Properties

Label 110.4.a.g.1.1
Level $110$
Weight $4$
Character 110.1
Self dual yes
Analytic conductor $6.490$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,4,Mod(1,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 110.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.49021010063\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 110.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +7.00000 q^{3} +4.00000 q^{4} -5.00000 q^{5} +14.0000 q^{6} +11.0000 q^{7} +8.00000 q^{8} +22.0000 q^{9} -10.0000 q^{10} +11.0000 q^{11} +28.0000 q^{12} +2.00000 q^{13} +22.0000 q^{14} -35.0000 q^{15} +16.0000 q^{16} -9.00000 q^{17} +44.0000 q^{18} -85.0000 q^{19} -20.0000 q^{20} +77.0000 q^{21} +22.0000 q^{22} -138.000 q^{23} +56.0000 q^{24} +25.0000 q^{25} +4.00000 q^{26} -35.0000 q^{27} +44.0000 q^{28} +45.0000 q^{29} -70.0000 q^{30} +227.000 q^{31} +32.0000 q^{32} +77.0000 q^{33} -18.0000 q^{34} -55.0000 q^{35} +88.0000 q^{36} -19.0000 q^{37} -170.000 q^{38} +14.0000 q^{39} -40.0000 q^{40} -138.000 q^{41} +154.000 q^{42} -88.0000 q^{43} +44.0000 q^{44} -110.000 q^{45} -276.000 q^{46} -534.000 q^{47} +112.000 q^{48} -222.000 q^{49} +50.0000 q^{50} -63.0000 q^{51} +8.00000 q^{52} +297.000 q^{53} -70.0000 q^{54} -55.0000 q^{55} +88.0000 q^{56} -595.000 q^{57} +90.0000 q^{58} -450.000 q^{59} -140.000 q^{60} +287.000 q^{61} +454.000 q^{62} +242.000 q^{63} +64.0000 q^{64} -10.0000 q^{65} +154.000 q^{66} -304.000 q^{67} -36.0000 q^{68} -966.000 q^{69} -110.000 q^{70} +777.000 q^{71} +176.000 q^{72} +962.000 q^{73} -38.0000 q^{74} +175.000 q^{75} -340.000 q^{76} +121.000 q^{77} +28.0000 q^{78} +290.000 q^{79} -80.0000 q^{80} -839.000 q^{81} -276.000 q^{82} +1422.00 q^{83} +308.000 q^{84} +45.0000 q^{85} -176.000 q^{86} +315.000 q^{87} +88.0000 q^{88} -1455.00 q^{89} -220.000 q^{90} +22.0000 q^{91} -552.000 q^{92} +1589.00 q^{93} -1068.00 q^{94} +425.000 q^{95} +224.000 q^{96} +116.000 q^{97} -444.000 q^{98} +242.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 7.00000 1.34715 0.673575 0.739119i \(-0.264758\pi\)
0.673575 + 0.739119i \(0.264758\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) 14.0000 0.952579
\(7\) 11.0000 0.593944 0.296972 0.954886i \(-0.404023\pi\)
0.296972 + 0.954886i \(0.404023\pi\)
\(8\) 8.00000 0.353553
\(9\) 22.0000 0.814815
\(10\) −10.0000 −0.316228
\(11\) 11.0000 0.301511
\(12\) 28.0000 0.673575
\(13\) 2.00000 0.0426692 0.0213346 0.999772i \(-0.493208\pi\)
0.0213346 + 0.999772i \(0.493208\pi\)
\(14\) 22.0000 0.419982
\(15\) −35.0000 −0.602464
\(16\) 16.0000 0.250000
\(17\) −9.00000 −0.128401 −0.0642006 0.997937i \(-0.520450\pi\)
−0.0642006 + 0.997937i \(0.520450\pi\)
\(18\) 44.0000 0.576161
\(19\) −85.0000 −1.02633 −0.513167 0.858289i \(-0.671528\pi\)
−0.513167 + 0.858289i \(0.671528\pi\)
\(20\) −20.0000 −0.223607
\(21\) 77.0000 0.800132
\(22\) 22.0000 0.213201
\(23\) −138.000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 56.0000 0.476290
\(25\) 25.0000 0.200000
\(26\) 4.00000 0.0301717
\(27\) −35.0000 −0.249472
\(28\) 44.0000 0.296972
\(29\) 45.0000 0.288148 0.144074 0.989567i \(-0.453980\pi\)
0.144074 + 0.989567i \(0.453980\pi\)
\(30\) −70.0000 −0.426006
\(31\) 227.000 1.31517 0.657587 0.753378i \(-0.271577\pi\)
0.657587 + 0.753378i \(0.271577\pi\)
\(32\) 32.0000 0.176777
\(33\) 77.0000 0.406181
\(34\) −18.0000 −0.0907934
