Properties

Label 1098.2.bd.b.467.7
Level $1098$
Weight $2$
Character 1098.467
Analytic conductor $8.768$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1098,2,Mod(143,1098)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1098, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1098.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1098 = 2 \cdot 3^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1098.bd (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.76757414194\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 467.7
Character \(\chi\) \(=\) 1098.467
Dual form 1098.2.bd.b.395.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 - 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(2.02743 - 3.51162i) q^{5} +(-0.376882 - 1.40654i) q^{7} +(0.707107 - 0.707107i) q^{8} +O(q^{10})\) \(q+(0.965926 - 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(2.02743 - 3.51162i) q^{5} +(-0.376882 - 1.40654i) q^{7} +(0.707107 - 0.707107i) q^{8} +(1.04948 - 3.91670i) q^{10} +(-2.07741 + 2.07741i) q^{11} +(2.10707 - 3.64954i) q^{13} +(-0.728080 - 1.26107i) q^{14} +(0.500000 - 0.866025i) q^{16} +(2.30360 + 0.617248i) q^{17} +(-3.11899 + 1.80075i) q^{19} -4.05487i q^{20} +(-1.46895 + 2.54429i) q^{22} +(4.74425 + 4.74425i) q^{23} +(-5.72098 - 9.90904i) q^{25} +(1.09070 - 4.07054i) q^{26} +(-1.02966 - 1.02966i) q^{28} +(-5.85173 - 1.56797i) q^{29} +(-0.0233460 + 0.0871284i) q^{31} +(0.258819 - 0.965926i) q^{32} +2.38486 q^{34} +(-5.70335 - 1.52821i) q^{35} +(2.07988 + 2.07988i) q^{37} +(-2.54665 + 2.54665i) q^{38} +(-1.04948 - 3.91670i) q^{40} -11.6674 q^{41} +(4.34096 - 1.16316i) q^{43} +(-0.760384 + 2.83779i) q^{44} +(5.81049 + 3.35469i) q^{46} +(2.19356 - 1.26645i) q^{47} +(4.22586 - 2.43980i) q^{49} +(-8.09069 - 8.09069i) q^{50} -4.21413i q^{52} +(-1.83607 - 1.83607i) q^{53} +(3.08326 + 11.5069i) q^{55} +(-1.26107 - 0.728080i) q^{56} -6.05816 q^{58} +(3.27774 + 12.2327i) q^{59} +(7.31406 + 2.73945i) q^{61} +0.0902019i q^{62} -1.00000i q^{64} +(-8.54388 - 14.7984i) q^{65} +(5.71065 - 1.53017i) q^{67} +(2.30360 - 0.617248i) q^{68} -5.90454 q^{70} +(8.88735 + 2.38136i) q^{71} +(-0.863448 - 1.49554i) q^{73} +(2.54732 + 1.47070i) q^{74} +(-1.80075 + 3.11899i) q^{76} +(3.70490 + 2.13902i) q^{77} +(-1.68178 - 6.27650i) q^{79} +(-2.02743 - 3.51162i) q^{80} +(-11.2698 + 3.01974i) q^{82} +(-3.26716 - 1.88630i) q^{83} +(6.83795 - 6.83795i) q^{85} +(3.89200 - 2.24705i) q^{86} +2.93790i q^{88} +(-13.3087 + 13.3087i) q^{89} +(-5.92735 - 1.58823i) q^{91} +(6.48076 + 1.73652i) q^{92} +(1.79103 - 1.79103i) q^{94} +14.6036i q^{95} +(9.18303 - 5.30182i) q^{97} +(3.45040 - 3.45040i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 48 q + 4 q^{7} + 4 q^{10} - 12 q^{13} + 24 q^{16} - 36 q^{19} - 4 q^{22} - 48 q^{25} - 8 q^{28} - 20 q^{31} - 16 q^{34} + 8 q^{37} - 4 q^{40} + 20 q^{43} + 12 q^{46} + 72 q^{49} - 52 q^{55} + 32 q^{58} + 8 q^{61} + 28 q^{67} - 8 q^{70} + 16 q^{73} - 28 q^{76} + 32 q^{79} - 48 q^{82} + 120 q^{85} - 92 q^{91} + 8 q^{94} + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1098\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(307\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 0.258819i 0.683013 0.183013i
\(3\) 0 0
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) 2.02743 3.51162i 0.906696 1.57044i 0.0880728 0.996114i \(-0.471929\pi\)
0.818624 0.574330i \(-0.194737\pi\)
\(6\) 0 0
\(7\) −0.376882 1.40654i −0.142448 0.531623i −0.999856 0.0169854i \(-0.994593\pi\)
0.857408 0.514638i \(-0.172074\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 1.04948 3.91670i 0.331874 1.23857i
\(11\) −2.07741 + 2.07741i −0.626362 + 0.626362i −0.947151 0.320789i \(-0.896052\pi\)
0.320789 + 0.947151i \(0.396052\pi\)
\(12\) 0 0
\(13\) 2.10707 3.64954i 0.584395 1.01220i −0.410556 0.911835i \(-0.634665\pi\)
0.994951 0.100366i \(-0.0320014\pi\)
\(14\) −0.728080 1.26107i −0.194588 0.337035i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 2.30360 + 0.617248i 0.558706 + 0.149705i 0.527112 0.849796i \(-0.323275\pi\)
0.0315941 + 0.999501i \(0.489942\pi\)
\(18\) 0 0
\(19\) −3.11899 + 1.80075i −0.715547 + 0.413121i −0.813111 0.582108i \(-0.802228\pi\)
0.0975648 + 0.995229i \(0.468895\pi\)
\(20\) 4.05487i 0.906696i
\(21\) 0 0
\(22\) −1.46895 + 2.54429i −0.313181 + 0.542445i
\(23\) 4.74425 + 4.74425i 0.989244 + 0.989244i 0.999943 0.0106987i \(-0.00340556\pi\)
−0.0106987 + 0.999943i \(0.503406\pi\)
\(24\) 0 0
\(25\) −5.72098 9.90904i −1.14420 1.98181i
\(26\) 1.09070 4.07054i 0.213903 0.798298i
\(27\) 0 0
\(28\) −1.02966 1.02966i −0.194588 0.194588i
\(29\) −5.85173 1.56797i −1.08664 0.291164i −0.329326 0.944216i \(-0.606822\pi\)
−0.757313 + 0.653052i \(0.773488\pi\)
\(30\) 0 0
\(31\) −0.0233460 + 0.0871284i −0.00419306 + 0.0156487i −0.967991 0.250986i \(-0.919245\pi\)
0.963798 + 0.266635i \(0.0859118\pi\)
\(32\) 0.258819 0.965926i 0.0457532 0.170753i
\(33\) 0 0
\(34\) 2.38486 0.409001
\(35\) −5.70335 1.52821i −0.964041 0.258314i
\(36\) 0 0
\(37\) 2.07988 + 2.07988i 0.341930 + 0.341930i 0.857093 0.515162i \(-0.172268\pi\)
−0.515162 + 0.857093i \(0.672268\pi\)
\(38\) −2.54665 + 2.54665i −0.413121 + 0.413121i
\(39\) 0 0
\(40\) −1.04948 3.91670i −0.165937 0.619285i
\(41\) −11.6674 −1.82214 −0.911070 0.412253i \(-0.864742\pi\)
−0.911070 + 0.412253i \(0.864742\pi\)
\(42\) 0 0
\(43\) 4.34096 1.16316i 0.661991 0.177380i 0.0878465 0.996134i \(-0.472001\pi\)
0.574144 + 0.818754i \(0.305335\pi\)
\(44\) −0.760384 + 2.83779i −0.114632 + 0.427813i
\(45\) 0 0
\(46\) 5.81049 + 3.35469i 0.856711 + 0.494622i
\(47\) 2.19356 1.26645i 0.319963 0.184731i −0.331413 0.943486i \(-0.607525\pi\)
0.651376 + 0.758755i \(0.274192\pi\)
\(48\) 0 0
\(49\) 4.22586 2.43980i 0.603694 0.348543i
\(50\) −8.09069 8.09069i −1.14420 1.14420i
\(51\) 0 0
\(52\) 4.21413i 0.584395i
\(53\) −1.83607 1.83607i −0.252204 0.252204i 0.569670 0.821874i \(-0.307071\pi\)
−0.821874 + 0.569670i \(0.807071\pi\)
\(54\) 0 0
\(55\) 3.08326 + 11.5069i 0.415747 + 1.55159i
\(56\) −1.26107 0.728080i −0.168518 0.0972938i
\(57\) 0 0
\(58\) −6.05816 −0.795475
\(59\) 3.27774 + 12.2327i 0.426725 + 1.59256i 0.760126 + 0.649775i \(0.225137\pi\)
