Properties

Label 1098.2.e.f.367.1
Level $1098$
Weight $2$
Character 1098.367
Analytic conductor $8.768$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1098,2,Mod(367,1098)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1098, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1098.367");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1098 = 2 \cdot 3^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1098.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.76757414194\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 367.1
Character \(\chi\) \(=\) 1098.367
Dual form 1098.2.e.f.733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.70593 + 0.299644i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.02139 - 3.50116i) q^{5} +(0.593468 - 1.62720i) q^{6} +(1.31426 - 2.27636i) q^{7} +1.00000 q^{8} +(2.82043 - 1.02235i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.70593 + 0.299644i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.02139 - 3.50116i) q^{5} +(0.593468 - 1.62720i) q^{6} +(1.31426 - 2.27636i) q^{7} +1.00000 q^{8} +(2.82043 - 1.02235i) q^{9} +4.04279 q^{10} +(2.10717 - 3.64973i) q^{11} +(1.11247 + 1.32756i) q^{12} +(-3.06435 - 5.30761i) q^{13} +(1.31426 + 2.27636i) q^{14} +(4.49746 + 5.36704i) q^{15} +(-0.500000 + 0.866025i) q^{16} +5.44390 q^{17} +(-0.524836 + 2.95373i) q^{18} -4.44023 q^{19} +(-2.02139 + 3.50116i) q^{20} +(-1.55994 + 4.27714i) q^{21} +(2.10717 + 3.64973i) q^{22} +(0.820153 + 1.42055i) q^{23} +(-1.70593 + 0.299644i) q^{24} +(-5.67206 + 9.82430i) q^{25} +6.12870 q^{26} +(-4.50512 + 2.58918i) q^{27} -2.62852 q^{28} +(3.78780 - 6.56067i) q^{29} +(-6.89673 + 1.21140i) q^{30} +(-0.108453 - 0.187846i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-2.50108 + 6.85760i) q^{33} +(-2.72195 + 4.71455i) q^{34} -10.6265 q^{35} +(-2.29559 - 1.93139i) q^{36} +8.34941 q^{37} +(2.22011 - 3.84535i) q^{38} +(6.81797 + 8.13622i) q^{39} +(-2.02139 - 3.50116i) q^{40} +(-4.05327 - 7.02047i) q^{41} +(-2.92414 - 3.48952i) q^{42} +(-2.10813 + 3.65139i) q^{43} -4.21434 q^{44} +(-9.28058 - 7.80819i) q^{45} -1.64031 q^{46} +(3.17365 - 5.49692i) q^{47} +(0.593468 - 1.62720i) q^{48} +(0.0454480 + 0.0787182i) q^{49} +(-5.67206 - 9.82430i) q^{50} +(-9.28693 + 1.63123i) q^{51} +(-3.06435 + 5.30761i) q^{52} +5.78041 q^{53} +(0.0102666 - 5.19614i) q^{54} -17.0377 q^{55} +(1.31426 - 2.27636i) q^{56} +(7.57474 - 1.33049i) q^{57} +(3.78780 + 6.56067i) q^{58} +(-1.93757 - 3.35598i) q^{59} +(2.39926 - 6.57844i) q^{60} +(0.500000 - 0.866025i) q^{61} +0.216906 q^{62} +(1.37954 - 7.76394i) q^{63} +1.00000 q^{64} +(-12.3885 + 21.4575i) q^{65} +(-4.68832 - 5.59480i) q^{66} +(-3.28031 - 5.68167i) q^{67} +(-2.72195 - 4.71455i) q^{68} +(-1.82479 - 2.17761i) q^{69} +(5.31327 - 9.20285i) q^{70} +14.7541 q^{71} +(2.82043 - 1.02235i) q^{72} -7.90683 q^{73} +(-4.17470 + 7.23080i) q^{74} +(6.73237 - 18.4592i) q^{75} +(2.22011 + 3.84535i) q^{76} +(-5.53874 - 9.59338i) q^{77} +(-10.4552 + 1.83643i) q^{78} +(-5.86350 + 10.1559i) q^{79} +4.04279 q^{80} +(6.90962 - 5.76691i) q^{81} +8.10654 q^{82} +(-5.77258 + 9.99839i) q^{83} +(4.48408 - 0.787619i) q^{84} +(-11.0043 - 19.0599i) q^{85} +(-2.10813 - 3.65139i) q^{86} +(-4.49588 + 12.3271i) q^{87} +(2.10717 - 3.64973i) q^{88} -13.5586 q^{89} +(11.4024 - 4.13313i) q^{90} -16.1094 q^{91} +(0.820153 - 1.42055i) q^{92} +(0.241300 + 0.287956i) q^{93} +(3.17365 + 5.49692i) q^{94} +(8.97545 + 15.5459i) q^{95} +(1.11247 + 1.32756i) q^{96} +(1.99272 - 3.45149i) q^{97} -0.0908960 q^{98} +(2.21184 - 12.4481i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q - 17 q^{2} + 2 q^{3} - 17 q^{4} - 5 q^{5} - q^{6} - 11 q^{7} + 34 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 34 q - 17 q^{2} + 2 q^{3} - 17 q^{4} - 5 q^{5} - q^{6} - 11 q^{7} + 34 q^{8} + 10 q^{10} - 3 q^{11} - q^{12} - 10 q^{13} - 11 q^{14} + q^{15} - 17 q^{16} + 16 q^{17} + 3 q^{18} + 22 q^{19} - 5 q^{20} - q^{21} - 3 q^{22} - 5 q^{23} + 2 q^{24} - 32 q^{25} + 20 q^{26} - q^{27} + 22 q^{28} - 6 q^{29} - 5 q^{30} - 20 q^{31} - 17 q^{32} - 14 q^{33} - 8 q^{34} - 16 q^{35} - 3 q^{36} + 58 q^{37} - 11 q^{38} + 44 q^{39} - 5 q^{40} - 20 q^{41} + 8 q^{42} - 30 q^{43} + 6 q^{44} - 22 q^{45} + 10 q^{46} - 10 q^{47} - q^{48} - 42 q^{49} - 32 q^{50} - 49 q^{51} - 10 q^{52} + 4 q^{53} - 22 q^{54} + 30 q^{55} - 11 q^{56} + 27 q^{57} - 6 q^{58} + 3 q^{59} + 4 q^{60} + 17 q^{61} + 40 q^{62} - 45 q^{63} + 34 q^{64} - 28 q^{65} + 28 q^{66} - 11 q^{67} - 8 q^{68} - 32 q^{69} + 8 q^{70} + 126 q^{71} + 56 q^{73} - 29 q^{74} + 100 q^{75} - 11 q^{76} - 17 q^{77} - 16 q^{78} - 17 q^{79} + 10 q^{80} - 8 q^{81} + 40 q^{82} + 20 q^{83} - 7 q^{84} - 33 q^{85} - 30 q^{86} - 86 q^{87} - 3 q^{88} + 4 q^{89} + 23 q^{90} + 60 q^{91} - 5 q^{92} + 121 q^{93} - 10 q^{94} - q^{95} - q^{96} - 32 q^{97} + 84 q^{98} - 31 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1098\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(307\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.70593 + 0.299644i −0.984922 + 0.173000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.02139 3.50116i −0.903994 1.56576i −0.822261 0.569110i \(-0.807288\pi\)
−0.0817331 0.996654i \(-0.526046\pi\)
\(6\) 0.593468 1.62720i 0.242282 0.664304i
\(7\) 1.31426 2.27636i 0.496743 0.860384i −0.503250 0.864141i \(-0.667862\pi\)
0.999993 + 0.00375666i \(0.00119579\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.82043 1.02235i 0.940142 0.340782i
\(10\) 4.04279 1.27844
\(11\) 2.10717 3.64973i 0.635336 1.10043i −0.351108 0.936335i \(-0.614195\pi\)
0.986444 0.164100i \(-0.0524718\pi\)
\(12\) 1.11247 + 1.32756i 0.321141 + 0.383234i
\(13\) −3.06435 5.30761i −0.849897 1.47207i −0.881299 0.472558i \(-0.843331\pi\)
0.0314022 0.999507i \(-0.490003\pi\)
\(14\) 1.31426 + 2.27636i 0.351250 + 0.608384i
\(15\) 4.49746 + 5.36704i 1.16124 + 1.38576i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 5.44390 1.32034 0.660169 0.751117i \(-0.270484\pi\)
0.660169 + 0.751117i \(0.270484\pi\)
\(18\) −0.524836 + 2.95373i −0.123705 + 0.696202i
\(19\) −4.44023 −1.01866 −0.509329 0.860572i \(-0.670106\pi\)
−0.509329 + 0.860572i \(0.670106\pi\)
\(20\) −2.02139 + 3.50116i −0.451997 + 0.782882i
\(21\) −1.55994 + 4.27714i −0.340407 + 0.933348i
\(22\) 2.10717 + 3.64973i 0.449251 + 0.778125i
\(23\) 0.820153 + 1.42055i 0.171014 + 0.296204i 0.938775 0.344532i \(-0.111962\pi\)
−0.767761 + 0.640736i \(0.778629\pi\)
\(24\) −1.70593 + 0.299644i −0.348222 + 0.0611646i
\(25\) −5.67206 + 9.82430i −1.13441 + 1.96486i
\(26\) 6.12870 1.20194
\(27\) −4.50512 + 2.58918i −0.867012 + 0.498288i
\(28\) −2.62852 −0.496743
\(29\) 3.78780 6.56067i 0.703378 1.21829i −0.263896 0.964551i \(-0.585008\pi\)
0.967274 0.253735i \(-0.0816590\pi\)
\(30\) −6.89673 + 1.21140i −1.25916 + 0.221170i
\(31\) −0.108453 0.187846i −0.0194787 0.0337381i 0.856122 0.516774i \(-0.172867\pi\)
−0.875600 + 0.483036i \(0.839534\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −2.50108 + 6.85760i −0.435382 + 1.19376i
\(34\) −2.72195 + 4.71455i −0.466810 + 0.808539i
\(35\) −10.6265 −1.79621
\(36\) −2.29559 1.93139i −0.382599 0.321898i
\(37\) 8.34941 1.37263 0.686317 0.727303i \(-0.259226\pi\)
0.686317 + 0.727303i \(0.259226\pi\)
\(38\) 2.22011 3.84535i 0.360150 0.623798i
\(39\) 6.81797 + 8.13622i 1.09175 + 1.30284i
\(40\) −2.02139 3.50116i −0.319610 0.553581i
\(41\) −4.05327 7.02047i −0.633015 1.09641i −0.986932 0.161137i \(-0.948484\pi\)
0.353917 0.935277i \(-0.384849\pi\)
\(42\) −2.92414 3.48952i −0.451204 0.538444i
