Properties

Label 1098.2.bd.b.467.6
Level $1098$
Weight $2$
Character 1098.467
Analytic conductor $8.768$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1098,2,Mod(143,1098)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1098, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1098.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1098 = 2 \cdot 3^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1098.bd (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.76757414194\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 467.6
Character \(\chi\) \(=\) 1098.467
Dual form 1098.2.bd.b.395.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 + 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(-2.02743 + 3.51162i) q^{5} +(-0.376882 - 1.40654i) q^{7} +(-0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.965926 + 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(-2.02743 + 3.51162i) q^{5} +(-0.376882 - 1.40654i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(1.04948 - 3.91670i) q^{10} +(2.07741 - 2.07741i) q^{11} +(2.10707 - 3.64954i) q^{13} +(0.728080 + 1.26107i) q^{14} +(0.500000 - 0.866025i) q^{16} +(-2.30360 - 0.617248i) q^{17} +(-3.11899 + 1.80075i) q^{19} +4.05487i q^{20} +(-1.46895 + 2.54429i) q^{22} +(-4.74425 - 4.74425i) q^{23} +(-5.72098 - 9.90904i) q^{25} +(-1.09070 + 4.07054i) q^{26} +(-1.02966 - 1.02966i) q^{28} +(5.85173 + 1.56797i) q^{29} +(-0.0233460 + 0.0871284i) q^{31} +(-0.258819 + 0.965926i) q^{32} +2.38486 q^{34} +(5.70335 + 1.52821i) q^{35} +(2.07988 + 2.07988i) q^{37} +(2.54665 - 2.54665i) q^{38} +(-1.04948 - 3.91670i) q^{40} +11.6674 q^{41} +(4.34096 - 1.16316i) q^{43} +(0.760384 - 2.83779i) q^{44} +(5.81049 + 3.35469i) q^{46} +(-2.19356 + 1.26645i) q^{47} +(4.22586 - 2.43980i) q^{49} +(8.09069 + 8.09069i) q^{50} -4.21413i q^{52} +(1.83607 + 1.83607i) q^{53} +(3.08326 + 11.5069i) q^{55} +(1.26107 + 0.728080i) q^{56} -6.05816 q^{58} +(-3.27774 - 12.2327i) q^{59} +(7.31406 + 2.73945i) q^{61} -0.0902019i q^{62} -1.00000i q^{64} +(8.54388 + 14.7984i) q^{65} +(5.71065 - 1.53017i) q^{67} +(-2.30360 + 0.617248i) q^{68} -5.90454 q^{70} +(-8.88735 - 2.38136i) q^{71} +(-0.863448 - 1.49554i) q^{73} +(-2.54732 - 1.47070i) q^{74} +(-1.80075 + 3.11899i) q^{76} +(-3.70490 - 2.13902i) q^{77} +(-1.68178 - 6.27650i) q^{79} +(2.02743 + 3.51162i) q^{80} +(-11.2698 + 3.01974i) q^{82} +(3.26716 + 1.88630i) q^{83} +(6.83795 - 6.83795i) q^{85} +(-3.89200 + 2.24705i) q^{86} +2.93790i q^{88} +(13.3087 - 13.3087i) q^{89} +(-5.92735 - 1.58823i) q^{91} +(-6.48076 - 1.73652i) q^{92} +(1.79103 - 1.79103i) q^{94} -14.6036i q^{95} +(9.18303 - 5.30182i) q^{97} +(-3.45040 + 3.45040i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 48 q + 4 q^{7} + 4 q^{10} - 12 q^{13} + 24 q^{16} - 36 q^{19} - 4 q^{22} - 48 q^{25} - 8 q^{28} - 20 q^{31} - 16 q^{34} + 8 q^{37} - 4 q^{40} + 20 q^{43} + 12 q^{46} + 72 q^{49} - 52 q^{55} + 32 q^{58} + 8 q^{61} + 28 q^{67} - 8 q^{70} + 16 q^{73} - 28 q^{76} + 32 q^{79} - 48 q^{82} + 120 q^{85} - 92 q^{91} + 8 q^{94} + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1098\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(307\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 + 0.258819i −0.683013 + 0.183013i
\(3\) 0 0
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) −2.02743 + 3.51162i −0.906696 + 1.57044i −0.0880728 + 0.996114i \(0.528071\pi\)
−0.818624 + 0.574330i \(0.805263\pi\)
\(6\) 0 0
\(7\) −0.376882 1.40654i −0.142448 0.531623i −0.999856 0.0169854i \(-0.994593\pi\)
0.857408 0.514638i \(-0.172074\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.04948 3.91670i 0.331874 1.23857i
\(11\) 2.07741 2.07741i 0.626362 0.626362i −0.320789 0.947151i \(-0.603948\pi\)
0.947151 + 0.320789i \(0.103948\pi\)
\(12\) 0 0
\(13\) 2.10707 3.64954i 0.584395 1.01220i −0.410556 0.911835i \(-0.634665\pi\)
0.994951 0.100366i \(-0.0320014\pi\)
\(14\) 0.728080 + 1.26107i 0.194588 + 0.337035i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −2.30360 0.617248i −0.558706 0.149705i −0.0315941 0.999501i \(-0.510058\pi\)
−0.527112 + 0.849796i \(0.676725\pi\)
\(18\) 0 0
\(19\) −3.11899 + 1.80075i −0.715547 + 0.413121i −0.813111 0.582108i \(-0.802228\pi\)
0.0975648 + 0.995229i \(0.468895\pi\)
\(20\) 4.05487i 0.906696i
\(21\) 0 0
\(22\) −1.46895 + 2.54429i −0.313181 + 0.542445i
\(23\) −4.74425 4.74425i −0.989244 0.989244i 0.0106987 0.999943i \(-0.496594\pi\)
−0.999943 + 0.0106987i \(0.996594\pi\)
\(24\) 0 0
\(25\) −5.72098 9.90904i −1.14420 1.98181i
\(26\) −1.09070 + 4.07054i −0.213903 + 0.798298i
\(27\) 0 0
\(28\) −1.02966 1.02966i −0.194588 0.194588i
\(29\) 5.85173 + 1.56797i 1.08664 + 0.291164i 0.757313 0.653052i \(-0.226512\pi\)
0.329326 + 0.944216i \(0.393178\pi\)
\(30\) 0 0
\(31\) −0.0233460 + 0.0871284i −0.00419306 + 0.0156487i −0.967991 0.250986i \(-0.919245\pi\)
0.963798 + 0.266635i \(0.0859118\pi\)
\(32\) −0.258819 + 0.965926i −0.0457532 + 0.170753i
\(33\) 0 0
\(34\) 2.38486 0.409001
\(35\) 5.70335 + 1.52821i 0.964041 + 0.258314i
\(36\) 0 0
\(37\) 2.07988 + 2.07988i 0.341930 + 0.341930i 0.857093 0.515162i \(-0.172268\pi\)
−0.515162 + 0.857093i \(0.672268\pi\)
\(38\) 2.54665 2.54665i 0.413121 0.413121i
\(39\) 0 0
\(40\) −1.04948 3.91670i −0.165937 0.619285i
\(41\) 11.6674 1.82214 0.911070 0.412253i \(-0.135258\pi\)
0.911070 + 0.412253i \(0.135258\pi\)
\(42\) 0 0
\(43\) 4.34096 1.16316i 0.661991 0.177380i 0.0878465 0.996134i \(-0.472001\pi\)
0.574144 + 0.818754i \(0.305335\pi\)
\(44\) 0.760384 2.83779i 0.114632 0.427813i
\(45\) 0 0
\(46\) 5.81049 + 3.35469i 0.856711 + 0.494622i
\(47\) −2.19356 + 1.26645i −0.319963 + 0.184731i −0.651376 0.758755i \(-0.725808\pi\)
0.331413 + 0.943486i \(0.392475\pi\)
\(48\) 0 0
\(49\) 4.22586 2.43980i 0.603694 0.348543i
\(50\) 8.09069 + 8.09069i 1.14420 + 1.14420i
\(51\) 0 0
\(52\) 4.21413i 0.584395i
\(53\) 1.83607 + 1.83607i 0.252204 + 0.252204i 0.821874 0.569670i \(-0.192929\pi\)
−0.569670 + 0.821874i \(0.692929\pi\)
\(54\) 0 0
\(55\) 3.08326 + 11.5069i 0.415747 + 1.55159i
\(56\) 1.26107 + 0.728080i 0.168518 + 0.0972938i
\(57\) 0 0
\(58\) −6.05816 −0.795475
\(59\) −3.27774 12.2327i −0.426725 1.59256i −0.760126 0.649775i \(-0.774863\pi\)
