Properties

Label 9882.2.a.bk.1.2
Level $9882$
Weight $2$
Character 9882.1
Self dual yes
Analytic conductor $78.908$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9882,2,Mod(1,9882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9882.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9882 = 2 \cdot 3^{4} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.9081672774\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - x^{16} - 49 x^{15} + 46 x^{14} + 980 x^{13} - 821 x^{12} - 10276 x^{11} + 7017 x^{10} + \cdots + 3888 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 1098)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.18694\) of defining polynomial
Character \(\chi\) \(=\) 9882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -4.04279 q^{5} -2.62852 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -4.04279 q^{5} -2.62852 q^{7} -1.00000 q^{8} +4.04279 q^{10} +4.21434 q^{11} +6.12870 q^{13} +2.62852 q^{14} +1.00000 q^{16} -5.44390 q^{17} -4.44023 q^{19} -4.04279 q^{20} -4.21434 q^{22} +1.64031 q^{23} +11.3441 q^{25} -6.12870 q^{26} -2.62852 q^{28} +7.57561 q^{29} +0.216906 q^{31} -1.00000 q^{32} +5.44390 q^{34} +10.6265 q^{35} +8.34941 q^{37} +4.44023 q^{38} +4.04279 q^{40} -8.10654 q^{41} +4.21626 q^{43} +4.21434 q^{44} -1.64031 q^{46} +6.34729 q^{47} -0.0908960 q^{49} -11.3441 q^{50} +6.12870 q^{52} -5.78041 q^{53} -17.0377 q^{55} +2.62852 q^{56} -7.57561 q^{58} -3.87515 q^{59} -1.00000 q^{61} -0.216906 q^{62} +1.00000 q^{64} -24.7770 q^{65} +6.56062 q^{67} -5.44390 q^{68} -10.6265 q^{70} -14.7541 q^{71} -7.90683 q^{73} -8.34941 q^{74} -4.44023 q^{76} -11.0775 q^{77} +11.7270 q^{79} -4.04279 q^{80} +8.10654 q^{82} -11.5452 q^{83} +22.0085 q^{85} -4.21626 q^{86} -4.21434 q^{88} +13.5586 q^{89} -16.1094 q^{91} +1.64031 q^{92} -6.34729 q^{94} +17.9509 q^{95} -3.98544 q^{97} +0.0908960 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q - 17 q^{2} + 17 q^{4} - 5 q^{5} + 11 q^{7} - 17 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 17 q - 17 q^{2} + 17 q^{4} - 5 q^{5} + 11 q^{7} - 17 q^{8} + 5 q^{10} - 3 q^{11} + 10 q^{13} - 11 q^{14} + 17 q^{16} - 8 q^{17} + 11 q^{19} - 5 q^{20} + 3 q^{22} - 5 q^{23} + 32 q^{25} - 10 q^{26} + 11 q^{28} - 6 q^{29} + 20 q^{31} - 17 q^{32} + 8 q^{34} + 8 q^{35} + 29 q^{37} - 11 q^{38} + 5 q^{40} - 20 q^{41} + 30 q^{43} - 3 q^{44} + 5 q^{46} - 10 q^{47} + 42 q^{49} - 32 q^{50} + 10 q^{52} - 2 q^{53} + 15 q^{55} - 11 q^{56} + 6 q^{58} + 3 q^{59} - 17 q^{61} - 20 q^{62} + 17 q^{64} - 28 q^{65} + 11 q^{67} - 8 q^{68} - 8 q^{70} - 63 q^{71} + 28 q^{73} - 29 q^{74} + 11 q^{76} - 17 q^{77} + 17 q^{79} - 5 q^{80} + 20 q^{82} + 20 q^{83} + 33 q^{85} - 30 q^{86} + 3 q^{88} - 2 q^{89} + 30 q^{91} - 5 q^{92} + 10 q^{94} - q^{95} + 32 q^{97} - 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −4.04279 −1.80799 −0.903994 0.427544i \(-0.859379\pi\)
−0.903994 + 0.427544i \(0.859379\pi\)
\(6\) 0 0
\(7\) −2.62852 −0.993486 −0.496743 0.867898i \(-0.665471\pi\)
−0.496743 + 0.867898i \(0.665471\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 4.04279 1.27844
\(11\) 4.21434 1.27067 0.635336 0.772236i \(-0.280861\pi\)
0.635336 + 0.772236i \(0.280861\pi\)
\(12\) 0 0
\(13\) 6.12870 1.69979 0.849897 0.526949i \(-0.176664\pi\)
0.849897 + 0.526949i \(0.176664\pi\)
\(14\) 2.62852 0.702501
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.44390 −1.32034 −0.660169 0.751117i \(-0.729516\pi\)
−0.660169 + 0.751117i \(0.729516\pi\)
\(18\) 0 0
\(19\) −4.44023 −1.01866 −0.509329 0.860572i \(-0.670106\pi\)
−0.509329 + 0.860572i \(0.670106\pi\)
\(20\) −4.04279 −0.903994
\(21\) 0 0
\(22\) −4.21434 −0.898501
\(23\) 1.64031 0.342027 0.171014 0.985269i \(-0.445296\pi\)
0.171014 + 0.985269i \(0.445296\pi\)
\(24\) 0 0
\(25\) 11.3441 2.26882
\(26\) −6.12870 −1.20194
\(27\) 0 0
\(28\) −2.62852 −0.496743
\(29\) 7.57561 1.40676 0.703378 0.710816i \(-0.251674\pi\)
0.703378 + 0.710816i \(0.251674\pi\)
\(30\) 0 0
\(31\) 0.216906 0.0389574 0.0194787 0.999810i \(-0.493799\pi\)
0.0194787 + 0.999810i \(0.493799\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 5.44390 0.933621
\(35\) 10.6265 1.79621
\(36\) 0 0
\(37\) 8.34941 1.37263 0.686317 0.727303i \(-0.259226\pi\)
0.686317 + 0.727303i \(0.259226\pi\)
\(38\) 4.44023 0.720300
\(39\) 0 0
\(40\) 4.04279 0.639221
\(41\) −8.10654 −1.26603 −0.633015 0.774140i \(-0.718183\pi\)
−0.633015 + 0.774140i \(0.718183\pi\)
\(42\) 0 0
\(43\) 4.21626 0.642973 0.321487 0.946914i \(-0.395817\pi\)
0.321487 + 0.946914i \(0.395817\pi\)
\(44\) 4.21434 0.635336
\(45\) 0 0
\(46\) −1.64031 −0.241850