\(43\) −2.10813 + 3.65139i −0.321487 + 0.556831i −0.980795 0.195041i \(-0.937516\pi\)
0.659308 + 0.751873i \(0.270849\pi\)
\(44\) −4.21434 −0.635336
\(45\) −9.28058 7.80819i −1.38347 1.16398i
\(46\) −1.64031 −0.241850
\(47\) 3.17365 5.49692i 0.462924 0.801808i −0.536181 0.844103i \(-0.680134\pi\)
0.999105 + 0.0422950i \(0.0134669\pi\)
\(48\) 0.593468 1.62720i 0.0856597 0.234867i
\(49\) 0.0454480 + 0.0787182i 0.00649257 + 0.0112455i
\(50\) −5.67206 9.82430i −0.802150 1.38937i
\(51\) −9.28693 + 1.63123i −1.30043 + 0.228418i
\(52\) −3.06435 + 5.30761i −0.424949 + 0.736033i
\(53\) 5.78041 0.794000 0.397000 0.917819i \(-0.370051\pi\)
0.397000 + 0.917819i \(0.370051\pi\)
\(54\) 0.0102666 5.19614i 0.00139711 0.707105i
\(55\) −17.0377 −2.29736
\(56\) 1.31426 2.27636i 0.175625 0.304192i
\(57\) 7.57474 1.33049i 1.00330 0.176227i
\(58\) 3.78780 + 6.56067i 0.497363 + 0.861458i
\(59\) −1.93757 3.35598i −0.252251 0.436911i 0.711894 0.702286i \(-0.247837\pi\)
−0.964145 + 0.265375i \(0.914504\pi\)
\(60\) 2.39926 6.57844i 0.309744 0.849273i
\(61\) 0.500000 0.866025i 0.0640184 0.110883i
\(62\) 0.216906 0.0275471
\(63\) 1.37954 7.76394i 0.173806 0.978165i
\(64\) 1.00000 0.125000
\(65\) −12.3885 + 21.4575i −1.53660 + 2.66148i
\(66\) −4.68832 5.59480i −0.577092 0.688672i
\(67\) −3.28031 5.68167i −0.400754 0.694126i 0.593063 0.805156i \(-0.297918\pi\)
−0.993817 + 0.111030i \(0.964585\pi\)
\(68\) −2.72195 4.71455i −0.330085 0.571723i
\(69\) −1.82479 2.17761i −0.219678 0.262153i
\(70\) 5.31327 9.20285i 0.635057 1.09995i
\(71\) 14.7541 1.75099 0.875494 0.483229i \(-0.160536\pi\)
0.875494 + 0.483229i \(0.160536\pi\)
\(72\) 2.82043 1.02235i 0.332391 0.120485i
\(73\) −7.90683 −0.925425 −0.462713 0.886508i \(-0.653124\pi\)
−0.462713 + 0.886508i \(0.653124\pi\)
\(74\) −4.17470 + 7.23080i −0.485299 + 0.840563i
\(75\) 6.73237 18.4592i 0.777387 2.13149i
\(76\) 2.22011 + 3.84535i 0.254665 + 0.441092i
\(77\) −5.53874 9.59338i −0.631198 1.09327i
\(78\) −10.4552 + 1.83643i −1.18381 + 0.207934i
\(79\) −5.86350 + 10.1559i −0.659695 + 1.14263i 0.320999 + 0.947079i \(0.395981\pi\)
−0.980694 + 0.195546i \(0.937352\pi\)
\(80\) 4.04279 0.451997
\(81\) 6.90962 5.76691i 0.767735 0.640767i
\(82\) 8.10654 0.895218
\(83\) −5.77258 + 9.99839i −0.633622 + 1.09747i 0.353183 + 0.935554i \(0.385099\pi\)
−0.986805 + 0.161912i \(0.948234\pi\)
\(84\) 4.48408 0.787619i 0.489253 0.0859363i
\(85\) −11.0043 19.0599i −1.19358 2.06734i
\(86\) −2.10813 3.65139i −0.227325 0.393739i
\(87\) −4.49588 + 12.3271i −0.482009 + 1.32160i
\(88\) 2.10717 3.64973i 0.224625 0.389062i
\(89\) −13.5586 −1.43721 −0.718603 0.695421i \(-0.755218\pi\)
−0.718603 + 0.695421i \(0.755218\pi\)
\(90\) 11.4024 4.13313i 1.20192 0.435670i
\(91\) −16.1094 −1.68872
\(92\) 0.820153 1.42055i 0.0855068 0.148102i
\(93\) 0.241300 + 0.287956i 0.0250217 + 0.0298596i
\(94\) 3.17365 + 5.49692i 0.327337 + 0.566964i
\(95\) 8.97545 + 15.5459i 0.920862 + 1.59498i
\(96\) 1.11247 + 1.32756i 0.113541 + 0.135494i
\(97\) 1.99272 3.45149i 0.202330 0.350446i −0.746949 0.664882i \(-0.768482\pi\)
0.949279 + 0.314436i \(0.101815\pi\)
\(98\) −0.0908960 −0.00918188
\(99\) 2.21184 12.4481i 0.222298 1.25108i
\(100\) 11.3441 1.13441
\(101\) −1.42002 + 2.45955i −0.141297 + 0.244734i −0.927985 0.372617i \(-0.878461\pi\)
0.786688 + 0.617351i \(0.211794\pi\)
\(102\) 3.23078 8.85833i 0.319895 0.877106i
\(103\) 1.97710 + 3.42443i 0.194809 + 0.337419i 0.946838 0.321711i \(-0.104258\pi\)
−0.752029 + 0.659130i \(0.770925\pi\)
\(104\) −3.06435 5.30761i −0.300484 0.520454i
\(105\) 18.1282 3.18418i 1.76913 0.310744i
\(106\) −2.89020 + 5.00598i −0.280722 + 0.486224i
\(107\) 17.1906 1.66188 0.830938 0.556366i \(-0.187805\pi\)
0.830938 + 0.556366i \(0.187805\pi\)
\(108\) 4.49486 + 2.60696i 0.432518 + 0.250855i
\(109\) −2.56099 −0.245299 −0.122649 0.992450i \(-0.539139\pi\)
−0.122649 + 0.992450i \(0.539139\pi\)
\(110\) 8.51885 14.7551i 0.812240 1.40684i
\(111\) −14.2435 + 2.50185i −1.35194 + 0.237465i
\(112\) 1.31426 + 2.27636i 0.124186 + 0.215096i
\(113\) 2.85907 + 4.95205i 0.268958 + 0.465850i 0.968593 0.248651i \(-0.0799873\pi\)
−0.699635 + 0.714501i \(0.746654\pi\)
\(114\) −2.63513 + 7.22516i −0.246803 + 0.676698i
\(115\) 3.31570 5.74296i 0.309191 0.535534i
\(116\) −7.57561 −0.703378
\(117\) −14.0690 11.8369i −1.30068 1.09432i
\(118\) 3.87515 0.356736
\(119\) 7.15469 12.3923i 0.655869 1.13600i
\(120\) 4.49746 + 5.36704i 0.410560 + 0.489942i
\(121\) −3.38035 5.85493i −0.307304 0.532267i
\(122\) 0.500000 + 0.866025i 0.0452679 + 0.0784063i
\(123\) 9.01826 + 10.7619i 0.813149 + 0.970371i
\(124\) −0.108453 + 0.187846i −0.00973936 + 0.0168691i
\(125\) 25.6479 2.29402
\(126\) 6.03400 + 5.07669i 0.537552 + 0.452267i
\(127\) −0.859611 −0.0762781 −0.0381391 0.999272i \(-0.512143\pi\)
−0.0381391 + 0.999272i \(0.512143\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 2.50221 6.86071i 0.220308 0.604052i
\(130\) −12.3885 21.4575i −1.08654 1.88195i
\(131\) 2.92515 + 5.06652i 0.255572 + 0.442664i 0.965051 0.262063i \(-0.0844029\pi\)
−0.709479 + 0.704727i \(0.751070\pi\)
\(132\) 7.18940 1.26280i 0.625757 0.109913i
\(133\) −5.83561 + 10.1076i −0.506012 + 0.876438i
\(134\) 6.56062 0.566751
\(135\) 18.1717 + 10.5394i 1.56398 + 0.907086i
\(136\) 5.44390 0.466810
\(137\) 4.90134 8.48938i 0.418750 0.725297i −0.577064 0.816699i \(-0.695802\pi\)
0.995814 + 0.0914025i \(0.0291350\pi\)
\(138\) 2.79825 0.491508i 0.238203 0.0418399i
\(139\) 1.48451 + 2.57124i 0.125914 + 0.218090i 0.922090 0.386976i \(-0.126480\pi\)
−0.796176 + 0.605065i \(0.793147\pi\)
\(140\) 5.31327 + 9.20285i 0.449053 + 0.777783i
\(141\) −3.76692 + 10.3283i −0.317232 + 0.869804i
\(142\) −7.37704 + 12.7774i −0.619068 + 1.07226i
\(143\) −25.8284 −2.15988
\(144\) −0.524836 + 2.95373i −0.0437363 + 0.246145i
\(145\) −30.6266 −2.54340
\(146\) 3.95342 6.84752i 0.327187 0.566705i
\(147\) −0.101119 0.120670i −0.00834013 0.00995269i
\(148\) −4.17470 7.23080i −0.343158 0.594368i
\(149\) −10.2299 17.7188i −0.838070 1.45158i −0.891506 0.453009i \(-0.850351\pi\)
0.0534359 0.998571i \(-0.482983\pi\)
\(150\) 12.6200 + 15.0600i 1.03042 + 1.22964i
\(151\) 0.332740 0.576323i 0.0270780 0.0469005i −0.852169 0.523267i \(-0.824713\pi\)
0.879247 + 0.476366i \(0.158046\pi\)
\(152\) −4.44023 −0.360150
\(153\) 15.3541 5.56555i 1.24131 0.449948i
\(154\) 11.0775 0.892649
\(155\) −0.438452 + 0.759421i −0.0352173 + 0.0609982i
\(156\) 3.63719 9.97264i 0.291208 0.798451i
\(157\) 4.10401 + 7.10836i 0.327536 + 0.567309i 0.982022 0.188765i \(-0.0604484\pi\)
−0.654486 + 0.756074i \(0.727115\pi\)
\(158\) −5.86350 10.1559i −0.466475 0.807958i
\(159\) −9.86100 + 1.73207i −0.782028 + 0.137362i
\(160\) −2.02139 + 3.50116i −0.159805 + 0.276791i
\(161\) 4.31157 0.339799
\(162\) 1.53948 + 8.86736i 0.120953 + 0.696685i
\(163\) 12.3611 0.968195 0.484097 0.875014i \(-0.339148\pi\)
0.484097 + 0.875014i \(0.339148\pi\)
\(164\) −4.05327 + 7.02047i −0.316507 + 0.548207i
\(165\) 29.0652 5.10524i 2.26272 0.397443i
\(166\) −5.77258 9.99839i −0.448039 0.776026i
\(167\) 12.7054 + 22.0064i 0.983172 + 1.70290i 0.649792 + 0.760112i \(0.274856\pi\)
0.333380 + 0.942793i \(0.391811\pi\)
\(168\) −1.55994 + 4.27714i −0.120352 + 0.329988i
\(169\) −12.2805 + 21.2704i −0.944650 + 1.63618i
\(170\) 22.0085 1.68798
\(171\) −12.5233 + 4.53945i −0.957684 + 0.347141i
\(172\) 4.21626 0.321487
\(173\) −8.37516 + 14.5062i −0.636752 + 1.10289i 0.349389 + 0.936978i \(0.386389\pi\)
−0.986141 + 0.165909i \(0.946944\pi\)
\(174\) −8.42761 10.0571i −0.638896 0.762425i
\(175\) 14.9091 + 25.8233i 1.12702 + 1.95206i