0.333401 0.942785i \(-0.391804\pi\)
\(60\) 0 0
\(61\) 7.31406 + 2.73945i 0.936469 + 0.350751i
\(62\) 0.0902019i 0.0114557i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 8.54388 + 14.7984i 1.05974 + 1.83552i
\(66\) 0 0
\(67\) 5.71065 1.53017i 0.697667 0.186939i 0.107482 0.994207i \(-0.465721\pi\)
0.590186 + 0.807268i \(0.299055\pi\)
\(68\) −2.30360 + 0.617248i −0.279353 + 0.0748524i
\(69\) 0 0
\(70\) −5.90454 −0.705727
\(71\) −8.88735 2.38136i −1.05473 0.282615i −0.310528 0.950564i \(-0.600506\pi\)
−0.744207 + 0.667949i \(0.767172\pi\)
\(72\) 0 0
\(73\) −0.863448 1.49554i −0.101059 0.175039i 0.811062 0.584960i \(-0.198890\pi\)
−0.912121 + 0.409921i \(0.865556\pi\)
\(74\) −2.54732 1.47070i −0.296120 0.170965i
\(75\) 0 0
\(76\) −1.80075 + 3.11899i −0.206560 + 0.357773i
\(77\) −3.70490 2.13902i −0.422213 0.243765i
\(78\) 0 0
\(79\) −1.68178 6.27650i −0.189215 0.706162i −0.993689 0.112173i \(-0.964219\pi\)
0.804473 0.593989i \(-0.202448\pi\)
\(80\) 2.02743 + 3.51162i 0.226674 + 0.392611i
\(81\) 0 0
\(82\) −11.2698 + 3.01974i −1.24454 + 0.333475i
\(83\) 3.26716 + 1.88630i 0.358618 + 0.207048i 0.668474 0.743735i \(-0.266948\pi\)
−0.309856 + 0.950783i \(0.600281\pi\)
\(84\) 0 0
\(85\) 6.83795 6.83795i 0.741679 0.741679i
\(86\) −3.89200 + 2.24705i −0.419685 + 0.242305i
\(87\) 0 0
\(88\) 2.93790i 0.313181i
\(89\) 13.3087 13.3087i 1.41072 1.41072i 0.655689 0.755031i \(-0.272378\pi\)
0.755031 0.655689i \(-0.227622\pi\)
\(90\) 0 0
\(91\) −5.92735 1.58823i −0.621355 0.166492i
\(92\) −6.48076 1.73652i −0.675666 0.181044i
\(93\) 0 0
\(94\) 1.79103 1.79103i 0.184731 0.184731i
\(95\) 14.6036i 1.49830i
\(96\) 0 0
\(97\) 9.18303 5.30182i 0.932395 0.538319i 0.0448270 0.998995i \(-0.485726\pi\)
0.887568 + 0.460676i \(0.152393\pi\)
\(98\) −3.45040 + 3.45040i −0.348543 + 0.348543i
\(99\) 0 0
\(100\) −9.90904 5.72098i −0.990904 0.572098i
\(101\) −0.0354365 + 0.00949519i −0.00352607 + 0.000944807i −0.260582 0.965452i \(-0.583914\pi\)
0.257056 + 0.966397i \(0.417248\pi\)
\(102\) 0 0
\(103\) −6.56634 11.3732i −0.647001 1.12064i −0.983835 0.179075i \(-0.942690\pi\)
0.336835 0.941564i \(-0.390644\pi\)
\(104\) 1.09070 + 4.07054i 0.106952 + 0.399149i
\(105\) 0 0
\(106\) −2.24872 1.29830i −0.218415 0.126102i
\(107\) −4.64050 + 8.03759i −0.448614 + 0.777023i −0.998296 0.0583512i \(-0.981416\pi\)
0.549682 + 0.835374i \(0.314749\pi\)
\(108\) 0 0
\(109\) 4.90172 + 2.83001i 0.469499 + 0.271066i 0.716030 0.698069i \(-0.245957\pi\)
−0.246531 + 0.969135i \(0.579291\pi\)
\(110\) −5.95640 10.3168i −0.567920 0.983667i
\(111\) 0 0
\(112\) −1.40654 0.376882i −0.132906 0.0356120i
\(113\) −19.2563 −1.81148 −0.905738 0.423838i \(-0.860682\pi\)
−0.905738 + 0.423838i \(0.860682\pi\)
\(114\) 0 0
\(115\) 26.2787 7.04134i 2.45050 0.656609i
\(116\) 5.85173 1.56797i 0.543319 0.145582i
\(117\) 0 0
\(118\) 6.33210 + 10.9675i 0.582917 + 1.00964i
\(119\) 3.47274i 0.318346i
\(120\) 0 0
\(121\) 2.36875i 0.215341i
\(122\) −7.77386 0.753091i −0.703812 0.0681816i
\(123\) 0 0
\(124\) 0.0233460 + 0.0871284i 0.00209653 + 0.00782436i
\(125\) 26.1213 2.33636
\(126\) 0 0
\(127\) 10.3724 + 5.98850i 0.920401 + 0.531394i 0.883763 0.467935i \(-0.155002\pi\)
0.0366379 + 0.999329i \(0.488335\pi\)
\(128\) 0.258819 + 0.965926i 0.0228766 + 0.0853766i
\(129\) 0 0
\(130\) −12.0829 12.0829i −1.05974 1.05974i
\(131\) 7.02383i 0.613675i 0.951762 + 0.306837i \(0.0992708\pi\)
−0.951762 + 0.306837i \(0.900729\pi\)
\(132\) 0 0
\(133\) 3.70833 + 3.70833i 0.321553 + 0.321553i
\(134\) −5.12003 + 2.95605i −0.442303 + 0.255364i
\(135\) 0 0
\(136\) 2.06535 1.19243i 0.177103 0.102250i
\(137\) 3.03746 + 1.75368i 0.259508 + 0.149827i 0.624110 0.781337i \(-0.285462\pi\)
−0.364602 + 0.931163i \(0.618795\pi\)
\(138\) 0 0
\(139\) −2.52060 + 9.40701i −0.213795 + 0.797893i 0.772793 + 0.634659i \(0.218859\pi\)
−0.986587 + 0.163234i \(0.947807\pi\)
\(140\) 5.70335 1.52821i 0.482021 0.129157i
\(141\) 0 0
\(142\) 9.20087 0.772120
\(143\) −3.20436 11.9588i −0.267962 1.00005i
\(144\) 0 0
\(145\) −17.3701 + 17.3701i −1.44251 + 1.44251i
\(146\) 1.22110 + 1.22110i 0.101059 + 0.101059i
\(147\) 0 0
\(148\) 2.84117 + 0.761289i 0.233543 + 0.0625776i
\(149\) −6.77062 −0.554671 −0.277336 0.960773i \(-0.589451\pi\)
−0.277336 + 0.960773i \(0.589451\pi\)
\(150\) 0 0
\(151\) −2.27333 + 8.48419i −0.185001 + 0.690434i 0.809629 + 0.586942i \(0.199668\pi\)
−0.994630 + 0.103492i \(0.966998\pi\)
\(152\) 0.932138 3.47879i 0.0756064 0.282167i
\(153\) 0 0
\(154\) 4.13228 + 1.10724i 0.332989 + 0.0892240i
\(155\) −0.258629 0.258629i −0.0207736 0.0207736i
\(156\) 0 0
\(157\) −0.595606 + 2.22283i −0.0475346 + 0.177401i −0.985612 0.169025i \(-0.945938\pi\)
0.938077 + 0.346426i \(0.112605\pi\)
\(158\) 3.24896 + 5.62736i 0.258473 + 0.447689i
\(159\) 0 0
\(160\) −2.86723 2.86723i −0.226674 0.226674i
\(161\) −4.88496 + 8.46101i −0.384989 + 0.666821i
\(162\) 0 0
\(163\) 20.9856i 1.64372i −0.569688 0.821861i \(-0.692936\pi\)
0.569688 0.821861i \(-0.307064\pi\)
\(164\) 10.1043 5.83369i 0.789009 0.455535i
\(165\) 0 0
\(166\) −3.64405 0.976420i −0.282833 0.0757849i
\(167\) 12.7755 22.1279i 0.988600 1.71230i 0.363904 0.931436i \(-0.381444\pi\)
0.624696 0.780868i \(-0.285223\pi\)
\(168\) 0 0
\(169\) −2.37945 4.12132i −0.183034 0.317025i
\(170\) −4.83516 + 8.37474i −0.370840 + 0.642313i
\(171\) 0 0
\(172\) 3.17781 3.17781i 0.242305 0.242305i
\(173\) 2.13766 7.97784i 0.162523 0.606544i −0.835820 0.549003i \(-0.815007\pi\)
0.998343 0.0575406i \(-0.0183259\pi\)
\(174\) 0 0
\(175\) −11.7813 + 11.7813i −0.890586 + 0.890586i
\(176\) −0.760384 2.83779i −0.0573161 0.213907i
\(177\) 0 0
\(178\) −9.41068 + 16.2998i −0.705360 + 1.22172i
\(179\) −5.17639 + 2.98859i −0.386902 + 0.223378i −0.680817 0.732454i \(-0.738375\pi\)
0.293915 + 0.955831i \(0.405042\pi\)
\(180\) 0 0
\(181\) 16.4850 4.41713i 1.22532 0.328323i 0.412563 0.910929i \(-0.364634\pi\)
0.812755 + 0.582606i \(0.197967\pi\)
\(182\) 6.13645 0.454864
\(183\) 0 0
\(184\) 6.70938 0.494622
\(185\) −11.5206 + 3.08693i −0.847009 + 0.226955i
\(186\) 0 0
\(187\) −6.06780 + 3.50325i −0.443721 + 0.256183i
\(188\) −1.26645 + 2.19356i −0.0923654 + 0.159982i
\(189\) 0 0
