0000 2.10963
\(456\) 0 0
\(457\) 8.00000 0.374224 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 17.0000 0.794358
\(459\) 0 0
\(460\) −15.0000 −0.699379
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.0000 1.15686 0.578431 0.815731i \(-0.303665\pi\)
0.578431 + 0.815731i \(0.303665\pi\)
\(468\) 0 0
\(469\) 39.0000 1.80085
\(470\) 6.00000 0.276759
\(471\) 0 0
\(472\) −7.00000 −0.322201
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) −32.0000 −1.46826
\(476\) 6.00000 0.275010
\(477\) 0 0
\(478\) −12.0000 −0.548867
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) 0 0
\(481\) −20.0000 −0.911922
\(482\) −25.0000 −1.13872
\(483\) 0 0
\(484\) −10.0000 −0.454545
\(485\) 42.0000 1.90712
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) −1.00000 −0.0452679
\(489\) 0 0
\(490\) −6.00000 −0.271052
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −40.0000 −1.79969
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −48.0000 −2.15309
\(498\) 0 0
\(499\) −5.00000 −0.223831 −0.111915 0.993718i \(-0.535699\pi\)
−0.111915 + 0.993718i \(0.535699\pi\)
\(500\) −3.00000 −0.134164
\(501\) 0 0
\(502\) 8.00000 0.357057
\(503\) 10.0000 0.445878 0.222939 0.974832i \(-0.428435\pi\)
0.222939 + 0.974832i \(0.428435\pi\)
\(504\) 0 0
\(505\) 24.0000 1.06799
\(506\) 5.00000 0.222277
\(507\) 0 0
\(508\) −22.0000 −0.976092
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) −27.0000 −1.19441
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) −42.0000 −1.85074
\(516\) 0 0
\(517\) −2.00000 −0.0879599
\(518\) 12.0000 0.527250
\(519\) 0 0
\(520\) 15.0000 0.657794
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 5.00000 0.218635 0.109317 0.994007i \(-0.465134\pi\)
0.109317 + 0.994007i \(0.465134\pi\)
\(524\) −10.0000 −0.436852
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) 0 0
\(532\) 24.0000 1.04053
\(533\) 15.0000 0.649722
\(534\) 0 0
\(535\) 6.00000 0.259403
\(536\) 13.0000 0.561514
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) −40.0000 −1.71973 −0.859867 0.510518i \(-0.829454\pi\)
−0.859867 + 0.510518i \(0.829454\pi\)
\(542\) −8.00000 −0.343629
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) −45.0000 −1.92759
\(546\) 0 0
\(547\) −35.0000 −1.49649 −0.748246 0.663421i \(-0.769104\pi\)
−0.748246 + 0.663421i \(0.769104\pi\)
\(548\) −15.0000 −0.640768
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 0 0
\(552\) 0 0
\(553\) 3.00000 0.127573
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) −5.00000 −0.212047
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) −20.0000 −0.845910
\(560\) −9.00000 −0.380319
\(561\) 0 0
\(562\) 24.0000 1.01238
\(563\) −6.00000 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(564\) 0 0
\(565\) −33.0000 −1.38832
\(566\) 14.0000 0.588464
\(567\) 0 0
\(568\) −16.0000 −0.671345
\(569\) 17.0000 0.712677 0.356339 0.934357i \(-0.384025\pi\)
0.356339 + 0.934357i \(0.384025\pi\)
\(570\) 0 0
\(571\) −2.00000 −0.0836974 −0.0418487 0.999124i \(-0.513325\pi\)
−0.0418487 + 0.999124i \(0.513325\pi\)
\(572\) −5.00000 −0.209061
\(573\) 0 0