\(47\) 6.34729 0.925848 0.462924 0.886398i \(-0.346800\pi\)
0.462924 + 0.886398i \(0.346800\pi\)
\(48\) 0 0
\(49\) −0.0908960 −0.0129851
\(50\) −11.3441 −1.60430
\(51\) 0 0
\(52\) 6.12870 0.849897
\(53\) −5.78041 −0.794000 −0.397000 0.917819i \(-0.629949\pi\)
−0.397000 + 0.917819i \(0.629949\pi\)
\(54\) 0 0
\(55\) −17.0377 −2.29736
\(56\) 2.62852 0.351250
\(57\) 0 0
\(58\) −7.57561 −0.994726
\(59\) −3.87515 −0.504501 −0.252251 0.967662i \(-0.581171\pi\)
−0.252251 + 0.967662i \(0.581171\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037
\(62\) −0.216906 −0.0275471
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −24.7770 −3.07321
\(66\) 0 0
\(67\) 6.56062 0.801508 0.400754 0.916186i \(-0.368748\pi\)
0.400754 + 0.916186i \(0.368748\pi\)
\(68\) −5.44390 −0.660169
\(69\) 0 0
\(70\) −10.6265 −1.27011
\(71\) −14.7541 −1.75099 −0.875494 0.483229i \(-0.839464\pi\)
−0.875494 + 0.483229i \(0.839464\pi\)
\(72\) 0 0
\(73\) −7.90683 −0.925425 −0.462713 0.886508i \(-0.653124\pi\)
−0.462713 + 0.886508i \(0.653124\pi\)
\(74\) −8.34941 −0.970599
\(75\) 0 0
\(76\) −4.44023 −0.509329
\(77\) −11.0775 −1.26240
\(78\) 0 0
\(79\) 11.7270 1.31939 0.659695 0.751533i \(-0.270685\pi\)
0.659695 + 0.751533i \(0.270685\pi\)
\(80\) −4.04279 −0.451997
\(81\) 0 0
\(82\) 8.10654 0.895218
\(83\) −11.5452 −1.26724 −0.633622 0.773642i \(-0.718433\pi\)
−0.633622 + 0.773642i \(0.718433\pi\)
\(84\) 0 0
\(85\) 22.0085 2.38716
\(86\) −4.21626 −0.454651
\(87\) 0 0
\(88\) −4.21434 −0.449251
\(89\) 13.5586 1.43721 0.718603 0.695421i \(-0.244782\pi\)
0.718603 + 0.695421i \(0.244782\pi\)
\(90\) 0 0
\(91\) −16.1094 −1.68872
\(92\) 1.64031 0.171014
\(93\) 0 0
\(94\) −6.34729 −0.654673
\(95\) 17.9509 1.84172
\(96\) 0 0
\(97\) −3.98544 −0.404660 −0.202330 0.979317i \(-0.564851\pi\)
−0.202330 + 0.979317i \(0.564851\pi\)
\(98\) 0.0908960 0.00918188
\(99\) 0 0
\(100\) 11.3441 1.13441
\(101\) −2.84004 −0.282595 −0.141297 0.989967i \(-0.545127\pi\)
−0.141297 + 0.989967i \(0.545127\pi\)
\(102\) 0 0
\(103\) −3.95419 −0.389618 −0.194809 0.980841i \(-0.562409\pi\)
−0.194809 + 0.980841i \(0.562409\pi\)
\(104\) −6.12870 −0.600968
\(105\) 0 0
\(106\) 5.78041 0.561443
\(107\) −17.1906 −1.66188 −0.830938 0.556366i \(-0.812195\pi\)
−0.830938 + 0.556366i \(0.812195\pi\)
\(108\) 0 0
\(109\) −2.56099 −0.245299 −0.122649 0.992450i \(-0.539139\pi\)
−0.122649 + 0.992450i \(0.539139\pi\)
\(110\) 17.0377 1.62448
\(111\) 0 0
\(112\) −2.62852 −0.248372
\(113\) 5.71813 0.537917 0.268958 0.963152i \(-0.413321\pi\)
0.268958 + 0.963152i \(0.413321\pi\)
\(114\) 0 0
\(115\) −6.63140 −0.618382
\(116\) 7.57561 0.703378
\(117\) 0 0
\(118\) 3.87515 0.356736
\(119\) 14.3094 1.31174
\(120\) 0 0
\(121\) 6.76070 0.614609
\(122\) 1.00000 0.0905357
\(123\) 0 0
\(124\) 0.216906 0.0194787
\(125\) −25.6479 −2.29402
\(126\) 0 0
\(127\) −0.859611 −0.0762781 −0.0381391 0.999272i \(-0.512143\pi\)
−0.0381391 + 0.999272i \(0.512143\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 24.7770 2.17309
\(131\) 5.85031 0.511144 0.255572 0.966790i \(-0.417736\pi\)
0.255572 + 0.966790i \(0.417736\pi\)
\(132\) 0 0
\(133\) 11.6712 1.01202
\(134\) −6.56062 −0.566751
\(135\) 0 0
\(136\) 5.44390 0.466810
\(137\) 9.80269 0.837500 0.418750 0.908101i \(-0.362468\pi\)
0.418750 + 0.908101i \(0.362468\pi\)
\(138\) 0 0
\(139\) −2.96901 −0.251828 −0.125914 0.992041i \(-0.540186\pi\)
−0.125914 + 0.992041i \(0.540186\pi\)
\(140\) 10.6265 0.898106
\(141\) 0 0
\(142\) 14.7541 1.23814
\(143\) 25.8284 2.15988
\(144\) 0 0
\(145\) −30.6266 −2.54340
\(146\) 7.90683 0.654374
\(147\) 0 0
\(148\) 8.34941 0.686317
\(149\) −20.4599 −1.67614 −0.838070 0.545562i \(-0.816316\pi\)
−0.838070 + 0.545562i \(0.816316\pi\)
\(150\) 0 0
\(151\) −0.665480 −0.0541560 −0.0270780 0.999633i \(-0.508620\pi\)
−0.0270780 + 0.999633i \(0.508620\pi\)
\(152\) 4.44023 0.360150
\(153\) 0 0
\(154\) 11.0775 0.892649
\(155\) −0.876904 −0.0704346
\(156\) 0 0
\(157\) −8.20803 −0.655072 −0.327536 0.944839i \(-0.606218\pi\)
−0.327536 + 0.944839i \(0.606218\pi\)
\(158\) −11.7270 −0.932950
\(159\) 0 0
\(160\) 4.04279 0.319610
\(161\) −4.31157 −0.339799
\(162\) 0 0
\(163\) 12.3611 0.968195 0.484097 0.875014i \(-0.339148\pi\)
0.484097 + 0.875014i \(0.339148\pi\)
\(164\) −8.10654 −0.633015
\(165\) 0 0
\(166\) 11.5452 0.896077
\(167\) 25.4108 1.96634 0.983172 0.182681i \(-0.0584774\pi\)
0.983172 + 0.182681i \(0.0584774\pi\)
\(168\) 0 0
\(169\) 24.5609 1.88930
\(170\) −22.0085 −1.68798
\(171\) 0 0
\(172\) 4.21626 0.321487
\(173\) −16.7503 −1.27350 −0.636752 0.771069i \(-0.719722\pi\)
−0.636752 + 0.771069i \(0.719722\pi\)
\(174\) 0 0
\(175\) −29.8182 −2.25405