\(190\) 3.77970 + 14.1060i 0.274208 + 1.02336i
\(191\) 5.40828 5.40828i 0.391329 0.391329i −0.483832 0.875161i \(-0.660755\pi\)
0.875161 + 0.483832i \(0.160755\pi\)
\(192\) 0 0
\(193\) 0.666012 2.48559i 0.0479406 0.178917i −0.937804 0.347165i \(-0.887144\pi\)
0.985745 + 0.168248i \(0.0538110\pi\)
\(194\) −7.49791 + 7.49791i −0.538319 + 0.538319i
\(195\) 0 0
\(196\) 2.43980 4.22586i 0.174271 0.301847i
\(197\) −10.0898 17.4761i −0.718869 1.24512i −0.961448 0.274986i \(-0.911327\pi\)
0.242580 0.970131i \(-0.422006\pi\)
\(198\) 0 0
\(199\) −10.9158 + 18.9067i −0.773800 + 1.34026i 0.161666 + 0.986845i \(0.448313\pi\)
−0.935466 + 0.353416i \(0.885020\pi\)
\(200\) 11.0521 + 2.96140i 0.781501 + 0.209403i
\(201\) 0 0
\(202\) 0.0317715 0.0183433i 0.00223544 0.00129063i
\(203\) 8.82164i 0.619158i
\(204\) 0 0
\(205\) −23.6549 + 40.9714i −1.65213 + 2.86157i
\(206\) 9.28621 + 9.28621i 0.647001 + 0.647001i
\(207\) 0 0
\(208\) −2.10707 3.64954i −0.146099 0.253050i
\(209\) −2.73853 + 10.2203i −0.189428 + 0.706955i
\(210\) 0 0
\(211\) −7.93187 7.93187i −0.546053 0.546053i 0.379244 0.925297i \(-0.376184\pi\)
−0.925297 + 0.379244i \(0.876184\pi\)
\(212\) 2.50812 + 0.672048i 0.172258 + 0.0461564i
\(213\) 0 0
\(214\) 2.40210 8.96477i 0.164204 0.612819i
\(215\) −4.71645 + 17.6020i −0.321659 + 1.20045i
\(216\) 0 0
\(217\) 0.131348 0.00891651
\(218\) −5.46715 1.46492i −0.370282 0.0992169i
\(219\) 0 0
\(220\) 8.42362 + 8.42362i 0.567920 + 0.567920i
\(221\) −7.10652 + 7.10652i −0.478036 + 0.478036i
\(222\) 0 0
\(223\) 5.53766 + 20.6668i 0.370829 + 1.38395i 0.859344 + 0.511398i \(0.170872\pi\)
−0.488515 + 0.872556i \(0.662461\pi\)
\(224\) 1.45616 0.0972938
\(225\) 0 0
\(226\) 18.6001 4.98388i 1.23726 0.331523i
\(227\) 6.47784 24.1756i 0.429949 1.60459i −0.322922 0.946426i \(-0.604665\pi\)
0.752871 0.658168i \(-0.228668\pi\)
\(228\) 0 0
\(229\) −13.2013 7.62177i −0.872367 0.503661i −0.00423259 0.999991i \(-0.501347\pi\)
−0.868134 + 0.496330i \(0.834681\pi\)
\(230\) −23.5608 + 13.6028i −1.55355 + 0.896944i
\(231\) 0 0
\(232\) −5.24652 + 3.02908i −0.344451 + 0.198869i
\(233\) −6.96525 6.96525i −0.456309 0.456309i 0.441133 0.897442i \(-0.354577\pi\)
−0.897442 + 0.441133i \(0.854577\pi\)
\(234\) 0 0
\(235\) 10.2706i 0.669979i
\(236\) −8.95495 8.95495i −0.582917 0.582917i
\(237\) 0 0
\(238\) −0.898812 3.35441i −0.0582613 0.217434i
\(239\) −9.46772 5.46619i −0.612416 0.353579i 0.161494 0.986874i \(-0.448369\pi\)
−0.773910 + 0.633295i \(0.781702\pi\)
\(240\) 0 0
\(241\) −6.02409 −0.388046 −0.194023 0.980997i \(-0.562154\pi\)
−0.194023 + 0.980997i \(0.562154\pi\)
\(242\) −0.613078 2.28804i −0.0394101 0.147081i
\(243\) 0 0
\(244\) 7.70388 1.28459i 0.493191 0.0822376i
\(245\) 19.7861i 1.26409i
\(246\) 0 0
\(247\) 15.1772i 0.965703i
\(248\) −0.0451010 0.0781172i −0.00286391 0.00496045i
\(249\) 0 0
\(250\) −25.2313 + 6.76070i −1.59577 + 0.427584i
\(251\) 29.6004 7.93140i 1.86836 0.500625i 0.868371 0.495916i \(-0.165168\pi\)
0.999989 0.00470968i \(-0.00149914\pi\)
\(252\) 0 0
\(253\) −19.7115 −1.23925
\(254\) −11.5689 3.09988i −0.725897 0.194504i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 11.7010 + 6.75560i 0.729891 + 0.421403i 0.818382 0.574674i \(-0.194871\pi\)
−0.0884912 + 0.996077i \(0.528205\pi\)
\(258\) 0 0
\(259\) 2.14157 3.70931i 0.133071 0.230485i
\(260\) 14.7984 + 8.54388i 0.917759 + 0.529869i
\(261\) 0 0
\(262\) −1.81790 6.78450i −0.112310 0.419148i
\(263\) 0.841342 + 1.45725i 0.0518794 + 0.0898577i 0.890799 0.454398i \(-0.150146\pi\)
−0.838920 + 0.544256i \(0.816812\pi\)
\(264\) 0 0
\(265\) −10.1701 + 2.72507i −0.624744 + 0.167400i
\(266\) −4.54175 2.62218i −0.278473 0.160776i
\(267\) 0 0
\(268\) 4.18049 4.18049i 0.255364 0.255364i
\(269\) −8.02914 + 4.63562i −0.489545 + 0.282639i −0.724386 0.689395i \(-0.757877\pi\)
0.234841 + 0.972034i \(0.424543\pi\)
\(270\) 0 0
\(271\) 1.35553i 0.0823425i −0.999152 0.0411713i \(-0.986891\pi\)
0.999152 0.0411713i \(-0.0131089\pi\)
\(272\) −1.68635 + 1.68635i −0.102250 + 0.102250i
\(273\) 0 0
\(274\) −3.38785 0.907770i −0.204667 0.0548404i
\(275\) −32.4699 8.70029i −1.95801 0.524647i
\(276\) 0 0
\(277\) −14.9286 + 14.9286i −0.896975 + 0.896975i −0.995167 0.0981923i \(-0.968694\pi\)
0.0981923 + 0.995167i \(0.468694\pi\)
\(278\) 9.73886i 0.584098i
\(279\) 0 0
\(280\) −5.11348 + 2.95227i −0.305589 + 0.176432i
\(281\) 6.82186 6.82186i 0.406958 0.406958i −0.473718 0.880676i \(-0.657089\pi\)
0.880676 + 0.473718i \(0.157089\pi\)
\(282\) 0 0
\(283\) 1.52318 + 0.879409i 0.0905437 + 0.0522755i 0.544588 0.838704i \(-0.316686\pi\)
−0.454044 + 0.890979i \(0.650019\pi\)
\(284\) −8.88735 + 2.38136i −0.527367 + 0.141308i
\(285\) 0 0
\(286\) 6.19034 + 10.7220i 0.366043 + 0.634005i
\(287\) −4.39723 16.4107i −0.259560 0.968691i
\(288\) 0 0
\(289\) −9.79684 5.65621i −0.576285 0.332718i
\(290\) 12.2825 21.2739i 0.721254 1.24925i
\(291\) 0 0
\(292\) −1.49554 0.863448i −0.0875196 0.0505295i
\(293\) −9.61178 16.6481i −0.561526 0.972592i −0.997364 0.0725664i \(-0.976881\pi\)
0.435837 0.900025i \(-0.356452\pi\)
\(294\) 0 0
\(295\) 49.6020 + 13.2908i 2.88794 + 0.773820i
\(296\) −2.94140 −0.170965
\(297\) 0 0
\(298\) 6.53992 1.75237i 0.378847 0.101512i
\(299\) −27.3108 + 7.31790i −1.57942 + 0.423205i
\(300\) 0 0
\(301\) −3.27206 5.66738i −0.188598 0.326662i
\(302\) 8.78348i 0.505433i
\(303\) 0 0
\(304\) 3.60151i 0.206560i
\(305\) −24.4487 + 20.1301i −1.39993 + 1.15265i
\(306\) 0 0
\(307\) −8.38942 31.3097i −0.478810 1.78694i −0.606451 0.795121i \(-0.707407\pi\)
0.127641 0.991820i \(-0.459259\pi\)
\(308\) −4.27805 −0.243765
\(309\) 0 0
\(310\) 0.316755 + 0.182879i 0.0179905 + 0.0103868i
\(311\) 6.73167 + 25.1229i 0.381718 + 1.42459i 0.843276 + 0.537481i \(0.180624\pi\)
−0.461558 + 0.887110i \(0.652709\pi\)
\(312\) 0 0
\(313\) 13.3053 + 13.3053i 0.752062 + 0.752062i 0.974864 0.222802i \(-0.0715203\pi\)
−0.222802 + 0.974864i \(0.571520\pi\)
\(314\) 2.30125i 0.129867i
\(315\) 0 0
\(316\) −4.59472 4.59472i −0.258473 0.258473i
\(317\) −17.7292 + 10.2360i −0.995771 + 0.574909i −0.906994 0.421143i \(-0.861629\pi\)
−0.0887767 + 0.996052i \(0.528296\pi\)
\(318\) 0 0
\(319\) 15.4137 8.89912i 0.863004 0.498255i
\(320\) 3.51162 + 2.02743i 0.196306 + 0.113337i