−0.333401 + 0.942785i \(0.608196\pi\)
\(60\) 0 0
\(61\) 7.31406 + 2.73945i 0.936469 + 0.350751i
\(62\) 0.0902019i 0.0114557i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −8.54388 14.7984i −1.05974 1.83552i
\(66\) 0 0
\(67\) 5.71065 1.53017i 0.697667 0.186939i 0.107482 0.994207i \(-0.465721\pi\)
0.590186 + 0.807268i \(0.299055\pi\)
\(68\) 2.30360 0.617248i 0.279353 0.0748524i
\(69\) 0 0
\(70\) −5.90454 −0.705727
\(71\) 8.88735 + 2.38136i 1.05473 + 0.282615i 0.744207 0.667949i \(-0.232828\pi\)
0.310528 + 0.950564i \(0.399494\pi\)
\(72\) 0 0
\(73\) −0.863448 1.49554i −0.101059 0.175039i 0.811062 0.584960i \(-0.198890\pi\)
−0.912121 + 0.409921i \(0.865556\pi\)
\(74\) 2.54732 + 1.47070i 0.296120 + 0.170965i
\(75\) 0 0
\(76\) −1.80075 + 3.11899i −0.206560 + 0.357773i
\(77\) 3.70490 + 2.13902i 0.422213 + 0.243765i
\(78\) 0 0
\(79\) −1.68178 6.27650i −0.189215 0.706162i −0.993689 0.112173i \(-0.964219\pi\)
0.804473 0.593989i \(-0.202448\pi\)
\(80\) −2.02743 3.51162i −0.226674 0.392611i
\(81\) 0 0
\(82\) −11.2698 + 3.01974i −1.24454 + 0.333475i
\(83\) −3.26716 1.88630i −0.358618 0.207048i 0.309856 0.950783i \(-0.399719\pi\)
−0.668474 + 0.743735i \(0.733052\pi\)
\(84\) 0 0
\(85\) 6.83795 6.83795i 0.741679 0.741679i
\(86\) 3.89200 2.24705i 0.419685 0.242305i
\(87\) 0 0
\(88\) 2.93790i 0.313181i
\(89\) −13.3087 + 13.3087i −1.41072 + 1.41072i −0.655689 + 0.755031i \(0.727622\pi\)
−0.755031 + 0.655689i \(0.772378\pi\)
\(90\) 0 0
\(91\) −5.92735 1.58823i −0.621355 0.166492i
\(92\) 6.48076 + 1.73652i 0.675666 + 0.181044i
\(93\) 0 0
\(94\) 1.79103 1.79103i 0.184731 0.184731i
\(95\) 14.6036i 1.49830i
\(96\) 0 0
\(97\) 9.18303 5.30182i 0.932395 0.538319i 0.0448270 0.998995i \(-0.485726\pi\)
0.887568 + 0.460676i \(0.152393\pi\)
\(98\) 3.45040 3.45040i 0.348543 0.348543i
\(99\) 0 0
\(100\) −9.90904 5.72098i −0.990904 0.572098i
\(101\) 0.0354365 0.00949519i 0.00352607 0.000944807i −0.257056 0.966397i \(-0.582752\pi\)
0.260582 + 0.965452i \(0.416086\pi\)
\(102\) 0 0
\(103\) −6.56634 11.3732i −0.647001 1.12064i −0.983835 0.179075i \(-0.942690\pi\)
0.336835 0.941564i \(-0.390644\pi\)
\(104\) −1.09070 4.07054i −0.106952 0.399149i
\(105\) 0 0
\(106\) −2.24872 1.29830i −0.218415 0.126102i
\(107\) 4.64050 8.03759i 0.448614 0.777023i −0.549682 0.835374i \(-0.685251\pi\)
0.998296 + 0.0583512i \(0.0185843\pi\)
\(108\) 0 0
\(109\) 4.90172 + 2.83001i 0.469499 + 0.271066i 0.716030 0.698069i \(-0.245957\pi\)
−0.246531 + 0.969135i \(0.579291\pi\)
\(110\) 5.95640 + 10.3168i 0.567920 + 0.983667i
\(111\) 0 0
\(112\) −1.40654 0.376882i −0.132906 0.0356120i
\(113\) 19.2563 1.81148 0.905738 0.423838i \(-0.139318\pi\)
0.905738 + 0.423838i \(0.139318\pi\)
\(114\) 0 0
\(115\) 26.2787 7.04134i 2.45050 0.656609i
\(116\) −5.85173 + 1.56797i −0.543319 + 0.145582i
\(117\) 0 0
\(118\) 6.33210 + 10.9675i 0.582917 + 1.00964i
\(119\) 3.47274i 0.318346i
\(120\) 0 0
\(121\) 2.36875i 0.215341i
\(122\) 7.77386 + 0.753091i 0.703812 + 0.0681816i
\(123\) 0 0
\(124\) 0.0233460 + 0.0871284i 0.00209653 + 0.00782436i
\(125\) −26.1213 −2.33636
\(126\) 0 0
\(127\) 10.3724 + 5.98850i 0.920401 + 0.531394i 0.883763 0.467935i \(-0.155002\pi\)
0.0366379 + 0.999329i \(0.488335\pi\)
\(128\) −0.258819 0.965926i −0.0228766 0.0853766i
\(129\) 0 0
\(130\) −12.0829 12.0829i −1.05974 1.05974i
\(131\) 7.02383i 0.613675i −0.951762 0.306837i \(-0.900729\pi\)
0.951762 0.306837i \(-0.0992708\pi\)
\(132\) 0 0
\(133\) 3.70833 + 3.70833i 0.321553 + 0.321553i
\(134\) 5.12003 2.95605i 0.442303 0.255364i
\(135\) 0 0
\(136\) 2.06535 1.19243i 0.177103 0.102250i
\(137\) −3.03746 1.75368i −0.259508 0.149827i 0.364602 0.931163i \(-0.381205\pi\)
−0.624110 + 0.781337i \(0.714538\pi\)
\(138\) 0 0
\(139\) −2.52060 + 9.40701i −0.213795 + 0.797893i 0.772793 + 0.634659i \(0.218859\pi\)
−0.986587 + 0.163234i \(0.947807\pi\)
\(140\) −5.70335 + 1.52821i −0.482021 + 0.129157i
\(141\) 0 0
\(142\) 9.20087 0.772120
\(143\) 3.20436 + 11.9588i 0.267962 + 1.00005i
\(144\) 0 0
\(145\) −17.3701 + 17.3701i −1.44251 + 1.44251i
\(146\) −1.22110 1.22110i −0.101059 0.101059i
\(147\) 0 0
\(148\) 2.84117 + 0.761289i 0.233543 + 0.0625776i
\(149\) 6.77062 0.554671 0.277336 0.960773i \(-0.410549\pi\)
0.277336 + 0.960773i \(0.410549\pi\)
\(150\) 0 0
\(151\) −2.27333 + 8.48419i −0.185001 + 0.690434i 0.809629 + 0.586942i \(0.199668\pi\)
−0.994630 + 0.103492i \(0.966998\pi\)
\(152\) −0.932138 + 3.47879i −0.0756064 + 0.282167i
\(153\) 0 0
\(154\) 4.13228 + 1.10724i 0.332989 + 0.0892240i
\(155\) 0.258629 + 0.258629i 0.0207736 + 0.0207736i
\(156\) 0 0
\(157\) −0.595606 + 2.22283i −0.0475346 + 0.177401i −0.985612 0.169025i \(-0.945938\pi\)
0.938077 + 0.346426i \(0.112605\pi\)
\(158\) −3.24896 5.62736i −0.258473 0.447689i
\(159\) 0 0
\(160\) −2.86723 2.86723i −0.226674 0.226674i
\(161\) 4.88496 8.46101i 0.384989 0.666821i
\(162\) 0 0
\(163\) 20.9856i 1.64372i −0.569688 0.821861i \(-0.692936\pi\)
0.569688 0.821861i \(-0.307064\pi\)
\(164\) −10.1043 + 5.83369i −0.789009 + 0.455535i
\(165\) 0 0
\(166\) −3.64405 0.976420i −0.282833 0.0757849i
\(167\) −12.7755 + 22.1279i −0.988600 + 1.71230i −0.363904 + 0.931436i \(0.618556\pi\)
−0.624696 + 0.780868i \(0.714777\pi\)
\(168\) 0 0
\(169\) −2.37945 4.12132i −0.183034 0.317025i
\(170\) 4.83516 8.37474i 0.370840 0.642313i
\(171\) 0 0
\(172\) 3.17781 3.17781i 0.242305 0.242305i
\(173\) −2.13766 + 7.97784i −0.162523 + 0.606544i 0.835820 + 0.549003i \(0.184993\pi\)
−0.998343 + 0.0575406i \(0.981674\pi\)
\(174\) 0 0
\(175\) −11.7813 + 11.7813i −0.890586 + 0.890586i
\(176\) 0.760384 + 2.83779i 0.0573161 + 0.213907i
\(177\) 0 0
\(178\) −9.41068 + 16.2998i −0.705360 + 1.22172i
\(179\) 5.17639 2.98859i 0.386902 0.223378i −0.293915 0.955831i \(-0.594958\pi\)
0.680817 + 0.732454i \(0.261625\pi\)
\(180\) 0 0
\(181\) 16.4850 4.41713i 1.22532 0.328323i 0.412563 0.910929i \(-0.364634\pi\)
0.812755 + 0.582606i \(0.197967\pi\)
\(182\) −6.13645 −0.454864
\(183\) 0 0
\(184\) 6.70938 0.494622
\(185\) 11.5206 3.08693i 0.847009 0.226955i
\(186\) 0 0
\(187\) −6.06780 + 3.50325i −0.443721 + 0.256183i
\(188\) 1.26645 2.19356i 0.0923654 0.159982i
\(189\) 0 0
\(190\) 3.77970 + 14.1060i 0.274208 + 1.02336i