\(176\) 4.21434 0.317668
\(177\) 0 0
\(178\) −13.5586 −1.01626
\(179\) 10.9587 0.819088 0.409544 0.912290i \(-0.365688\pi\)
0.409544 + 0.912290i \(0.365688\pi\)
\(180\) 0 0
\(181\) −6.70682 −0.498514 −0.249257 0.968437i \(-0.580186\pi\)
−0.249257 + 0.968437i \(0.580186\pi\)
\(182\) 16.1094 1.19411
\(183\) 0 0
\(184\) −1.64031 −0.120925
\(185\) −33.7549 −2.48171
\(186\) 0 0
\(187\) −22.9425 −1.67772
\(188\) 6.34729 0.462924
\(189\) 0 0
\(190\) −17.9509 −1.30229
\(191\) −20.4119 −1.47695 −0.738475 0.674280i \(-0.764454\pi\)
−0.738475 + 0.674280i \(0.764454\pi\)
\(192\) 0 0
\(193\) 13.8831 0.999326 0.499663 0.866220i \(-0.333457\pi\)
0.499663 + 0.866220i \(0.333457\pi\)
\(194\) 3.98544 0.286138
\(195\) 0 0
\(196\) −0.0908960 −0.00649257
\(197\) 19.8807 1.41644 0.708221 0.705991i \(-0.249498\pi\)
0.708221 + 0.705991i \(0.249498\pi\)
\(198\) 0 0
\(199\) 15.2050 1.07785 0.538926 0.842353i \(-0.318830\pi\)
0.538926 + 0.842353i \(0.318830\pi\)
\(200\) −11.3441 −0.802150
\(201\) 0 0
\(202\) 2.84004 0.199825
\(203\) −19.9126 −1.39759
\(204\) 0 0
\(205\) 32.7730 2.28897
\(206\) 3.95419 0.275502
\(207\) 0 0
\(208\) 6.12870 0.424949
\(209\) −18.7127 −1.29438
\(210\) 0 0
\(211\) 7.37516 0.507727 0.253864 0.967240i \(-0.418299\pi\)
0.253864 + 0.967240i \(0.418299\pi\)
\(212\) −5.78041 −0.397000
\(213\) 0 0
\(214\) 17.1906 1.17512
\(215\) −17.0454 −1.16249
\(216\) 0 0
\(217\) −0.570141 −0.0387037
\(218\) 2.56099 0.173452
\(219\) 0 0
\(220\) −17.0377 −1.14868
\(221\) −33.3640 −2.24430
\(222\) 0 0
\(223\) 4.00942 0.268491 0.134245 0.990948i \(-0.457139\pi\)
0.134245 + 0.990948i \(0.457139\pi\)
\(224\) 2.62852 0.175625
\(225\) 0 0
\(226\) −5.71813 −0.380365
\(227\) −6.48523 −0.430440 −0.215220 0.976566i \(-0.569047\pi\)
−0.215220 + 0.976566i \(0.569047\pi\)
\(228\) 0 0
\(229\) −9.62511 −0.636045 −0.318023 0.948083i \(-0.603019\pi\)
−0.318023 + 0.948083i \(0.603019\pi\)
\(230\) 6.63140 0.437262
\(231\) 0 0
\(232\) −7.57561 −0.497363
\(233\) −27.2350 −1.78422 −0.892112 0.451813i \(-0.850777\pi\)
−0.892112 + 0.451813i \(0.850777\pi\)
\(234\) 0 0
\(235\) −25.6608 −1.67392
\(236\) −3.87515 −0.252251
\(237\) 0 0
\(238\) −14.3094 −0.927539
\(239\) 1.68728 0.109141 0.0545706 0.998510i \(-0.482621\pi\)
0.0545706 + 0.998510i \(0.482621\pi\)
\(240\) 0 0
\(241\) 15.4374 0.994413 0.497206 0.867632i \(-0.334359\pi\)
0.497206 + 0.867632i \(0.334359\pi\)
\(242\) −6.76070 −0.434594
\(243\) 0 0
\(244\) −1.00000 −0.0640184
\(245\) 0.367473 0.0234770
\(246\) 0 0
\(247\) −27.2128 −1.73151
\(248\) −0.216906 −0.0137735
\(249\) 0 0
\(250\) 25.6479 1.62212
\(251\) −14.3588 −0.906318 −0.453159 0.891430i \(-0.649703\pi\)
−0.453159 + 0.891430i \(0.649703\pi\)
\(252\) 0 0
\(253\) 6.91281 0.434605
\(254\) 0.859611 0.0539368
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 10.3987 0.648654 0.324327 0.945945i \(-0.394862\pi\)
0.324327 + 0.945945i \(0.394862\pi\)
\(258\) 0 0
\(259\) −21.9466 −1.36369
\(260\) −24.7770 −1.53660
\(261\) 0 0
\(262\) −5.85031 −0.361433
\(263\) 7.75780 0.478367 0.239183 0.970974i \(-0.423120\pi\)
0.239183 + 0.970974i \(0.423120\pi\)
\(264\) 0 0
\(265\) 23.3690 1.43554
\(266\) −11.6712 −0.715608
\(267\) 0 0
\(268\) 6.56062 0.400754
\(269\) −9.58542 −0.584433 −0.292217 0.956352i \(-0.594393\pi\)
−0.292217 + 0.956352i \(0.594393\pi\)
\(270\) 0 0
\(271\) 1.47114 0.0893653 0.0446827 0.999001i \(-0.485772\pi\)
0.0446827 + 0.999001i \(0.485772\pi\)
\(272\) −5.44390 −0.330085
\(273\) 0 0
\(274\) −9.80269 −0.592202
\(275\) 47.8080 2.88293
\(276\) 0 0
\(277\) −21.0115 −1.26246 −0.631229 0.775596i \(-0.717449\pi\)
−0.631229 + 0.775596i \(0.717449\pi\)
\(278\) 2.96901 0.178070
\(279\) 0 0
\(280\) −10.6265 −0.635057
\(281\) 30.8848 1.84243 0.921217 0.389050i \(-0.127197\pi\)
0.921217 + 0.389050i \(0.127197\pi\)
\(282\) 0 0
\(283\) −12.4742 −0.741511 −0.370756 0.928730i \(-0.620901\pi\)
−0.370756 + 0.928730i \(0.620901\pi\)
\(284\) −14.7541 −0.875494
\(285\) 0 0
\(286\) −25.8284 −1.52727
\(287\) 21.3082 1.25778
\(288\) 0 0
\(289\) 12.6360 0.743295
\(290\) 30.6266 1.79845
\(291\) 0 0
\(292\) −7.90683 −0.462713
\(293\) 6.61766 0.386608 0.193304 0.981139i \(-0.438080\pi\)
0.193304 + 0.981139i \(0.438080\pi\)
\(294\) 0 0
\(295\) 15.6664 0.912133
\(296\) −8.34941 −0.485299
\(297\) 0 0
\(298\) 20.4599 1.18521
\(299\) 10.0529 0.581376
\(300\) 0 0
\(301\) −11.0825 −0.638785
\(302\) 0.665480 0.0382941
\(303\) 0 0
\(304\) −4.44023 −0.254665
\(305\) 4.04279 0.231489
\(306\) 0 0
\(307\) 7.81948 0.446282 0.223141 0.974786i \(-0.428369\pi\)
0.223141 + 0.974786i \(0.428369\pi\)
\(308\) −11.0775 −0.631198
\(309\) 0 0