\(321\) 0 0
\(322\) 2.52864 9.43703i 0.140916 0.525905i
\(323\) 8.29644 2.22302i 0.461626 0.123692i
\(324\) 0 0
\(325\) −48.2180 −2.67465
\(326\) 5.43148 + 20.2706i 0.300822 + 1.12268i
\(327\) 0 0
\(328\) −8.25009 + 8.25009i −0.455535 + 0.455535i
\(329\) 2.60803 + 2.60803i 0.143785 + 0.143785i
\(330\) 0 0
\(331\) −3.53702 0.947742i −0.194412 0.0520926i 0.160299 0.987068i \(-0.448754\pi\)
−0.354711 + 0.934976i \(0.615421\pi\)
\(332\) 3.77260 0.207048
\(333\) 0 0
\(334\) −6.61310 + 24.6804i −0.361853 + 1.35045i
\(335\) −6.20462 + 23.1560i −0.338995 + 1.26515i
\(336\) 0 0
\(337\) −11.7792 3.15622i −0.641652 0.171930i −0.0767005 0.997054i \(-0.524439\pi\)
−0.564952 + 0.825124i \(0.691105\pi\)
\(338\) 3.36505 + 3.36505i 0.183034 + 0.183034i
\(339\) 0 0
\(340\) 2.50286 9.34081i 0.135737 0.506576i
\(341\) 0.132502 + 0.229500i 0.00717539 + 0.0124281i
\(342\) 0 0
\(343\) −12.2320 12.2320i −0.660463 0.660463i
\(344\) −2.24705 + 3.89200i −0.121153 + 0.209843i
\(345\) 0 0
\(346\) 8.25927i 0.444021i
\(347\) −17.1260 + 9.88768i −0.919370 + 0.530799i −0.883434 0.468556i \(-0.844775\pi\)
−0.0359360 + 0.999354i \(0.511441\pi\)
\(348\) 0 0
\(349\) 4.74826 + 1.27229i 0.254169 + 0.0681043i 0.383654 0.923477i \(-0.374666\pi\)
−0.129485 + 0.991581i \(0.541332\pi\)
\(350\) 8.33067 14.4291i 0.445293 0.771270i
\(351\) 0 0
\(352\) 1.46895 + 2.54429i 0.0782953 + 0.135611i
\(353\) −7.64329 + 13.2386i −0.406811 + 0.704618i −0.994530 0.104447i \(-0.966693\pi\)
0.587719 + 0.809065i \(0.300026\pi\)
\(354\) 0 0
\(355\) 26.3810 26.3810i 1.40016 1.40016i
\(356\) 4.87132 18.1800i 0.258180 0.963540i
\(357\) 0 0
\(358\) 4.22650 4.22650i 0.223378 0.223378i
\(359\) −0.656984 2.45190i −0.0346743 0.129406i 0.946419 0.322941i \(-0.104671\pi\)
−0.981093 + 0.193535i \(0.938005\pi\)
\(360\) 0 0
\(361\) −3.01458 + 5.22141i −0.158662 + 0.274811i
\(362\) −14.7800 + 8.53325i −0.776820 + 0.448497i
\(363\) 0 0
\(364\) −5.92735 + 1.58823i −0.310678 + 0.0832458i
\(365\) 7.00234 0.366519
\(366\) 0 0
\(367\) −4.36643 −0.227926 −0.113963 0.993485i \(-0.536355\pi\)
−0.113963 + 0.993485i \(0.536355\pi\)
\(368\) −6.48076 + 1.73652i −0.337833 + 0.0905221i
\(369\) 0 0
\(370\) 10.3291 5.96349i 0.536982 0.310027i
\(371\) 1.89053 3.27449i 0.0981513 0.170003i
\(372\) 0 0
\(373\) −7.47703 27.9047i −0.387146 1.44485i −0.834756 0.550620i \(-0.814391\pi\)
0.447610 0.894229i \(-0.352275\pi\)
\(374\) 4.95434 4.95434i 0.256183 0.256183i
\(375\) 0 0
\(376\) 0.655563 2.44660i 0.0338081 0.126174i
\(377\) 18.0523 18.0523i 0.929743 0.929743i
\(378\) 0 0
\(379\) 8.21964 14.2368i 0.422215 0.731297i −0.573941 0.818897i \(-0.694586\pi\)
0.996156 + 0.0875993i \(0.0279195\pi\)
\(380\) −7.30182 12.6471i −0.374575 0.648784i
\(381\) 0 0
\(382\) −3.82423 + 6.62376i −0.195665 + 0.338901i
\(383\) −34.3361 9.20032i −1.75449 0.470115i −0.768916 0.639350i \(-0.779203\pi\)
−0.985576 + 0.169236i \(0.945870\pi\)
\(384\) 0 0
\(385\) 15.0229 8.67347i 0.765637 0.442041i
\(386\) 2.57327i 0.130976i
\(387\) 0 0
\(388\) 5.30182 9.18303i 0.269159 0.466198i
\(389\) 18.7205 + 18.7205i 0.949169 + 0.949169i 0.998769 0.0496000i \(-0.0157946\pi\)
−0.0496000 + 0.998769i \(0.515795\pi\)
\(390\) 0 0
\(391\) 8.00048 + 13.8572i 0.404602 + 0.700791i
\(392\) −1.26293 + 4.71333i −0.0637878 + 0.238059i
\(393\) 0 0
\(394\) 14.2691 + 14.2691i 0.718869 + 0.718869i
\(395\) 25.4504 + 6.81941i 1.28055 + 0.343122i
\(396\) 0 0
\(397\) 2.70784 10.1058i 0.135903 0.507195i −0.864090 0.503337i \(-0.832105\pi\)
0.999993 0.00385797i \(-0.00122803\pi\)
\(398\) 5.65043 21.0877i 0.283230 1.05703i
\(399\) 0 0
\(400\) −11.4420 −0.572098
\(401\) −10.0363 2.68921i −0.501187 0.134293i −0.000636069 1.00000i \(-0.500202\pi\)
−0.500551 + 0.865707i \(0.666869\pi\)
\(402\) 0 0
\(403\) 0.268787 + 0.268787i 0.0133893 + 0.0133893i
\(404\) −0.0259413 + 0.0259413i −0.00129063 + 0.00129063i
\(405\) 0 0
\(406\) 2.28321 + 8.52105i 0.113314 + 0.422893i
\(407\) 8.64152 0.428344
\(408\) 0 0
\(409\) 11.4777 3.07544i 0.567535 0.152071i 0.0363693 0.999338i \(-0.488421\pi\)
0.531166 + 0.847268i \(0.321754\pi\)
\(410\) 12.2447 45.6977i 0.604720 2.25685i
\(411\) 0 0
\(412\) −11.3732 6.56634i −0.560319 0.323500i
\(413\) −15.9705 + 9.22056i −0.785855 + 0.453714i
\(414\) 0 0
\(415\) −13.2479 + 7.64869i −0.650315 + 0.375460i
\(416\) 2.97984 + 2.97984i 0.146099 + 0.146099i
\(417\) 0 0
\(418\) 10.5809i 0.517527i
\(419\) −12.5133 12.5133i −0.611317 0.611317i 0.331972 0.943289i \(-0.392286\pi\)
−0.943289 + 0.331972i \(0.892286\pi\)
\(420\) 0 0
\(421\) −1.35888 5.07140i −0.0662277 0.247165i 0.924874 0.380274i \(-0.124170\pi\)
−0.991101 + 0.133109i \(0.957504\pi\)
\(422\) 9.71452 + 5.60868i 0.472895 + 0.273026i
\(423\) 0 0
\(424\) −2.59659 −0.126102
\(425\) 7.06254 + 26.3578i 0.342583 + 1.27854i
\(426\) 0 0
\(427\) 1.09662 11.3200i 0.0530692 0.547812i
\(428\) 9.28101i 0.448614i
\(429\) 0 0
\(430\) 18.2230i 0.878790i
\(431\) 15.2099 + 26.3443i 0.732636 + 1.26896i 0.955753 + 0.294171i \(0.0950434\pi\)
−0.223117 + 0.974792i \(0.571623\pi\)
\(432\) 0 0
\(433\) 5.62304 1.50669i 0.270226 0.0724069i −0.121161 0.992633i \(-0.538662\pi\)
0.391388 + 0.920226i \(0.371995\pi\)
\(434\) −0.126873 + 0.0339955i −0.00609009 + 0.00163184i
\(435\) 0 0
\(436\) 5.66001 0.271066
\(437\) 23.3405 + 6.25407i 1.11653 + 0.299173i
\(438\) 0 0
\(439\) −0.406454 0.703998i −0.0193990 0.0336000i 0.856163 0.516706i \(-0.172842\pi\)
−0.875562 + 0.483106i \(0.839509\pi\)
\(440\) −10.3168 5.95640i −0.491833 0.283960i
\(441\) 0 0
\(442\) 5.02507 8.70367i 0.239018 0.413991i
\(443\) −7.27672 4.20122i −0.345727 0.199606i 0.317074 0.948401i \(-0.397299\pi\)
−0.662802 + 0.748795i \(0.730633\pi\)
\(444\) 0 0
\(445\) 19.7526 + 73.7177i 0.936362 + 3.49455i
\(446\) −10.6979 18.5294i −0.506562 0.877391i
\(447\) 0 0
\(448\) −1.40654 + 0.376882i −0.0664529 + 0.0178060i
\(449\) 17.6619 + 10.1971i 0.833515 + 0.481230i 0.855055 0.518538i \(-0.173524\pi\)
−0.0215399 + 0.999768i \(0.506857\pi\)
\(450\) 0 0
\(451\) 24.2379 24.2379i 1.14132 1.14132i
\(452\) −16.6764 + 9.62813i −0.784392 + 0.452869i
\(453\) 0 0
\(454\) 25.0285i 1.17464i
\(455\) 17.5946 17.5946i 0.824847 0.824847i
\(456\) 0 0