\(191\) −5.40828 + 5.40828i −0.391329 + 0.391329i −0.875161 0.483832i \(-0.839245\pi\)
0.483832 + 0.875161i \(0.339245\pi\)
\(192\) 0 0
\(193\) 0.666012 2.48559i 0.0479406 0.178917i −0.937804 0.347165i \(-0.887144\pi\)
0.985745 + 0.168248i \(0.0538110\pi\)
\(194\) 7.49791 7.49791i 0.538319 0.538319i
\(195\) 0 0
\(196\) 2.43980 4.22586i 0.174271 0.301847i
\(197\) 10.0898 + 17.4761i 0.718869 + 1.24512i 0.961448 + 0.274986i \(0.0886731\pi\)
−0.242580 + 0.970131i \(0.577994\pi\)
\(198\) 0 0
\(199\) −10.9158 + 18.9067i −0.773800 + 1.34026i 0.161666 + 0.986845i \(0.448313\pi\)
−0.935466 + 0.353416i \(0.885020\pi\)
\(200\) −11.0521 2.96140i −0.781501 0.209403i
\(201\) 0 0
\(202\) 0.0317715 0.0183433i 0.00223544 0.00129063i
\(203\) 8.82164i 0.619158i
\(204\) 0 0
\(205\) −23.6549 + 40.9714i −1.65213 + 2.86157i
\(206\) −9.28621 9.28621i −0.647001 0.647001i
\(207\) 0 0
\(208\) −2.10707 3.64954i −0.146099 0.253050i
\(209\) 2.73853 10.2203i 0.189428 0.706955i
\(210\) 0 0
\(211\) −7.93187 7.93187i −0.546053 0.546053i 0.379244 0.925297i \(-0.376184\pi\)
−0.925297 + 0.379244i \(0.876184\pi\)
\(212\) −2.50812 0.672048i −0.172258 0.0461564i
\(213\) 0 0
\(214\) 2.40210 8.96477i 0.164204 0.612819i
\(215\) 4.71645 17.6020i 0.321659 1.20045i
\(216\) 0 0
\(217\) 0.131348 0.00891651
\(218\) 5.46715 + 1.46492i 0.370282 + 0.0992169i
\(219\) 0 0
\(220\) 8.42362 + 8.42362i 0.567920 + 0.567920i
\(221\) 7.10652 7.10652i 0.478036 0.478036i
\(222\) 0 0
\(223\) 5.53766 + 20.6668i 0.370829 + 1.38395i 0.859344 + 0.511398i \(0.170872\pi\)
−0.488515 + 0.872556i \(0.662461\pi\)
\(224\) −1.45616 −0.0972938
\(225\) 0 0
\(226\) 18.6001 4.98388i 1.23726 0.331523i
\(227\) −6.47784 + 24.1756i −0.429949 + 1.60459i 0.322922 + 0.946426i \(0.395335\pi\)
−0.752871 + 0.658168i \(0.771332\pi\)
\(228\) 0 0
\(229\) −13.2013 7.62177i −0.872367 0.503661i −0.00423259 0.999991i \(-0.501347\pi\)
−0.868134 + 0.496330i \(0.834681\pi\)
\(230\) 23.5608 13.6028i 1.55355 0.896944i
\(231\) 0 0
\(232\) −5.24652 + 3.02908i −0.344451 + 0.198869i
\(233\) 6.96525 + 6.96525i 0.456309 + 0.456309i 0.897442 0.441133i \(-0.145423\pi\)
−0.441133 + 0.897442i \(0.645423\pi\)
\(234\) 0 0
\(235\) 10.2706i 0.669979i
\(236\) 8.95495 + 8.95495i 0.582917 + 0.582917i
\(237\) 0 0
\(238\) −0.898812 3.35441i −0.0582613 0.217434i
\(239\) 9.46772 + 5.46619i 0.612416 + 0.353579i 0.773910 0.633295i \(-0.218298\pi\)
−0.161494 + 0.986874i \(0.551631\pi\)
\(240\) 0 0
\(241\) −6.02409 −0.388046 −0.194023 0.980997i \(-0.562154\pi\)
−0.194023 + 0.980997i \(0.562154\pi\)
\(242\) 0.613078 + 2.28804i 0.0394101 + 0.147081i
\(243\) 0 0
\(244\) 7.70388 1.28459i 0.493191 0.0822376i
\(245\) 19.7861i 1.26409i
\(246\) 0 0
\(247\) 15.1772i 0.965703i
\(248\) 0.0451010 + 0.0781172i 0.00286391 + 0.00496045i
\(249\) 0 0
\(250\) −25.2313 + 6.76070i −1.59577 + 0.427584i
\(251\) −29.6004 + 7.93140i −1.86836 + 0.500625i −0.868371 + 0.495916i \(0.834832\pi\)
−0.999989 + 0.00470968i \(0.998501\pi\)
\(252\) 0 0
\(253\) −19.7115 −1.23925
\(254\) 11.5689 + 3.09988i 0.725897 + 0.194504i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −11.7010 6.75560i −0.729891 0.421403i 0.0884912 0.996077i \(-0.471795\pi\)
−0.818382 + 0.574674i \(0.805129\pi\)
\(258\) 0 0
\(259\) 2.14157 3.70931i 0.133071 0.230485i
\(260\) −14.7984 8.54388i −0.917759 0.529869i
\(261\) 0 0
\(262\) −1.81790 6.78450i −0.112310 0.419148i
\(263\) −0.841342 1.45725i −0.0518794 0.0898577i 0.838920 0.544256i \(-0.183188\pi\)
−0.890799 + 0.454398i \(0.849854\pi\)
\(264\) 0 0
\(265\) −10.1701 + 2.72507i −0.624744 + 0.167400i
\(266\) 4.54175 + 2.62218i 0.278473 + 0.160776i
\(267\) 0 0
\(268\) 4.18049 4.18049i 0.255364 0.255364i
\(269\) 8.02914 4.63562i 0.489545 0.282639i −0.234841 0.972034i \(-0.575457\pi\)
0.724386 + 0.689395i \(0.242123\pi\)
\(270\) 0 0
\(271\) 1.35553i 0.0823425i −0.999152 0.0411713i \(-0.986891\pi\)
0.999152 0.0411713i \(-0.0131089\pi\)
\(272\) 1.68635 1.68635i 0.102250 0.102250i
\(273\) 0 0
\(274\) −3.38785 0.907770i −0.204667 0.0548404i
\(275\) 32.4699 + 8.70029i 1.95801 + 0.524647i
\(276\) 0 0
\(277\) −14.9286 + 14.9286i −0.896975 + 0.896975i −0.995167 0.0981923i \(-0.968694\pi\)
0.0981923 + 0.995167i \(0.468694\pi\)
\(278\) 9.73886i 0.584098i
\(279\) 0 0
\(280\) −5.11348 + 2.95227i −0.305589 + 0.176432i
\(281\) −6.82186 + 6.82186i −0.406958 + 0.406958i −0.880676 0.473718i \(-0.842911\pi\)
0.473718 + 0.880676i \(0.342911\pi\)
\(282\) 0 0
\(283\) 1.52318 + 0.879409i 0.0905437 + 0.0522755i 0.544588 0.838704i \(-0.316686\pi\)
−0.454044 + 0.890979i \(0.650019\pi\)
\(284\) 8.88735 2.38136i 0.527367 0.141308i
\(285\) 0 0
\(286\) 6.19034 + 10.7220i 0.366043 + 0.634005i
\(287\) 4.39723 + 16.4107i 0.259560 + 0.968691i
\(288\) 0 0
\(289\) −9.79684 5.65621i −0.576285 0.332718i
\(290\) −12.2825 + 21.2739i −0.721254 + 1.24925i
\(291\) 0 0
\(292\) −1.49554 0.863448i −0.0875196 0.0505295i
\(293\) 9.61178 + 16.6481i 0.561526 + 0.972592i 0.997364 + 0.0725664i \(0.0231189\pi\)
−0.435837 + 0.900025i \(0.643548\pi\)
\(294\) 0 0
\(295\) 49.6020 + 13.2908i 2.88794 + 0.773820i
\(296\) 2.94140 0.170965
\(297\) 0 0
\(298\) 6.53992 1.75237i 0.378847 0.101512i
\(299\) 27.3108 7.31790i 1.57942 0.423205i
\(300\) 0 0
\(301\) −3.27206 5.66738i −0.188598 0.326662i
\(302\) 8.78348i 0.505433i
\(303\) 0 0
\(304\) 3.60151i 0.206560i
\(305\) 24.4487 20.1301i 1.39993 1.15265i
\(306\) 0 0
\(307\) −8.38942 31.3097i −0.478810 1.78694i −0.606451 0.795121i \(-0.707407\pi\)
0.127641 0.991820i \(-0.459259\pi\)
\(308\) 4.27805 0.243765
\(309\) 0 0
\(310\) 0.316755 + 0.182879i 0.0179905 + 0.0103868i
\(311\) −6.73167 25.1229i −0.381718 1.42459i −0.843276 0.537481i \(-0.819376\pi\)
0.461558 0.887110i \(-0.347291\pi\)
\(312\) 0 0
\(313\) 13.3053 + 13.3053i 0.752062 + 0.752062i 0.974864 0.222802i \(-0.0715203\pi\)
−0.222802 + 0.974864i \(0.571520\pi\)
\(314\) 2.30125i 0.129867i
\(315\) 0 0
\(316\) −4.59472 4.59472i −0.258473 0.258473i
\(317\) 17.7292 10.2360i 0.995771 0.574909i 0.0887767 0.996052i \(-0.471704\pi\)
0.906994 + 0.421143i \(0.138371\pi\)
\(318\) 0 0
\(319\) 15.4137 8.89912i 0.863004 0.498255i
\(320\) −3.51162 2.02743i −0.196306 0.113337i
\(321\) 0 0
\(322\) 2.52864 9.43703i 0.140916 0.525905i