\(176\) 2.10717 + 3.64973i 0.158834 + 0.275109i
\(177\) 4.31097 + 5.14450i 0.324033 + 0.386684i
\(178\) 6.77928 11.7421i 0.508129 0.880105i
\(179\) −10.9587 −0.819088 −0.409544 0.912290i \(-0.634312\pi\)
−0.409544 + 0.912290i \(0.634312\pi\)
\(180\) −2.12180 + 11.9413i −0.158150 + 0.890053i
\(181\) −6.70682 −0.498514 −0.249257 0.968437i \(-0.580186\pi\)
−0.249257 + 0.968437i \(0.580186\pi\)
\(182\) 8.05469 13.9511i 0.597053 1.03413i
\(183\) −0.593468 + 1.62720i −0.0438704 + 0.120286i
\(184\) 0.820153 + 1.42055i 0.0604625 + 0.104724i
\(185\) −16.8774 29.2326i −1.24085 2.14922i
\(186\) −0.370027 + 0.0649945i −0.0271317 + 0.00476563i
\(187\) 11.4712 19.8687i 0.838859 1.45295i
\(188\) −6.34729 −0.462924
\(189\) −0.0269860 + 13.6582i −0.00196295 + 0.993484i
\(190\) −17.9509 −1.30229
\(191\) −10.2059 + 17.6772i −0.738475 + 1.27908i 0.214706 + 0.976679i \(0.431121\pi\)
−0.953182 + 0.302398i \(0.902213\pi\)
\(192\) −1.70593 + 0.299644i −0.123115 + 0.0216249i
\(193\) −6.94154 12.0231i −0.499663 0.865442i 0.500337 0.865831i \(-0.333210\pi\)
−1.00000 0.000388994i \(0.999876\pi\)
\(194\) 1.99272 + 3.45149i 0.143069 + 0.247803i
\(195\) 14.7044 40.3173i 1.05300 2.88718i
\(196\) 0.0454480 0.0787182i 0.00324628 0.00562273i
\(197\) −19.8807 −1.41644 −0.708221 0.705991i \(-0.750502\pi\)
−0.708221 + 0.705991i \(0.750502\pi\)
\(198\) 9.67441 + 8.13953i 0.687530 + 0.578452i
\(199\) 15.2050 1.07785 0.538926 0.842353i \(-0.318830\pi\)
0.538926 + 0.842353i \(0.318830\pi\)
\(200\) −5.67206 + 9.82430i −0.401075 + 0.694683i
\(201\) 7.29847 + 8.70963i 0.514795 + 0.614330i
\(202\) −1.42002 2.45955i −0.0999123 0.173053i
\(203\) −9.95631 17.2448i −0.698796 1.21035i
\(204\) 6.05615 + 7.22710i 0.424016 + 0.505998i
\(205\) −16.3865 + 28.3823i −1.14448 + 1.98230i
\(206\) −3.95419 −0.275502
\(207\) 3.76547 + 3.16807i 0.261718 + 0.220196i
\(208\) 6.12870 0.424949
\(209\) −9.35633 + 16.2056i −0.647191 + 1.12097i
\(210\) −6.30651 + 17.2915i −0.435190 + 1.19323i
\(211\) −3.68758 6.38708i −0.253864 0.439704i 0.710723 0.703472i \(-0.248368\pi\)
−0.964586 + 0.263768i \(0.915035\pi\)
\(212\) −2.89020 5.00598i −0.198500 0.343812i
\(213\) −25.1695 + 4.42097i −1.72459 + 0.302920i
\(214\) −8.59528 + 14.8875i −0.587562 + 1.01769i
\(215\) 17.0454 1.16249
\(216\) −4.50512 + 2.58918i −0.306535 + 0.176171i
\(217\) −0.570141 −0.0387037
\(218\) 1.28050 2.21789i 0.0867262 0.150214i
\(219\) 13.4885 2.36924i 0.911471 0.160098i
\(220\) 8.51885 + 14.7551i 0.574340 + 0.994787i
\(221\) −16.6820 28.8941i −1.12215 1.94362i
\(222\) 4.95511 13.5862i 0.332565 0.911846i
\(223\) −2.00471 + 3.47226i −0.134245 + 0.232520i −0.925309 0.379214i \(-0.876194\pi\)
0.791064 + 0.611734i \(0.209528\pi\)
\(224\) −2.62852 −0.175625
\(225\) −5.95380 + 33.5075i −0.396920 + 2.23383i
\(226\) −5.71813 −0.380365
\(227\) −3.24262 + 5.61638i −0.215220 + 0.372772i −0.953341 0.301897i \(-0.902380\pi\)
0.738121 + 0.674669i \(0.235714\pi\)
\(228\) −4.93961 5.89467i −0.327133 0.390384i
\(229\) 4.81256 + 8.33559i 0.318023 + 0.550831i 0.980075 0.198626i \(-0.0636479\pi\)
−0.662053 + 0.749457i \(0.730315\pi\)
\(230\) 3.31570 + 5.74296i 0.218631 + 0.378680i
\(231\) 12.3233 + 14.7060i 0.810815 + 0.967585i
\(232\) 3.78780 6.56067i 0.248682 0.430729i
\(233\) 27.2350 1.78422 0.892112 0.451813i \(-0.149223\pi\)
0.892112 + 0.451813i \(0.149223\pi\)
\(234\) 17.2855 6.26565i 1.12999 0.409598i
\(235\) −25.6608 −1.67392
\(236\) −1.93757 + 3.35598i −0.126125 + 0.218456i
\(237\) 6.95960 19.0822i 0.452075 1.23952i
\(238\) 7.15469 + 12.3923i 0.463770 + 0.803272i
\(239\) 0.843640 + 1.46123i 0.0545706 + 0.0945190i 0.892020 0.451995i \(-0.149288\pi\)
−0.837450 + 0.546514i \(0.815954\pi\)
\(240\) −6.89673 + 1.21140i −0.445182 + 0.0781953i
\(241\) −7.71872 + 13.3692i −0.497206 + 0.861187i −0.999995 0.00322282i \(-0.998974\pi\)
0.502788 + 0.864409i \(0.332307\pi\)
\(242\) 6.76070 0.434594
\(243\) −10.0593 + 11.9084i −0.645307 + 0.763924i
\(244\) −1.00000 −0.0640184
\(245\) 0.183736 0.318241i 0.0117385 0.0203317i
\(246\) −13.8292 + 2.42908i −0.881720 + 0.154872i
\(247\) 13.6064 + 23.5670i 0.865755 + 1.49953i
\(248\) −0.108453 0.187846i −0.00688677 0.0119282i
\(249\) 6.85168 18.7863i 0.434207 1.19053i
\(250\) −12.8240 + 22.2117i −0.811058 + 1.40479i
\(251\) 14.3588 0.906318 0.453159 0.891430i \(-0.350297\pi\)
0.453159 + 0.891430i \(0.350297\pi\)
\(252\) −7.41354 + 2.68725i −0.467009 + 0.169281i
\(253\) 6.91281 0.434605
\(254\) 0.429806 0.744445i 0.0269684 0.0467106i
\(255\) 24.4837 + 29.2176i 1.53323 + 1.82968i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 5.19936 + 9.00555i 0.324327 + 0.561751i 0.981376 0.192097i \(-0.0615289\pi\)
−0.657049 + 0.753848i \(0.728196\pi\)
\(258\) 4.69045 + 5.59734i 0.292014 + 0.348475i
\(259\) 10.9733 19.0063i 0.681846 1.18099i
\(260\) 24.7770 1.53660
\(261\) 3.97595 22.3763i 0.246105 1.38506i
\(262\) −5.85031 −0.361433
\(263\) 3.87890 6.71846i 0.239183 0.414278i −0.721297 0.692626i \(-0.756454\pi\)
0.960480 + 0.278348i \(0.0897870\pi\)
\(264\) −2.50108 + 6.85760i −0.153931 + 0.422056i
\(265\) −11.6845 20.2381i −0.717772 1.24322i
\(266\) −5.83561 10.1076i −0.357804 0.619735i
\(267\) 23.1300 4.06274i 1.41554 0.248636i
\(268\) −3.28031 + 5.68167i −0.200377 + 0.347063i
\(269\) 9.58542 0.584433 0.292217 0.956352i \(-0.405607\pi\)
0.292217 + 0.956352i \(0.405607\pi\)
\(270\) −18.2133 + 10.4675i −1.10842 + 0.637032i
\(271\) 1.47114 0.0893653 0.0446827 0.999001i \(-0.485772\pi\)
0.0446827 + 0.999001i \(0.485772\pi\)
\(272\) −2.72195 + 4.71455i −0.165042 + 0.285862i
\(273\) 27.4816 4.82708i 1.66326 0.292148i
\(274\) 4.90134 + 8.48938i 0.296101 + 0.512862i
\(275\) 23.9040 + 41.4030i 1.44147 + 2.49669i
\(276\) −0.973469 + 2.66911i −0.0585959 + 0.160662i
\(277\) 10.5057 18.1965i 0.631229 1.09332i −0.356072 0.934459i \(-0.615884\pi\)
0.987301 0.158862i \(-0.0507826\pi\)
\(278\) −2.96901 −0.178070
\(279\) −0.497927 0.418929i −0.0298101 0.0250806i
\(280\) −10.6265 −0.635057
\(281\) 15.4424 26.7470i 0.921217 1.59559i 0.123681 0.992322i \(-0.460530\pi\)
0.797535 0.603272i \(-0.206137\pi\)
\(282\) −7.06115 8.42642i −0.420486 0.501786i
\(283\) 6.23708 + 10.8029i 0.370756 + 0.642168i 0.989682 0.143281i \(-0.0457654\pi\)
−0.618926 + 0.785449i \(0.712432\pi\)
\(284\) −7.37704 12.7774i −0.437747 0.758200i
\(285\) −19.9698 23.8309i −1.18291 1.41162i
\(286\) 12.9142 22.3681i 0.763634 1.32265i
\(287\) −21.3082 −1.25778
\(288\) −2.29559 1.93139i −0.135269 0.113808i
\(289\) 12.6360 0.743295
\(290\) 15.3133 26.5234i 0.899227 1.55751i
\(291\) −2.36523 + 6.48512i −0.138652 + 0.380165i
\(292\) 3.95342 + 6.84752i 0.231356 + 0.400721i
\(293\) 3.30883 + 5.73106i 0.193304 + 0.334812i 0.946343 0.323163i \(-0.104746\pi\)
−0.753039 + 0.657976i \(0.771413\pi\)
\(294\) 0.155063 0.0272364i 0.00904343 0.00158846i
\(295\) −7.83320 + 13.5675i −0.456067 + 0.789930i
\(296\) 8.34941 0.485299
\(297\) −0.0432672 + 21.8983i −0.00251062 + 1.27067i
\(298\) 20.4599 1.18521
\(299\) 5.02647 8.70609i 0.290688 0.503486i
\(300\) −19.3523 + 3.39920i −1.11731 + 0.196253i
\(301\) 5.54125 + 9.59773i 0.319393 + 0.553204i
\(302\) 0.332740 + 0.576323i 0.0191470 + 0.0331637i
\(303\) 1.68547 4.62133i 0.0968280 0.265488i
\(304\) 2.22011 3.84535i 0.127332 0.220546i
\(305\) −4.04279 −0.231489
\(306\) −2.85715 + 16.0798i −0.163332 + 0.919222i
\(307\) 7.81948 0.446282 0.223141 0.974786i \(-0.428369\pi\)
0.223141 + 0.974786i \(0.428369\pi\)
\(308\) −5.53874 + 9.59338i −0.315599 + 0.546633i
\(309\) −4.39891 5.24943i −0.250245 0.298630i
\(310\) −0.438452 0.759421i −0.0249024 0.0431322i