\(310\) 0.876904 0.0498048
\(311\) −20.3382 −1.15328 −0.576638 0.817000i \(-0.695636\pi\)
−0.576638 + 0.817000i \(0.695636\pi\)
\(312\) 0 0
\(313\) −27.1325 −1.53362 −0.766809 0.641875i \(-0.778157\pi\)
−0.766809 + 0.641875i \(0.778157\pi\)
\(314\) 8.20803 0.463206
\(315\) 0 0
\(316\) 11.7270 0.659695
\(317\) −8.58918 −0.482416 −0.241208 0.970473i \(-0.577544\pi\)
−0.241208 + 0.970473i \(0.577544\pi\)
\(318\) 0 0
\(319\) 31.9262 1.78753
\(320\) −4.04279 −0.225999
\(321\) 0 0
\(322\) 4.31157 0.240274
\(323\) 24.1721 1.34497
\(324\) 0 0
\(325\) 69.5247 3.85653
\(326\) −12.3611 −0.684617
\(327\) 0 0
\(328\) 8.10654 0.447609
\(329\) −16.6840 −0.919817
\(330\) 0 0
\(331\) −3.43123 −0.188598 −0.0942988 0.995544i \(-0.530061\pi\)
−0.0942988 + 0.995544i \(0.530061\pi\)
\(332\) −11.5452 −0.633622
\(333\) 0 0
\(334\) −25.4108 −1.39042
\(335\) −26.5232 −1.44912
\(336\) 0 0
\(337\) 9.14365 0.498086 0.249043 0.968492i \(-0.419884\pi\)
0.249043 + 0.968492i \(0.419884\pi\)
\(338\) −24.5609 −1.33594
\(339\) 0 0
\(340\) 22.0085 1.19358
\(341\) 0.914116 0.0495021
\(342\) 0 0
\(343\) 18.6385 1.00639
\(344\) −4.21626 −0.227325
\(345\) 0 0
\(346\) 16.7503 0.900503
\(347\) 36.7802 1.97447 0.987233 0.159283i \(-0.0509184\pi\)
0.987233 + 0.159283i \(0.0509184\pi\)
\(348\) 0 0
\(349\) 17.0096 0.910502 0.455251 0.890363i \(-0.349550\pi\)
0.455251 + 0.890363i \(0.349550\pi\)
\(350\) 29.8182 1.59385
\(351\) 0 0
\(352\) −4.21434 −0.224625
\(353\) 26.2902 1.39929 0.699644 0.714492i \(-0.253342\pi\)
0.699644 + 0.714492i \(0.253342\pi\)
\(354\) 0 0
\(355\) 59.6476 3.16577
\(356\) 13.5586 0.718603
\(357\) 0 0
\(358\) −10.9587 −0.579183
\(359\) 17.1316 0.904173 0.452087 0.891974i \(-0.350680\pi\)
0.452087 + 0.891974i \(0.350680\pi\)
\(360\) 0 0
\(361\) 0.715635 0.0376650
\(362\) 6.70682 0.352502
\(363\) 0 0
\(364\) −16.1094 −0.844361
\(365\) 31.9656 1.67316
\(366\) 0 0
\(367\) −7.12297 −0.371816 −0.185908 0.982567i \(-0.559523\pi\)
−0.185908 + 0.982567i \(0.559523\pi\)
\(368\) 1.64031 0.0855068
\(369\) 0 0
\(370\) 33.7549 1.75483
\(371\) 15.1939 0.788828
\(372\) 0 0
\(373\) −13.0150 −0.673889 −0.336944 0.941525i \(-0.609393\pi\)
−0.336944 + 0.941525i \(0.609393\pi\)
\(374\) 22.9425 1.18633
\(375\) 0 0
\(376\) −6.34729 −0.327337
\(377\) 46.4286 2.39119
\(378\) 0 0
\(379\) 4.71603 0.242246 0.121123 0.992638i \(-0.461350\pi\)
0.121123 + 0.992638i \(0.461350\pi\)
\(380\) 17.9509 0.920862
\(381\) 0 0
\(382\) 20.4119 1.04436
\(383\) 4.26041 0.217697 0.108848 0.994058i \(-0.465284\pi\)
0.108848 + 0.994058i \(0.465284\pi\)
\(384\) 0 0
\(385\) 44.7839 2.28240
\(386\) −13.8831 −0.706630
\(387\) 0 0
\(388\) −3.98544 −0.202330
\(389\) 26.5071 1.34396 0.671982 0.740568i \(-0.265443\pi\)
0.671982 + 0.740568i \(0.265443\pi\)
\(390\) 0 0
\(391\) −8.92965 −0.451592
\(392\) 0.0908960 0.00459094
\(393\) 0 0
\(394\) −19.8807 −1.00158
\(395\) −47.4098 −2.38544
\(396\) 0 0
\(397\) 8.28900 0.416013 0.208006 0.978127i \(-0.433303\pi\)
0.208006 + 0.978127i \(0.433303\pi\)
\(398\) −15.2050 −0.762156
\(399\) 0 0
\(400\) 11.3441 0.567206
\(401\) −21.8269 −1.08998 −0.544992 0.838441i \(-0.683467\pi\)
−0.544992 + 0.838441i \(0.683467\pi\)
\(402\) 0 0
\(403\) 1.32935 0.0662196
\(404\) −2.84004 −0.141297
\(405\) 0 0
\(406\) 19.9126 0.988247
\(407\) 35.1873 1.74417
\(408\) 0 0
\(409\) −10.0393 −0.496414 −0.248207 0.968707i \(-0.579841\pi\)
−0.248207 + 0.968707i \(0.579841\pi\)
\(410\) −32.7730 −1.61854
\(411\) 0 0
\(412\) −3.95419 −0.194809
\(413\) 10.1859 0.501215
\(414\) 0 0
\(415\) 46.6746 2.29116
\(416\) −6.12870 −0.300484
\(417\) 0 0
\(418\) 18.7127 0.915266
\(419\) −0.889810 −0.0434701 −0.0217350 0.999764i \(-0.506919\pi\)
−0.0217350 + 0.999764i \(0.506919\pi\)
\(420\) 0 0
\(421\) 20.1983 0.984403 0.492202 0.870481i \(-0.336192\pi\)
0.492202 + 0.870481i \(0.336192\pi\)
\(422\) −7.37516 −0.359017
\(423\) 0 0
\(424\) 5.78041 0.280722
\(425\) −61.7562 −2.99562
\(426\) 0 0
\(427\) 2.62852 0.127203
\(428\) −17.1906 −0.830938
\(429\) 0 0
\(430\) 17.0454 0.822004
\(431\) 12.4423 0.599322 0.299661 0.954046i \(-0.403126\pi\)
0.299661 + 0.954046i \(0.403126\pi\)
\(432\) 0 0
\(433\) 4.03198 0.193765 0.0968823 0.995296i \(-0.469113\pi\)
0.0968823 + 0.995296i \(0.469113\pi\)
\(434\) 0.570141 0.0273676
\(435\) 0 0
\(436\) −2.56099 −0.122649
\(437\) −7.28333 −0.348409
\(438\) 0 0
\(439\) −15.1413 −0.722656 −0.361328 0.932439i \(-0.617677\pi\)
−0.361328 + 0.932439i \(0.617677\pi\)
\(440\) 17.0377 0.812240
\(441\) 0 0
\(442\) 33.3640 1.58696
\(443\) 1.03565 0.0492050 0.0246025 0.999697i \(-0.492168\pi\)
0.0246025 + 0.999697i \(0.492168\pi\)