\(323\) −8.29644 + 2.22302i −0.461626 + 0.123692i
\(324\) 0 0
\(325\) −48.2180 −2.67465
\(326\) −5.43148 20.2706i −0.300822 1.12268i
\(327\) 0 0
\(328\) −8.25009 + 8.25009i −0.455535 + 0.455535i
\(329\) −2.60803 2.60803i −0.143785 0.143785i
\(330\) 0 0
\(331\) −3.53702 0.947742i −0.194412 0.0520926i 0.160299 0.987068i \(-0.448754\pi\)
−0.354711 + 0.934976i \(0.615421\pi\)
\(332\) −3.77260 −0.207048
\(333\) 0 0
\(334\) −6.61310 + 24.6804i −0.361853 + 1.35045i
\(335\) 6.20462 23.1560i 0.338995 1.26515i
\(336\) 0 0
\(337\) −11.7792 3.15622i −0.641652 0.171930i −0.0767005 0.997054i \(-0.524439\pi\)
−0.564952 + 0.825124i \(0.691105\pi\)
\(338\) −3.36505 3.36505i −0.183034 0.183034i
\(339\) 0 0
\(340\) 2.50286 9.34081i 0.135737 0.506576i
\(341\) −0.132502 0.229500i −0.00717539 0.0124281i
\(342\) 0 0
\(343\) −12.2320 12.2320i −0.660463 0.660463i
\(344\) 2.24705 3.89200i 0.121153 0.209843i
\(345\) 0 0
\(346\) 8.25927i 0.444021i
\(347\) 17.1260 9.88768i 0.919370 0.530799i 0.0359360 0.999354i \(-0.488559\pi\)
0.883434 + 0.468556i \(0.155225\pi\)
\(348\) 0 0
\(349\) 4.74826 + 1.27229i 0.254169 + 0.0681043i 0.383654 0.923477i \(-0.374666\pi\)
−0.129485 + 0.991581i \(0.541332\pi\)
\(350\) −8.33067 + 14.4291i −0.445293 + 0.771270i
\(351\) 0 0
\(352\) 1.46895 + 2.54429i 0.0782953 + 0.135611i
\(353\) 7.64329 13.2386i 0.406811 0.704618i −0.587719 0.809065i \(-0.699974\pi\)
0.994530 + 0.104447i \(0.0333073\pi\)
\(354\) 0 0
\(355\) 26.3810 26.3810i 1.40016 1.40016i
\(356\) −4.87132 + 18.1800i −0.258180 + 0.963540i
\(357\) 0 0
\(358\) 4.22650 4.22650i 0.223378 0.223378i
\(359\) 0.656984 + 2.45190i 0.0346743 + 0.129406i 0.981093 0.193535i \(-0.0619952\pi\)
−0.946419 + 0.322941i \(0.895329\pi\)
\(360\) 0 0
\(361\) −3.01458 + 5.22141i −0.158662 + 0.274811i
\(362\) 14.7800 8.53325i 0.776820 0.448497i
\(363\) 0 0
\(364\) −5.92735 + 1.58823i −0.310678 + 0.0832458i
\(365\) −7.00234 −0.366519
\(366\) 0 0
\(367\) −4.36643 −0.227926 −0.113963 0.993485i \(-0.536355\pi\)
−0.113963 + 0.993485i \(0.536355\pi\)
\(368\) 6.48076 1.73652i 0.337833 0.0905221i
\(369\) 0 0
\(370\) 10.3291 5.96349i 0.536982 0.310027i
\(371\) −1.89053 + 3.27449i −0.0981513 + 0.170003i
\(372\) 0 0
\(373\) −7.47703 27.9047i −0.387146 1.44485i −0.834756 0.550620i \(-0.814391\pi\)
0.447610 0.894229i \(-0.352275\pi\)
\(374\) −4.95434 + 4.95434i −0.256183 + 0.256183i
\(375\) 0 0
\(376\) 0.655563 2.44660i 0.0338081 0.126174i
\(377\) −18.0523 + 18.0523i −0.929743 + 0.929743i
\(378\) 0 0
\(379\) 8.21964 14.2368i 0.422215 0.731297i −0.573941 0.818897i \(-0.694586\pi\)
0.996156 + 0.0875993i \(0.0279195\pi\)
\(380\) 7.30182 + 12.6471i 0.374575 + 0.648784i
\(381\) 0 0
\(382\) −3.82423 + 6.62376i −0.195665 + 0.338901i
\(383\) 34.3361 + 9.20032i 1.75449 + 0.470115i 0.985576 0.169236i \(-0.0541299\pi\)
0.768916 + 0.639350i \(0.220797\pi\)
\(384\) 0 0
\(385\) 15.0229 8.67347i 0.765637 0.442041i
\(386\) 2.57327i 0.130976i
\(387\) 0 0
\(388\) 5.30182 9.18303i 0.269159 0.466198i
\(389\) −18.7205 18.7205i −0.949169 0.949169i 0.0496000 0.998769i \(-0.484205\pi\)
−0.998769 + 0.0496000i \(0.984205\pi\)
\(390\) 0 0
\(391\) 8.00048 + 13.8572i 0.404602 + 0.700791i
\(392\) 1.26293 4.71333i 0.0637878 0.238059i
\(393\) 0 0
\(394\) 14.2691 + 14.2691i 0.718869 + 0.718869i
\(395\) −25.4504 6.81941i −1.28055 0.343122i
\(396\) 0 0
\(397\) 2.70784 10.1058i 0.135903 0.507195i −0.864090 0.503337i \(-0.832105\pi\)
0.999993 0.00385797i \(-0.00122803\pi\)
\(398\) −5.65043 + 21.0877i −0.283230 + 1.05703i
\(399\) 0 0
\(400\) −11.4420 −0.572098
\(401\) 10.0363 + 2.68921i 0.501187 + 0.134293i 0.500551 0.865707i \(-0.333131\pi\)
0.000636069 1.00000i \(0.499798\pi\)
\(402\) 0 0
\(403\) 0.268787 + 0.268787i 0.0133893 + 0.0133893i
\(404\) 0.0259413 0.0259413i 0.00129063 0.00129063i
\(405\) 0 0
\(406\) 2.28321 + 8.52105i 0.113314 + 0.422893i
\(407\) −8.64152 −0.428344
\(408\) 0 0
\(409\) 11.4777 3.07544i 0.567535 0.152071i 0.0363693 0.999338i \(-0.488421\pi\)
0.531166 + 0.847268i \(0.321754\pi\)
\(410\) −12.2447 + 45.6977i −0.604720 + 2.25685i
\(411\) 0 0
\(412\) −11.3732 6.56634i −0.560319 0.323500i
\(413\) 15.9705 9.22056i 0.785855 0.453714i
\(414\) 0 0
\(415\) −13.2479 + 7.64869i −0.650315 + 0.375460i
\(416\) −2.97984 2.97984i −0.146099 0.146099i
\(417\) 0 0
\(418\) 10.5809i 0.517527i
\(419\) 12.5133 + 12.5133i 0.611317 + 0.611317i 0.943289 0.331972i \(-0.107714\pi\)
−0.331972 + 0.943289i \(0.607714\pi\)
\(420\) 0 0
\(421\) −1.35888 5.07140i −0.0662277 0.247165i 0.924874 0.380274i \(-0.124170\pi\)
−0.991101 + 0.133109i \(0.957504\pi\)
\(422\) −9.71452 5.60868i −0.472895 0.273026i
\(423\) 0 0
\(424\) −2.59659 −0.126102
\(425\) −7.06254 26.3578i −0.342583 1.27854i
\(426\) 0 0
\(427\) 1.09662 11.3200i 0.0530692 0.547812i
\(428\) 9.28101i 0.448614i
\(429\) 0 0
\(430\) 18.2230i 0.878790i
\(431\) −15.2099 26.3443i −0.732636 1.26896i −0.955753 0.294171i \(-0.904957\pi\)
0.223117 0.974792i \(-0.428377\pi\)
\(432\) 0 0
\(433\) 5.62304 1.50669i 0.270226 0.0724069i −0.121161 0.992633i \(-0.538662\pi\)
0.391388 + 0.920226i \(0.371995\pi\)
\(434\) 0.126873 0.0339955i 0.00609009 0.00163184i
\(435\) 0 0
\(436\) 5.66001 0.271066
\(437\) −23.3405 6.25407i −1.11653 0.299173i
\(438\) 0 0
\(439\) −0.406454 0.703998i −0.0193990 0.0336000i 0.856163 0.516706i \(-0.172842\pi\)
−0.875562 + 0.483106i \(0.839509\pi\)
\(440\) 10.3168 + 5.95640i 0.491833 + 0.283960i
\(441\) 0 0
\(442\) 5.02507 8.70367i 0.239018 0.413991i
\(443\) 7.27672 + 4.20122i 0.345727 + 0.199606i 0.662802 0.748795i \(-0.269367\pi\)
−0.317074 + 0.948401i \(0.602701\pi\)
\(444\) 0 0
\(445\) 19.7526 + 73.7177i 0.936362 + 3.49455i
\(446\) 10.6979 + 18.5294i 0.506562 + 0.877391i
\(447\) 0 0
\(448\) −1.40654 + 0.376882i −0.0664529 + 0.0178060i
\(449\) −17.6619 10.1971i −0.833515 0.481230i 0.0215399 0.999768i \(-0.493143\pi\)
−0.855055 + 0.518538i \(0.826476\pi\)
\(450\) 0 0
\(451\) 24.2379 24.2379i 1.14132 1.14132i
\(452\) 16.6764 9.62813i 0.784392 0.452869i
\(453\) 0 0
\(454\) 25.0285i 1.17464i
\(455\) −17.5946 + 17.5946i −0.824847 + 0.824847i
\(456\) 0 0
\(457\) −26.0019 6.96720i −1.21632 0.325912i −0.407081 0.913392i \(-0.633453\pi\)