\(574\) −9.00000 −0.375653
\(575\) −20.0000 −0.834058
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) 0 0
\(581\) 42.0000 1.74245
\(582\) 0 0
\(583\) 0 0
\(584\) −9.00000 −0.372423
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) −21.0000 −0.864556
\(591\) 0 0
\(592\) 4.00000 0.164399
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 18.0000 0.737928
\(596\) 21.0000 0.860194
\(597\) 0 0
\(598\) −25.0000 −1.02233
\(599\) −39.0000 −1.59350 −0.796748 0.604311i \(-0.793448\pi\)
−0.796748 + 0.604311i \(0.793448\pi\)
\(600\) 0 0
\(601\) −3.00000 −0.122373 −0.0611863 0.998126i \(-0.519488\pi\)
−0.0611863 + 0.998126i \(0.519488\pi\)
\(602\) 12.0000 0.489083
\(603\) 0 0
\(604\) −9.00000 −0.366205
\(605\) −30.0000 −1.21967
\(606\) 0 0
\(607\) −4.00000 −0.162355 −0.0811775 0.996700i \(-0.525868\pi\)
−0.0811775 + 0.996700i \(0.525868\pi\)
\(608\) 8.00000 0.324443
\(609\) 0 0
\(610\) −3.00000 −0.121466
\(611\) 10.0000 0.404557
\(612\) 0 0
\(613\) −38.0000 −1.53481 −0.767403 0.641165i \(-0.778451\pi\)
−0.767403 + 0.641165i \(0.778451\pi\)
\(614\) −19.0000 −0.766778
\(615\) 0 0
\(616\) 3.00000 0.120873
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 0 0
\(619\) −14.0000 −0.562708 −0.281354 0.959604i \(-0.590783\pi\)
−0.281354 + 0.959604i \(0.590783\pi\)
\(620\) −12.0000 −0.481932
\(621\) 0 0
\(622\) 35.0000 1.40337
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 8.00000 0.319744
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) 25.0000 0.995234 0.497617 0.867397i \(-0.334208\pi\)
0.497617 + 0.867397i \(0.334208\pi\)
\(632\) 1.00000 0.0397779
\(633\) 0 0
\(634\) 10.0000 0.397151
\(635\) −66.0000 −2.61913
\(636\) 0 0
\(637\) −10.0000 −0.396214
\(638\) 0 0
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) 44.0000 1.73790 0.868948 0.494904i \(-0.164797\pi\)
0.868948 + 0.494904i \(0.164797\pi\)
\(642\) 0 0
\(643\) −8.00000 −0.315489 −0.157745 0.987480i \(-0.550422\pi\)
−0.157745 + 0.987480i \(0.550422\pi\)
\(644\) 15.0000 0.591083
\(645\) 0 0
\(646\) −16.0000 −0.629512
\(647\) 3.00000 0.117942 0.0589711 0.998260i \(-0.481218\pi\)
0.0589711 + 0.998260i \(0.481218\pi\)
\(648\) 0 0
\(649\) 7.00000 0.274774
\(650\) 20.0000 0.784465
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 0 0
\(655\) −30.0000 −1.17220
\(656\) −3.00000 −0.117130
\(657\) 0 0
\(658\) −6.00000 −0.233904
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 32.0000 1.24466 0.622328 0.782757i \(-0.286187\pi\)
0.622328 + 0.782757i \(0.286187\pi\)
\(662\) −9.00000 −0.349795
\(663\) 0 0
\(664\) 14.0000 0.543305
\(665\) 72.0000 2.79204
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000 0.696441
\(669\) 0 0
\(670\) 39.0000 1.50670
\(671\) 1.00000 0.0386046
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 16.0000 0.616297
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) −42.0000 −1.61181
\(680\) 6.00000 0.230089
\(681\) 0 0
\(682\) 4.00000 0.153168
\(683\) −48.0000 −1.83667 −0.918334 0.395805i \(-0.870466\pi\)
−0.918334 + 0.395805i \(0.870466\pi\)
\(684\) 0 0
\(685\) −45.0000 −1.71936
\(686\) −15.0000 −0.572703