\(444\) 0 0
\(445\) −54.8144 −2.59845
\(446\) −4.00942 −0.189852
\(447\) 0 0
\(448\) −2.62852 −0.124186
\(449\) 22.6531 1.06907 0.534534 0.845147i \(-0.320487\pi\)
0.534534 + 0.845147i \(0.320487\pi\)
\(450\) 0 0
\(451\) −34.1638 −1.60871
\(452\) 5.71813 0.268958
\(453\) 0 0
\(454\) 6.48523 0.304367
\(455\) 65.1268 3.05319
\(456\) 0 0
\(457\) 25.9301 1.21296 0.606479 0.795100i \(-0.292582\pi\)
0.606479 + 0.795100i \(0.292582\pi\)
\(458\) 9.62511 0.449752
\(459\) 0 0
\(460\) −6.63140 −0.309191
\(461\) 12.5283 0.583501 0.291750 0.956494i \(-0.405762\pi\)
0.291750 + 0.956494i \(0.405762\pi\)
\(462\) 0 0
\(463\) −9.38177 −0.436008 −0.218004 0.975948i \(-0.569955\pi\)
−0.218004 + 0.975948i \(0.569955\pi\)
\(464\) 7.57561 0.351689
\(465\) 0 0
\(466\) 27.2350 1.26164
\(467\) −13.0532 −0.604031 −0.302015 0.953303i \(-0.597659\pi\)
−0.302015 + 0.953303i \(0.597659\pi\)
\(468\) 0 0
\(469\) −17.2447 −0.796287
\(470\) 25.6608 1.18364
\(471\) 0 0
\(472\) 3.87515 0.178368
\(473\) 17.7688 0.817008
\(474\) 0 0
\(475\) −50.3705 −2.31116
\(476\) 14.3094 0.655869
\(477\) 0 0
\(478\) −1.68728 −0.0771744
\(479\) 41.1150 1.87859 0.939295 0.343110i \(-0.111480\pi\)
0.939295 + 0.343110i \(0.111480\pi\)
\(480\) 0 0
\(481\) 51.1710 2.33320
\(482\) −15.4374 −0.703156
\(483\) 0 0
\(484\) 6.76070 0.307304
\(485\) 16.1123 0.731621
\(486\) 0 0
\(487\) 6.86990 0.311305 0.155652 0.987812i \(-0.450252\pi\)
0.155652 + 0.987812i \(0.450252\pi\)
\(488\) 1.00000 0.0452679
\(489\) 0 0
\(490\) −0.367473 −0.0166007
\(491\) 20.2204 0.912535 0.456267 0.889843i \(-0.349186\pi\)
0.456267 + 0.889843i \(0.349186\pi\)
\(492\) 0 0
\(493\) −41.2408 −1.85739
\(494\) 27.2128 1.22436
\(495\) 0 0
\(496\) 0.216906 0.00973936
\(497\) 38.7814 1.73958
\(498\) 0 0
\(499\) 11.2610 0.504111 0.252055 0.967713i \(-0.418894\pi\)
0.252055 + 0.967713i \(0.418894\pi\)
\(500\) −25.6479 −1.14701
\(501\) 0 0
\(502\) 14.3588 0.640863
\(503\) 15.6779 0.699041 0.349520 0.936929i \(-0.386345\pi\)
0.349520 + 0.936929i \(0.386345\pi\)
\(504\) 0 0
\(505\) 11.4817 0.510928
\(506\) −6.91281 −0.307312
\(507\) 0 0
\(508\) −0.859611 −0.0381391
\(509\) −22.7855 −1.00995 −0.504975 0.863134i \(-0.668498\pi\)
−0.504975 + 0.863134i \(0.668498\pi\)
\(510\) 0 0
\(511\) 20.7833 0.919397
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −10.3987 −0.458668
\(515\) 15.9860 0.704425
\(516\) 0 0
\(517\) 26.7497 1.17645
\(518\) 21.9466 0.964276
\(519\) 0 0
\(520\) 24.7770 1.08654
\(521\) 29.8673 1.30851 0.654254 0.756275i \(-0.272983\pi\)
0.654254 + 0.756275i \(0.272983\pi\)
\(522\) 0 0
\(523\) −19.4600 −0.850927 −0.425464 0.904976i \(-0.639889\pi\)
−0.425464 + 0.904976i \(0.639889\pi\)
\(524\) 5.85031 0.255572
\(525\) 0 0
\(526\) −7.75780 −0.338256
\(527\) −1.18081 −0.0514370
\(528\) 0 0
\(529\) −20.3094 −0.883017
\(530\) −23.3690 −1.01508
\(531\) 0 0
\(532\) 11.6712 0.506012
\(533\) −49.6825 −2.15199
\(534\) 0 0
\(535\) 69.4978 3.00465
\(536\) −6.56062 −0.283376
\(537\) 0 0
\(538\) 9.58542 0.413257
\(539\) −0.383067 −0.0164999
\(540\) 0 0
\(541\) −22.9150 −0.985193 −0.492596 0.870258i \(-0.663952\pi\)
−0.492596 + 0.870258i \(0.663952\pi\)
\(542\) −1.47114 −0.0631908
\(543\) 0 0
\(544\) 5.44390 0.233405
\(545\) 10.3536 0.443497
\(546\) 0 0
\(547\) 4.70369 0.201115 0.100558 0.994931i \(-0.467937\pi\)
0.100558 + 0.994931i \(0.467937\pi\)
\(548\) 9.80269 0.418750
\(549\) 0 0
\(550\) −47.8080 −2.03854
\(551\) −33.6374 −1.43300
\(552\) 0 0
\(553\) −30.8246 −1.31080
\(554\) 21.0115 0.892693
\(555\) 0 0
\(556\) −2.96901 −0.125914
\(557\) −27.2033 −1.15264 −0.576320 0.817224i \(-0.695512\pi\)
−0.576320 + 0.817224i \(0.695512\pi\)
\(558\) 0 0
\(559\) 25.8402 1.09292
\(560\) 10.6265 0.449053
\(561\) 0 0
\(562\) −30.8848 −1.30280
\(563\) 17.1837 0.724208 0.362104 0.932138i \(-0.382059\pi\)
0.362104 + 0.932138i \(0.382059\pi\)
\(564\) 0 0
\(565\) −23.1172 −0.972548
\(566\) 12.4742 0.524328
\(567\) 0 0
\(568\) 14.7541 0.619068
\(569\) 4.82747 0.202378 0.101189 0.994867i \(-0.467735\pi\)
0.101189 + 0.994867i \(0.467735\pi\)
\(570\) 0 0
\(571\) 34.0832 1.42634 0.713169 0.700992i \(-0.247259\pi\)
0.713169 + 0.700992i \(0.247259\pi\)
\(572\) 25.8284 1.07994
\(573\) 0 0
\(574\) −21.3082 −0.889387
\(575\) 18.6078 0.776000
\(576\) 0 0
\(577\) 46.1916 1.92298 0.961490 0.274839i \(-0.0886247\pi\)
0.961490 + 0.274839i \(0.0886247\pi\)
\(578\) −12.6360 −0.525589
\(579\) 0 0
\(580\) −30.6266 −1.27170
\(581\) 30.3466 1.25899
\(582\) 0 0
\(583\) −24.3606 −1.00891
\(584\) 7.90683 0.327187
\(585\) 0 0
\(586\) −6.61766 −0.273373
\(587\) 11.1741 0.461206 0.230603 0.973048i \(-0.425930\pi\)