−0.809238 + 0.587480i \(0.800120\pi\)
\(458\) −14.7241 3.94532i −0.688014 0.184353i
\(459\) 0 0
\(460\) 19.2373 19.2373i 0.896944 0.896944i
\(461\) 3.24549i 0.151158i 0.997140 + 0.0755789i \(0.0240805\pi\)
−0.997140 + 0.0755789i \(0.975920\pi\)
\(462\) 0 0
\(463\) −27.4759 + 15.8632i −1.27691 + 0.737225i −0.976279 0.216515i \(-0.930531\pi\)
−0.300632 + 0.953740i \(0.597198\pi\)
\(464\) −4.28376 + 4.28376i −0.198869 + 0.198869i
\(465\) 0 0
\(466\) 8.53066 + 4.92518i 0.395175 + 0.228154i
\(467\) −36.5510 + 9.79382i −1.69138 + 0.453204i −0.970745 0.240112i \(-0.922816\pi\)
−0.720634 + 0.693315i \(0.756149\pi\)
\(468\) 0 0
\(469\) −4.30448 7.45558i −0.198763 0.344267i
\(470\) −2.65822 9.92063i −0.122615 0.457604i
\(471\) 0 0
\(472\) 10.9675 + 6.33210i 0.504821 + 0.291459i
\(473\) −6.60160 + 11.4343i −0.303542 + 0.525750i
\(474\) 0 0
\(475\) 35.6874 + 20.6042i 1.63745 + 0.945384i
\(476\) −1.73637 3.00748i −0.0795865 0.137848i
\(477\) 0 0
\(478\) 10.5599 + 2.82951i 0.482997 + 0.129419i
\(479\) −26.2102 −1.19757 −0.598786 0.800909i \(-0.704350\pi\)
−0.598786 + 0.800909i \(0.704350\pi\)
\(480\) 0 0
\(481\) 11.9731 3.20817i 0.545924 0.146280i
\(482\) −5.81882 + 1.55915i −0.265040 + 0.0710173i
\(483\) 0 0
\(484\) 1.18438 + 2.05140i 0.0538353 + 0.0932454i
\(485\) 42.9964i 1.95237i
\(486\) 0 0
\(487\) 36.9998i 1.67662i 0.545194 + 0.838310i \(0.316456\pi\)
−0.545194 + 0.838310i \(0.683544\pi\)
\(488\) 7.10890 3.23473i 0.321805 0.146429i
\(489\) 0 0
\(490\) −5.12103 19.1119i −0.231345 0.863390i
\(491\) 4.05628 0.183058 0.0915288 0.995802i \(-0.470825\pi\)
0.0915288 + 0.995802i \(0.470825\pi\)
\(492\) 0 0
\(493\) −12.5122 7.22394i −0.563523 0.325350i
\(494\) 3.92815 + 14.6601i 0.176736 + 0.659587i
\(495\) 0 0
\(496\) 0.0637824 + 0.0637824i 0.00286391 + 0.00286391i
\(497\) 13.3979i 0.600979i
\(498\) 0 0
\(499\) 17.5333 + 17.5333i 0.784900 + 0.784900i 0.980653 0.195753i \(-0.0627150\pi\)
−0.195753 + 0.980653i \(0.562715\pi\)
\(500\) −22.6218 + 13.0607i −1.01168 + 0.584091i
\(501\) 0 0
\(502\) −26.5390 + 15.3223i −1.18449 + 0.683867i
\(503\) −34.5581 19.9521i −1.54087 0.889621i −0.998784 0.0492975i \(-0.984302\pi\)
−0.542085 0.840324i \(-0.682365\pi\)
\(504\) 0 0
\(505\) 0.0385018 0.143691i 0.00171331 0.00639414i
\(506\) −19.0398 + 5.10171i −0.846424 + 0.226798i
\(507\) 0 0
\(508\) 11.9770 0.531394
\(509\) −8.54412 31.8871i −0.378711 1.41337i −0.847845 0.530243i \(-0.822101\pi\)
0.469134 0.883127i \(-0.344566\pi\)
\(510\) 0 0
\(511\) −1.77812 + 1.77812i −0.0786592 + 0.0786592i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −13.0508 3.49696i −0.575647 0.154244i
\(515\) −53.2513 −2.34653
\(516\) 0 0
\(517\) −1.92598 + 7.18785i −0.0847045 + 0.316121i
\(518\) 1.10856 4.13720i 0.0487073 0.181778i
\(519\) 0 0
\(520\) −16.5055 4.42264i −0.723814 0.193945i
\(521\) 24.5923 + 24.5923i 1.07741 + 1.07741i 0.996741 + 0.0806652i \(0.0257045\pi\)
0.0806652 + 0.996741i \(0.474296\pi\)
\(522\) 0 0
\(523\) 10.1873 38.0195i 0.445459 1.66248i −0.269262 0.963067i \(-0.586780\pi\)
0.714721 0.699410i \(-0.246554\pi\)
\(524\) −3.51191 6.08281i −0.153419 0.265729i
\(525\) 0 0
\(526\) −1.18984 1.18984i −0.0518794 0.0518794i
\(527\) −0.107560 + 0.186299i −0.00468538 + 0.00811531i
\(528\) 0 0
\(529\) 22.0158i 0.957208i
\(530\) −9.11825 + 5.26443i −0.396072 + 0.228672i
\(531\) 0 0
\(532\) 5.06567 + 1.35734i 0.219625 + 0.0588482i
\(533\) −24.5839 + 42.5806i −1.06485 + 1.84437i
\(534\) 0 0
\(535\) −18.8166 32.5914i −0.813514 1.40905i
\(536\) 2.95605 5.12003i 0.127682 0.221152i
\(537\) 0 0
\(538\) 6.55576 6.55576i 0.282639 0.282639i
\(539\) −3.71037 + 13.8473i −0.159817 + 0.596445i
\(540\) 0 0
\(541\) 1.23366 1.23366i 0.0530392 0.0530392i −0.680090 0.733129i \(-0.738059\pi\)
0.733129 + 0.680090i \(0.238059\pi\)
\(542\) −0.350837 1.30934i −0.0150697 0.0562410i
\(543\) 0 0
\(544\) 1.19243 2.06535i 0.0511251 0.0885513i
\(545\) 19.8758 11.4753i 0.851387 0.491548i
\(546\) 0 0
\(547\) −6.01803 + 1.61253i −0.257312 + 0.0689467i −0.385169 0.922846i \(-0.625857\pi\)
0.127857 + 0.991793i \(0.459190\pi\)
\(548\) −3.50736 −0.149827
\(549\) 0 0
\(550\) 33.6153 1.43336
\(551\) 21.0750 5.64704i 0.897827 0.240572i
\(552\) 0 0
\(553\) −8.19433 + 4.73100i −0.348458 + 0.201183i
\(554\) −10.5561 + 18.2838i −0.448488 + 0.776803i
\(555\) 0 0
\(556\) 2.52060 + 9.40701i 0.106897 + 0.398946i
\(557\) −20.5085 + 20.5085i −0.868975 + 0.868975i −0.992359 0.123384i \(-0.960625\pi\)
0.123384 + 0.992359i \(0.460625\pi\)
\(558\) 0 0
\(559\) 4.90170 18.2934i 0.207320 0.773728i
\(560\) −4.17514 + 4.17514i −0.176432 + 0.176432i
\(561\) 0 0
\(562\) −4.82378 + 8.35503i −0.203479 + 0.352436i
\(563\) 18.6794 + 32.3536i 0.787241 + 1.36354i 0.927651 + 0.373448i \(0.121824\pi\)
−0.140411 + 0.990093i \(0.544842\pi\)
\(564\) 0 0
\(565\) 39.0408 67.6206i 1.64246 2.84482i
\(566\) 1.69889 + 0.455216i 0.0714096 + 0.0191341i
\(567\) 0 0
\(568\) 7.96818 4.60043i 0.334338 0.193030i
\(569\) 29.8188i 1.25007i 0.780597 + 0.625034i \(0.214915\pi\)
−0.780597 + 0.625034i \(0.785085\pi\)
\(570\) 0 0
\(571\) 19.6377 34.0135i 0.821812 1.42342i −0.0825193 0.996589i \(-0.526297\pi\)
0.904331 0.426831i \(-0.140370\pi\)
\(572\) 8.75447 + 8.75447i 0.366043 + 0.366043i
\(573\) 0 0
\(574\) 8.49479 + 14.7134i 0.354566 + 0.614126i
\(575\) 19.8692 74.1527i 0.828601 3.09238i
\(576\) 0 0
\(577\) 2.30399 + 2.30399i 0.0959162 + 0.0959162i 0.753437 0.657520i \(-0.228395\pi\)
−0.657520 + 0.753437i \(0.728395\pi\)
\(578\) −10.9270 2.92787i −0.454502 0.121783i
\(579\) 0 0
\(580\) −6.35790 + 23.7280i −0.263997 + 0.985252i
\(581\) −1.42182 + 5.30632i −0.0589872 + 0.220143i
\(582\) 0 0
\(583\) 7.62853 0.315941
\(584\) −1.66805 0.446954i −0.0690245 0.0184951i
\(585\) 0 0
\(586\) 13.5931 + 13.5931i 0.561526 + 0.561526i
\(587\) −11.8986 + 11.8986i −0.491108 + 0.491108i −0.908655 0.417547i \(-0.862890\pi\)
0.417547 + 0.908655i \(0.362890\pi\)
\(588\) 0 0
\(589\) −0.0840807 0.313793i −0.00346448 0.0129296i
\(590\) 51.3517 2.11412
\(591\) 0 0
\(592\) 2.84117 0.761289i 0.116771 0.0312888i
\(593\) 9.24291 34.4950i 0.379561 1.41654i −0.467004 0.884255i \(-0.654667\pi\)
0.846565 0.532285i \(-0.178667\pi\)
\(594\) 0 0
\(595\) −12.1950 7.04076i −0.499945 0.288643i