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 0 0
\(690\) 0 0
\(691\) −24.0000 −0.913003 −0.456502 0.889723i \(-0.650898\pi\)
−0.456502 + 0.889723i \(0.650898\pi\)
\(692\) 22.0000 0.836315
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) −15.0000 −0.568982
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) 22.0000 0.832712
\(699\) 0 0
\(700\) −12.0000 −0.453557
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −32.0000 −1.20690
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 25.0000 0.940887
\(707\) −24.0000 −0.902613
\(708\) 0 0
\(709\) −14.0000 −0.525781 −0.262891 0.964826i \(-0.584676\pi\)
−0.262891 + 0.964826i \(0.584676\pi\)
\(710\) −48.0000 −1.80141
\(711\) 0 0
\(712\) −4.00000 −0.149906
\(713\) 20.0000 0.749006
\(714\) 0 0
\(715\) −15.0000 −0.560968
\(716\) 0 0
\(717\) 0 0
\(718\) 36.0000 1.34351
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) 42.0000 1.56416
\(722\) −45.0000 −1.67473
\(723\) 0 0
\(724\) 26.0000 0.966282
\(725\) 0 0
\(726\) 0 0
\(727\) 34.0000 1.26099 0.630495 0.776193i \(-0.282852\pi\)
0.630495 + 0.776193i \(0.282852\pi\)
\(728\) −15.0000 −0.555937
\(729\) 0 0
\(730\) −27.0000 −0.999315
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) −1.00000 −0.0369358 −0.0184679 0.999829i \(-0.505879\pi\)
−0.0184679 + 0.999829i \(0.505879\pi\)
\(734\) −36.0000 −1.32878
\(735\) 0 0
\(736\) 5.00000 0.184302
\(737\) −13.0000 −0.478861
\(738\) 0 0
\(739\) 19.0000 0.698926 0.349463 0.936950i \(-0.386364\pi\)
0.349463 + 0.936950i \(0.386364\pi\)
\(740\) 12.0000 0.441129
\(741\) 0 0
\(742\) 0 0
\(743\) 31.0000 1.13728 0.568640 0.822587i \(-0.307470\pi\)
0.568640 + 0.822587i \(0.307470\pi\)
\(744\) 0 0
\(745\) 63.0000 2.30814
\(746\) −4.00000 −0.146450
\(747\) 0 0
\(748\) −2.00000 −0.0731272
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) −12.0000 −0.437886 −0.218943 0.975738i \(-0.570261\pi\)
−0.218943 + 0.975738i \(0.570261\pi\)
\(752\) −2.00000 −0.0729325
\(753\) 0 0
\(754\) 0 0
\(755\) −27.0000 −0.982631
\(756\) 0 0
\(757\) −23.0000 −0.835949 −0.417975 0.908459i \(-0.637260\pi\)
−0.417975 + 0.908459i \(0.637260\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 24.0000 0.870572
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 45.0000 1.62911
\(764\) 15.0000 0.542681
\(765\) 0 0
\(766\) 7.00000 0.252920
\(767\) −35.0000 −1.26378
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 9.00000 0.324337
\(771\) 0 0
\(772\) −18.0000 −0.647834
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) 18.0000 0.645331
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) −10.0000 −0.357599
\(783\) 0 0
\(784\) 2.00000 0.0714286
\(785\) 18.0000 0.642448
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) −21.0000 −0.748094
\(789\) 0 0
\(790\) 3.00000 0.106735
\(791\) 33.0000 1.17334
\(792\) 0 0
\(793\) −5.00000 −0.177555
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) 18.0000 0.637993
\(797\) −29.0000 −1.02723 −0.513616 0.858020i \(-0.671695\pi\)
−0.513616 + 0.858020i \(0.671695\pi\)
\(798\) 0 0
\(799\) 4.00000 0.141510
\(800\) −4.00000 −0.141421
\(801\) 0 0