\(35\) −55.0000 −0.265620
\(36\) 88.0000 0.407407
\(37\) −19.0000 −0.0844211 −0.0422106 0.999109i \(-0.513440\pi\)
−0.0422106 + 0.999109i \(0.513440\pi\)
\(38\) −170.000 −0.725727
\(39\) 14.0000 0.0574819
\(40\) −40.0000 −0.158114
\(41\) −138.000 −0.525658 −0.262829 0.964842i \(-0.584656\pi\)
−0.262829 + 0.964842i \(0.584656\pi\)
\(42\) 154.000 0.565779
\(43\) −88.0000 −0.312090 −0.156045 0.987750i \(-0.549875\pi\)
−0.156045 + 0.987750i \(0.549875\pi\)
\(44\) 44.0000 0.150756
\(45\) −110.000 −0.364396
\(46\) −276.000 −0.884652
\(47\) −534.000 −1.65727 −0.828637 0.559786i \(-0.810883\pi\)
−0.828637 + 0.559786i \(0.810883\pi\)
\(48\) 112.000 0.336788
\(49\) −222.000 −0.647230
\(50\) 50.0000 0.141421
\(51\) −63.0000 −0.172976
\(52\) 8.00000 0.0213346
\(53\) 297.000 0.769737 0.384869 0.922971i \(-0.374247\pi\)
0.384869 + 0.922971i \(0.374247\pi\)
\(54\) −70.0000 −0.176404
\(55\) −55.0000 −0.134840
\(56\) 88.0000 0.209991
\(57\) −595.000 −1.38263
\(58\) 90.0000 0.203751
\(59\) −450.000 −0.992966 −0.496483 0.868046i \(-0.665376\pi\)
−0.496483 + 0.868046i \(0.665376\pi\)
\(60\) −140.000 −0.301232
\(61\) 287.000 0.602403 0.301202 0.953561i \(-0.402612\pi\)
0.301202 + 0.953561i \(0.402612\pi\)
\(62\) 454.000 0.929969
\(63\) 242.000 0.483955
\(64\) 64.0000 0.125000
\(65\) −10.0000 −0.0190823
\(66\) 154.000 0.287213
\(67\) −304.000 −0.554321 −0.277161 0.960824i \(-0.589393\pi\)
−0.277161 + 0.960824i \(0.589393\pi\)
\(68\) −36.0000 −0.0642006
\(69\) −966.000 −1.68540
\(70\) −110.000 −0.187822
\(71\) 777.000 1.29877 0.649387 0.760458i \(-0.275026\pi\)
0.649387 + 0.760458i \(0.275026\pi\)
\(72\) 176.000 0.288081
\(73\) 962.000 1.54238 0.771189 0.636606i \(-0.219662\pi\)
0.771189 + 0.636606i \(0.219662\pi\)
\(74\) −38.0000 −0.0596947
\(75\) 175.000 0.269430
\(76\) −340.000 −0.513167
\(77\) 121.000 0.179081
\(78\) 28.0000 0.0406458
\(79\) 290.000 0.413007 0.206503 0.978446i \(-0.433792\pi\)
0.206503 + 0.978446i \(0.433792\pi\)
\(80\) −80.0000 −0.111803
\(81\) −839.000 −1.15089
\(82\) −276.000 −0.371696
\(83\) 1422.00 1.88054 0.940270 0.340430i \(-0.110573\pi\)
0.940270 + 0.340430i \(0.110573\pi\)
\(84\) 308.000 0.400066
\(85\) 45.0000 0.0574228
\(86\) −176.000 −0.220681
\(87\) 315.000 0.388179
\(88\) 88.0000 0.106600
\(89\) −1455.00 −1.73292 −0.866459 0.499248i \(-0.833610\pi\)
−0.866459 + 0.499248i \(0.833610\pi\)
\(90\) −220.000 −0.257667
\(91\) 22.0000 0.0253431
\(92\) −552.000 −0.625543
\(93\) 1589.00 1.77174
\(94\) −1068.00 −1.17187
\(95\) 425.000 0.458990
\(96\) 224.000 0.238145
\(97\) 116.000 0.121423 0.0607114 0.998155i \(-0.480663\pi\)
0.0607114 + 0.998155i \(0.480663\pi\)
\(98\) −444.000 −0.457661
\(99\) 242.000 0.245676
\(100\) 100.000 0.100000
\(101\) 402.000 0.396045 0.198022 0.980198i \(-0.436548\pi\)
0.198022 + 0.980198i \(0.436548\pi\)
\(102\) −126.000 −0.122312
\(103\) 1412.00 1.35076 0.675381 0.737469i \(-0.263979\pi\)
0.675381 + 0.737469i \(0.263979\pi\)
\(104\) 16.0000 0.0150859
\(105\) −385.000 −0.357830
\(106\) 594.000 0.544287
\(107\) 2136.00 1.92986 0.964930 0.262509i \(-0.0845500\pi\)
0.964930 + 0.262509i \(0.0845500\pi\)
\(108\) −140.000 −0.124736
\(109\) 230.000 0.202110 0.101055 0.994881i \(-0.467778\pi\)
0.101055 + 0.994881i \(0.467778\pi\)
\(110\) −110.000 −0.0953463
\(111\) −133.000 −0.113728
\(112\) 176.000 0.148486
\(113\) −108.000 −0.0899096 −0.0449548 0.998989i \(-0.514314\pi\)