\(457\) −26.0019 6.96720i −1.21632 0.325912i −0.407081 0.913392i \(-0.633453\pi\)
−0.809238 + 0.587480i \(0.800120\pi\)
\(458\) 14.7241 + 3.94532i 0.688014 + 0.184353i
\(459\) 0 0
\(460\) 19.2373 19.2373i 0.896944 0.896944i
\(461\) 3.24549i 0.151158i −0.997140 0.0755789i \(-0.975920\pi\)
0.997140 0.0755789i \(-0.0240805\pi\)
\(462\) 0 0
\(463\) −27.4759 + 15.8632i −1.27691 + 0.737225i −0.976279 0.216515i \(-0.930531\pi\)
−0.300632 + 0.953740i \(0.597198\pi\)
\(464\) 4.28376 4.28376i 0.198869 0.198869i
\(465\) 0 0
\(466\) 8.53066 + 4.92518i 0.395175 + 0.228154i
\(467\) 36.5510 9.79382i 1.69138 0.453204i 0.720634 0.693315i \(-0.243851\pi\)
0.970745 + 0.240112i \(0.0771841\pi\)
\(468\) 0 0
\(469\) −4.30448 7.45558i −0.198763 0.344267i
\(470\) 2.65822 + 9.92063i 0.122615 + 0.457604i
\(471\) 0 0
\(472\) 10.9675 + 6.33210i 0.504821 + 0.291459i
\(473\) 6.60160 11.4343i 0.303542 0.525750i
\(474\) 0 0
\(475\) 35.6874 + 20.6042i 1.63745 + 0.945384i
\(476\) 1.73637 + 3.00748i 0.0795865 + 0.137848i
\(477\) 0 0
\(478\) 10.5599 + 2.82951i 0.482997 + 0.129419i
\(479\) 26.2102 1.19757 0.598786 0.800909i \(-0.295650\pi\)
0.598786 + 0.800909i \(0.295650\pi\)
\(480\) 0 0
\(481\) 11.9731 3.20817i 0.545924 0.146280i
\(482\) 5.81882 1.55915i 0.265040 0.0710173i
\(483\) 0 0
\(484\) 1.18438 + 2.05140i 0.0538353 + 0.0932454i
\(485\) 42.9964i 1.95237i
\(486\) 0 0
\(487\) 36.9998i 1.67662i 0.545194 + 0.838310i \(0.316456\pi\)
−0.545194 + 0.838310i \(0.683544\pi\)
\(488\) −7.10890 + 3.23473i −0.321805 + 0.146429i
\(489\) 0 0
\(490\) −5.12103 19.1119i −0.231345 0.863390i
\(491\) −4.05628 −0.183058 −0.0915288 0.995802i \(-0.529175\pi\)
−0.0915288 + 0.995802i \(0.529175\pi\)
\(492\) 0 0
\(493\) −12.5122 7.22394i −0.563523 0.325350i
\(494\) −3.92815 14.6601i −0.176736 0.659587i
\(495\) 0 0
\(496\) 0.0637824 + 0.0637824i 0.00286391 + 0.00286391i
\(497\) 13.3979i 0.600979i
\(498\) 0 0
\(499\) 17.5333 + 17.5333i 0.784900 + 0.784900i 0.980653 0.195753i \(-0.0627150\pi\)
−0.195753 + 0.980653i \(0.562715\pi\)
\(500\) 22.6218 13.0607i 1.01168 0.584091i
\(501\) 0 0
\(502\) −26.5390 + 15.3223i −1.18449 + 0.683867i
\(503\) 34.5581 + 19.9521i 1.54087 + 0.889621i 0.998784 + 0.0492975i \(0.0156983\pi\)
0.542085 + 0.840324i \(0.317635\pi\)
\(504\) 0 0
\(505\) 0.0385018 0.143691i 0.00171331 0.00639414i
\(506\) 19.0398 5.10171i 0.846424 0.226798i
\(507\) 0 0
\(508\) 11.9770 0.531394
\(509\) 8.54412 + 31.8871i 0.378711 + 1.41337i 0.847845 + 0.530243i \(0.177899\pi\)
−0.469134 + 0.883127i \(0.655434\pi\)
\(510\) 0 0
\(511\) −1.77812 + 1.77812i −0.0786592 + 0.0786592i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −13.0508 3.49696i −0.575647 0.154244i
\(515\) 53.2513 2.34653
\(516\) 0 0
\(517\) −1.92598 + 7.18785i −0.0847045 + 0.316121i
\(518\) −1.10856 + 4.13720i −0.0487073 + 0.181778i
\(519\) 0 0
\(520\) −16.5055 4.42264i −0.723814 0.193945i
\(521\) −24.5923 24.5923i −1.07741 1.07741i −0.996741 0.0806652i \(-0.974296\pi\)
−0.0806652 0.996741i \(-0.525704\pi\)
\(522\) 0 0
\(523\) 10.1873 38.0195i 0.445459 1.66248i −0.269262 0.963067i \(-0.586780\pi\)
0.714721 0.699410i \(-0.246554\pi\)
\(524\) 3.51191 + 6.08281i 0.153419 + 0.265729i
\(525\) 0 0
\(526\) −1.18984 1.18984i −0.0518794 0.0518794i
\(527\) 0.107560 0.186299i 0.00468538 0.00811531i
\(528\) 0 0
\(529\) 22.0158i 0.957208i
\(530\) 9.11825 5.26443i 0.396072 0.228672i
\(531\) 0 0
\(532\) 5.06567 + 1.35734i 0.219625 + 0.0588482i
\(533\) 24.5839 42.5806i 1.06485 1.84437i
\(534\) 0 0
\(535\) −18.8166 32.5914i −0.813514 1.40905i
\(536\) −2.95605 + 5.12003i −0.127682 + 0.221152i
\(537\) 0 0
\(538\) 6.55576 6.55576i 0.282639 0.282639i
\(539\) 3.71037 13.8473i 0.159817 0.596445i
\(540\) 0 0
\(541\) 1.23366 1.23366i 0.0530392 0.0530392i −0.680090 0.733129i \(-0.738059\pi\)
0.733129 + 0.680090i \(0.238059\pi\)
\(542\) 0.350837 + 1.30934i 0.0150697 + 0.0562410i
\(543\) 0 0
\(544\) 1.19243 2.06535i 0.0511251 0.0885513i
\(545\) −19.8758 + 11.4753i −0.851387 + 0.491548i
\(546\) 0 0
\(547\) −6.01803 + 1.61253i −0.257312 + 0.0689467i −0.385169 0.922846i \(-0.625857\pi\)
0.127857 + 0.991793i \(0.459190\pi\)
\(548\) 3.50736 0.149827
\(549\) 0 0
\(550\) 33.6153 1.43336
\(551\) −21.0750 + 5.64704i −0.897827 + 0.240572i
\(552\) 0 0
\(553\) −8.19433 + 4.73100i −0.348458 + 0.201183i
\(554\) 10.5561 18.2838i 0.448488 0.776803i
\(555\) 0 0
\(556\) 2.52060 + 9.40701i 0.106897 + 0.398946i
\(557\) 20.5085 20.5085i 0.868975 0.868975i −0.123384 0.992359i \(-0.539375\pi\)
0.992359 + 0.123384i \(0.0393747\pi\)
\(558\) 0 0
\(559\) 4.90170 18.2934i 0.207320 0.773728i
\(560\) 4.17514 4.17514i 0.176432 0.176432i
\(561\) 0 0
\(562\) −4.82378 + 8.35503i −0.203479 + 0.352436i
\(563\) −18.6794 32.3536i −0.787241 1.36354i −0.927651 0.373448i \(-0.878176\pi\)
0.140411 0.990093i \(-0.455158\pi\)
\(564\) 0 0
\(565\) 39.0408 67.6206i 1.64246 2.84482i
\(566\) −1.69889 0.455216i −0.0714096 0.0191341i
\(567\) 0 0
\(568\) 7.96818 4.60043i 0.334338 0.193030i
\(569\) 29.8188i 1.25007i −0.780597 0.625034i \(-0.785085\pi\)
0.780597 0.625034i \(-0.214915\pi\)
\(570\) 0 0
\(571\) 19.6377 34.0135i 0.821812 1.42342i −0.0825193 0.996589i \(-0.526297\pi\)
0.904331 0.426831i \(-0.140370\pi\)
\(572\) −8.75447 8.75447i −0.366043 0.366043i
\(573\) 0 0
\(574\) 8.49479 + 14.7134i 0.354566 + 0.614126i
\(575\) −19.8692 + 74.1527i −0.828601 + 3.09238i
\(576\) 0 0
\(577\) 2.30399 + 2.30399i 0.0959162 + 0.0959162i 0.753437 0.657520i \(-0.228395\pi\)
−0.657520 + 0.753437i \(0.728395\pi\)
\(578\) 10.9270 + 2.92787i 0.454502 + 0.121783i
\(579\) 0 0
\(580\) −6.35790 + 23.7280i −0.263997 + 0.985252i
\(581\) 1.42182 5.30632i 0.0589872 0.220143i
\(582\) 0 0
\(583\) 7.62853 0.315941
\(584\) 1.66805 + 0.446954i 0.0690245 + 0.0184951i
\(585\) 0 0
\(586\) 13.5931 + 13.5931i 0.561526 + 0.561526i
\(587\) 11.8986 11.8986i 0.491108 0.491108i −0.417547 0.908655i \(-0.637110\pi\)
0.908655 + 0.417547i \(0.137110\pi\)
\(588\) 0 0
\(589\) −0.0840807 0.313793i −0.00346448 0.0129296i
\(590\) −51.3517 −2.11412
\(591\) 0 0
\(592\) 2.84117 0.761289i 0.116771 0.0312888i
\(593\) −9.24291 + 34.4950i −0.379561 + 1.41654i 0.467004 + 0.884255i \(0.345333\pi\)
−0.846565 + 0.532285i \(0.821333\pi\)
\(594\) 0 0