0.230603 + 0.973048i \(0.425930\pi\)
\(588\) 0 0
\(589\) −0.963111 −0.0396843
\(590\) −15.6664 −0.644975
\(591\) 0 0
\(592\) 8.34941 0.343158
\(593\) 29.7071 1.21992 0.609962 0.792431i \(-0.291185\pi\)
0.609962 + 0.792431i \(0.291185\pi\)
\(594\) 0 0
\(595\) −57.8498 −2.37161
\(596\) −20.4599 −0.838070
\(597\) 0 0
\(598\) −10.0529 −0.411095
\(599\) −40.2135 −1.64308 −0.821539 0.570152i \(-0.806884\pi\)
−0.821539 + 0.570152i \(0.806884\pi\)
\(600\) 0 0
\(601\) 17.5947 0.717704 0.358852 0.933394i \(-0.383168\pi\)
0.358852 + 0.933394i \(0.383168\pi\)
\(602\) 11.0825 0.451689
\(603\) 0 0
\(604\) −0.665480 −0.0270780
\(605\) −27.3320 −1.11121
\(606\) 0 0
\(607\) −0.841142 −0.0341409 −0.0170705 0.999854i \(-0.505434\pi\)
−0.0170705 + 0.999854i \(0.505434\pi\)
\(608\) 4.44023 0.180075
\(609\) 0 0
\(610\) −4.04279 −0.163688
\(611\) 38.9006 1.57375
\(612\) 0 0
\(613\) 24.2957 0.981294 0.490647 0.871358i \(-0.336760\pi\)
0.490647 + 0.871358i \(0.336760\pi\)
\(614\) −7.81948 −0.315569
\(615\) 0 0
\(616\) 11.0775 0.446324
\(617\) −4.35711 −0.175411 −0.0877054 0.996146i \(-0.527953\pi\)
−0.0877054 + 0.996146i \(0.527953\pi\)
\(618\) 0 0
\(619\) −24.6418 −0.990439 −0.495220 0.868768i \(-0.664912\pi\)
−0.495220 + 0.868768i \(0.664912\pi\)
\(620\) −0.876904 −0.0352173
\(621\) 0 0
\(622\) 20.3382 0.815489
\(623\) −35.6389 −1.42784
\(624\) 0 0
\(625\) 46.9685 1.87874
\(626\) 27.1325 1.08443
\(627\) 0 0
\(628\) −8.20803 −0.327536
\(629\) −45.4533 −1.81234
\(630\) 0 0
\(631\) 7.91509 0.315095 0.157547 0.987511i \(-0.449641\pi\)
0.157547 + 0.987511i \(0.449641\pi\)
\(632\) −11.7270 −0.466475
\(633\) 0 0
\(634\) 8.58918 0.341120
\(635\) 3.47522 0.137910
\(636\) 0 0
\(637\) −0.557074 −0.0220721
\(638\) −31.9262 −1.26397
\(639\) 0 0
\(640\) 4.04279 0.159805
\(641\) 3.94286 0.155733 0.0778667 0.996964i \(-0.475189\pi\)
0.0778667 + 0.996964i \(0.475189\pi\)
\(642\) 0 0
\(643\) 3.83005 0.151042 0.0755211 0.997144i \(-0.475938\pi\)
0.0755211 + 0.997144i \(0.475938\pi\)
\(644\) −4.31157 −0.169900
\(645\) 0 0
\(646\) −24.1721 −0.951040
\(647\) −33.0472 −1.29922 −0.649610 0.760268i \(-0.725068\pi\)
−0.649610 + 0.760268i \(0.725068\pi\)
\(648\) 0 0
\(649\) −16.3312 −0.641056
\(650\) −69.5247 −2.72698
\(651\) 0 0
\(652\) 12.3611 0.484097
\(653\) 45.5129 1.78106 0.890528 0.454928i \(-0.150335\pi\)
0.890528 + 0.454928i \(0.150335\pi\)
\(654\) 0 0
\(655\) −23.6515 −0.924142
\(656\) −8.10654 −0.316507
\(657\) 0 0
\(658\) 16.6840 0.650409
\(659\) −31.3395 −1.22081 −0.610407 0.792088i \(-0.708994\pi\)
−0.610407 + 0.792088i \(0.708994\pi\)
\(660\) 0 0
\(661\) −11.0984 −0.431678 −0.215839 0.976429i \(-0.569249\pi\)
−0.215839 + 0.976429i \(0.569249\pi\)
\(662\) 3.43123 0.133359
\(663\) 0 0
\(664\) 11.5452 0.448039
\(665\) −47.1842 −1.82973
\(666\) 0 0
\(667\) 12.4263 0.481149
\(668\) 25.4108 0.983172
\(669\) 0 0
\(670\) 26.5232 1.02468
\(671\) −4.21434 −0.162693
\(672\) 0 0
\(673\) 38.6166 1.48856 0.744281 0.667867i \(-0.232793\pi\)
0.744281 + 0.667867i \(0.232793\pi\)
\(674\) −9.14365 −0.352200
\(675\) 0 0
\(676\) 24.5609 0.944650
\(677\) 30.8307 1.18492 0.592461 0.805599i \(-0.298157\pi\)
0.592461 + 0.805599i \(0.298157\pi\)
\(678\) 0 0
\(679\) 10.4758 0.402024
\(680\) −22.0085 −0.843988
\(681\) 0 0
\(682\) −0.914116 −0.0350033
\(683\) 20.2866 0.776245 0.388122 0.921608i \(-0.373124\pi\)
0.388122 + 0.921608i \(0.373124\pi\)
\(684\) 0 0
\(685\) −39.6302 −1.51419
\(686\) −18.6385 −0.711623
\(687\) 0 0
\(688\) 4.21626 0.160743
\(689\) −35.4264 −1.34964
\(690\) 0 0
\(691\) 22.1783 0.843701 0.421850 0.906665i \(-0.361381\pi\)
0.421850 + 0.906665i \(0.361381\pi\)
\(692\) −16.7503 −0.636752
\(693\) 0 0
\(694\) −36.7802 −1.39616
\(695\) 12.0031 0.455303
\(696\) 0 0
\(697\) 44.1312 1.67159
\(698\) −17.0096 −0.643822
\(699\) 0 0
\(700\) −29.8182 −1.12702
\(701\) −14.5406 −0.549189 −0.274595 0.961560i \(-0.588544\pi\)
−0.274595 + 0.961560i \(0.588544\pi\)
\(702\) 0 0
\(703\) −37.0733 −1.39825
\(704\) 4.21434 0.158834
\(705\) 0 0
\(706\) −26.2902 −0.989446
\(707\) 7.46510 0.280754
\(708\) 0 0
\(709\) −21.0942 −0.792209 −0.396105 0.918205i \(-0.629638\pi\)
−0.396105 + 0.918205i \(0.629638\pi\)
\(710\) −59.6476 −2.23853
\(711\) 0 0
\(712\) −13.5586 −0.508129
\(713\) 0.355792 0.0133245
\(714\) 0 0
\(715\) −104.419 −3.90504
\(716\) 10.9587 0.409544
\(717\) 0 0
\(718\) −17.1316 −0.639347
\(719\) −24.8266 −0.925877 −0.462938 0.886390i \(-0.653205\pi\)
−0.462938 + 0.886390i \(0.653205\pi\)
\(720\) 0 0
\(721\) 10.3937 0.387080
\(722\) −0.715635 −0.0266332
\(723\) 0 0
\(724\) −6.70682 −0.249257
\(725\) 85.9386 3.19168
\(726\) 0 0