\(311\) −10.1691 17.6134i −0.576638 0.998766i −0.995862 0.0908829i \(-0.971031\pi\)
0.419224 0.907883i \(-0.362302\pi\)
\(312\) 6.81797 + 8.13622i 0.385992 + 0.460623i
\(313\) 13.5662 23.4974i 0.766809 1.32815i −0.172475 0.985014i \(-0.555176\pi\)
0.939285 0.343139i \(-0.111490\pi\)
\(314\) −8.20803 −0.463206
\(315\) −29.9714 + 10.8640i −1.68869 + 0.612117i
\(316\) 11.7270 0.659695
\(317\) −4.29459 + 7.43844i −0.241208 + 0.417785i −0.961059 0.276344i \(-0.910877\pi\)
0.719851 + 0.694129i \(0.244210\pi\)
\(318\) 3.43049 9.40591i 0.192372 0.527457i
\(319\) −15.9631 27.6489i −0.893763 1.54804i
\(320\) −2.02139 3.50116i −0.112999 0.195721i
\(321\) −29.3260 + 5.15105i −1.63682 + 0.287504i
\(322\) −2.15579 + 3.73393i −0.120137 + 0.208084i
\(323\) −24.1721 −1.34497
\(324\) −8.44910 3.10045i −0.469394 0.172247i
\(325\) 69.5247 3.85653
\(326\) −6.18054 + 10.7050i −0.342309 + 0.592896i
\(327\) 4.36889 0.767387i 0.241600 0.0424366i
\(328\) −4.05327 7.02047i −0.223804 0.387641i
\(329\) −8.34199 14.4487i −0.459909 0.796585i
\(330\) −10.1113 + 27.7238i −0.556610 + 1.52615i
\(331\) 1.71562 2.97153i 0.0942988 0.163330i −0.815017 0.579437i \(-0.803272\pi\)
0.909316 + 0.416107i \(0.136606\pi\)
\(332\) 11.5452 0.633622
\(333\) 23.5489 8.53598i 1.29047 0.467769i
\(334\) −25.4108 −1.39042
\(335\) −13.2616 + 22.9698i −0.724558 + 1.25497i
\(336\) −2.92414 3.48952i −0.159525 0.190369i
\(337\) −4.57183 7.91863i −0.249043 0.431356i 0.714217 0.699924i \(-0.246783\pi\)
−0.963261 + 0.268568i \(0.913449\pi\)
\(338\) −12.2805 21.2704i −0.667969 1.15696i
\(339\) −6.36123 7.59117i −0.345495 0.412296i
\(340\) −11.0043 + 19.0599i −0.596790 + 1.03367i
\(341\) −0.914116 −0.0495021
\(342\) 2.33039 13.1153i 0.126013 0.709192i
\(343\) 18.6385 1.00639
\(344\) −2.10813 + 3.65139i −0.113663 + 0.196870i
\(345\) −3.93553 + 10.7907i −0.211882 + 0.580949i
\(346\) −8.37516 14.5062i −0.450252 0.779859i
\(347\) 18.3901 + 31.8526i 0.987233 + 1.70994i 0.631560 + 0.775327i \(0.282415\pi\)
0.355673 + 0.934610i \(0.384252\pi\)
\(348\) 12.9235 2.26999i 0.692772 0.121684i
\(349\) −8.50479 + 14.7307i −0.455251 + 0.788518i −0.998703 0.0509226i \(-0.983784\pi\)
0.543452 + 0.839441i \(0.317117\pi\)
\(350\) −29.8182 −1.59385
\(351\) 27.5476 + 15.9773i 1.47038 + 0.852804i
\(352\) −4.21434 −0.224625
\(353\) 13.1451 22.7680i 0.699644 1.21182i −0.268946 0.963155i \(-0.586675\pi\)
0.968590 0.248664i \(-0.0799914\pi\)
\(354\) −6.61075 + 1.16117i −0.351358 + 0.0617152i
\(355\) −29.8238 51.6563i −1.58288 2.74163i
\(356\) 6.77928 + 11.7421i 0.359301 + 0.622328i
\(357\) −8.49216 + 23.2843i −0.449453 + 1.23234i
\(358\) 5.47933 9.49048i 0.289592 0.501587i
\(359\) −17.1316 −0.904173 −0.452087 0.891974i \(-0.649320\pi\)
−0.452087 + 0.891974i \(0.649320\pi\)
\(360\) −9.28058 7.80819i −0.489130 0.411528i
\(361\) 0.715635 0.0376650
\(362\) 3.35341 5.80827i 0.176251 0.305276i
\(363\) 7.52105 + 8.97524i 0.394753 + 0.471078i
\(364\) 8.05469 + 13.9511i 0.422181 + 0.731238i
\(365\) 15.9828 + 27.6831i 0.836579 + 1.44900i
\(366\) −1.11247 1.32756i −0.0581496 0.0693927i
\(367\) 3.56149 6.16868i 0.185908 0.322002i −0.757974 0.652285i \(-0.773811\pi\)
0.943882 + 0.330282i \(0.107144\pi\)
\(368\) −1.64031 −0.0855068
\(369\) −18.6093 15.6569i −0.968762 0.815065i
\(370\) 33.7549 1.75483
\(371\) 7.59695 13.1583i 0.394414 0.683145i
\(372\) 0.128727 0.352950i 0.00667417 0.0182996i
\(373\) 6.50748 + 11.2713i 0.336944 + 0.583605i 0.983856 0.178960i \(-0.0572732\pi\)
−0.646912 + 0.762565i \(0.723940\pi\)
\(374\) 11.4712 + 19.8687i 0.593163 + 1.02739i
\(375\) −43.7537 + 7.68524i −2.25943 + 0.396864i
\(376\) 3.17365 5.49692i 0.163668 0.283482i
\(377\) −46.4286 −2.39119
\(378\) −11.8148 6.85245i −0.607688 0.352452i
\(379\) 4.71603 0.242246 0.121123 0.992638i \(-0.461350\pi\)
0.121123 + 0.992638i \(0.461350\pi\)
\(380\) 8.97545 15.5459i 0.460431 0.797490i
\(381\) 1.46644 0.257577i 0.0751280 0.0131961i
\(382\) −10.2059 17.6772i −0.522181 0.904444i
\(383\) 2.13021 + 3.68962i 0.108848 + 0.188531i 0.915304 0.402764i \(-0.131950\pi\)
−0.806456 + 0.591295i \(0.798617\pi\)
\(384\) 0.593468 1.62720i 0.0302853 0.0830379i
\(385\) −22.3919 + 38.7840i −1.14120 + 1.97661i
\(386\) 13.8831 0.706630
\(387\) −2.21284 + 12.4537i −0.112485 + 0.633057i
\(388\) −3.98544 −0.202330
\(389\) 13.2536 22.9558i 0.671982 1.16391i −0.305359 0.952237i \(-0.598777\pi\)
0.977341 0.211670i \(-0.0678901\pi\)
\(390\) 27.5636 + 32.8930i 1.39574 + 1.66560i
\(391\) 4.46483 + 7.73331i 0.225796 + 0.391090i
\(392\) 0.0454480 + 0.0787182i 0.00229547 + 0.00397587i
\(393\) −6.50827 7.76664i −0.328299 0.391775i
\(394\) 9.94035 17.2172i 0.500788 0.867390i
\(395\) 47.4098 2.38544
\(396\) −11.8862 + 4.30852i −0.597307 + 0.216511i
\(397\) 8.28900 0.416013 0.208006 0.978127i \(-0.433303\pi\)
0.208006 + 0.978127i \(0.433303\pi\)
\(398\) −7.60248 + 13.1679i −0.381078 + 0.660046i
\(399\) 6.92650 18.9915i 0.346759 0.950762i
\(400\) −5.67206 9.82430i −0.283603 0.491215i
\(401\) −10.9135 18.9027i −0.544992 0.943955i −0.998607 0.0527568i \(-0.983199\pi\)
0.453615 0.891198i \(-0.350134\pi\)
\(402\) −11.1920 + 1.96585i −0.558206 + 0.0980477i
\(403\) −0.664675 + 1.15125i −0.0331098 + 0.0573479i
\(404\) 2.84004 0.141297
\(405\) −34.1579 12.5345i −1.69732 0.622842i
\(406\) 19.9126 0.988247
\(407\) 17.5936 30.4731i 0.872084 1.51049i
\(408\) −9.28693 + 1.63123i −0.459772 + 0.0807580i
\(409\) 5.01967 + 8.69433i 0.248207 + 0.429907i 0.963028 0.269400i \(-0.0868254\pi\)
−0.714822 + 0.699307i \(0.753492\pi\)
\(410\) −16.3865 28.3823i −0.809272 1.40170i
\(411\) −5.81758 + 15.9510i −0.286960 + 0.786804i
\(412\) 1.97710 3.42443i 0.0974046 0.168710i
\(413\) −10.1859 −0.501215
\(414\) −4.62636 + 1.67696i −0.227373 + 0.0824181i
\(415\) 46.6746 2.29116
\(416\) −3.06435 + 5.30761i −0.150242 + 0.260227i
\(417\) −3.30293 3.94154i −0.161745 0.193018i
\(418\) −9.35633 16.2056i −0.457633 0.792643i
\(419\) −0.444905 0.770598i −0.0217350 0.0376462i 0.854953 0.518705i \(-0.173586\pi\)
−0.876688 + 0.481059i \(0.840252\pi\)
\(420\) −11.8217 14.1074i −0.576838 0.688369i
\(421\) −10.0991 + 17.4922i −0.492202 + 0.852518i −0.999960 0.00898145i \(-0.997141\pi\)
0.507758 + 0.861500i \(0.330474\pi\)
\(422\) 7.37516 0.359017
\(423\) 3.33129 18.7482i 0.161973 0.911570i
\(424\) 5.78041 0.280722
\(425\) −30.8781 + 53.4825i −1.49781 + 2.59428i
\(426\) 8.75608 24.0079i 0.424233 1.16319i
\(427\) −1.31426 2.27636i −0.0636014 0.110161i
\(428\) −8.59528 14.8875i −0.415469 0.719613i
\(429\) 44.0616 7.73933i 2.12732 0.373659i
\(430\) −8.52271 + 14.7618i −0.411002 + 0.711876i
\(431\) −12.4423 −0.599322 −0.299661 0.954046i \(-0.596874\pi\)
−0.299661 + 0.954046i \(0.596874\pi\)
\(432\) 0.0102666 5.19614i 0.000493954 0.250000i
\(433\) 4.03198 0.193765 0.0968823 0.995296i \(-0.469113\pi\)
0.0968823 + 0.995296i \(0.469113\pi\)
\(434\) 0.285070 0.493756i 0.0136838 0.0237011i
\(435\) 52.2469 9.17707i 2.50505 0.440007i
\(436\) 1.28050 + 2.21789i 0.0613247 + 0.106217i
\(437\) −3.64167 6.30755i −0.174204 0.301731i
\(438\) −4.69245 + 12.8660i −0.224214 + 0.614763i
\(439\) 7.57067 13.1128i 0.361328 0.625839i −0.626851 0.779139i \(-0.715657\pi\)
0.988180 + 0.153300i \(0.0489901\pi\)
\(440\) −17.0377 −0.812240
\(441\) 0.208660 + 0.175555i 0.00993619 + 0.00835978i
\(442\) 33.3640 1.58696
\(443\) 0.517823 0.896895i 0.0246025 0.0426128i −0.853462 0.521155i \(-0.825501\pi\)
0.878065 + 0.478542i \(0.158835\pi\)
\(444\) 9.28844 + 11.0843i 0.440810 + 0.526040i
\(445\) 27.4072 + 47.4707i 1.29923 + 2.25033i
\(446\) −2.00471 3.47226i −0.0949258 0.164416i
\(447\) 22.7610 + 27.1618i 1.07656 + 1.28471i