\(595\) −12.1950 7.04076i −0.499945 0.288643i
\(596\) −5.86353 + 3.38531i −0.240180 + 0.138668i
\(597\) 0 0
\(598\) 24.4862 14.1371i 1.00131 0.578109i
\(599\) −24.7246 24.7246i −1.01022 1.01022i −0.999947 0.0102730i \(-0.996730\pi\)
−0.0102730 0.999947i \(-0.503270\pi\)
\(600\) 0 0
\(601\) 1.47465i 0.0601521i 0.999548 + 0.0300760i \(0.00957494\pi\)
−0.999548 + 0.0300760i \(0.990425\pi\)
\(602\) 4.62739 + 4.62739i 0.188598 + 0.188598i
\(603\) 0 0
\(604\) 2.27333 + 8.48419i 0.0925006 + 0.345217i
\(605\) −8.31815 4.80249i −0.338181 0.195249i
\(606\) 0 0
\(607\) −30.6155 −1.24264 −0.621322 0.783555i \(-0.713404\pi\)
−0.621322 + 0.783555i \(0.713404\pi\)
\(608\) −0.932138 3.47879i −0.0378032 0.141083i
\(609\) 0 0
\(610\) 18.4056 25.7720i 0.745219 1.04348i
\(611\) 10.6740i 0.431823i
\(612\) 0 0
\(613\) 4.74081i 0.191479i 0.995406 + 0.0957397i \(0.0305216\pi\)
−0.995406 + 0.0957397i \(0.969478\pi\)
\(614\) 16.2071 + 28.0716i 0.654066 + 1.13288i
\(615\) 0 0
\(616\) 4.13228 1.10724i 0.166494 0.0446120i
\(617\) 13.6727 3.66358i 0.550440 0.147490i 0.0271296 0.999632i \(-0.491363\pi\)
0.523311 + 0.852142i \(0.324697\pi\)
\(618\) 0 0
\(619\) −33.6609 −1.35294 −0.676472 0.736468i \(-0.736492\pi\)
−0.676472 + 0.736468i \(0.736492\pi\)
\(620\) −0.353294 0.0946649i −0.0141886 0.00380183i
\(621\) 0 0
\(622\) −13.0046 22.5246i −0.521436 0.903154i
\(623\) −23.7351 13.7034i −0.950925 0.549017i
\(624\) 0 0
\(625\) −24.3544 + 42.1831i −0.974177 + 1.68732i
\(626\) −16.2956 9.40829i −0.651305 0.376031i
\(627\) 0 0
\(628\) 0.595606 + 2.22283i 0.0237673 + 0.0887007i
\(629\) −3.50741 6.07502i −0.139850 0.242227i
\(630\) 0 0
\(631\) 36.1853 9.69583i 1.44051 0.385985i 0.547801 0.836609i \(-0.315465\pi\)
0.892714 + 0.450624i \(0.148798\pi\)
\(632\) 5.62736 + 3.24896i 0.223844 + 0.129237i
\(633\) 0 0
\(634\) 14.4758 14.4758i 0.574909 0.574909i
\(635\) −42.0587 + 24.2826i −1.66905 + 0.963625i
\(636\) 0 0
\(637\) 20.5633i 0.814746i
\(638\) −12.5853 + 12.5853i −0.498255 + 0.498255i
\(639\) 0 0
\(640\) −3.91670 1.04948i −0.154821 0.0414842i
\(641\) 6.28949 + 1.68526i 0.248420 + 0.0665640i 0.380880 0.924624i \(-0.375621\pi\)
−0.132460 + 0.991188i \(0.542288\pi\)
\(642\) 0 0
\(643\) −5.53411 + 5.53411i −0.218244 + 0.218244i −0.807758 0.589514i \(-0.799319\pi\)
0.589514 + 0.807758i \(0.299319\pi\)
\(644\) 9.76993i 0.384989i
\(645\) 0 0
\(646\) −7.43838 + 4.29455i −0.292659 + 0.168967i
\(647\) −7.09443 + 7.09443i −0.278911 + 0.278911i −0.832674 0.553763i \(-0.813191\pi\)
0.553763 + 0.832674i \(0.313191\pi\)
\(648\) 0 0
\(649\) −32.2215 18.6031i −1.26480 0.730235i
\(650\) 46.5750 12.4797i 1.82682 0.489495i
\(651\) 0 0
\(652\) −10.4928 18.1741i −0.410931 0.711753i
\(653\) 10.3582 + 38.6573i 0.405347 + 1.51278i 0.803415 + 0.595420i \(0.203014\pi\)
−0.398068 + 0.917356i \(0.630319\pi\)
\(654\) 0 0
\(655\) −24.6650 14.2404i −0.963742 0.556417i
\(656\) 5.83369 10.1043i 0.227767 0.394505i
\(657\) 0 0
\(658\) −3.19417 1.84416i −0.124522 0.0718927i
\(659\) −13.3560 23.1333i −0.520276 0.901145i −0.999722 0.0235734i \(-0.992496\pi\)
0.479446 0.877571i \(-0.340838\pi\)
\(660\) 0 0
\(661\) 29.2498 + 7.83747i 1.13769 + 0.304842i 0.778021 0.628239i \(-0.216224\pi\)
0.359666 + 0.933081i \(0.382891\pi\)
\(662\) 3.66179 0.142320
\(663\) 0 0
\(664\) −3.64405 + 0.976420i −0.141416 + 0.0378924i
\(665\) −20.5406 + 5.50385i −0.796531 + 0.213430i
\(666\) 0 0
\(667\) −20.3232 35.2009i −0.786919 1.36298i
\(668\) 25.5510i 0.988600i
\(669\) 0 0
\(670\) 23.9728i 0.926151i
\(671\) 20.8852 9.50332i 0.806266 0.366872i
\(672\) 0 0
\(673\) −2.83993 10.5988i −0.109471 0.408552i 0.889343 0.457241i \(-0.151162\pi\)
−0.998814 + 0.0486891i \(0.984496\pi\)
\(674\) 12.1947 0.469722
\(675\) 0 0
\(676\) −4.12132 2.37945i −0.158512 0.0915172i
\(677\) 10.2166 + 38.1290i 0.392657 + 1.46542i 0.825734 + 0.564059i \(0.190761\pi\)
−0.433077 + 0.901357i \(0.642572\pi\)
\(678\) 0 0
\(679\) −10.9182 10.9182i −0.419000 0.419000i
\(680\) 9.67032i 0.370840i
\(681\) 0 0
\(682\) −0.187386 0.187386i −0.00717539 0.00717539i
\(683\) 22.4319 12.9511i 0.858333 0.495559i −0.00512049 0.999987i \(-0.501630\pi\)
0.863454 + 0.504428i \(0.168297\pi\)
\(684\) 0 0
\(685\) −12.3165 + 7.11093i −0.470589 + 0.271695i
\(686\) 14.9810 + 8.64930i 0.571978 + 0.330232i
\(687\) 0 0
\(688\) 1.16316 4.34096i 0.0443450 0.165498i
\(689\) 10.5695 2.83210i 0.402667 0.107894i
\(690\) 0 0
\(691\) −2.31781 −0.0881735 −0.0440868 0.999028i \(-0.514038\pi\)
−0.0440868 + 0.999028i \(0.514038\pi\)
\(692\) −2.13766 7.97784i −0.0812615 0.303272i
\(693\) 0 0
\(694\) 13.9833 13.9833i 0.530799 0.530799i
\(695\) −27.9235 27.9235i −1.05920 1.05920i
\(696\) 0 0
\(697\) −26.8770 7.20167i −1.01804 0.272783i
\(698\) −4.91576 −0.186064
\(699\) 0 0
\(700\) −4.31227 + 16.0936i −0.162989 + 0.608281i
\(701\) −11.8107 + 44.0783i −0.446085 + 1.66481i 0.266969 + 0.963705i \(0.413978\pi\)
−0.713055 + 0.701108i \(0.752689\pi\)
\(702\) 0 0
\(703\) −10.2325 2.74179i −0.385926 0.103408i
\(704\) −2.07741 2.07741i −0.0782953 0.0782953i
\(705\) 0 0
\(706\) 3.95646 14.7657i 0.148903 0.555715i
\(707\) 0.0267108 + 0.0462644i 0.00100456 + 0.00173995i
\(708\) 0 0
\(709\) 6.53631 + 6.53631i 0.245476 + 0.245476i 0.819111 0.573635i \(-0.194467\pi\)
−0.573635 + 0.819111i \(0.694467\pi\)
\(710\) −18.6542 + 32.3099i −0.700078 + 1.21257i
\(711\) 0 0
\(712\) 18.8214i 0.705360i
\(713\) 0.524118 0.302600i 0.0196284 0.0113324i
\(714\) 0 0
\(715\) 48.4915 + 12.9933i 1.81348 + 0.485920i
\(716\) −2.98859 + 5.17639i −0.111689 + 0.193451i
\(717\) 0 0
\(718\) 1.26920 + 2.19831i 0.0473660 + 0.0820403i
\(719\) 10.2878 17.8190i 0.383670 0.664537i −0.607913 0.794003i \(-0.707993\pi\)
0.991584 + 0.129467i \(0.0413265\pi\)
\(720\) 0 0
\(721\) −13.5222 + 13.5222i −0.503593 + 0.503593i
\(722\) 1.56046 5.82372i 0.0580744 0.216736i
\(723\) 0 0
\(724\) 12.0678 12.0678i 0.448497 0.448497i
\(725\) −17.9406 66.9553i −0.666298 2.48666i
\(726\) 0 0
\(727\) −11.9330 + 20.6685i −0.442569 + 0.766551i −0.997879 0.0650916i \(-0.979266\pi\)
0.555311 + 0.831643i \(0.312599\pi\)
\(728\) 5.31432 3.06822i 0.196962 0.113716i
\(729\) 0 0
\(730\) −6.76374 + 1.81234i −0.250337 + 0.0670777i
\(731\) −10.7178 −0.396413