−0.0449548 + 0.998989i \(0.514314\pi\)
\(114\) −1190.00 −0.977664
\(115\) 690.000 0.559503
\(116\) 180.000 0.144074
\(117\) 44.0000 0.0347675
\(118\) −900.000 −0.702133
\(119\) −99.0000 −0.0762632
\(120\) −280.000 −0.213003
\(121\) 121.000 0.0909091
\(122\) 574.000 0.425963
\(123\) −966.000 −0.708141
\(124\) 908.000 0.657587
\(125\) −125.000 −0.0894427
\(126\) 484.000 0.342208
\(127\) 1376.00 0.961419 0.480710 0.876880i \(-0.340379\pi\)
0.480710 + 0.876880i \(0.340379\pi\)
\(128\) 128.000 0.0883883
\(129\) −616.000 −0.420432
\(130\) −20.0000 −0.0134932
\(131\) −1593.00 −1.06245 −0.531225 0.847231i \(-0.678268\pi\)
−0.531225 + 0.847231i \(0.678268\pi\)
\(132\) 308.000 0.203091
\(133\) −935.000 −0.609585
\(134\) −608.000 −0.391964
\(135\) 175.000 0.111567
\(136\) −72.0000 −0.0453967
\(137\) 756.000 0.471456 0.235728 0.971819i \(-0.424253\pi\)
0.235728 + 0.971819i \(0.424253\pi\)
\(138\) −1932.00 −1.19176
\(139\) 1460.00 0.890903 0.445452 0.895306i \(-0.353043\pi\)
0.445452 + 0.895306i \(0.353043\pi\)
\(140\) −220.000 −0.132810
\(141\) −3738.00 −2.23260
\(142\) 1554.00 0.918372
\(143\) 22.0000 0.0128653
\(144\) 352.000 0.203704
\(145\) −225.000 −0.128864
\(146\) 1924.00 1.09063
\(147\) −1554.00 −0.871917
\(148\) −76.0000 −0.0422106
\(149\) −2145.00 −1.17936 −0.589682 0.807635i \(-0.700747\pi\)
−0.589682 + 0.807635i \(0.700747\pi\)
\(150\) 350.000 0.190516
\(151\) 2702.00 1.45620 0.728098 0.685473i \(-0.240404\pi\)
0.728098 + 0.685473i \(0.240404\pi\)
\(152\) −680.000 −0.362864
\(153\) −198.000 −0.104623
\(154\) 242.000 0.126629
\(155\) −1135.00 −0.588164
\(156\) 56.0000 0.0287410
\(157\) 1421.00 0.722345 0.361172 0.932499i \(-0.382377\pi\)
0.361172 + 0.932499i \(0.382377\pi\)
\(158\) 580.000 0.292040
\(159\) 2079.00 1.03695
\(160\) −160.000 −0.0790569
\(161\) −1518.00 −0.743076
\(162\) −1678.00 −0.813803
\(163\) −2773.00 −1.33250 −0.666252 0.745727i \(-0.732102\pi\)
−0.666252 + 0.745727i \(0.732102\pi\)
\(164\) −552.000 −0.262829
\(165\) −385.000 −0.181650
\(166\) 2844.00 1.32974
\(167\) −2109.00 −0.977241 −0.488621 0.872496i \(-0.662500\pi\)
−0.488621 + 0.872496i \(0.662500\pi\)
\(168\) 616.000 0.282889
\(169\) −2193.00 −0.998179
\(170\) 90.0000 0.0406040
\(171\) −1870.00 −0.836272
\(172\) −352.000 −0.156045
\(173\) −3558.00 −1.56364 −0.781820 0.623504i \(-0.785708\pi\)
−0.781820 + 0.623504i \(0.785708\pi\)
\(174\) 630.000 0.274484
\(175\) 275.000 0.118789
\(176\) 176.000 0.0753778
\(177\) −3150.00 −1.33768
\(178\) −2910.00 −1.22536
\(179\) 300.000 0.125268 0.0626342 0.998037i \(-0.480050\pi\)
0.0626342 + 0.998037i \(0.480050\pi\)
\(180\) −440.000 −0.182198
\(181\) 3122.00 1.28208 0.641040 0.767508i \(-0.278503\pi\)
0.641040 + 0.767508i \(0.278503\pi\)
\(182\) 44.0000 0.0179203
\(183\) 2009.00 0.811528
\(184\) −1104.00 −0.442326
\(185\) 95.0000 0.0377543
\(186\) 3178.00 1.25281
\(187\) −99.0000 −0.0387144
\(188\) −2136.00 −0.828637
\(189\) −385.000 −0.148173
\(190\) 850.000 0.324555
\(191\) −1548.00 −0.586436 −0.293218 0.956046i \(-0.594726\pi\)
−0.293218 + 0.956046i \(0.594726\pi\)
\(192\) 448.000 0.168394
\(193\) 827.000 0.308439 0.154220 0.988037i \(-0.450714\pi\)
0.154220 + 0.988037i \(0.450714\pi\)
\(194\) 232.000 0.0858589
\(195\) −70.0000 −0.0257067
\(196\) −888.000 −0.323615
\(197\) 456.000 0.164917 0.0824585 0.996594i \(-0.473723\pi\)
0.0824585 + 0.996594i \(0.473723\pi\)