\(727\) 12.8137 0.475235 0.237617 0.971359i \(-0.423634\pi\)
0.237617 + 0.971359i \(0.423634\pi\)
\(728\) 16.1094 0.597053
\(729\) 0 0
\(730\) −31.9656 −1.18310
\(731\) −22.9529 −0.848943
\(732\) 0 0
\(733\) 9.28851 0.343079 0.171539 0.985177i \(-0.445126\pi\)
0.171539 + 0.985177i \(0.445126\pi\)
\(734\) 7.12297 0.262914
\(735\) 0 0
\(736\) −1.64031 −0.0604625
\(737\) 27.6487 1.01845
\(738\) 0 0
\(739\) −17.2041 −0.632861 −0.316431 0.948616i \(-0.602484\pi\)
−0.316431 + 0.948616i \(0.602484\pi\)
\(740\) −33.7549 −1.24085
\(741\) 0 0
\(742\) −15.1939 −0.557786
\(743\) −0.0369162 −0.00135432 −0.000677162 1.00000i \(-0.500216\pi\)
−0.000677162 1.00000i \(0.500216\pi\)
\(744\) 0 0
\(745\) 82.7150 3.03044
\(746\) 13.0150 0.476511
\(747\) 0 0
\(748\) −22.9425 −0.838859
\(749\) 45.1857 1.65105
\(750\) 0 0
\(751\) −9.70522 −0.354148 −0.177074 0.984198i \(-0.556663\pi\)
−0.177074 + 0.984198i \(0.556663\pi\)
\(752\) 6.34729 0.231462
\(753\) 0 0
\(754\) −46.4286 −1.69083
\(755\) 2.69039 0.0979135
\(756\) 0 0
\(757\) −44.2726 −1.60912 −0.804558 0.593874i \(-0.797598\pi\)
−0.804558 + 0.593874i \(0.797598\pi\)
\(758\) −4.71603 −0.171294
\(759\) 0 0
\(760\) −17.9509 −0.651147
\(761\) −12.1563 −0.440666 −0.220333 0.975425i \(-0.570714\pi\)
−0.220333 + 0.975425i \(0.570714\pi\)
\(762\) 0 0
\(763\) 6.73162 0.243701
\(764\) −20.4119 −0.738475
\(765\) 0 0
\(766\) −4.26041 −0.153935
\(767\) −23.7496 −0.857549
\(768\) 0 0
\(769\) −16.2052 −0.584374 −0.292187 0.956361i \(-0.594383\pi\)
−0.292187 + 0.956361i \(0.594383\pi\)
\(770\) −44.7839 −1.61390
\(771\) 0 0
\(772\) 13.8831 0.499663
\(773\) 23.7724 0.855032 0.427516 0.904008i \(-0.359389\pi\)
0.427516 + 0.904008i \(0.359389\pi\)
\(774\) 0 0
\(775\) 2.46061 0.0883875
\(776\) 3.98544 0.143069
\(777\) 0 0
\(778\) −26.5071 −0.950326
\(779\) 35.9949 1.28965
\(780\) 0 0
\(781\) −62.1788 −2.22493
\(782\) 8.92965 0.319324
\(783\) 0 0
\(784\) −0.0908960 −0.00324628
\(785\) 33.1833 1.18436
\(786\) 0 0
\(787\) 48.9615 1.74529 0.872645 0.488356i \(-0.162403\pi\)
0.872645 + 0.488356i \(0.162403\pi\)
\(788\) 19.8807 0.708221
\(789\) 0 0
\(790\) 47.4098 1.68676
\(791\) −15.0302 −0.534413
\(792\) 0 0
\(793\) −6.12870 −0.217636
\(794\) −8.28900 −0.294165
\(795\) 0 0
\(796\) 15.2050 0.538926
\(797\) 8.21735 0.291073 0.145537 0.989353i \(-0.453509\pi\)
0.145537 + 0.989353i \(0.453509\pi\)
\(798\) 0 0
\(799\) −34.5540 −1.22243
\(800\) −11.3441 −0.401075
\(801\) 0 0
\(802\) 21.8269 0.770736
\(803\) −33.3221 −1.17591
\(804\) 0 0
\(805\) 17.4308 0.614354
\(806\) −1.32935 −0.0468243
\(807\) 0 0
\(808\) 2.84004 0.0999123
\(809\) −26.7693 −0.941159 −0.470580 0.882358i \(-0.655955\pi\)
−0.470580 + 0.882358i \(0.655955\pi\)
\(810\) 0 0
\(811\) 18.3883 0.645702 0.322851 0.946450i \(-0.395359\pi\)
0.322851 + 0.946450i \(0.395359\pi\)
\(812\) −19.9126 −0.698796
\(813\) 0 0
\(814\) −35.1873 −1.23331
\(815\) −49.9732 −1.75049
\(816\) 0 0
\(817\) −18.7212 −0.654970
\(818\) 10.0393 0.351017
\(819\) 0 0
\(820\) 32.7730 1.14448
\(821\) 11.2810 0.393711 0.196855 0.980433i \(-0.436927\pi\)
0.196855 + 0.980433i \(0.436927\pi\)
\(822\) 0 0
\(823\) −21.0116 −0.732418 −0.366209 0.930533i \(-0.619345\pi\)
−0.366209 + 0.930533i \(0.619345\pi\)
\(824\) 3.95419 0.137751
\(825\) 0 0
\(826\) −10.1859 −0.354413
\(827\) 38.2016 1.32840 0.664200 0.747555i \(-0.268772\pi\)
0.664200 + 0.747555i \(0.268772\pi\)
\(828\) 0 0
\(829\) 36.5596 1.26977 0.634885 0.772607i \(-0.281048\pi\)
0.634885 + 0.772607i \(0.281048\pi\)
\(830\) −46.6746 −1.62010
\(831\) 0 0
\(832\) 6.12870 0.212474
\(833\) 0.494828 0.0171448
\(834\) 0 0
\(835\) −102.730 −3.55513
\(836\) −18.7127 −0.647191
\(837\) 0 0
\(838\) 0.889810 0.0307380
\(839\) 2.14689 0.0741187 0.0370594 0.999313i \(-0.488201\pi\)
0.0370594 + 0.999313i \(0.488201\pi\)
\(840\) 0 0
\(841\) 28.3899 0.978960
\(842\) −20.1983 −0.696078
\(843\) 0 0
\(844\) 7.37516 0.253864
\(845\) −99.2945 −3.41584
\(846\) 0 0
\(847\) −17.7706 −0.610605
\(848\) −5.78041 −0.198500
\(849\) 0 0
\(850\) 61.7562 2.11822
\(851\) 13.6956 0.469478
\(852\) 0 0
\(853\) 44.8284 1.53490 0.767448 0.641111i \(-0.221526\pi\)
0.767448 + 0.641111i \(0.221526\pi\)
\(854\) −2.62852 −0.0899460
\(855\) 0 0
\(856\) 17.1906 0.587562
\(857\) 48.5764 1.65934 0.829669 0.558256i \(-0.188529\pi\)
0.829669 + 0.558256i \(0.188529\pi\)
\(858\) 0 0
\(859\) −26.6196 −0.908249 −0.454125 0.890938i \(-0.650048\pi\)
−0.454125 + 0.890938i \(0.650048\pi\)
\(860\) −17.0454 −0.581244
\(861\) 0 0
\(862\) −12.4423 −0.423785
\(863\) 28.3414 0.964753 0.482377 0.875964i \(-0.339774\pi\)
0.482377 + 0.875964i \(0.339774\pi\)
\(864\) 0 0