\(732\) 0 0
\(733\) 21.2153 0.783603 0.391802 0.920050i \(-0.371852\pi\)
0.391802 + 0.920050i \(0.371852\pi\)
\(734\) 4.21765 1.13012i 0.155676 0.0417133i
\(735\) 0 0
\(736\) 5.81049 3.35469i 0.214178 0.123656i
\(737\) 8.68458 15.0421i 0.319901 0.554084i
\(738\) 0 0
\(739\) −3.61140 13.4779i −0.132848 0.495794i 0.867150 0.498047i \(-0.165949\pi\)
−0.999997 + 0.00225326i \(0.999283\pi\)
\(740\) −8.43364 + 8.43364i −0.310027 + 0.310027i
\(741\) 0 0
\(742\) −0.978609 + 3.65222i −0.0359259 + 0.134077i
\(743\) −14.8169 + 14.8169i −0.543578 + 0.543578i −0.924576 0.380998i \(-0.875580\pi\)
0.380998 + 0.924576i \(0.375580\pi\)
\(744\) 0 0
\(745\) 13.7270 23.7759i 0.502918 0.871080i
\(746\) 14.4445 + 25.0186i 0.528851 + 0.915997i
\(747\) 0 0
\(748\) −3.50325 + 6.06780i −0.128091 + 0.221861i
\(749\) 13.0541 + 3.49784i 0.476988 + 0.127808i
\(750\) 0 0
\(751\) 13.0819 7.55286i 0.477367 0.275608i −0.241952 0.970288i \(-0.577788\pi\)
0.719318 + 0.694680i \(0.244454\pi\)
\(752\) 2.53290i 0.0923654i
\(753\) 0 0
\(754\) −12.7649 + 22.1095i −0.464871 + 0.805181i
\(755\) −25.1842 25.1842i −0.916548 0.916548i
\(756\) 0 0
\(757\) −0.101825 0.176366i −0.00370089 0.00641012i 0.864169 0.503202i \(-0.167845\pi\)
−0.867870 + 0.496792i \(0.834511\pi\)
\(758\) −4.25480 + 15.8791i −0.154541 + 0.576756i
\(759\) 0 0
\(760\) 10.3263 + 10.3263i 0.374575 + 0.374575i
\(761\) 44.0657 + 11.8074i 1.59738 + 0.428017i 0.944250 0.329229i \(-0.106789\pi\)
0.653130 + 0.757246i \(0.273455\pi\)
\(762\) 0 0
\(763\) 2.13316 7.96105i 0.0772255 0.288209i
\(764\) 1.97957 7.38785i 0.0716183 0.267283i
\(765\) 0 0
\(766\) 35.5473 1.28438
\(767\) −51.5501 13.8128i −1.86137 0.498752i
\(768\) 0 0
\(769\) 0.720583 + 0.720583i 0.0259849 + 0.0259849i 0.719980 0.693995i \(-0.244151\pi\)
−0.693995 + 0.719980i \(0.744151\pi\)
\(770\) −12.2661 + 12.2661i −0.442041 + 0.442041i
\(771\) 0 0
\(772\) −0.666012 2.48559i −0.0239703 0.0894583i
\(773\) 26.5534 0.955059 0.477529 0.878616i \(-0.341532\pi\)
0.477529 + 0.878616i \(0.341532\pi\)
\(774\) 0 0
\(775\) 0.996920 0.267124i 0.0358104 0.00959538i
\(776\) −2.74443 + 10.2423i −0.0985192 + 0.367678i
\(777\) 0 0
\(778\) −22.9279 13.2374i −0.822005 0.474585i
\(779\) −36.3905 + 21.0101i −1.30383 + 0.752764i
\(780\) 0 0
\(781\) −23.4097 + 13.5156i −0.837666 + 0.483626i
\(782\) −11.3144 11.3144i −0.404602 0.404602i
\(783\) 0 0
\(784\) 4.87960i 0.174271i
\(785\) −6.59819 6.59819i −0.235500 0.235500i
\(786\) 0 0
\(787\) 9.99894 + 37.3166i 0.356424 + 1.33019i 0.878683 + 0.477405i \(0.158423\pi\)
−0.522260 + 0.852787i \(0.674911\pi\)
\(788\) −17.4761 10.0898i −0.622559 0.359434i
\(789\) 0 0
\(790\) −26.3482 −0.937427
\(791\) 7.25733 + 27.0847i 0.258041 + 0.963022i
\(792\) 0 0
\(793\) 25.4089 20.9208i 0.902298 0.742918i
\(794\) 10.4623i 0.371293i
\(795\) 0 0
\(796\) 21.8316i 0.773800i
\(797\) −12.2163 21.1592i −0.432723 0.749498i 0.564384 0.825512i \(-0.309114\pi\)
−0.997107 + 0.0760147i \(0.975780\pi\)
\(798\) 0 0
\(799\) 5.83480 1.56343i 0.206420 0.0553102i
\(800\) 11.0521 2.96140i 0.390751 0.104701i
\(801\) 0 0
\(802\) 10.3903 0.366894
\(803\) −4.90057 1.31310i −0.172937 0.0463384i
\(804\) 0 0
\(805\) −19.8079 34.3083i −0.698137 1.20921i
\(806\) −0.329196 0.190061i −0.0115954 0.00669463i
\(807\) 0 0
\(808\) 0.0183433 0.0317715i 0.000645315 0.00111772i
\(809\) 35.7059 + 20.6148i 1.25535 + 0.724778i 0.972167 0.234287i \(-0.0752757\pi\)
0.283185 + 0.959065i \(0.408609\pi\)
\(810\) 0 0
\(811\) 14.4349 + 53.8717i 0.506877 + 1.89169i 0.449371 + 0.893345i \(0.351648\pi\)
0.0575061 + 0.998345i \(0.481685\pi\)
\(812\) −4.41082 7.63977i −0.154789 0.268103i
\(813\) 0 0
\(814\) −8.34707 + 2.23659i −0.292565 + 0.0783924i
\(815\) 73.6936 + 42.5470i 2.58137 + 1.49036i
\(816\) 0 0
\(817\) −11.4449 + 11.4449i −0.400406 + 0.400406i
\(818\) −10.2906 + 5.94129i −0.359803 + 0.207732i
\(819\) 0 0
\(820\) 47.3097i 1.65213i
\(821\) −19.9020 + 19.9020i −0.694584 + 0.694584i −0.963237 0.268653i \(-0.913421\pi\)
0.268653 + 0.963237i \(0.413421\pi\)
\(822\) 0 0
\(823\) −3.40602 0.912641i −0.118726 0.0318127i 0.198967 0.980006i \(-0.436241\pi\)
−0.317693 + 0.948194i \(0.602908\pi\)
\(824\) 12.6852 + 3.39899i 0.441910 + 0.118409i
\(825\) 0 0
\(826\) 13.0398 13.0398i 0.453714 0.453714i
\(827\) 9.70158i 0.337357i −0.985671 0.168679i \(-0.946050\pi\)
0.985671 0.168679i \(-0.0539500\pi\)
\(828\) 0 0
\(829\) −2.80627 + 1.62020i −0.0974659 + 0.0562720i −0.547941 0.836517i \(-0.684588\pi\)
0.450475 + 0.892789i \(0.351255\pi\)
\(830\) 10.8169 10.8169i 0.375460 0.375460i
\(831\) 0 0
\(832\) −3.64954 2.10707i −0.126525 0.0730493i
\(833\) −11.2407 + 3.01192i −0.389466 + 0.104357i
\(834\) 0 0
\(835\) 51.8031 + 89.7256i 1.79272 + 3.10508i
\(836\) 2.73853 + 10.2203i 0.0947140 + 0.353477i
\(837\) 0 0
\(838\) 15.3257 + 8.84827i 0.529416 + 0.305658i
\(839\) −9.82107 + 17.0106i −0.339061 + 0.587271i −0.984256 0.176747i \(-0.943443\pi\)
0.645195 + 0.764018i \(0.276776\pi\)
\(840\) 0 0
\(841\) 6.66948 + 3.85063i 0.229982 + 0.132780i
\(842\) 2.62515 + 4.54689i 0.0904687 + 0.156696i
\(843\) 0 0
\(844\) −10.8351 2.90327i −0.372961 0.0999346i
\(845\) 19.2967 0.663827
\(846\) 0 0
\(847\) 3.33175 0.892739i 0.114480 0.0306749i
\(848\) 2.50812 0.672048i 0.0861291 0.0230782i
\(849\) 0 0
\(850\) −13.6438 23.6317i −0.467978 0.810561i
\(851\) 19.7349i 0.676505i
\(852\) 0 0
\(853\) 10.9333i 0.374348i −0.982327 0.187174i \(-0.940067\pi\)
0.982327 0.187174i \(-0.0599329\pi\)
\(854\) 1.87057 + 11.2181i 0.0640097 + 0.383875i
\(855\) 0 0
\(856\) −2.40210 8.96477i −0.0821021 0.306409i
\(857\) 50.7340 1.73304 0.866521 0.499141i \(-0.166351\pi\)
0.866521 + 0.499141i \(0.166351\pi\)
\(858\) 0 0
\(859\) −18.3966 10.6213i −0.627683 0.362393i 0.152172 0.988354i \(-0.451373\pi\)
−0.779854 + 0.625961i \(0.784707\pi\)
\(860\) 4.71645 + 17.6020i 0.160830 + 0.600225i
\(861\) 0 0
\(862\) −21.5101 21.5101i −0.732636 0.732636i
\(863\) 6.69803i 0.228003i −0.993481 0.114002i \(-0.963633\pi\)
0.993481 0.114002i \(-0.0363669\pi\)
\(864\) 0 0
\(865\) 23.6812 + 23.6812i 0.805184 + 0.805184i
\(866\) −5.04148 + 2.91070i −0.171316 + 0.0989096i
\(867\) 0 0
\(868\) 0.113751 0.0656742i 0.00386096 0.00222913i