\(448\) 1.31426 2.27636i 0.0620929 0.107548i
\(449\) −22.6531 −1.06907 −0.534534 0.845147i \(-0.679513\pi\)
−0.534534 + 0.845147i \(0.679513\pi\)
\(450\) −26.0415 21.9099i −1.22761 1.03284i
\(451\) −34.1638 −1.60871
\(452\) 2.85907 4.95205i 0.134479 0.232925i
\(453\) −0.394941 + 1.08287i −0.0185560 + 0.0508778i
\(454\) −3.24262 5.61638i −0.152184 0.263590i
\(455\) 32.5634 + 56.4015i 1.52660 + 2.64414i
\(456\) 7.57474 1.33049i 0.354720 0.0623058i
\(457\) −12.9650 + 22.4561i −0.606479 + 1.05045i 0.385337 + 0.922776i \(0.374085\pi\)
−0.991816 + 0.127676i \(0.959248\pi\)
\(458\) −9.62511 −0.449752
\(459\) −24.5254 + 14.0952i −1.14475 + 0.657909i
\(460\) −6.63140 −0.309191
\(461\) 6.26415 10.8498i 0.291750 0.505326i −0.682473 0.730910i \(-0.739096\pi\)
0.974224 + 0.225584i \(0.0724290\pi\)
\(462\) −18.8975 + 3.31930i −0.879189 + 0.154428i
\(463\) 4.69089 + 8.12485i 0.218004 + 0.377594i 0.954198 0.299177i \(-0.0967121\pi\)
−0.736194 + 0.676771i \(0.763379\pi\)
\(464\) 3.78780 + 6.56067i 0.175844 + 0.304571i
\(465\) 0.520414 1.42690i 0.0241336 0.0661710i
\(466\) −13.6175 + 23.5862i −0.630819 + 1.09261i
\(467\) 13.0532 0.604031 0.302015 0.953303i \(-0.402341\pi\)
0.302015 + 0.953303i \(0.402341\pi\)
\(468\) −3.21656 + 18.1025i −0.148685 + 0.836790i
\(469\) −17.2447 −0.796287
\(470\) 12.8304 22.2229i 0.591821 1.02506i
\(471\) −9.13115 10.8967i −0.420741 0.502091i
\(472\) −1.93757 3.35598i −0.0891841 0.154471i
\(473\) 8.88438 + 15.3882i 0.408504 + 0.707550i
\(474\) 13.0459 + 15.5683i 0.599218 + 0.715076i
\(475\) 25.1852 43.6221i 1.15558 2.00152i
\(476\) −14.3094 −0.655869
\(477\) 16.3032 5.90958i 0.746473 0.270581i
\(478\) −1.68728 −0.0771744
\(479\) 20.5575 35.6066i 0.939295 1.62691i 0.172506 0.985009i \(-0.444814\pi\)
0.766789 0.641899i \(-0.221853\pi\)
\(480\) 2.39926 6.57844i 0.109511 0.300263i
\(481\) −25.5855 44.3154i −1.16660 2.02061i
\(482\) −7.71872 13.3692i −0.351578 0.608951i
\(483\) −7.35526 + 1.29194i −0.334676 + 0.0587851i
\(484\) −3.38035 + 5.85493i −0.153652 + 0.266133i
\(485\) −16.1123 −0.731621
\(486\) −5.28330 14.6658i −0.239655 0.665256i
\(487\) 6.86990 0.311305 0.155652 0.987812i \(-0.450252\pi\)
0.155652 + 0.987812i \(0.450252\pi\)
\(488\) 0.500000 0.866025i 0.0226339 0.0392031i
\(489\) −21.0872 + 3.70392i −0.953596 + 0.167497i
\(490\) 0.183736 + 0.318241i 0.00830037 + 0.0143767i
\(491\) 10.1102 + 17.5114i 0.456267 + 0.790278i 0.998760 0.0497822i \(-0.0158527\pi\)
−0.542493 + 0.840060i \(0.682519\pi\)
\(492\) 4.81097 13.1910i 0.216895 0.594697i
\(493\) 20.6204 35.7156i 0.928697 1.60855i
\(494\) −27.2128 −1.22436
\(495\) −48.0536 + 17.4184i −2.15985 + 0.782900i
\(496\) 0.216906 0.00973936
\(497\) 19.3907 33.5856i 0.869791 1.50652i
\(498\) 12.8436 + 15.3269i 0.575535 + 0.686814i
\(499\) −5.63049 9.75229i −0.252055 0.436573i 0.712036 0.702143i \(-0.247773\pi\)
−0.964092 + 0.265570i \(0.914440\pi\)
\(500\) −12.8240 22.2117i −0.573505 0.993340i
\(501\) −28.2686 33.7343i −1.26295 1.50714i
\(502\) −7.17939 + 12.4351i −0.320432 + 0.555004i
\(503\) −15.6779 −0.699041 −0.349520 0.936929i \(-0.613655\pi\)
−0.349520 + 0.936929i \(0.613655\pi\)
\(504\) 1.37954 7.76394i 0.0614496 0.345833i
\(505\) 11.4817 0.510928
\(506\) −3.45641 + 5.98667i −0.153656 + 0.266140i
\(507\) 14.5761 39.9656i 0.647348 1.77494i
\(508\) 0.429806 + 0.744445i 0.0190695 + 0.0330294i
\(509\) −11.3928 19.7328i −0.504975 0.874642i −0.999983 0.00575398i \(-0.998168\pi\)
0.495009 0.868888i \(-0.335165\pi\)
\(510\) −37.5451 + 6.59472i −1.66252 + 0.292019i
\(511\) −10.3916 + 17.9988i −0.459698 + 0.796221i
\(512\) 1.00000 0.0441942
\(513\) 20.0038 11.4966i 0.883189 0.507585i
\(514\) −10.3987 −0.458668
\(515\) 7.99298 13.8442i 0.352213 0.610050i
\(516\) −7.19266 + 1.26338i −0.316639 + 0.0556170i
\(517\) −13.3748 23.1659i −0.588225 1.01884i
\(518\) 10.9733 + 19.0063i 0.482138 + 0.835088i
\(519\) 9.94078 27.2562i 0.436352 1.19641i
\(520\) −12.3885 + 21.4575i −0.543272 + 0.940974i
\(521\) −29.8673 −1.30851 −0.654254 0.756275i \(-0.727017\pi\)
−0.654254 + 0.756275i \(0.727017\pi\)
\(522\) 17.3905 + 14.6314i 0.761162 + 0.640401i
\(523\) −19.4600 −0.850927 −0.425464 0.904976i \(-0.639889\pi\)
−0.425464 + 0.904976i \(0.639889\pi\)
\(524\) 2.92515 5.06652i 0.127786 0.221332i
\(525\) −33.1718 39.5855i −1.44773 1.72765i
\(526\) 3.87890 + 6.71846i 0.169128 + 0.292939i
\(527\) −0.590406 1.02261i −0.0257185 0.0445458i
\(528\) −4.68832 5.59480i −0.204033 0.243482i
\(529\) 10.1547 17.5885i 0.441509 0.764715i
\(530\) 23.3690 1.01508
\(531\) −8.89576 7.48442i −0.386043 0.324796i
\(532\) 11.6712 0.506012
\(533\) −24.8413 + 43.0263i −1.07599 + 1.86368i
\(534\) −8.04658 + 22.0626i −0.348210 + 0.954741i
\(535\) −34.7489 60.1869i −1.50233 2.60210i
\(536\) −3.28031 5.68167i −0.141688 0.245411i
\(537\) 18.6948 3.28370i 0.806738 0.141702i
\(538\) −4.79271 + 8.30122i −0.206628 + 0.357891i
\(539\) 0.383067 0.0164999
\(540\) 0.0415058 21.0069i 0.00178613 0.903993i
\(541\) −22.9150 −0.985193 −0.492596 0.870258i \(-0.663952\pi\)
−0.492596 + 0.870258i \(0.663952\pi\)
\(542\) −0.735569 + 1.27404i −0.0315954 + 0.0547249i
\(543\) 11.4414 2.00966i 0.490997 0.0862426i
\(544\) −2.72195 4.71455i −0.116703 0.202135i
\(545\) 5.17678 + 8.96644i 0.221749 + 0.384080i
\(546\) −9.56041 + 26.2133i −0.409148 + 1.12182i
\(547\) −2.35184 + 4.07351i −0.100558 + 0.174171i −0.911915 0.410380i \(-0.865396\pi\)
0.811357 + 0.584551i \(0.198729\pi\)
\(548\) −9.80269 −0.418750
\(549\) 0.524836 2.95373i 0.0223994 0.126062i
\(550\) −47.8080 −2.03854
\(551\) −16.8187 + 29.1309i −0.716502 + 1.24102i
\(552\) −1.82479 2.17761i −0.0776680 0.0926850i
\(553\) 15.4123 + 26.6949i 0.655398 + 1.13518i
\(554\) 10.5057 + 18.1965i 0.446346 + 0.773095i
\(555\) 37.5512 + 44.8116i 1.59396 + 1.90215i
\(556\) 1.48451 2.57124i 0.0629571 0.109045i
\(557\) 27.2033 1.15264 0.576320 0.817224i \(-0.304488\pi\)
0.576320 + 0.817224i \(0.304488\pi\)
\(558\) 0.611767 0.221753i 0.0258982 0.00938754i
\(559\) 25.8402 1.09292
\(560\) 5.31327 9.20285i 0.224527 0.388891i
\(561\) −13.6156 + 37.3321i −0.574852 + 1.57616i
\(562\) 15.4424 + 26.7470i 0.651399 + 1.12826i
\(563\) 8.59186 + 14.8815i 0.362104 + 0.627182i 0.988307 0.152478i \(-0.0487253\pi\)
−0.626203 + 0.779660i \(0.715392\pi\)
\(564\) 10.8281 1.90193i 0.455944 0.0800856i
\(565\) 11.5586 20.0201i 0.486274 0.842251i
\(566\) −12.4742 −0.524328
\(567\) −4.04655 23.3080i −0.169939 0.978844i
\(568\) 14.7541 0.619068
\(569\) 2.41374 4.18071i 0.101189 0.175265i −0.810986 0.585066i \(-0.801069\pi\)
0.912175 + 0.409801i \(0.134402\pi\)
\(570\) 30.6231 5.37888i 1.28266 0.225296i
\(571\) −17.0416 29.5169i −0.713169 1.23525i −0.963661 0.267127i \(-0.913926\pi\)
0.250492 0.968119i \(-0.419407\pi\)
\(572\) 12.9142 + 22.3681i 0.539971 + 0.935256i
\(573\) 12.1138 33.2143i 0.506061 1.38755i
\(574\) 10.6541 18.4534i 0.444693 0.770231i
\(575\) −18.6078 −0.776000
\(576\) 2.82043 1.02235i 0.117518 0.0425978i
\(577\) 46.1916 1.92298 0.961490 0.274839i \(-0.0886247\pi\)
0.961490 + 0.274839i \(0.0886247\pi\)
\(578\) −6.31800 + 10.9431i −0.262794 + 0.455173i
\(579\) 15.4445 + 18.4306i 0.641850 + 0.765951i
\(580\) 15.3133 + 26.5234i 0.635849 + 1.10132i
\(581\) 15.1733 + 26.2810i 0.629495 + 1.09032i
\(582\) −4.43367 5.29091i −0.183781 0.219315i
\(583\) 12.1803 21.0969i 0.504457 0.873746i
\(584\) −7.90683 −0.327187
\(585\) −13.0039 + 73.1847i −0.537643 + 3.02581i
\(586\) −6.61766 −0.273373
\(587\) 5.58707 9.67708i 0.230603 0.399416i −0.727383 0.686232i \(-0.759263\pi\)
0.957986 + 0.286816i \(0.0925968\pi\)