\(865\) 67.7180 2.30248
\(866\) −4.03198 −0.137012
\(867\) 0 0
\(868\) −0.570141 −0.0193518
\(869\) 49.4216 1.67651
\(870\) 0 0
\(871\) 40.2081 1.36240
\(872\) 2.56099 0.0867262
\(873\) 0 0
\(874\) 7.28333 0.246362
\(875\) 67.4160 2.27908
\(876\) 0 0
\(877\) 17.5281 0.591881 0.295940 0.955206i \(-0.404367\pi\)
0.295940 + 0.955206i \(0.404367\pi\)
\(878\) 15.1413 0.510995
\(879\) 0 0
\(880\) −17.0377 −0.574340
\(881\) −8.16640 −0.275133 −0.137566 0.990493i \(-0.543928\pi\)
−0.137566 + 0.990493i \(0.543928\pi\)
\(882\) 0 0
\(883\) −17.8946 −0.602200 −0.301100 0.953592i \(-0.597354\pi\)
−0.301100 + 0.953592i \(0.597354\pi\)
\(884\) −33.3640 −1.12215
\(885\) 0 0
\(886\) −1.03565 −0.0347932
\(887\) −6.86131 −0.230380 −0.115190 0.993343i \(-0.536748\pi\)
−0.115190 + 0.993343i \(0.536748\pi\)
\(888\) 0 0
\(889\) 2.25950 0.0757813
\(890\) 54.8144 1.83738
\(891\) 0 0
\(892\) 4.00942 0.134245
\(893\) −28.1834 −0.943123
\(894\) 0 0
\(895\) −44.3035 −1.48090
\(896\) 2.62852 0.0878126
\(897\) 0 0
\(898\) −22.6531 −0.755945
\(899\) 1.64319 0.0548036
\(900\) 0 0
\(901\) 31.4680 1.04835
\(902\) 34.1638 1.13753
\(903\) 0 0
\(904\) −5.71813 −0.190182
\(905\) 27.1142 0.901307
\(906\) 0 0
\(907\) −14.5217 −0.482187 −0.241093 0.970502i \(-0.577506\pi\)
−0.241093 + 0.970502i \(0.577506\pi\)
\(908\) −6.48523 −0.215220
\(909\) 0 0
\(910\) −65.1268 −2.15893
\(911\) −41.9025 −1.38829 −0.694147 0.719834i \(-0.744218\pi\)
−0.694147 + 0.719834i \(0.744218\pi\)
\(912\) 0 0
\(913\) −48.6552 −1.61025
\(914\) −25.9301 −0.857690
\(915\) 0 0
\(916\) −9.62511 −0.318023
\(917\) −15.3776 −0.507814
\(918\) 0 0
\(919\) −48.6533 −1.60493 −0.802463 0.596702i \(-0.796477\pi\)
−0.802463 + 0.596702i \(0.796477\pi\)
\(920\) 6.63140 0.218631
\(921\) 0 0
\(922\) −12.5283 −0.412597
\(923\) −90.4233 −2.97632
\(924\) 0 0
\(925\) 94.7167 3.11426
\(926\) 9.38177 0.308304
\(927\) 0 0
\(928\) −7.57561 −0.248682
\(929\) 4.02234 0.131969 0.0659844 0.997821i \(-0.478981\pi\)
0.0659844 + 0.997821i \(0.478981\pi\)
\(930\) 0 0
\(931\) 0.403599 0.0132274
\(932\) −27.2350 −0.892112
\(933\) 0 0
\(934\) 13.0532 0.427114
\(935\) 92.7514 3.03330
\(936\) 0 0
\(937\) −17.1767 −0.561138 −0.280569 0.959834i \(-0.590523\pi\)
−0.280569 + 0.959834i \(0.590523\pi\)
\(938\) 17.2447 0.563060
\(939\) 0 0
\(940\) −25.6608 −0.836961
\(941\) −33.9535 −1.10685 −0.553426 0.832898i \(-0.686680\pi\)
−0.553426 + 0.832898i \(0.686680\pi\)
\(942\) 0 0
\(943\) −13.2972 −0.433017
\(944\) −3.87515 −0.126125
\(945\) 0 0
\(946\) −17.7688 −0.577712
\(947\) 31.7235 1.03088 0.515438 0.856927i \(-0.327629\pi\)
0.515438 + 0.856927i \(0.327629\pi\)
\(948\) 0 0
\(949\) −48.4586 −1.57303
\(950\) 50.3705 1.63423
\(951\) 0 0
\(952\) −14.3094 −0.463770
\(953\) −2.97694 −0.0964327 −0.0482163 0.998837i \(-0.515354\pi\)
−0.0482163 + 0.998837i \(0.515354\pi\)
\(954\) 0 0
\(955\) 82.5208 2.67031
\(956\) 1.68728 0.0545706
\(957\) 0 0
\(958\) −41.1150 −1.32836
\(959\) −25.7665 −0.832045
\(960\) 0 0
\(961\) −30.9530 −0.998482
\(962\) −51.1710 −1.64982
\(963\) 0 0
\(964\) 15.4374 0.497206
\(965\) −56.1263 −1.80677
\(966\) 0 0
\(967\) −20.9656 −0.674208 −0.337104 0.941467i \(-0.609447\pi\)
−0.337104 + 0.941467i \(0.609447\pi\)
\(968\) −6.76070 −0.217297
\(969\) 0 0
\(970\) −16.1123 −0.517334
\(971\) 46.8628 1.50390 0.751950 0.659220i \(-0.229113\pi\)
0.751950 + 0.659220i \(0.229113\pi\)
\(972\) 0 0
\(973\) 7.80410 0.250188
\(974\) −6.86990 −0.220126
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) 25.7293 0.823152 0.411576 0.911375i \(-0.364978\pi\)
0.411576 + 0.911375i \(0.364978\pi\)
\(978\) 0 0
\(979\) 57.1405 1.82622
\(980\) 0.367473 0.0117385
\(981\) 0 0
\(982\) −20.2204 −0.645259
\(983\) 33.4789 1.06781 0.533905 0.845544i \(-0.320724\pi\)
0.533905 + 0.845544i \(0.320724\pi\)
\(984\) 0 0
\(985\) −80.3735 −2.56091
\(986\) 41.2408 1.31338
\(987\) 0 0
\(988\) −27.2128 −0.865755
\(989\) 6.91595 0.219914
\(990\) 0 0
\(991\) 1.68880 0.0536466 0.0268233 0.999640i \(-0.491461\pi\)
0.0268233 + 0.999640i \(0.491461\pi\)
\(992\) −0.216906 −0.00688677
\(993\) 0 0
\(994\) −38.7814 −1.23007
\(995\) −61.4704 −1.94874
\(996\) 0 0
\(997\) 27.2050 0.861591 0.430795 0.902450i \(-0.358233\pi\)
0.430795 + 0.902450i \(0.358233\pi\)
\(998\) −11.2610 −0.356460
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9882.2.a.bk.1.2 17
3.2 odd 2 9882.2.a.bm.1.16 17
9.2 odd 6 1098.2.e.f.733.1 yes 34
9.5 odd 6 1098.2.e.f.367.1 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1098.2.e.f.367.1 34 9.5 odd 6
1098.2.e.f.733.1 yes 34 9.2 odd 6
9882.2.a.bk.1.2 17 1.1 even 1 trivial
9882.2.a.bm.1.16 17 3.2 odd 2