\(869\) −16.5326 9.54511i −0.560830 0.323796i
\(870\) 0 0
\(871\) 6.44832 24.0654i 0.218493 0.815426i
\(872\) −5.46715 + 1.46492i −0.185141 + 0.0496084i
\(873\) 0 0
\(874\) −24.1639 −0.817355
\(875\) −9.84466 36.7408i −0.332810 1.24207i
\(876\) 0 0
\(877\) −18.1296 + 18.1296i −0.612194 + 0.612194i −0.943517 0.331323i \(-0.892505\pi\)
0.331323 + 0.943517i \(0.392505\pi\)
\(878\) 0.574812 + 0.574812i 0.0193990 + 0.0193990i
\(879\) 0 0
\(880\) 11.5069 + 3.08326i 0.387897 + 0.103937i
\(881\) 10.4855 0.353265 0.176633 0.984277i \(-0.443480\pi\)
0.176633 + 0.984277i \(0.443480\pi\)
\(882\) 0 0
\(883\) −6.26109 + 23.3667i −0.210702 + 0.786352i 0.776933 + 0.629583i \(0.216774\pi\)
−0.987635 + 0.156769i \(0.949892\pi\)
\(884\) −2.60117 + 9.70768i −0.0874867 + 0.326505i
\(885\) 0 0
\(886\) 8.11613 + 2.17471i 0.272667 + 0.0730608i
\(887\) 32.7774 + 32.7774i 1.10056 + 1.10056i 0.994343 + 0.106214i \(0.0338730\pi\)
0.106214 + 0.994343i \(0.466127\pi\)
\(888\) 0 0
\(889\) 4.51392 16.8462i 0.151392 0.565002i
\(890\) −38.1591 66.0934i −1.27909 2.21546i
\(891\) 0 0
\(892\) 15.1292 + 15.1292i 0.506562 + 0.506562i
\(893\) 4.56113 7.90011i 0.152632 0.264367i
\(894\) 0 0
\(895\) 24.2367i 0.810143i
\(896\) 1.26107 0.728080i 0.0421294 0.0243234i
\(897\) 0 0
\(898\) −19.6992 5.27840i −0.657372 0.176142i
\(899\) −0.273229 + 0.473246i −0.00911269 + 0.0157836i
\(900\) 0 0
\(901\) −3.09626 5.36289i −0.103151 0.178664i
\(902\) −17.1388 + 29.6853i −0.570659 + 0.988411i
\(903\) 0 0
\(904\) 13.6162 13.6162i 0.452869 0.452869i
\(905\) −17.9109 + 66.8444i −0.595378 + 2.22198i
\(906\) 0 0
\(907\) 13.1955 13.1955i 0.438149 0.438149i −0.453240 0.891389i \(-0.649732\pi\)
0.891389 + 0.453240i \(0.149732\pi\)
\(908\) −6.47784 24.1756i −0.214975 0.802297i
\(909\) 0 0
\(910\) −12.4412 + 21.5489i −0.412423 + 0.714338i
\(911\) 33.2039 19.1703i 1.10009 0.635139i 0.163848 0.986486i \(-0.447609\pi\)
0.936246 + 0.351346i \(0.114276\pi\)
\(912\) 0 0
\(913\) 10.7058 2.86862i 0.354312 0.0949375i
\(914\) 26.9192 0.890408
\(915\) 0 0
\(916\) −15.2435 −0.503661
\(917\) 9.87931 2.64715i 0.326244 0.0874167i
\(918\) 0 0
\(919\) −45.6447 + 26.3530i −1.50568 + 0.869305i −0.505703 + 0.862708i \(0.668767\pi\)
−0.999978 + 0.00659738i \(0.997900\pi\)
\(920\) −13.6028 + 23.5608i −0.448472 + 0.776776i
\(921\) 0 0
\(922\) 0.839996 + 3.13491i 0.0276638 + 0.103243i
\(923\) −27.4171 + 27.4171i −0.902445 + 0.902445i
\(924\) 0 0
\(925\) 8.71065 32.5086i 0.286404 1.06888i
\(926\) 22.4340 22.4340i 0.737225 0.737225i
\(927\) 0 0
\(928\) −3.02908 + 5.24652i −0.0994344 + 0.172225i
\(929\) −24.7818 42.9234i −0.813066 1.40827i −0.910708 0.413050i \(-0.864463\pi\)
0.0976422 0.995222i \(-0.468870\pi\)
\(930\) 0 0
\(931\) −8.78695 + 15.2194i −0.287981 + 0.498797i
\(932\) −9.51471 2.54946i −0.311665 0.0835103i
\(933\) 0 0
\(934\) −32.7707 + 18.9202i −1.07229 + 0.619088i
\(935\) 28.4104i 0.929120i
\(936\) 0 0
\(937\) −21.5170 + 37.2686i −0.702931 + 1.21751i 0.264502 + 0.964385i \(0.414792\pi\)
−0.967433 + 0.253127i \(0.918541\pi\)
\(938\) 6.08746 + 6.08746i 0.198763 + 0.198763i
\(939\) 0 0
\(940\) −5.13529 8.89459i −0.167495 0.290110i
\(941\) −8.59715 + 32.0850i −0.280259 + 1.04594i 0.671976 + 0.740573i \(0.265446\pi\)
−0.952235 + 0.305368i \(0.901221\pi\)
\(942\) 0 0
\(943\) −55.3530 55.3530i −1.80254 1.80254i
\(944\) −12.2327 3.27774i −0.398140 0.106681i
\(945\) 0 0
\(946\) −3.41724 + 12.7533i −0.111104 + 0.414646i
\(947\) −4.24346 + 15.8368i −0.137894 + 0.514627i 0.862075 + 0.506780i \(0.169164\pi\)
−0.999969 + 0.00784671i \(0.997502\pi\)
\(948\) 0 0
\(949\) −7.27736 −0.236233
\(950\) −39.8042 10.6655i −1.29142 0.346034i
\(951\) 0 0
\(952\) −2.45560 2.45560i −0.0795865 0.0795865i
\(953\) −27.3472 + 27.3472i −0.885863 + 0.885863i −0.994123 0.108260i \(-0.965472\pi\)
0.108260 + 0.994123i \(0.465472\pi\)
\(954\) 0 0
\(955\) 8.02689 + 29.9568i 0.259744 + 0.969378i
\(956\) −10.9324 −0.353579
\(957\) 0 0
\(958\) −25.3171 + 6.78369i −0.817957 + 0.219171i
\(959\) 1.32186 4.93324i 0.0426850 0.159303i
\(960\) 0 0
\(961\) 26.8397 + 15.4959i 0.865798 + 0.499869i
\(962\) −10.7348 + 6.19771i −0.346102 + 0.199822i
\(963\) 0 0
\(964\) −5.21701 + 3.01204i −0.168029 + 0.0970114i
\(965\) 7.37815 + 7.37815i 0.237511 + 0.237511i
\(966\) 0 0
\(967\) 30.3191i 0.974997i 0.873124 + 0.487498i \(0.162090\pi\)
−0.873124 + 0.487498i \(0.837910\pi\)
\(968\) −1.67496 1.67496i −0.0538353 0.0538353i
\(969\) 0 0
\(970\) −11.1283 41.5313i −0.357308 1.33349i
\(971\) 34.2106 + 19.7515i 1.09787 + 0.633856i 0.935661 0.352900i \(-0.114805\pi\)
0.162210 + 0.986756i \(0.448138\pi\)
\(972\) 0 0
\(973\) 14.1813 0.454633
\(974\) −9.57624 35.7390i −0.306843 1.14515i
\(975\) 0 0
\(976\) 6.02946 4.96443i 0.192998 0.158908i
\(977\) 29.5991i 0.946958i −0.880805 0.473479i \(-0.842998\pi\)
0.880805 0.473479i \(-0.157002\pi\)
\(978\) 0 0
\(979\) 55.2952i 1.76724i
\(980\) 9.89307 + 17.1353i 0.316023 + 0.547367i
\(981\) 0 0
\(982\) 3.91807 1.04984i 0.125031 0.0335019i
\(983\) 23.7226 6.35645i 0.756633 0.202739i 0.140175 0.990127i \(-0.455234\pi\)
0.616458 + 0.787388i \(0.288567\pi\)
\(984\) 0 0
\(985\) 81.8257 2.60718
\(986\) 13.9556 + 3.73939i 0.444436 + 0.119086i
\(987\) 0 0
\(988\) 7.58861 + 13.1439i 0.241426 + 0.418162i
\(989\) −26.1129 15.0763i −0.830343 0.479399i
\(990\) 0 0
\(991\) −28.2419 + 48.9165i −0.897134 + 1.55388i −0.0659937 + 0.997820i \(0.521022\pi\)
−0.831141 + 0.556062i \(0.812312\pi\)
\(992\) −0.0781172 0.0451010i −0.00248022 0.00143196i
\(993\) 0 0
\(994\) −3.46764 12.9414i −0.109987 0.410476i
\(995\) −44.2621 76.6642i −1.40320 2.43042i
\(996\) 0 0
\(997\) 26.1330 7.00232i 0.827641 0.221766i 0.179957 0.983675i \(-0.442404\pi\)
0.647684 + 0.761909i \(0.275738\pi\)
\(998\) −21.4739 12.3979i −0.679744 0.392450i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1098.2.bd.b.467.6 yes 48
3.2 odd 2 inner 1098.2.bd.b.467.7 yes 48
61.29 odd 12 inner 1098.2.bd.b.395.7 yes 48
183.29 even 12 inner 1098.2.bd.b.395.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1098.2.bd.b.395.6 48 183.29 even 12 inner
1098.2.bd.b.395.7 yes 48 61.29 odd 12 inner
1098.2.bd.b.467.6 yes 48 1.1 even 1 trivial
1098.2.bd.b.467.7 yes 48 3.2 odd 2 inner