\(198\) 484.000 0.173719
\(199\) 2825.00 1.00633 0.503163 0.864191i \(-0.332169\pi\)
0.503163 + 0.864191i \(0.332169\pi\)
\(200\) 200.000 0.0707107
\(201\) −2128.00 −0.746754
\(202\) 804.000 0.280046
\(203\) 495.000 0.171144
\(204\) −252.000 −0.0864879
\(205\) 690.000 0.235081
\(206\) 2824.00 0.955133
\(207\) −3036.00 −1.01940
\(208\) 32.0000 0.0106673
\(209\) −935.000 −0.309451
\(210\) −770.000 −0.253024
\(211\) −2233.00 −0.728560 −0.364280 0.931290i \(-0.618685\pi\)
−0.364280 + 0.931290i \(0.618685\pi\)
\(212\) 1188.00 0.384869
\(213\) 5439.00 1.74964
\(214\) 4272.00 1.36462
\(215\) 440.000 0.139571
\(216\) −280.000 −0.0882018
\(217\) 2497.00 0.781140
\(218\) 460.000 0.142913
\(219\) 6734.00 2.07782
\(220\) −220.000 −0.0674200
\(221\) −18.0000 −0.00547878
\(222\) −266.000 −0.0804178
\(223\) 5402.00 1.62217 0.811087 0.584926i \(-0.198876\pi\)
0.811087 + 0.584926i \(0.198876\pi\)
\(224\) 352.000 0.104995
\(225\) 550.000 0.162963
\(226\) −216.000 −0.0635757
\(227\) 2826.00 0.826292 0.413146 0.910665i \(-0.364430\pi\)
0.413146 + 0.910665i \(0.364430\pi\)
\(228\) −2380.00 −0.691313
\(229\) −2410.00 −0.695447 −0.347723 0.937597i \(-0.613045\pi\)
−0.347723 + 0.937597i \(0.613045\pi\)
\(230\) 1380.00 0.395628
\(231\) 847.000 0.241249
\(232\) 360.000 0.101876
\(233\) 687.000 0.193163 0.0965813 0.995325i \(-0.469209\pi\)
0.0965813 + 0.995325i \(0.469209\pi\)
\(234\) 88.0000 0.0245844
\(235\) 2670.00 0.741156
\(236\) −1800.00 −0.496483
\(237\) 2030.00 0.556383
\(238\) −198.000 −0.0539262
\(239\) 1650.00 0.446567 0.223284 0.974753i \(-0.428322\pi\)
0.223284 + 0.974753i \(0.428322\pi\)
\(240\) −560.000 −0.150616
\(241\) 2882.00 0.770315 0.385158 0.922851i \(-0.374147\pi\)
0.385158 + 0.922851i \(0.374147\pi\)
\(242\) 242.000 0.0642824
\(243\) −4928.00 −1.30095
\(244\) 1148.00 0.301202
\(245\) 1110.00 0.289450
\(246\) −1932.00 −0.500731
\(247\) −170.000 −0.0437929
\(248\) 1816.00 0.464984
\(249\) 9954.00 2.53337
\(250\) −250.000 −0.0632456
\(251\) −7698.00 −1.93583 −0.967915 0.251277i \(-0.919150\pi\)
−0.967915 + 0.251277i \(0.919150\pi\)
\(252\) 968.000 0.241977
\(253\) −1518.00 −0.377217
\(254\) 2752.00 0.679826
\(255\) 315.000 0.0773571
\(256\) 256.000 0.0625000
\(257\) −6354.00 −1.54222 −0.771112 0.636699i \(-0.780299\pi\)
−0.771112 + 0.636699i \(0.780299\pi\)
\(258\) −1232.00 −0.297291
\(259\) −209.000 −0.0501414
\(260\) −40.0000 −0.00954113
\(261\) 990.000 0.234787
\(262\) −3186.00 −0.751266
\(263\) −5223.00 −1.22458 −0.612289 0.790634i \(-0.709751\pi\)
−0.612289 + 0.790634i \(0.709751\pi\)
\(264\) 616.000 0.143607
\(265\) −1485.00 −0.344237
\(266\) −1870.00 −0.431042
\(267\) −10185.0 −2.33450
\(268\) −1216.00 −0.277161
\(269\) −4500.00 −1.01996 −0.509981 0.860186i \(-0.670348\pi\)
−0.509981 + 0.860186i \(0.670348\pi\)
\(270\) 350.000 0.0788901
\(271\) −1708.00 −0.382855 −0.191427 0.981507i \(-0.561312\pi\)
−0.191427 + 0.981507i \(0.561312\pi\)
\(272\) −144.000 −0.0321003
\(273\) 154.000 0.0341410
\(274\) 1512.00 0.333370
\(275\) 275.000 0.0603023
\(276\) −3864.00 −0.842701
\(277\) 5636.00 1.22251 0.611253 0.791435i \(-0.290666\pi\)
0.611253 + 0.791435i \(0.290666\pi\)
\(278\) 2920.00 0.629964
\(279\) 4994.00 1.07162
\(280\) −440.000 −0.0939108
\(281\) −5058.00 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) −7476.00 −1.57869