\(802\) 6.00000 0.211867
\(803\) 9.00000 0.317603
\(804\) 0 0
\(805\) 45.0000 1.58604
\(806\) −20.0000 −0.704470
\(807\) 0 0
\(808\) −8.00000 −0.281439
\(809\) −23.0000 −0.808637 −0.404318 0.914618i \(-0.632491\pi\)
−0.404318 + 0.914618i \(0.632491\pi\)
\(810\) 0 0
\(811\) −7.00000 −0.245803 −0.122902 0.992419i \(-0.539220\pi\)
−0.122902 + 0.992419i \(0.539220\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −4.00000 −0.140200
\(815\) −12.0000 −0.420342
\(816\) 0 0
\(817\) −32.0000 −1.11954
\(818\) 20.0000 0.699284
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 0 0
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 14.0000 0.487713
\(825\) 0 0
\(826\) 21.0000 0.730683
\(827\) 48.0000 1.66912 0.834562 0.550914i \(-0.185721\pi\)
0.834562 + 0.550914i \(0.185721\pi\)
\(828\) 0 0
\(829\) −7.00000 −0.243120 −0.121560 0.992584i \(-0.538790\pi\)
−0.121560 + 0.992584i \(0.538790\pi\)
\(830\) 42.0000 1.45784
\(831\) 0 0
\(832\) −5.00000 −0.173344
\(833\) −4.00000 −0.138592
\(834\) 0 0
\(835\) 54.0000 1.86875
\(836\) −8.00000 −0.276686
\(837\) 0 0
\(838\) 4.00000 0.138178
\(839\) −20.0000 −0.690477 −0.345238 0.938515i \(-0.612202\pi\)
−0.345238 + 0.938515i \(0.612202\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −2.00000 −0.0689246
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) 30.0000 1.03081
\(848\) 0 0
\(849\) 0 0
\(850\) 8.00000 0.274398
\(851\) −20.0000 −0.685591
\(852\) 0 0
\(853\) 39.0000 1.33533 0.667667 0.744460i \(-0.267293\pi\)
0.667667 + 0.744460i \(0.267293\pi\)
\(854\) 3.00000 0.102658
\(855\) 0 0
\(856\) −2.00000 −0.0683586
\(857\) 53.0000 1.81045 0.905223 0.424937i \(-0.139704\pi\)
0.905223 + 0.424937i \(0.139704\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 12.0000 0.409197
\(861\) 0 0
\(862\) −2.00000 −0.0681203
\(863\) 56.0000 1.90626 0.953131 0.302558i \(-0.0978405\pi\)
0.953131 + 0.302558i \(0.0978405\pi\)
\(864\) 0 0
\(865\) 66.0000 2.24407
\(866\) 2.00000 0.0679628
\(867\) 0 0
\(868\) 12.0000 0.407307
\(869\) −1.00000 −0.0339227
\(870\) 0 0
\(871\) 65.0000 2.20244
\(872\) 15.0000 0.507964
\(873\) 0 0
\(874\) −40.0000 −1.35302
\(875\) 9.00000 0.304256
\(876\) 0 0
\(877\) −40.0000 −1.35070 −0.675352 0.737496i \(-0.736008\pi\)
−0.675352 + 0.737496i \(0.736008\pi\)
\(878\) 12.0000 0.404980
\(879\) 0 0
\(880\) 3.00000 0.101130
\(881\) 35.0000 1.17918 0.589590 0.807703i \(-0.299289\pi\)
0.589590 + 0.807703i \(0.299289\pi\)
\(882\) 0 0
\(883\) 15.0000 0.504790 0.252395 0.967624i \(-0.418782\pi\)
0.252395 + 0.967624i \(0.418782\pi\)
\(884\) 10.0000 0.336336
\(885\) 0 0
\(886\) −16.0000 −0.537531
\(887\) −32.0000 −1.07445 −0.537227 0.843437i \(-0.680528\pi\)
−0.537227 + 0.843437i \(0.680528\pi\)
\(888\) 0 0
\(889\) 66.0000 2.21357
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) −21.0000 −0.703132
\(893\) 16.0000 0.535420
\(894\) 0 0
\(895\) 0 0
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) −17.0000 −0.567297
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 3.00000 0.0998891
\(903\) 0 0
\(904\) 11.0000 0.365855
\(905\) 78.0000 2.59281