\(588\) −0.0539439 + 0.147906i −0.00222461 + 0.00609956i
\(589\) 0.481556 + 0.834079i 0.0198422 + 0.0343676i
\(590\) −7.83320 13.5675i −0.322488 0.558565i
\(591\) 33.9152 5.95713i 1.39508 0.245044i
\(592\) −4.17470 + 7.23080i −0.171579 + 0.297184i
\(593\) −29.7071 −1.21992 −0.609962 0.792431i \(-0.708815\pi\)
−0.609962 + 0.792431i \(0.708815\pi\)
\(594\) −18.9429 10.9866i −0.777236 0.450787i
\(595\) −57.8498 −2.37161
\(596\) −10.2299 + 17.7188i −0.419035 + 0.725790i
\(597\) −25.9387 + 4.55608i −1.06160 + 0.186468i
\(598\) 5.02647 + 8.70609i 0.205547 + 0.356019i
\(599\) −20.1067 34.8259i −0.821539 1.42295i −0.904536 0.426398i \(-0.859782\pi\)
0.0829964 0.996550i \(-0.473551\pi\)
\(600\) 6.73237 18.4592i 0.274848 0.753594i
\(601\) −8.79736 + 15.2375i −0.358852 + 0.621550i −0.987769 0.155922i \(-0.950165\pi\)
0.628917 + 0.777472i \(0.283498\pi\)
\(602\) −11.0825 −0.451689
\(603\) −15.0605 12.6711i −0.613311 0.516007i
\(604\) −0.665480 −0.0270780
\(605\) −13.6660 + 23.6702i −0.555603 + 0.962332i
\(606\) 3.15945 + 3.77033i 0.128344 + 0.153159i
\(607\) 0.420571 + 0.728451i 0.0170705 + 0.0295669i 0.874434 0.485144i \(-0.161233\pi\)
−0.857364 + 0.514711i \(0.827899\pi\)
\(608\) 2.22011 + 3.84535i 0.0900375 + 0.155950i
\(609\) 22.1521 + 26.4352i 0.897650 + 1.07121i
\(610\) 2.02139 3.50116i 0.0818438 0.141758i
\(611\) −38.9006 −1.57375
\(612\) −12.4970 10.5143i −0.505160 0.425015i
\(613\) 24.2957 0.981294 0.490647 0.871358i \(-0.336760\pi\)
0.490647 + 0.871358i \(0.336760\pi\)
\(614\) −3.90974 + 6.77187i −0.157784 + 0.273291i
\(615\) 19.4497 53.3284i 0.784289 2.15041i
\(616\) −5.53874 9.59338i −0.223162 0.386528i
\(617\) −2.17856 3.77337i −0.0877054 0.151910i 0.818835 0.574028i \(-0.194620\pi\)
−0.906541 + 0.422118i \(0.861287\pi\)
\(618\) 6.74560 1.18485i 0.271348 0.0476617i
\(619\) 12.3209 21.3405i 0.495220 0.857746i −0.504765 0.863257i \(-0.668421\pi\)
0.999985 + 0.00551106i \(0.00175423\pi\)
\(620\) 0.876904 0.0352173
\(621\) −7.37294 4.27621i −0.295866 0.171599i
\(622\) 20.3382 0.815489
\(623\) −17.8195 + 30.8642i −0.713922 + 1.23655i
\(624\) −10.4552 + 1.83643i −0.418541 + 0.0735159i
\(625\) −23.4842 40.6759i −0.939369 1.62703i
\(626\) 13.5662 + 23.4974i 0.542216 + 0.939146i
\(627\) 11.1054 30.4493i 0.443505 1.21603i
\(628\) 4.10401 7.10836i 0.163768 0.283654i
\(629\) 45.4533 1.81234
\(630\) 5.57718 31.3880i 0.222200 1.25053i
\(631\) 7.91509 0.315095 0.157547 0.987511i \(-0.449641\pi\)
0.157547 + 0.987511i \(0.449641\pi\)
\(632\) −5.86350 + 10.1559i −0.233238 + 0.403979i
\(633\) 8.20462 + 9.79097i 0.326104 + 0.389156i
\(634\) −4.29459 7.43844i −0.170560 0.295418i
\(635\) 1.73761 + 3.00963i 0.0689550 + 0.119434i
\(636\) 6.43051 + 7.67385i 0.254986 + 0.304288i
\(637\) 0.278537 0.482440i 0.0110360 0.0191150i
\(638\) 31.9262 1.26397
\(639\) 41.6128 15.0838i 1.64618 0.596705i
\(640\) 4.04279 0.159805
\(641\) 1.97143 3.41461i 0.0778667 0.134869i −0.824463 0.565916i \(-0.808522\pi\)
0.902329 + 0.431047i \(0.141856\pi\)
\(642\) 10.2021 27.9726i 0.402643 1.10399i
\(643\) −1.91502 3.31692i −0.0755211 0.130806i 0.825792 0.563975i \(-0.190729\pi\)
−0.901313 + 0.433169i \(0.857395\pi\)
\(644\) −2.15579 3.73393i −0.0849499 0.147137i
\(645\) −29.0784 + 5.10756i −1.14496 + 0.201110i
\(646\) 12.0861 20.9337i 0.475520 0.823625i
\(647\) 33.0472 1.29922 0.649610 0.760268i \(-0.274932\pi\)
0.649610 + 0.760268i \(0.274932\pi\)
\(648\) 6.90962 5.76691i 0.271435 0.226545i
\(649\) −16.3312 −0.641056
\(650\) −34.7623 + 60.2101i −1.36349 + 2.36164i
\(651\) 0.972623 0.170839i 0.0381201 0.00669572i
\(652\) −6.18054 10.7050i −0.242049 0.419241i
\(653\) 22.7564 + 39.4153i 0.890528 + 1.54244i 0.839243 + 0.543756i \(0.182998\pi\)
0.0512854 + 0.998684i \(0.483668\pi\)
\(654\) −1.51987 + 4.16726i −0.0594316 + 0.162953i
\(655\) 11.8258 20.4828i 0.462071 0.800331i
\(656\) 8.10654 0.316507
\(657\) −22.3006 + 8.08352i −0.870031 + 0.315368i
\(658\) 16.6840 0.650409
\(659\) −15.6698 + 27.1408i −0.610407 + 1.05726i 0.380765 + 0.924672i \(0.375661\pi\)
−0.991172 + 0.132584i \(0.957672\pi\)
\(660\) −18.9539 22.6186i −0.737778 0.880427i
\(661\) 5.54920 + 9.61150i 0.215839 + 0.373844i 0.953532 0.301293i \(-0.0974181\pi\)
−0.737693 + 0.675136i \(0.764085\pi\)
\(662\) 1.71562 + 2.97153i 0.0666793 + 0.115492i
\(663\) 37.1163 + 44.2927i 1.44148 + 1.72019i
\(664\) −5.77258 + 9.99839i −0.224019 + 0.388013i
\(665\) 47.1842 1.82973
\(666\) −4.38207 + 24.6619i −0.169802 + 0.955630i
\(667\) 12.4263 0.481149
\(668\) 12.7054 22.0064i 0.491586 0.851452i
\(669\) 2.37946 6.52415i 0.0919953 0.252238i
\(670\) −13.2616 22.9698i −0.512340 0.887399i
\(671\) −2.10717 3.64973i −0.0813465 0.140896i
\(672\) 4.48408 0.787619i 0.172977 0.0303831i
\(673\) −19.3083 + 33.4430i −0.744281 + 1.28913i 0.206250 + 0.978499i \(0.433874\pi\)
−0.950530 + 0.310632i \(0.899459\pi\)
\(674\) 9.14365 0.352200
\(675\) 0.116466 58.9457i 0.00448278 2.26882i
\(676\) 24.5609 0.944650
\(677\) 15.4154 26.7002i 0.592461 1.02617i −0.401439 0.915886i \(-0.631490\pi\)
0.993900 0.110286i \(-0.0351768\pi\)
\(678\) 9.75476 1.71340i 0.374629 0.0658029i
\(679\) −5.23790 9.07230i −0.201012 0.348163i
\(680\) −11.0043 19.0599i −0.421994 0.730915i
\(681\) 3.84878 10.5528i 0.147486 0.404384i
\(682\) 0.457058 0.791647i 0.0175016 0.0303137i
\(683\) −20.2866 −0.776245 −0.388122 0.921608i \(-0.626876\pi\)
−0.388122 + 0.921608i \(0.626876\pi\)
\(684\) 10.1930 + 8.57581i 0.389737 + 0.327904i
\(685\) −39.6302 −1.51419
\(686\) −9.31927 + 16.1415i −0.355811 + 0.616284i
\(687\) −10.7076 12.7779i −0.408521 0.487508i
\(688\) −2.10813 3.65139i −0.0803717 0.139208i
\(689\) −17.7132 30.6801i −0.674819 1.16882i
\(690\) −7.37722 8.80359i −0.280846 0.335147i
\(691\) −11.0891 + 19.2069i −0.421850 + 0.730666i −0.996121 0.0879995i \(-0.971953\pi\)
0.574270 + 0.818666i \(0.305286\pi\)
\(692\) 16.7503 0.636752
\(693\) −25.4294 21.3949i −0.965981 0.812725i
\(694\) −36.7802 −1.39616
\(695\) 6.00154 10.3950i 0.227651 0.394304i
\(696\) −4.49588 + 12.3271i −0.170416 + 0.467256i
\(697\) −22.0656 38.2187i −0.835794 1.44764i
\(698\) −8.50479 14.7307i −0.321911 0.557566i
\(699\) −46.4612 + 8.16081i −1.75732 + 0.308670i
\(700\) 14.9091 25.8233i 0.563511 0.976030i
\(701\) 14.5406 0.549189 0.274595 0.961560i \(-0.411456\pi\)
0.274595 + 0.961560i \(0.411456\pi\)
\(702\) −27.6105 + 15.8683i −1.04209 + 0.598910i
\(703\) −37.0733 −1.39825
\(704\) 2.10717 3.64973i 0.0794170 0.137554i
\(705\) 43.7756 7.68909i 1.64868 0.289588i
\(706\) 13.1451 + 22.7680i 0.494723 + 0.856885i
\(707\) 3.73255 + 6.46497i 0.140377 + 0.243140i
\(708\) 2.29978 6.30566i 0.0864309 0.236981i
\(709\) 10.5471 18.2681i 0.396105 0.686073i −0.597137 0.802139i \(-0.703695\pi\)
0.993242 + 0.116066i \(0.0370284\pi\)
\(710\) 59.6476 2.23853
\(711\) −6.15475 + 34.6384i −0.230821 + 1.29904i
\(712\) −13.5586 −0.508129
\(713\) 0.177896 0.308125i 0.00666225 0.0115394i
\(714\) −15.9187 18.9966i −0.595743 0.710929i
\(715\) 52.2094 + 90.4294i 1.95252 + 3.38187i
\(716\) 5.47933 + 9.49048i 0.204772 + 0.354676i
\(717\) −1.87704 2.23997i −0.0700995 0.0836531i
\(718\) 8.56582 14.8364i 0.319674 0.553691i
\(719\) 24.8266 0.925877 0.462938 0.886390i \(-0.346795\pi\)
0.462938 + 0.886390i \(0.346795\pi\)
\(720\) 11.4024 4.13313i 0.424942 0.154033i
\(721\) 10.3937 0.387080
\(722\) −0.357818 + 0.619758i −0.0133166 + 0.0230650i
\(723\) 9.16163 25.1199i 0.340725 0.934218i
\(724\) 3.35341 + 5.80827i 0.124628 + 0.215863i
\(725\) 42.9693 + 74.4250i 1.59584 + 2.76408i
\(726\) −11.5333 + 2.02580i −0.428041 + 0.0751846i