\(283\) −4858.00 −1.02042 −0.510209 0.860051i \(-0.670432\pi\)
−0.510209 + 0.860051i \(0.670432\pi\)
\(284\) 3108.00 0.649387
\(285\) 2975.00 0.618329
\(286\) 44.0000 0.00909711
\(287\) −1518.00 −0.312212
\(288\) 704.000 0.144040
\(289\) −4832.00 −0.983513
\(290\) −450.000 −0.0911204
\(291\) 812.000 0.163575
\(292\) 3848.00 0.771189
\(293\) 9402.00 1.87464 0.937322 0.348464i \(-0.113297\pi\)
0.937322 + 0.348464i \(0.113297\pi\)
\(294\) −3108.00 −0.616538
\(295\) 2250.00 0.444068
\(296\) −152.000 −0.0298474
\(297\) −385.000 −0.0752187
\(298\) −4290.00 −0.833936
\(299\) −276.000 −0.0533829
\(300\) 700.000 0.134715
\(301\) −968.000 −0.185364
\(302\) 5404.00 1.02969
\(303\) 2814.00 0.533532
\(304\) −1360.00 −0.256583
\(305\) −1435.00 −0.269403
\(306\) −396.000 −0.0739798
\(307\) −6574.00 −1.22214 −0.611072 0.791575i \(-0.709261\pi\)
−0.611072 + 0.791575i \(0.709261\pi\)
\(308\) 484.000 0.0895405
\(309\) 9884.00 1.81968
\(310\) −2270.00 −0.415895
\(311\) −8253.00 −1.50477 −0.752387 0.658721i \(-0.771098\pi\)
−0.752387 + 0.658721i \(0.771098\pi\)
\(312\) 112.000 0.0203229
\(313\) −4858.00 −0.877286 −0.438643 0.898661i \(-0.644541\pi\)
−0.438643 + 0.898661i \(0.644541\pi\)
\(314\) 2842.00 0.510775
\(315\) −1210.00 −0.216431
\(316\) 1160.00 0.206503
\(317\) 711.000 0.125974 0.0629870 0.998014i \(-0.479937\pi\)
0.0629870 + 0.998014i \(0.479937\pi\)
\(318\) 4158.00 0.733236
\(319\) 495.000 0.0868799
\(320\) −320.000 −0.0559017
\(321\) 14952.0 2.59981
\(322\) −3036.00 −0.525434
\(323\) 765.000 0.131782
\(324\) −3356.00 −0.575446
\(325\) 50.0000 0.00853385
\(326\) −5546.00 −0.942222
\(327\) 1610.00 0.272273
\(328\) −1104.00 −0.185848
\(329\) −5874.00 −0.984329
\(330\) −770.000 −0.128446
\(331\) 8552.00 1.42012 0.710061 0.704140i \(-0.248667\pi\)
0.710061 + 0.704140i \(0.248667\pi\)
\(332\) 5688.00 0.940270
\(333\) −418.000 −0.0687876
\(334\) −4218.00 −0.691014
\(335\) 1520.00 0.247900
\(336\) 1232.00 0.200033
\(337\) 1121.00 0.181201 0.0906005 0.995887i \(-0.471121\pi\)
0.0906005 + 0.995887i \(0.471121\pi\)
\(338\) −4386.00 −0.705819
\(339\) −756.000 −0.121122
\(340\) 180.000 0.0287114
\(341\) 2497.00 0.396540
\(342\) −3740.00 −0.591333
\(343\) −6215.00 −0.978363
\(344\) −704.000 −0.110341
\(345\) 4830.00 0.753735
\(346\) −7116.00 −1.10566
\(347\) 10986.0 1.69959 0.849797 0.527109i \(-0.176724\pi\)
0.849797 + 0.527109i \(0.176724\pi\)
\(348\) 1260.00 0.194089
\(349\) −1090.00 −0.167182 −0.0835908 0.996500i \(-0.526639\pi\)
−0.0835908 + 0.996500i \(0.526639\pi\)
\(350\) 550.000 0.0839964
\(351\) −70.0000 −0.0106448
\(352\) 352.000 0.0533002
\(353\) 462.000 0.0696594 0.0348297 0.999393i \(-0.488911\pi\)
0.0348297 + 0.999393i \(0.488911\pi\)
\(354\) −6300.00 −0.945879
\(355\) −3885.00 −0.580829
\(356\) −5820.00 −0.866459
\(357\) −693.000 −0.102738
\(358\) 600.000 0.0885782
\(359\) −60.0000 −0.00882083 −0.00441042 0.999990i \(-0.501404\pi\)
−0.00441042 + 0.999990i \(0.501404\pi\)
\(360\) −880.000 −0.128834
\(361\) 366.000 0.0533605
\(362\) 6244.00 0.906567
\(363\) 847.000 0.122468
\(364\) 88.0000 0.0126716
\(365\) −4810.00 −0.689772
\(366\) 4018.00 0.573837
\(367\) −1924.00 −0.273657 −0.136828 0.990595i \(-0.543691\pi\)
−0.136828 + 0.990595i \(0.543691\pi\)
\(368\) −2208.00 −0.312772
\(369\) −3036.00 −0.428314
\(370\) 190.000 0.0266963
\(371\) 3267.00 0.457181
\(372\) 6356.00 0.885869
\(373\) −6238.00 −0.865929 −0.432964 0.901411i \(-0.642532\pi\)