\(596\) 5.86353 3.38531i 0.240180 0.138668i
\(597\) 0 0
\(598\) 24.4862 14.1371i 1.00131 0.578109i
\(599\) 24.7246 + 24.7246i 1.01022 + 1.01022i 0.999947 + 0.0102730i \(0.00327006\pi\)
0.0102730 + 0.999947i \(0.496730\pi\)
\(600\) 0 0
\(601\) 1.47465i 0.0601521i 0.999548 + 0.0300760i \(0.00957494\pi\)
−0.999548 + 0.0300760i \(0.990425\pi\)
\(602\) −4.62739 4.62739i −0.188598 0.188598i
\(603\) 0 0
\(604\) 2.27333 + 8.48419i 0.0925006 + 0.345217i
\(605\) 8.31815 + 4.80249i 0.338181 + 0.195249i
\(606\) 0 0
\(607\) −30.6155 −1.24264 −0.621322 0.783555i \(-0.713404\pi\)
−0.621322 + 0.783555i \(0.713404\pi\)
\(608\) 0.932138 + 3.47879i 0.0378032 + 0.141083i
\(609\) 0 0
\(610\) 18.4056 25.7720i 0.745219 1.04348i
\(611\) 10.6740i 0.431823i
\(612\) 0 0
\(613\) 4.74081i 0.191479i 0.995406 + 0.0957397i \(0.0305216\pi\)
−0.995406 + 0.0957397i \(0.969478\pi\)
\(614\) −16.2071 28.0716i −0.654066 1.13288i
\(615\) 0 0
\(616\) 4.13228 1.10724i 0.166494 0.0446120i
\(617\) −13.6727 + 3.66358i −0.550440 + 0.147490i −0.523311 0.852142i \(-0.675303\pi\)
−0.0271296 + 0.999632i \(0.508637\pi\)
\(618\) 0 0
\(619\) −33.6609 −1.35294 −0.676472 0.736468i \(-0.736492\pi\)
−0.676472 + 0.736468i \(0.736492\pi\)
\(620\) 0.353294 + 0.0946649i 0.0141886 + 0.00380183i
\(621\) 0 0
\(622\) −13.0046 22.5246i −0.521436 0.903154i
\(623\) 23.7351 + 13.7034i 0.950925 + 0.549017i
\(624\) 0 0
\(625\) −24.3544 + 42.1831i −0.974177 + 1.68732i
\(626\) 16.2956 + 9.40829i 0.651305 + 0.376031i
\(627\) 0 0
\(628\) 0.595606 + 2.22283i 0.0237673 + 0.0887007i
\(629\) 3.50741 + 6.07502i 0.139850 + 0.242227i
\(630\) 0 0
\(631\) 36.1853 9.69583i 1.44051 0.385985i 0.547801 0.836609i \(-0.315465\pi\)
0.892714 + 0.450624i \(0.148798\pi\)
\(632\) −5.62736 3.24896i −0.223844 0.129237i
\(633\) 0 0
\(634\) 14.4758 14.4758i 0.574909 0.574909i
\(635\) 42.0587 24.2826i 1.66905 0.963625i
\(636\) 0 0
\(637\) 20.5633i 0.814746i
\(638\) 12.5853 12.5853i 0.498255 0.498255i
\(639\) 0 0
\(640\) −3.91670 1.04948i −0.154821 0.0414842i
\(641\) −6.28949 1.68526i −0.248420 0.0665640i 0.132460 0.991188i \(-0.457712\pi\)
−0.380880 + 0.924624i \(0.624379\pi\)
\(642\) 0 0
\(643\) −5.53411 + 5.53411i −0.218244 + 0.218244i −0.807758 0.589514i \(-0.799319\pi\)
0.589514 + 0.807758i \(0.299319\pi\)
\(644\) 9.76993i 0.384989i
\(645\) 0 0
\(646\) −7.43838 + 4.29455i −0.292659 + 0.168967i
\(647\) 7.09443 7.09443i 0.278911 0.278911i −0.553763 0.832674i \(-0.686809\pi\)
0.832674 + 0.553763i \(0.186809\pi\)
\(648\) 0 0
\(649\) −32.2215 18.6031i −1.26480 0.730235i
\(650\) −46.5750 + 12.4797i −1.82682 + 0.489495i
\(651\) 0 0
\(652\) −10.4928 18.1741i −0.410931 0.711753i
\(653\) −10.3582 38.6573i −0.405347 1.51278i −0.803415 0.595420i \(-0.796986\pi\)
0.398068 0.917356i \(-0.369681\pi\)
\(654\) 0 0
\(655\) −24.6650 14.2404i −0.963742 0.556417i
\(656\) −5.83369 + 10.1043i −0.227767 + 0.394505i
\(657\) 0 0
\(658\) −3.19417 1.84416i −0.124522 0.0718927i
\(659\) 13.3560 + 23.1333i 0.520276 + 0.901145i 0.999722 + 0.0235734i \(0.00750434\pi\)
−0.479446 + 0.877571i \(0.659162\pi\)
\(660\) 0 0
\(661\) 29.2498 + 7.83747i 1.13769 + 0.304842i 0.778021 0.628239i \(-0.216224\pi\)
0.359666 + 0.933081i \(0.382891\pi\)
\(662\) −3.66179 −0.142320
\(663\) 0 0
\(664\) −3.64405 + 0.976420i −0.141416 + 0.0378924i
\(665\) 20.5406 5.50385i 0.796531 0.213430i
\(666\) 0 0
\(667\) −20.3232 35.2009i −0.786919 1.36298i
\(668\) 25.5510i 0.988600i
\(669\) 0 0
\(670\) 23.9728i 0.926151i
\(671\) −20.8852 + 9.50332i −0.806266 + 0.366872i
\(672\) 0 0
\(673\) −2.83993 10.5988i −0.109471 0.408552i 0.889343 0.457241i \(-0.151162\pi\)
−0.998814 + 0.0486891i \(0.984496\pi\)
\(674\) −12.1947 −0.469722
\(675\) 0 0
\(676\) −4.12132 2.37945i −0.158512 0.0915172i
\(677\) −10.2166 38.1290i −0.392657 1.46542i −0.825734 0.564059i \(-0.809239\pi\)
0.433077 0.901357i \(-0.357428\pi\)
\(678\) 0 0
\(679\) −10.9182 10.9182i −0.419000 0.419000i
\(680\) 9.67032i 0.370840i
\(681\) 0 0
\(682\) −0.187386 0.187386i −0.00717539 0.00717539i
\(683\) −22.4319 + 12.9511i −0.858333 + 0.495559i −0.863454 0.504428i \(-0.831703\pi\)
0.00512049 + 0.999987i \(0.498370\pi\)
\(684\) 0 0
\(685\) −12.3165 + 7.11093i −0.470589 + 0.271695i
\(686\) −14.9810 8.64930i −0.571978 0.330232i
\(687\) 0 0
\(688\) 1.16316 4.34096i 0.0443450 0.165498i
\(689\) −10.5695 + 2.83210i −0.402667 + 0.107894i
\(690\) 0 0
\(691\) −2.31781 −0.0881735 −0.0440868 0.999028i \(-0.514038\pi\)
−0.0440868 + 0.999028i \(0.514038\pi\)
\(692\) 2.13766 + 7.97784i 0.0812615 + 0.303272i
\(693\) 0 0
\(694\) 13.9833 13.9833i 0.530799 0.530799i
\(695\) 27.9235 + 27.9235i 1.05920 + 1.05920i
\(696\) 0 0
\(697\) −26.8770 7.20167i −1.01804 0.272783i
\(698\) 4.91576 0.186064
\(699\) 0 0
\(700\) −4.31227 + 16.0936i −0.162989 + 0.608281i
\(701\) 11.8107 44.0783i 0.446085 1.66481i −0.266969 0.963705i \(-0.586022\pi\)
0.713055 0.701108i \(-0.247311\pi\)
\(702\) 0 0
\(703\) −10.2325 2.74179i −0.385926 0.103408i
\(704\) 2.07741 + 2.07741i 0.0782953 + 0.0782953i
\(705\) 0 0
\(706\) 3.95646 14.7657i 0.148903 0.555715i
\(707\) −0.0267108 0.0462644i −0.00100456 0.00173995i
\(708\) 0 0
\(709\) 6.53631 + 6.53631i 0.245476 + 0.245476i 0.819111 0.573635i \(-0.194467\pi\)
−0.573635 + 0.819111i \(0.694467\pi\)
\(710\) 18.6542 32.3099i 0.700078 1.21257i
\(711\) 0 0
\(712\) 18.8214i 0.705360i
\(713\) −0.524118 + 0.302600i −0.0196284 + 0.0113324i
\(714\) 0 0
\(715\) 48.4915 + 12.9933i 1.81348 + 0.485920i
\(716\) 2.98859 5.17639i 0.111689 0.193451i
\(717\) 0 0
\(718\) 1.26920 + 2.19831i 0.0473660 + 0.0820403i
\(719\) −10.2878 + 17.8190i −0.383670 + 0.664537i −0.991584 0.129467i \(-0.958673\pi\)
0.607913 + 0.794003i \(0.292007\pi\)
\(720\) 0 0
\(721\) −13.5222 + 13.5222i −0.503593 + 0.503593i
\(722\) −1.56046 + 5.82372i −0.0580744 + 0.216736i
\(723\) 0 0
\(724\) 12.0678 12.0678i 0.448497 0.448497i
\(725\) 17.9406 + 66.9553i 0.666298 + 2.48666i
\(726\) 0 0
\(727\) −11.9330 + 20.6685i −0.442569 + 0.766551i −0.997879 0.0650916i \(-0.979266\pi\)
0.555311 + 0.831643i \(0.312599\pi\)
\(728\) −5.31432 + 3.06822i −0.196962 + 0.113716i
\(729\) 0 0
\(730\) −6.76374 + 1.81234i −0.250337 + 0.0670777i
\(731\) 10.7178 0.396413