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 15.0000 0.497792
\(909\) 0 0
\(910\) −45.0000 −1.49174
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) −14.0000 −0.463332
\(914\) −8.00000 −0.264616
\(915\) 0 0
\(916\) −17.0000 −0.561696
\(917\) 30.0000 0.990687
\(918\) 0 0
\(919\) −52.0000 −1.71532 −0.857661 0.514216i \(-0.828083\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 15.0000 0.494535
\(921\) 0 0
\(922\) −6.00000 −0.197599
\(923\) −80.0000 −2.63323
\(924\) 0 0
\(925\) 16.0000 0.526077
\(926\) −8.00000 −0.262896
\(927\) 0 0
\(928\) 0 0
\(929\) −43.0000 −1.41078 −0.705392 0.708817i \(-0.749229\pi\)
−0.705392 + 0.708817i \(0.749229\pi\)
\(930\) 0 0
\(931\) −16.0000 −0.524379
\(932\) 0 0
\(933\) 0 0
\(934\) −25.0000 −0.818025
\(935\) −6.00000 −0.196221
\(936\) 0 0
\(937\) −41.0000 −1.33941 −0.669706 0.742627i \(-0.733580\pi\)
−0.669706 + 0.742627i \(0.733580\pi\)
\(938\) −39.0000 −1.27340
\(939\) 0 0
\(940\) −6.00000 −0.195698
\(941\) −40.0000 −1.30396 −0.651981 0.758235i \(-0.726062\pi\)
−0.651981 + 0.758235i \(0.726062\pi\)
\(942\) 0 0
\(943\) 15.0000 0.488467
\(944\) 7.00000 0.227831
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) −35.0000 −1.13735 −0.568674 0.822563i \(-0.692543\pi\)
−0.568674 + 0.822563i \(0.692543\pi\)
\(948\) 0 0
\(949\) −45.0000 −1.46076
\(950\) 32.0000 1.03822
\(951\) 0 0
\(952\) −6.00000 −0.194461
\(953\) −50.0000 −1.61966 −0.809829 0.586665i \(-0.800440\pi\)
−0.809829 + 0.586665i \(0.800440\pi\)
\(954\) 0 0
\(955\) 45.0000 1.45617
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) −36.0000 −1.16311
\(959\) 45.0000 1.45313
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 20.0000 0.644826
\(963\) 0 0
\(964\) 25.0000 0.805196
\(965\) −54.0000 −1.73832
\(966\) 0 0
\(967\) 18.0000 0.578841 0.289420 0.957202i \(-0.406537\pi\)
0.289420 + 0.957202i \(0.406537\pi\)
\(968\) 10.0000 0.321412
\(969\) 0 0
\(970\) −42.0000 −1.34854
\(971\) 14.0000 0.449281 0.224641 0.974442i \(-0.427879\pi\)
0.224641 + 0.974442i \(0.427879\pi\)
\(972\) 0 0
\(973\) 15.0000 0.480878
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 1.00000 0.0320092
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) 4.00000 0.127841
\(980\) 6.00000 0.191663
\(981\) 0 0
\(982\) 28.0000 0.893516
\(983\) 4.00000 0.127580 0.0637901 0.997963i \(-0.479681\pi\)
0.0637901 + 0.997963i \(0.479681\pi\)
\(984\) 0 0
\(985\) −63.0000 −2.00735
\(986\) 0 0
\(987\) 0 0
\(988\) 40.0000 1.27257
\(989\) −20.0000 −0.635963
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 48.0000 1.52247
\(995\) 54.0000 1.71192
\(996\) 0 0
\(997\) 2.00000 0.0633406 0.0316703 0.999498i \(-0.489917\pi\)
0.0316703 + 0.999498i \(0.489917\pi\)
\(998\) 5.00000 0.158272
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1098.2.a.e.1.1 1
3.2 odd 2 366.2.a.d.1.1 1
4.3 odd 2 8784.2.a.z.1.1 1
12.11 even 2 2928.2.a.h.1.1 1
15.14 odd 2 9150.2.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
366.2.a.d.1.1 1 3.2 odd 2
1098.2.a.e.1.1 1 1.1 even 1 trivial
2928.2.a.h.1.1 1 12.11 even 2
8784.2.a.z.1.1 1 4.3 odd 2
9150.2.a.n.1.1 1 15.14 odd 2