\(727\) −6.40686 + 11.0970i −0.237617 + 0.411565i −0.960030 0.279897i \(-0.909700\pi\)
0.722413 + 0.691462i \(0.243033\pi\)
\(728\) −16.1094 −0.597053
\(729\) 13.5923 23.3292i 0.503418 0.864043i
\(730\) −31.9656 −1.18310
\(731\) −11.4764 + 19.8778i −0.424471 + 0.735206i
\(732\) 1.70593 0.299644i 0.0630532 0.0110752i
\(733\) −4.64425 8.04409i −0.171539 0.297115i 0.767419 0.641146i \(-0.221541\pi\)
−0.938958 + 0.344031i \(0.888207\pi\)
\(734\) 3.56149 + 6.16868i 0.131457 + 0.227690i
\(735\) −0.218083 + 0.597954i −0.00804413 + 0.0220559i
\(736\) 0.820153 1.42055i 0.0302312 0.0523620i
\(737\) −27.6487 −1.01845
\(738\) 22.8639 8.28769i 0.841632 0.305074i
\(739\) −17.2041 −0.632861 −0.316431 0.948616i \(-0.602484\pi\)
−0.316431 + 0.948616i \(0.602484\pi\)
\(740\) −16.8774 + 29.2326i −0.620427 + 1.07461i
\(741\) −30.2733 36.1267i −1.11212 1.32715i
\(742\) 7.59695 + 13.1583i 0.278893 + 0.483057i
\(743\) −0.0184581 0.0319704i −0.000677162 0.00117288i 0.865687 0.500586i \(-0.166882\pi\)
−0.866364 + 0.499413i \(0.833549\pi\)
\(744\) 0.241300 + 0.287956i 0.00884650 + 0.0105570i
\(745\) −41.3575 + 71.6333i −1.51522 + 2.62444i
\(746\) −13.0150 −0.476511
\(747\) −6.05931 + 34.1013i −0.221698 + 1.24770i
\(748\) −22.9425 −0.838859
\(749\) 22.5929 39.1320i 0.825525 1.42985i
\(750\) 15.2212 41.7344i 0.555800 1.52393i
\(751\) 4.85261 + 8.40497i 0.177074 + 0.306702i 0.940877 0.338748i \(-0.110003\pi\)
−0.763803 + 0.645450i \(0.776670\pi\)
\(752\) 3.17365 + 5.49692i 0.115731 + 0.200452i
\(753\) −24.4951 + 4.30252i −0.892652 + 0.156793i
\(754\) 23.2143 40.2084i 0.845415 1.46430i
\(755\) −2.69039 −0.0979135
\(756\) 11.8418 6.80570i 0.430682 0.247521i
\(757\) −44.2726 −1.60912 −0.804558 0.593874i \(-0.797598\pi\)
−0.804558 + 0.593874i \(0.797598\pi\)
\(758\) −2.35801 + 4.08420i −0.0856469 + 0.148345i
\(759\) −11.7928 + 2.07138i −0.428052 + 0.0751864i
\(760\) 8.97545 + 15.5459i 0.325574 + 0.563910i
\(761\) −6.07815 10.5277i −0.220333 0.381628i 0.734576 0.678526i \(-0.237381\pi\)
−0.954909 + 0.296898i \(0.904048\pi\)
\(762\) −0.510152 + 1.39876i −0.0184808 + 0.0506718i
\(763\) −3.36581 + 5.82975i −0.121850 + 0.211051i
\(764\) 20.4119 0.738475
\(765\) −50.5225 42.5070i −1.82665 1.53684i
\(766\) −4.26041 −0.153935
\(767\) −11.8748 + 20.5678i −0.428774 + 0.742659i
\(768\) 1.11247 + 1.32756i 0.0401427 + 0.0479042i
\(769\) 8.10259 + 14.0341i 0.292187 + 0.506083i 0.974327 0.225139i \(-0.0722837\pi\)
−0.682140 + 0.731222i \(0.738950\pi\)
\(770\) −22.3919 38.7840i −0.806949 1.39768i
\(771\) −11.5682 13.8049i −0.416619 0.497172i
\(772\) −6.94154 + 12.0231i −0.249832 + 0.432721i
\(773\) −23.7724 −0.855032 −0.427516 0.904008i \(-0.640611\pi\)
−0.427516 + 0.904008i \(0.640611\pi\)
\(774\) −9.67880 8.14323i −0.347897 0.292702i
\(775\) 2.46061 0.0883875
\(776\) 1.99272 3.45149i 0.0715345 0.123901i
\(777\) −13.0246 + 35.7115i −0.467254 + 1.28114i
\(778\) 13.2536 + 22.9558i 0.475163 + 0.823006i
\(779\) 17.9975 + 31.1725i 0.644826 + 1.11687i
\(780\) −42.2680 + 7.42428i −1.51344 + 0.265832i
\(781\) 31.0894 53.8484i 1.11247 1.92685i
\(782\) −8.92965 −0.319324
\(783\) −0.0777761 + 39.3639i −0.00277949 + 1.40675i
\(784\) −0.0908960 −0.00324628
\(785\) 16.5916 28.7376i 0.592181 1.02569i
\(786\) 9.98025 1.75301i 0.355984 0.0625278i
\(787\) −24.4808 42.4019i −0.872645 1.51146i −0.859251 0.511555i \(-0.829070\pi\)
−0.0133939 0.999910i \(-0.504264\pi\)
\(788\) 9.94035 + 17.2172i 0.354110 + 0.613337i
\(789\) −4.60401 + 12.6235i −0.163907 + 0.449410i
\(790\) −23.7049 + 41.0581i −0.843382 + 1.46078i
\(791\) 15.0302 0.534413
\(792\) 2.21184 12.4481i 0.0785942 0.442322i
\(793\) −6.12870 −0.217636
\(794\) −4.14450 + 7.17848i −0.147083 + 0.254755i
\(795\) 25.9972 + 31.0237i 0.922025 + 1.10030i
\(796\) −7.60248 13.1679i −0.269463 0.466723i
\(797\) 4.10867 + 7.11643i 0.145537 + 0.252077i 0.929573 0.368638i \(-0.120176\pi\)
−0.784036 + 0.620715i \(0.786842\pi\)
\(798\) 12.9838 + 15.4943i 0.459623 + 0.548491i
\(799\) 17.2770 29.9247i 0.611217 1.05866i
\(800\) 11.3441 0.401075
\(801\) −38.2410 + 13.8616i −1.35118 + 0.489774i
\(802\) 21.8269 0.770736
\(803\) −16.6611 + 28.8578i −0.587956 + 1.01837i
\(804\) 3.89352 10.6755i 0.137314 0.376495i
\(805\) −8.71538 15.0955i −0.307177 0.532046i
\(806\) −0.664675 1.15125i −0.0234122 0.0405511i
\(807\) −16.3521 + 2.87221i −0.575621 + 0.101107i
\(808\) −1.42002 + 2.45955i −0.0499562 + 0.0865266i
\(809\) 26.7693 0.941159 0.470580 0.882358i \(-0.344045\pi\)
0.470580 + 0.882358i \(0.344045\pi\)
\(810\) 27.9341 23.3144i 0.981504 0.819183i
\(811\) 18.3883 0.645702 0.322851 0.946450i \(-0.395359\pi\)
0.322851 + 0.946450i \(0.395359\pi\)
\(812\) −9.95631 + 17.2448i −0.349398 + 0.605175i
\(813\) −2.50967 + 0.440818i −0.0880179 + 0.0154602i
\(814\) 17.5936 + 30.4731i 0.616657 + 1.06808i
\(815\) −24.9866 43.2781i −0.875243 1.51596i
\(816\) 3.23078 8.85833i 0.113100 0.310104i
\(817\) 9.36058 16.2130i 0.327485 0.567221i
\(818\) −10.0393 −0.351017
\(819\) −45.4353 + 16.4694i −1.58764 + 0.575486i
\(820\) 32.7730 1.14448
\(821\) 5.64051 9.76966i 0.196855 0.340963i −0.750652 0.660698i \(-0.770260\pi\)
0.947507 + 0.319735i \(0.103594\pi\)
\(822\) −10.9052 13.0137i −0.380361 0.453904i
\(823\) 10.5058 + 18.1966i 0.366209 + 0.634293i 0.988969 0.148120i \(-0.0473221\pi\)
−0.622760 + 0.782413i \(0.713989\pi\)
\(824\) 1.97710 + 3.42443i 0.0688754 + 0.119296i
\(825\) −53.1848 63.4681i −1.85166 2.20967i
\(826\) 5.09295 8.82125i 0.177206 0.306930i
\(827\) −38.2016 −1.32840 −0.664200 0.747555i \(-0.731228\pi\)
−0.664200 + 0.747555i \(0.731228\pi\)
\(828\) 0.860891 4.84503i 0.0299180 0.168376i
\(829\) 36.5596 1.26977 0.634885 0.772607i \(-0.281048\pi\)
0.634885 + 0.772607i \(0.281048\pi\)
\(830\) −23.3373 + 40.4214i −0.810049 + 1.40305i
\(831\) −12.4697 + 34.1900i −0.432567 + 1.18604i
\(832\) −3.06435 5.30761i −0.106237 0.184008i
\(833\) 0.247414 + 0.428534i 0.00857239 + 0.0148478i
\(834\) 5.06494 0.889647i 0.175385 0.0308059i
\(835\) 51.3652 88.9671i 1.77756 3.07883i
\(836\) 18.7127 0.647191
\(837\) 0.974961 + 0.565465i 0.0336996 + 0.0195453i
\(838\) 0.889810 0.0307380
\(839\) 1.07344 1.85926i 0.0370594 0.0641887i −0.846901 0.531751i \(-0.821534\pi\)
0.883960 + 0.467562i \(0.154868\pi\)
\(840\) 18.1282 3.18418i 0.625481 0.109865i
\(841\) −14.1949 24.5863i −0.489480 0.847805i
\(842\) −10.0991 17.4922i −0.348039 0.602821i
\(843\) −18.3291 + 50.2559i −0.631289 + 1.73091i
\(844\) −3.68758 + 6.38708i −0.126932 + 0.219852i
\(845\) 99.2945 3.41584
\(846\) 14.5708 + 12.2591i 0.500954 + 0.421476i
\(847\) −17.7706 −0.610605
\(848\) −2.89020 + 5.00598i −0.0992500 + 0.171906i
\(849\) −13.8771 16.5602i −0.476260 0.568345i
\(850\) −30.8781 53.4825i −1.05911 1.83443i
\(851\) 6.84779 + 11.8607i 0.234739 + 0.406580i
\(852\) 16.4134 + 19.5869i 0.562315 + 0.671038i
\(853\) −22.4142 + 38.8226i −0.767448 + 1.32926i 0.171494 + 0.985185i \(0.445140\pi\)
−0.938943 + 0.344074i \(0.888193\pi\)
\(854\) 2.62852 0.0899460
\(855\) 41.2079 + 34.6702i 1.40928 + 1.18569i
\(856\) 17.1906 0.587562
\(857\) 24.2882 42.0684i 0.829669 1.43703i −0.0686293 0.997642i \(-0.521863\pi\)
0.898298 0.439386i \(-0.144804\pi\)
\(858\) −15.3284 + 42.0282i −0.523301 + 1.43482i
\(859\) 13.3098 + 23.0532i 0.454125 + 0.786567i 0.998637 0.0521858i \(-0.0166188\pi\)
−0.544513 + 0.838752i \(0.683285\pi\)
\(860\) −8.52271 14.7618i −0.290622 0.503372i
\(861\) 36.3504 6.38487i 1.23882 0.217596i
\(862\) 6.22113 10.7753i 0.211893 0.367009i
\(863\) −28.3414 −0.964753 −0.482377 0.875964i \(-0.660226\pi\)
−0.482377 + 0.875964i \(0.660226\pi\)
\(864\) 4.49486 + 2.60696i 0.152918 + 0.0886907i