\(732\) 0 0
\(733\) 21.2153 0.783603 0.391802 0.920050i \(-0.371852\pi\)
0.391802 + 0.920050i \(0.371852\pi\)
\(734\) −4.21765 + 1.13012i −0.155676 + 0.0417133i
\(735\) 0 0
\(736\) 5.81049 3.35469i 0.214178 0.123656i
\(737\) −8.68458 + 15.0421i −0.319901 + 0.554084i
\(738\) 0 0
\(739\) −3.61140 13.4779i −0.132848 0.495794i 0.867150 0.498047i \(-0.165949\pi\)
−0.999997 + 0.00225326i \(0.999283\pi\)
\(740\) 8.43364 8.43364i 0.310027 0.310027i
\(741\) 0 0
\(742\) −0.978609 + 3.65222i −0.0359259 + 0.134077i
\(743\) 14.8169 14.8169i 0.543578 0.543578i −0.380998 0.924576i \(-0.624420\pi\)
0.924576 + 0.380998i \(0.124420\pi\)
\(744\) 0 0
\(745\) 13.7270 23.7759i 0.502918 0.871080i
\(746\) −14.4445 25.0186i −0.528851 0.915997i
\(747\) 0 0
\(748\) −3.50325 + 6.06780i −0.128091 + 0.221861i
\(749\) −13.0541 3.49784i −0.476988 0.127808i
\(750\) 0 0
\(751\) 13.0819 7.55286i 0.477367 0.275608i −0.241952 0.970288i \(-0.577788\pi\)
0.719318 + 0.694680i \(0.244454\pi\)
\(752\) 2.53290i 0.0923654i
\(753\) 0 0
\(754\) −12.7649 + 22.1095i −0.464871 + 0.805181i
\(755\) 25.1842 + 25.1842i 0.916548 + 0.916548i
\(756\) 0 0
\(757\) −0.101825 0.176366i −0.00370089 0.00641012i 0.864169 0.503202i \(-0.167845\pi\)
−0.867870 + 0.496792i \(0.834511\pi\)
\(758\) 4.25480 15.8791i 0.154541 0.576756i
\(759\) 0 0
\(760\) 10.3263 + 10.3263i 0.374575 + 0.374575i
\(761\) −44.0657 11.8074i −1.59738 0.428017i −0.653130 0.757246i \(-0.726545\pi\)
−0.944250 + 0.329229i \(0.893211\pi\)
\(762\) 0 0
\(763\) 2.13316 7.96105i 0.0772255 0.288209i
\(764\) −1.97957 + 7.38785i −0.0716183 + 0.267283i
\(765\) 0 0
\(766\) 35.5473 1.28438
\(767\) 51.5501 + 13.8128i 1.86137 + 0.498752i
\(768\) 0 0
\(769\) 0.720583 + 0.720583i 0.0259849 + 0.0259849i 0.719980 0.693995i \(-0.244151\pi\)
−0.693995 + 0.719980i \(0.744151\pi\)
\(770\) 12.2661 12.2661i 0.442041 0.442041i
\(771\) 0 0
\(772\) −0.666012 2.48559i −0.0239703 0.0894583i
\(773\) −26.5534 −0.955059 −0.477529 0.878616i \(-0.658468\pi\)
−0.477529 + 0.878616i \(0.658468\pi\)
\(774\) 0 0
\(775\) 0.996920 0.267124i 0.0358104 0.00959538i
\(776\) 2.74443 10.2423i 0.0985192 0.367678i
\(777\) 0 0
\(778\) −22.9279 13.2374i −0.822005 0.474585i
\(779\) 36.3905 21.0101i 1.30383 0.752764i
\(780\) 0 0
\(781\) −23.4097 + 13.5156i −0.837666 + 0.483626i
\(782\) 11.3144 + 11.3144i 0.404602 + 0.404602i
\(783\) 0 0
\(784\) 4.87960i 0.174271i
\(785\) 6.59819 + 6.59819i 0.235500 + 0.235500i
\(786\) 0 0
\(787\) 9.99894 + 37.3166i 0.356424 + 1.33019i 0.878683 + 0.477405i \(0.158423\pi\)
−0.522260 + 0.852787i \(0.674911\pi\)
\(788\) 17.4761 + 10.0898i 0.622559 + 0.359434i
\(789\) 0 0
\(790\) −26.3482 −0.937427
\(791\) −7.25733 27.0847i −0.258041 0.963022i
\(792\) 0 0
\(793\) 25.4089 20.9208i 0.902298 0.742918i
\(794\) 10.4623i 0.371293i
\(795\) 0 0
\(796\) 21.8316i 0.773800i
\(797\) 12.2163 + 21.1592i 0.432723 + 0.749498i 0.997107 0.0760147i \(-0.0242196\pi\)
−0.564384 + 0.825512i \(0.690886\pi\)
\(798\) 0 0
\(799\) 5.83480 1.56343i 0.206420 0.0553102i
\(800\) −11.0521 + 2.96140i −0.390751 + 0.104701i
\(801\) 0 0
\(802\) 10.3903 0.366894
\(803\) 4.90057 + 1.31310i 0.172937 + 0.0463384i
\(804\) 0 0
\(805\) −19.8079 34.3083i −0.698137 1.20921i
\(806\) 0.329196 + 0.190061i 0.0115954 + 0.00669463i
\(807\) 0 0
\(808\) 0.0183433 0.0317715i 0.000645315 0.00111772i
\(809\) −35.7059 20.6148i −1.25535 0.724778i −0.283185 0.959065i \(-0.591391\pi\)
−0.972167 + 0.234287i \(0.924724\pi\)
\(810\) 0 0
\(811\) 14.4349 + 53.8717i 0.506877 + 1.89169i 0.449371 + 0.893345i \(0.351648\pi\)
0.0575061 + 0.998345i \(0.481685\pi\)
\(812\) 4.41082 + 7.63977i 0.154789 + 0.268103i
\(813\) 0 0
\(814\) −8.34707 + 2.23659i −0.292565 + 0.0783924i
\(815\) −73.6936 42.5470i −2.58137 1.49036i
\(816\) 0 0
\(817\) −11.4449 + 11.4449i −0.400406 + 0.400406i
\(818\) 10.2906 5.94129i 0.359803 0.207732i
\(819\) 0 0
\(820\) 47.3097i 1.65213i
\(821\) 19.9020 19.9020i 0.694584 0.694584i −0.268653 0.963237i \(-0.586579\pi\)
0.963237 + 0.268653i \(0.0865785\pi\)
\(822\) 0 0
\(823\) −3.40602 0.912641i −0.118726 0.0318127i 0.198967 0.980006i \(-0.436241\pi\)
−0.317693 + 0.948194i \(0.602908\pi\)
\(824\) −12.6852 3.39899i −0.441910 0.118409i
\(825\) 0 0
\(826\) 13.0398 13.0398i 0.453714 0.453714i
\(827\) 9.70158i 0.337357i 0.985671 + 0.168679i \(0.0539500\pi\)
−0.985671 + 0.168679i \(0.946050\pi\)
\(828\) 0 0
\(829\) −2.80627 + 1.62020i −0.0974659 + 0.0562720i −0.547941 0.836517i \(-0.684588\pi\)
0.450475 + 0.892789i \(0.351255\pi\)
\(830\) −10.8169 + 10.8169i −0.375460 + 0.375460i
\(831\) 0 0
\(832\) −3.64954 2.10707i −0.126525 0.0730493i
\(833\) 11.2407 3.01192i 0.389466 0.104357i
\(834\) 0 0
\(835\) 51.8031 + 89.7256i 1.79272 + 3.10508i
\(836\) −2.73853 10.2203i −0.0947140 0.353477i
\(837\) 0 0
\(838\) 15.3257 + 8.84827i 0.529416 + 0.305658i
\(839\) 9.82107 17.0106i 0.339061 0.587271i −0.645195 0.764018i \(-0.723224\pi\)
0.984256 + 0.176747i \(0.0565574\pi\)
\(840\) 0 0
\(841\) 6.66948 + 3.85063i 0.229982 + 0.132780i
\(842\) −2.62515 4.54689i −0.0904687 0.156696i
\(843\) 0 0
\(844\) −10.8351 2.90327i −0.372961 0.0999346i
\(845\) −19.2967 −0.663827
\(846\) 0 0
\(847\) 3.33175 0.892739i 0.114480 0.0306749i
\(848\) −2.50812 + 0.672048i −0.0861291 + 0.0230782i
\(849\) 0 0
\(850\) −13.6438 23.6317i −0.467978 0.810561i
\(851\) 19.7349i 0.676505i
\(852\) 0 0
\(853\) 10.9333i 0.374348i −0.982327 0.187174i \(-0.940067\pi\)
0.982327 0.187174i \(-0.0599329\pi\)
\(854\) −1.87057 11.2181i −0.0640097 0.383875i
\(855\) 0 0
\(856\) −2.40210 8.96477i −0.0821021 0.306409i
\(857\) −50.7340 −1.73304 −0.866521 0.499141i \(-0.833649\pi\)
−0.866521 + 0.499141i \(0.833649\pi\)
\(858\) 0 0
\(859\) −18.3966 10.6213i −0.627683 0.362393i 0.152172 0.988354i \(-0.451373\pi\)
−0.779854 + 0.625961i \(0.784707\pi\)
\(860\) −4.71645 17.6020i −0.160830 0.600225i
\(861\) 0 0
\(862\) −21.5101 21.5101i −0.732636 0.732636i
\(863\) 6.69803i 0.228003i 0.993481 + 0.114002i \(0.0363669\pi\)
−0.993481 + 0.114002i \(0.963633\pi\)
\(864\) 0 0
\(865\) 23.6812 + 23.6812i 0.805184 + 0.805184i
\(866\) 5.04148 2.91070i 0.171316 0.0989096i
\(867\) 0 0
\(868\) 0.113751 0.0656742i 0.00386096 0.00222913i