−0.432964 + 0.901411i \(0.642532\pi\)
\(374\) −198.000 −0.0273752
\(375\) −875.000 −0.120493
\(376\) −4272.00 −0.585935
\(377\) 90.0000 0.0122951
\(378\) −770.000 −0.104774
\(379\) 830.000 0.112491 0.0562457 0.998417i \(-0.482087\pi\)
0.0562457 + 0.998417i \(0.482087\pi\)
\(380\) 1700.00 0.229495
\(381\) 9632.00 1.29518
\(382\) −3096.00 −0.414673
\(383\) 3762.00 0.501904 0.250952 0.968000i \(-0.419256\pi\)
0.250952 + 0.968000i \(0.419256\pi\)
\(384\) 896.000 0.119072
\(385\) −605.000 −0.0800874
\(386\) 1654.00 0.218099
\(387\) −1936.00 −0.254296
\(388\) 464.000 0.0607114
\(389\) −5550.00 −0.723383 −0.361692 0.932298i \(-0.617801\pi\)
−0.361692 + 0.932298i \(0.617801\pi\)
\(390\) −140.000 −0.0181774
\(391\) 1242.00 0.160641
\(392\) −1776.00 −0.228830
\(393\) −11151.0 −1.43128
\(394\) 912.000 0.116614
\(395\) −1450.00 −0.184702
\(396\) 968.000 0.122838
\(397\) 8786.00 1.11072 0.555361 0.831609i \(-0.312580\pi\)
0.555361 + 0.831609i \(0.312580\pi\)
\(398\) 5650.00 0.711580
\(399\) −6545.00 −0.821203
\(400\) 400.000 0.0500000
\(401\) −3333.00 −0.415068 −0.207534 0.978228i \(-0.566544\pi\)
−0.207534 + 0.978228i \(0.566544\pi\)
\(402\) −4256.00 −0.528035
\(403\) 454.000 0.0561175
\(404\) 1608.00 0.198022
\(405\) 4195.00 0.514694
\(406\) 990.000 0.121017
\(407\) −209.000 −0.0254539
\(408\) −504.000 −0.0611562
\(409\) −12820.0 −1.54990 −0.774949 0.632024i \(-0.782224\pi\)
−0.774949 + 0.632024i \(0.782224\pi\)
\(410\) 1380.00 0.166228
\(411\) 5292.00 0.635122
\(412\) 5648.00 0.675381
\(413\) −4950.00 −0.589767
\(414\) −6072.00 −0.720827
\(415\) −7110.00 −0.841003
\(416\) 64.0000 0.00754293
\(417\) 10220.0 1.20018
\(418\) −1870.00 −0.218815
\(419\) 13680.0 1.59502 0.797508 0.603308i \(-0.206151\pi\)
0.797508 + 0.603308i \(0.206151\pi\)
\(420\) −1540.00 −0.178915
\(421\) 4952.00 0.573268 0.286634 0.958040i \(-0.407464\pi\)
0.286634 + 0.958040i \(0.407464\pi\)
\(422\) −4466.00 −0.515169
\(423\) −11748.0 −1.35037
\(424\) 2376.00 0.272143
\(425\) −225.000 −0.0256802
\(426\) 10878.0 1.23719
\(427\) 3157.00 0.357794
\(428\) 8544.00 0.964930
\(429\) 154.000 0.0173314
\(430\) 880.000 0.0986916
\(431\) 16032.0 1.79173 0.895863 0.444330i \(-0.146558\pi\)
0.895863 + 0.444330i \(0.146558\pi\)
\(432\) −560.000 −0.0623681
\(433\) 692.000 0.0768023 0.0384012 0.999262i \(-0.487774\pi\)
0.0384012 + 0.999262i \(0.487774\pi\)
\(434\) 4994.00 0.552349
\(435\) −1575.00 −0.173599
\(436\) 920.000 0.101055
\(437\) 11730.0 1.28403
\(438\) 13468.0 1.46924
\(439\) −17920.0 −1.94823 −0.974117 0.226043i \(-0.927421\pi\)
−0.974117 + 0.226043i \(0.927421\pi\)
\(440\) −440.000 −0.0476731
\(441\) −4884.00 −0.527373
\(442\) −36.0000 −0.00387408
\(443\) 15852.0 1.70012 0.850058 0.526689i \(-0.176567\pi\)
0.850058 + 0.526689i \(0.176567\pi\)
\(444\) −532.000 −0.0568640
\(445\) 7275.00 0.774984
\(446\) 10804.0 1.14705
\(447\) −15015.0 −1.58878
\(448\) 704.000 0.0742430
\(449\) 6930.00 0.728390 0.364195 0.931323i \(-0.381344\pi\)
0.364195 + 0.931323i \(0.381344\pi\)
\(450\) 1100.00 0.115232
\(451\) −1518.00 −0.158492
\(452\) −432.000 −0.0449548
\(453\) 18914.0 1.96172
\(454\) 5652.00 0.584276
\(455\) −110.000 −0.0113338
\(456\) −4760.00 −0.488832
\(457\) −619.000 −0.0633602 −0.0316801 0.999498i \(-0.510086\pi\)
−0.0316801 + 0.999498i \(0.510086\pi\)
\(458\) −4820.00 −0.491755
\(459\) 315.000 0.0320326