\(865\) 67.7180 2.30248
\(866\) −2.01599 + 3.49180i −0.0685061 + 0.118656i
\(867\) −21.5562 + 3.78630i −0.732087 + 0.128590i
\(868\) 0.285070 + 0.493756i 0.00967592 + 0.0167592i
\(869\) 24.7108 + 42.8004i 0.838257 + 1.45190i
\(870\) −18.1759 + 49.8357i −0.616220 + 1.68959i
\(871\) −20.1040 + 34.8212i −0.681199 + 1.17987i
\(872\) −2.56099 −0.0867262
\(873\) 2.09170 11.7719i 0.0707933 0.398419i
\(874\) 7.28333 0.246362
\(875\) 33.7080 58.3840i 1.13954 1.97374i
\(876\) −8.79609 10.4968i −0.297192 0.354654i
\(877\) −8.76403 15.1797i −0.295940 0.512584i 0.679263 0.733895i \(-0.262300\pi\)
−0.975203 + 0.221311i \(0.928966\pi\)
\(878\) 7.57067 + 13.1128i 0.255498 + 0.442535i
\(879\) −7.36192 8.78534i −0.248312 0.296322i
\(880\) 8.51885 14.7551i 0.287170 0.497393i
\(881\) 8.16640 0.275133 0.137566 0.990493i \(-0.456072\pi\)
0.137566 + 0.990493i \(0.456072\pi\)
\(882\) −0.256365 + 0.0929272i −0.00863227 + 0.00312902i
\(883\) −17.8946 −0.602200 −0.301100 0.953592i \(-0.597354\pi\)
−0.301100 + 0.953592i \(0.597354\pi\)
\(884\) −16.6820 + 28.8941i −0.561076 + 0.971812i
\(885\) 9.29751 25.4924i 0.312532 0.856919i
\(886\) 0.517823 + 0.896895i 0.0173966 + 0.0301318i
\(887\) −3.43066 5.94207i −0.115190 0.199515i 0.802666 0.596429i \(-0.203414\pi\)
−0.917856 + 0.396914i \(0.870081\pi\)
\(888\) −14.2435 + 2.50185i −0.477982 + 0.0839566i
\(889\) −1.12975 + 1.95679i −0.0378906 + 0.0656285i
\(890\) −54.8144 −1.83738
\(891\) −6.48789 37.3701i −0.217353 1.25195i
\(892\) 4.00942 0.134245
\(893\) −14.0917 + 24.4076i −0.471561 + 0.816768i
\(894\) −34.9033 + 6.13069i −1.16734 + 0.205041i
\(895\) 22.1518 + 38.3680i 0.740451 + 1.28250i
\(896\) 1.31426 + 2.27636i 0.0439063 + 0.0760479i
\(897\) −5.96609 + 16.3582i −0.199202 + 0.546184i
\(898\) 11.3266 19.6182i 0.377972 0.654667i
\(899\) −1.64319 −0.0548036
\(900\) 31.9953 11.5976i 1.06651 0.386587i
\(901\) 31.4680 1.04835
\(902\) 17.0819 29.5867i 0.568764 0.985129i
\(903\) −12.3289 14.7127i −0.410281 0.489608i
\(904\) 2.85907 + 4.95205i 0.0950911 + 0.164703i
\(905\) 13.5571 + 23.4816i 0.450654 + 0.780555i
\(906\) −0.740325 0.883466i −0.0245956 0.0293512i
\(907\) 7.26087 12.5762i 0.241093 0.417586i −0.719933 0.694044i \(-0.755827\pi\)
0.961026 + 0.276458i \(0.0891607\pi\)
\(908\) 6.48523 0.215220
\(909\) −1.49056 + 8.38873i −0.0494386 + 0.278237i
\(910\) −65.1268 −2.15893
\(911\) −20.9513 + 36.2887i −0.694147 + 1.20230i 0.276321 + 0.961065i \(0.410885\pi\)
−0.970468 + 0.241232i \(0.922449\pi\)
\(912\) −2.63513 + 7.22516i −0.0872580 + 0.239249i
\(913\) 24.3276 + 42.1367i 0.805127 + 1.39452i
\(914\) −12.9650 22.4561i −0.428845 0.742782i
\(915\) 6.89673 1.21140i 0.227999 0.0400475i
\(916\) 4.81256 8.33559i 0.159011 0.275416i
\(917\) 15.3776 0.507814
\(918\) 0.0558905 28.2873i 0.00184466 0.933619i
\(919\) −48.6533 −1.60493 −0.802463 0.596702i \(-0.796477\pi\)
−0.802463 + 0.596702i \(0.796477\pi\)
\(920\) 3.31570 5.74296i 0.109315 0.189340i
\(921\) −13.3395 + 2.34306i −0.439552 + 0.0772065i
\(922\) 6.26415 + 10.8498i 0.206299 + 0.357320i
\(923\) −45.2116 78.3089i −1.48816 2.57757i
\(924\) 6.57413 18.0253i 0.216273 0.592990i
\(925\) −47.3583 + 82.0270i −1.55713 + 2.69703i
\(926\) −9.38177 −0.308304
\(927\) 9.07721 + 7.63708i 0.298135 + 0.250835i
\(928\) −7.57561 −0.248682
\(929\) 2.01117 3.48345i 0.0659844 0.114288i −0.831146 0.556054i \(-0.812315\pi\)
0.897130 + 0.441766i \(0.145648\pi\)
\(930\) 0.975526 + 1.16414i 0.0319888 + 0.0381738i
\(931\) −0.201799 0.349527i −0.00661371 0.0114553i
\(932\) −13.6175 23.5862i −0.446056 0.772592i
\(933\) 22.6256 + 27.0002i 0.740729 + 0.883948i
\(934\) −6.52661 + 11.3044i −0.213557 + 0.369892i
\(935\) −92.7514 −3.03330
\(936\) −14.0690 11.8369i −0.459859 0.386901i
\(937\) −17.1767 −0.561138 −0.280569 0.959834i \(-0.590523\pi\)
−0.280569 + 0.959834i \(0.590523\pi\)
\(938\) 8.62235 14.9344i 0.281530 0.487624i
\(939\) −16.1023 + 44.1501i −0.525478 + 1.44078i
\(940\) 12.8304 + 22.2229i 0.418481 + 0.724830i
\(941\) −16.9767 29.4046i −0.553426 0.958562i −0.998024 0.0628317i \(-0.979987\pi\)
0.444598 0.895730i \(-0.353346\pi\)
\(942\) 14.0024 2.45949i 0.456221 0.0801344i
\(943\) 6.64860 11.5157i 0.216508 0.375003i
\(944\) 3.87515 0.126125
\(945\) 47.8739 27.5140i 1.55734 0.895031i
\(946\) −17.7688 −0.577712
\(947\) 15.8617 27.4734i 0.515438 0.892764i −0.484402 0.874846i \(-0.660963\pi\)
0.999839 0.0179184i \(-0.00570392\pi\)
\(948\) −20.0055 + 3.51393i −0.649748 + 0.114127i
\(949\) 24.2293 + 41.9664i 0.786516 + 1.36229i
\(950\) 25.1852 + 43.6221i 0.817117 + 1.41529i
\(951\) 5.09740 13.9763i 0.165295 0.453214i
\(952\) 7.15469 12.3923i 0.231885 0.401636i
\(953\) 2.97694 0.0964327 0.0482163 0.998837i \(-0.484646\pi\)
0.0482163 + 0.998837i \(0.484646\pi\)
\(954\) −3.03377 + 17.0738i −0.0982218 + 0.552785i
\(955\) 82.5208 2.67031
\(956\) 0.843640 1.46123i 0.0272853 0.0472595i
\(957\) 35.5169 + 42.3840i 1.14810 + 1.37008i
\(958\) 20.5575 + 35.6066i 0.664182 + 1.15040i
\(959\) −12.8833 22.3145i −0.416022 0.720572i
\(960\) 4.49746 + 5.36704i 0.145155 + 0.173221i
\(961\) 15.4765 26.8060i 0.499241 0.864711i
\(962\) 51.1710 1.64982
\(963\) 48.4847 17.5747i 1.56240 0.566337i
\(964\) 15.4374 0.497206
\(965\) −28.0632 + 48.6068i −0.903385 + 1.56471i
\(966\) 2.55878 7.01581i 0.0823274 0.225730i
\(967\) 10.4828 + 18.1567i 0.337104 + 0.583881i 0.983887 0.178793i \(-0.0572193\pi\)
−0.646783 + 0.762674i \(0.723886\pi\)
\(968\) −3.38035 5.85493i −0.108649 0.188185i
\(969\) 41.2361 7.24304i 1.32469 0.232680i
\(970\) 8.05614 13.9536i 0.258667 0.448024i
\(971\) −46.8628 −1.50390 −0.751950 0.659220i \(-0.770887\pi\)
−0.751950 + 0.659220i \(0.770887\pi\)
\(972\) 15.3426 + 2.75745i 0.492115 + 0.0884451i
\(973\) 7.80410 0.250188
\(974\) −3.43495 + 5.94951i −0.110063 + 0.190635i
\(975\) −118.605 + 20.8326i −3.79838 + 0.667179i
\(976\) 0.500000 + 0.866025i 0.0160046 + 0.0277208i
\(977\) 12.8646 + 22.2822i 0.411576 + 0.712870i 0.995062 0.0992525i \(-0.0316452\pi\)
−0.583486 + 0.812123i \(0.698312\pi\)
\(978\) 7.33591 20.1140i 0.234577 0.643175i
\(979\) −28.5702 + 49.4851i −0.913109 + 1.58155i
\(980\) −0.367473 −0.0117385
\(981\) −7.22310 + 2.61822i −0.230616 + 0.0835934i
\(982\) −20.2204 −0.645259
\(983\) 16.7394 28.9936i 0.533905 0.924751i −0.465310 0.885148i \(-0.654057\pi\)
0.999215 0.0396032i \(-0.0126094\pi\)
\(984\) 9.01826 + 10.7619i 0.287492 + 0.343078i
\(985\) 40.1867 + 69.6055i 1.28046 + 2.21781i
\(986\) 20.6204 + 35.7156i 0.656688 + 1.13742i
\(987\) 18.5604 + 22.1490i 0.590783 + 0.705010i
\(988\) 13.6064 23.5670i 0.432877 0.749766i
\(989\) −6.91595 −0.219914
\(990\) 8.94199 50.3248i 0.284195 1.59943i
\(991\) 1.68880 0.0536466 0.0268233 0.999640i \(-0.491461\pi\)
0.0268233 + 0.999640i \(0.491461\pi\)
\(992\) −0.108453 + 0.187846i −0.00344338 + 0.00596411i
\(993\) −2.03633 + 5.58332i −0.0646209 + 0.177181i
\(994\) 19.3907 + 33.5856i 0.615035 + 1.06527i
\(995\) −30.7352 53.2349i −0.974372 1.68766i
\(996\) −19.6953 + 3.45943i −0.624069 + 0.109616i
\(997\) −13.6025 + 23.5602i −0.430795 + 0.746160i −0.996942 0.0781450i \(-0.975100\pi\)
0.566147 + 0.824305i \(0.308434\pi\)
\(998\) 11.2610 0.356460
\(999\) −37.6151 + 21.6181i −1.19009 + 0.683967i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1098.2.e.f.367.1 34
9.2 odd 6 9882.2.a.bk.1.2 17
9.4 even 3 inner 1098.2.e.f.733.1 yes 34
9.7 even 3 9882.2.a.bm.1.16 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1098.2.e.f.367.1 34 1.1 even 1 trivial
1098.2.e.f.733.1 yes 34 9.4 even 3 inner
9882.2.a.bk.1.2 17 9.2 odd 6
9882.2.a.bm.1.16 17 9.7 even 3