\(869\) 16.5326 + 9.54511i 0.560830 + 0.323796i
\(870\) 0 0
\(871\) 6.44832 24.0654i 0.218493 0.815426i
\(872\) 5.46715 1.46492i 0.185141 0.0496084i
\(873\) 0 0
\(874\) −24.1639 −0.817355
\(875\) 9.84466 + 36.7408i 0.332810 + 1.24207i
\(876\) 0 0
\(877\) −18.1296 + 18.1296i −0.612194 + 0.612194i −0.943517 0.331323i \(-0.892505\pi\)
0.331323 + 0.943517i \(0.392505\pi\)
\(878\) −0.574812 0.574812i −0.0193990 0.0193990i
\(879\) 0 0
\(880\) 11.5069 + 3.08326i 0.387897 + 0.103937i
\(881\) −10.4855 −0.353265 −0.176633 0.984277i \(-0.556520\pi\)
−0.176633 + 0.984277i \(0.556520\pi\)
\(882\) 0 0
\(883\) −6.26109 + 23.3667i −0.210702 + 0.786352i 0.776933 + 0.629583i \(0.216774\pi\)
−0.987635 + 0.156769i \(0.949892\pi\)
\(884\) 2.60117 9.70768i 0.0874867 0.326505i
\(885\) 0 0
\(886\) 8.11613 + 2.17471i 0.272667 + 0.0730608i
\(887\) −32.7774 32.7774i −1.10056 1.10056i −0.994343 0.106214i \(-0.966127\pi\)
−0.106214 0.994343i \(-0.533873\pi\)
\(888\) 0 0
\(889\) 4.51392 16.8462i 0.151392 0.565002i
\(890\) 38.1591 + 66.0934i 1.27909 + 2.21546i
\(891\) 0 0
\(892\) 15.1292 + 15.1292i 0.506562 + 0.506562i
\(893\) −4.56113 + 7.90011i −0.152632 + 0.264367i
\(894\) 0 0
\(895\) 24.2367i 0.810143i
\(896\) −1.26107 + 0.728080i −0.0421294 + 0.0243234i
\(897\) 0 0
\(898\) −19.6992 5.27840i −0.657372 0.176142i
\(899\) 0.273229 0.473246i 0.00911269 0.0157836i
\(900\) 0 0
\(901\) −3.09626 5.36289i −0.103151 0.178664i
\(902\) 17.1388 29.6853i 0.570659 0.988411i
\(903\) 0 0
\(904\) 13.6162 13.6162i 0.452869 0.452869i
\(905\) 17.9109 66.8444i 0.595378 2.22198i
\(906\) 0 0
\(907\) 13.1955 13.1955i 0.438149 0.438149i −0.453240 0.891389i \(-0.649732\pi\)
0.891389 + 0.453240i \(0.149732\pi\)
\(908\) 6.47784 + 24.1756i 0.214975 + 0.802297i
\(909\) 0 0
\(910\) −12.4412 + 21.5489i −0.412423 + 0.714338i
\(911\) −33.2039 + 19.1703i −1.10009 + 0.635139i −0.936246 0.351346i \(-0.885724\pi\)
−0.163848 + 0.986486i \(0.552391\pi\)
\(912\) 0 0
\(913\) 10.7058 2.86862i 0.354312 0.0949375i
\(914\) −26.9192 −0.890408
\(915\) 0 0
\(916\) −15.2435 −0.503661
\(917\) −9.87931 + 2.64715i −0.326244 + 0.0874167i
\(918\) 0 0
\(919\) −45.6447 + 26.3530i −1.50568 + 0.869305i −0.505703 + 0.862708i \(0.668767\pi\)
−0.999978 + 0.00659738i \(0.997900\pi\)
\(920\) 13.6028 23.5608i 0.448472 0.776776i
\(921\) 0 0
\(922\) 0.839996 + 3.13491i 0.0276638 + 0.103243i
\(923\) 27.4171 27.4171i 0.902445 0.902445i
\(924\) 0 0
\(925\) 8.71065 32.5086i 0.286404 1.06888i
\(926\) −22.4340 + 22.4340i −0.737225 + 0.737225i
\(927\) 0 0
\(928\) −3.02908 + 5.24652i −0.0994344 + 0.172225i
\(929\) 24.7818 + 42.9234i 0.813066 + 1.40827i 0.910708 + 0.413050i \(0.135537\pi\)
−0.0976422 + 0.995222i \(0.531130\pi\)
\(930\) 0 0
\(931\) −8.78695 + 15.2194i −0.287981 + 0.498797i
\(932\) 9.51471 + 2.54946i 0.311665 + 0.0835103i
\(933\) 0 0
\(934\) −32.7707 + 18.9202i −1.07229 + 0.619088i
\(935\) 28.4104i 0.929120i
\(936\) 0 0
\(937\) −21.5170 + 37.2686i −0.702931 + 1.21751i 0.264502 + 0.964385i \(0.414792\pi\)
−0.967433 + 0.253127i \(0.918541\pi\)
\(938\) −6.08746 6.08746i −0.198763 0.198763i
\(939\) 0 0
\(940\) −5.13529 8.89459i −0.167495 0.290110i
\(941\) 8.59715 32.0850i 0.280259 1.04594i −0.671976 0.740573i \(-0.734554\pi\)
0.952235 0.305368i \(-0.0987793\pi\)
\(942\) 0 0
\(943\) −55.3530 55.3530i −1.80254 1.80254i
\(944\) 12.2327 + 3.27774i 0.398140 + 0.106681i
\(945\) 0 0
\(946\) −3.41724 + 12.7533i −0.111104 + 0.414646i
\(947\) 4.24346 15.8368i 0.137894 0.514627i −0.862075 0.506780i \(-0.830836\pi\)
0.999969 0.00784671i \(-0.00249771\pi\)
\(948\) 0 0
\(949\) −7.27736 −0.236233
\(950\) 39.8042 + 10.6655i 1.29142 + 0.346034i
\(951\) 0 0
\(952\) −2.45560 2.45560i −0.0795865 0.0795865i
\(953\) 27.3472 27.3472i 0.885863 0.885863i −0.108260 0.994123i \(-0.534528\pi\)
0.994123 + 0.108260i \(0.0345279\pi\)
\(954\) 0 0
\(955\) 8.02689 + 29.9568i 0.259744 + 0.969378i
\(956\) 10.9324 0.353579
\(957\) 0 0
\(958\) −25.3171 + 6.78369i −0.817957 + 0.219171i
\(959\) −1.32186 + 4.93324i −0.0426850 + 0.159303i
\(960\) 0 0
\(961\) 26.8397 + 15.4959i 0.865798 + 0.499869i
\(962\) 10.7348 6.19771i 0.346102 0.199822i
\(963\) 0 0
\(964\) −5.21701 + 3.01204i −0.168029 + 0.0970114i
\(965\) −7.37815 7.37815i −0.237511 0.237511i
\(966\) 0 0
\(967\) 30.3191i 0.974997i 0.873124 + 0.487498i \(0.162090\pi\)
−0.873124 + 0.487498i \(0.837910\pi\)
\(968\) 1.67496 + 1.67496i 0.0538353 + 0.0538353i
\(969\) 0 0
\(970\) −11.1283 41.5313i −0.357308 1.33349i
\(971\) −34.2106 19.7515i −1.09787 0.633856i −0.162210 0.986756i \(-0.551862\pi\)
−0.935661 + 0.352900i \(0.885195\pi\)
\(972\) 0 0
\(973\) 14.1813 0.454633
\(974\) 9.57624 + 35.7390i 0.306843 + 1.14515i
\(975\) 0 0
\(976\) 6.02946 4.96443i 0.192998 0.158908i
\(977\) 29.5991i 0.946958i 0.880805 + 0.473479i \(0.157002\pi\)
−0.880805 + 0.473479i \(0.842998\pi\)
\(978\) 0 0
\(979\) 55.2952i 1.76724i
\(980\) −9.89307 17.1353i −0.316023 0.547367i
\(981\) 0 0
\(982\) 3.91807 1.04984i 0.125031 0.0335019i
\(983\) −23.7226 + 6.35645i −0.756633 + 0.202739i −0.616458 0.787388i \(-0.711433\pi\)
−0.140175 + 0.990127i \(0.544766\pi\)
\(984\) 0 0
\(985\) 81.8257 2.60718
\(986\) −13.9556 3.73939i −0.444436 0.119086i
\(987\) 0 0
\(988\) 7.58861 + 13.1439i 0.241426 + 0.418162i
\(989\) 26.1129 + 15.0763i 0.830343 + 0.479399i
\(990\) 0 0
\(991\) −28.2419 + 48.9165i −0.897134 + 1.55388i −0.0659937 + 0.997820i \(0.521022\pi\)
−0.831141 + 0.556062i \(0.812312\pi\)
\(992\) 0.0781172 + 0.0451010i 0.00248022 + 0.00143196i
\(993\) 0 0
\(994\) −3.46764 12.9414i −0.109987 0.410476i
\(995\) 44.2621 + 76.6642i 1.40320 + 2.43042i
\(996\) 0 0
\(997\) 26.1330 7.00232i 0.827641 0.221766i 0.179957 0.983675i \(-0.442404\pi\)
0.647684 + 0.761909i \(0.275738\pi\)
\(998\) 21.4739 + 12.3979i 0.679744 + 0.392450i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1098.2.bd.b.467.7 yes 48
3.2 odd 2 inner 1098.2.bd.b.467.6 yes 48
61.29 odd 12 inner 1098.2.bd.b.395.6 48
183.29 even 12 inner 1098.2.bd.b.395.7 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1098.2.bd.b.395.6 48 61.29 odd 12 inner
1098.2.bd.b.395.7 yes 48 183.29 even 12 inner
1098.2.bd.b.467.6 yes 48 3.2 odd 2 inner
1098.2.bd.b.467.7 yes 48 1.1 even 1 trivial