\(460\) 2760.00 0.279751
\(461\) −10533.0 −1.06414 −0.532072 0.846699i \(-0.678587\pi\)
−0.532072 + 0.846699i \(0.678587\pi\)
\(462\) 1694.00 0.170589
\(463\) −11698.0 −1.17419 −0.587097 0.809516i \(-0.699729\pi\)
−0.587097 + 0.809516i \(0.699729\pi\)
\(464\) 720.000 0.0720370
\(465\) −7945.00 −0.792345
\(466\) 1374.00 0.136587
\(467\) 1431.00 0.141796 0.0708981 0.997484i \(-0.477413\pi\)
0.0708981 + 0.997484i \(0.477413\pi\)
\(468\) 176.000 0.0173838
\(469\) −3344.00 −0.329236
\(470\) 5340.00 0.524076
\(471\) 9947.00 0.973107
\(472\) −3600.00 −0.351067
\(473\) −968.000 −0.0940987
\(474\) 4060.00 0.393422
\(475\) −2125.00 −0.205267
\(476\) −396.000 −0.0381316
\(477\) 6534.00 0.627194
\(478\) 3300.00 0.315771
\(479\) −4740.00 −0.452142 −0.226071 0.974111i \(-0.572588\pi\)
−0.226071 + 0.974111i \(0.572588\pi\)
\(480\) −1120.00 −0.106502
\(481\) −38.0000 −0.00360218
\(482\) 5764.00 0.544695
\(483\) −10626.0 −1.00103
\(484\) 484.000 0.0454545
\(485\) −580.000 −0.0543019
\(486\) −9856.00 −0.919912
\(487\) −2104.00 −0.195773 −0.0978864 0.995198i \(-0.531208\pi\)
−0.0978864 + 0.995198i \(0.531208\pi\)
\(488\) 2296.00 0.212982
\(489\) −19411.0 −1.79508
\(490\) 2220.00 0.204672
\(491\) −12933.0 −1.18871 −0.594357 0.804202i \(-0.702593\pi\)
−0.594357 + 0.804202i \(0.702593\pi\)
\(492\) −3864.00 −0.354070
\(493\) −405.000 −0.0369985
\(494\) −340.000 −0.0309662
\(495\) −1210.00 −0.109870
\(496\) 3632.00 0.328794
\(497\) 8547.00 0.771399
\(498\) 19908.0 1.79136
\(499\) 17540.0 1.57354 0.786772 0.617244i \(-0.211751\pi\)
0.786772 + 0.617244i \(0.211751\pi\)
\(500\) −500.000 −0.0447214
\(501\) −14763.0 −1.31649
\(502\) −15396.0 −1.36884
\(503\) 7632.00 0.676529 0.338264 0.941051i \(-0.390160\pi\)
0.338264 + 0.941051i \(0.390160\pi\)
\(504\) 1936.00 0.171104
\(505\) −2010.00 −0.177116
\(506\) −3036.00 −0.266733
\(507\) −15351.0 −1.34470
\(508\) 5504.00 0.480710
\(509\) 2340.00 0.203770 0.101885 0.994796i \(-0.467513\pi\)
0.101885 + 0.994796i \(0.467513\pi\)
\(510\) 630.000 0.0546997
\(511\) 10582.0 0.916086
\(512\) 512.000 0.0441942
\(513\) 2975.00 0.256042
\(514\) −12708.0 −1.09052
\(515\) −7060.00 −0.604079
\(516\) −2464.00 −0.210216
\(517\) −5874.00 −0.499687
\(518\) −418.000 −0.0354553
\(519\) −24906.0 −2.10646
\(520\) −80.0000 −0.00674660
\(521\) −16338.0 −1.37386 −0.686930 0.726724i \(-0.741042\pi\)
−0.686930 + 0.726724i \(0.741042\pi\)
\(522\) 1980.00 0.166020
\(523\) 7712.00 0.644784 0.322392 0.946606i \(-0.395513\pi\)
0.322392 + 0.946606i \(0.395513\pi\)
\(524\) −6372.00 −0.531225
\(525\) 1925.00 0.160026
\(526\) −10446.0 −0.865907
\(527\) −2043.00 −0.168870
\(528\) 1232.00 0.101545
\(529\) 6877.00 0.565217
\(530\) −2970.00 −0.243412
\(531\) −9900.00 −0.809084
\(532\) −3740.00 −0.304792
\(533\) −276.000 −0.0224294
\(534\) −20370.0 −1.65074
\(535\) −10680.0 −0.863059
\(536\) −2432.00 −0.195982
\(537\) 2100.00 0.168755
\(538\) −9000.00 −0.721222
\(539\) −2442.00 −0.195147
\(540\) 700.000 0.0557837
\(541\) 14537.0 1.15526 0.577629 0.816300i \(-0.303978\pi\)
0.577629 + 0.816300i \(0.303978\pi\)
\(542\) −3416.00 −0.270719
\(543\) 21854.0 1.72715
\(544\) −288.000 −0.0226983
\(545\) −1150.00 −0.0903864
\(546\) 308.000 0.0241414
\(547\) 14096.0 1.10183 0.550915 0.834561i \(-0.314279\pi\)
0.550915 + 0.834561i \(0.314279\pi\)
\(548\) 3024.00 0.235728
\(549\) 6314.00 0.490847
\(550\) 550.000 0.0426401
\(551\) −3825.00 −0.295736
\(552\) −7728.00 −0.595880
\(553\) 3190.00 0.245303
\(554\) 11272.0 0.864443
\(555\) 665.000 0.0508607
\(556\) 5840.00 0.445452
\(557\) 2706.00 0.205847 0.102924 0.994689i \(-0.467180\pi\)
0.102924 + 0.994689i \(0.467180\pi\)
\(558\) 9988.00 0.757752
\(559\) −176.000 −0.0133166
\(560\) −880.000 −0.0664050
\(561\) −693.000 −0.0521542
\(562\) −10116.0 −0.759284
\(563\) 20502.0 1.53474 0.767368 0.641207i \(-0.221566\pi\)
0.767368 + 0.641207i \(0.221566\pi\)
\(564\) −14952.0 −1.11630
\(565\) 540.000 0.0402088
\(566\) −9716.00 −0.721544
\(567\) −9229.00 −0.683565
\(568\) 6216.00 0.459186
\(569\) 12960.0 0.954853 0.477427 0.878672i \(-0.341570\pi\)
0.477427 + 0.878672i \(0.341570\pi\)
\(570\) 5950.00 0.437225
\(571\) −14443.0 −1.05853 −0.529265 0.848457i \(-0.677532\pi\)
−0.529265 + 0.848457i \(0.677532\pi\)
\(572\) 88.0000 0.00643263
\(573\) −10836.0 −0.790018
\(574\) −3036.00 −0.220767
\(575\) −3450.00 −0.250217
\(576\) 1408.00 0.101852
\(577\) −10234.0 −0.738383 −0.369192 0.929353i \(-0.620365\pi\)
−0.369192 + 0.929353i \(0.620365\pi\)
\(578\) −9664.00 −0.695449
\(579\) 5789.00 0.415514
\(580\) −900.000 −0.0644318
\(581\) 15642.0 1.11694
\(582\) 1624.00 0.115665
\(583\) 3267.00 0.232085
\(584\) 7696.00 0.545313
\(585\) −220.000 −0.0155485
\(586\) 18804.0 1.32557
\(587\) 9741.00 0.684930 0.342465 0.939531i \(-0.388738\pi\)
0.342465 + 0.939531i \(0.388738\pi\)
\(588\) −6216.00 −0.435958
\(589\) −19295.0 −1.34981
\(590\) 4500.00 0.314004
\(591\) 3192.00 0.222168
\(592\) −304.000 −0.0211053
\(593\) −16518.0 −1.14387 −0.571933 0.820300i \(-0.693806\pi\)
−0.571933 + 0.820300i \(0.693806\pi\)
\(594\) −770.000 −0.0531877
\(595\) 495.000 0.0341059
\(596\) −8580.00 −0.589682
\(597\) 19775.0 1.35567
\(598\) −552.000 −0.0377474
\(599\) 13635.0 0.930068 0.465034 0.885293i \(-0.346042\pi\)
0.465034 + 0.885293i \(0.346042\pi\)
\(600\) 1400.00 0.0952579
\(601\) −13438.0 −0.912059 −0.456029 0.889965i \(-0.650729\pi\)
−0.456029 + 0.889965i \(0.650729\pi\)
\(602\) −1936.00 −0.131072
\(603\) −6688.00 −0.451669
\(604\) 10808.0 0.728098
\(605\) −605.000 −0.0406558
\(606\) 5628.00 0.377264
\(607\) −15199.0 −1.01632 −0.508162 0.861262i \(-0.669675\pi\)
−0.508162 + 0.861262i \(0.669675\pi\)
\(608\) −2720.00 −0.181432
\(609\) 3465.00 0.230556
\(610\) −2870.00 −0.190497
\(611\) −1068.00 −0.0707147
\(612\) −792.000 −0.0523116
\(613\) 21122.0 1.39170 0.695848 0.718189i \(-0.255029\pi\)
0.695848 + 0.718189i \(0.255029\pi\)
\(614\) −13148.0 −0.864186
\(615\) 4830.00 0.316690
\(616\) 968.000 0.0633147
\(617\) −2304.00 −0.150333 −0.0751666 0.997171i \(-0.523949\pi\)
−0.0751666 + 0.997171i \(0.523949\pi\)
\(618\) 19768.0 1.28671
\(619\) −14020.0 −0.910358 −0.455179 0.890400i \(-0.650425\pi\)
−0.455179 + 0.890400i \(0.650425\pi\)
\(620\) −4540.00 −0.294082
\(621\) 4830.00 0.312111
\(622\) −16506.0 −1.06404
\(623\) −16005.0 −1.02926
\(624\) 224.000 0.0143705
\(625\) 625.000 0.0400000
\(626\) −9716.00 −0.620335
\(627\) −6545.00 −0.416877
\(628\) 5684.00 0.361172
\(629\) 171.000 0.0108398
\(630\) −2420.00 −0.153040
\(631\) 22457.0 1.41680 0.708399 0.705813i \(-0.249418\pi\)
0.708399 + 0.705813i \(0.249418\pi\)
\(632\) 2320.00 0.146020
\(633\) −15631.0 −0.981479
\(634\) 1422.00 0.0890770
\(635\) −6880.00 −0.429960
\(636\) 8316.00 0.518476
\(637\) −444.000 −0.0276168
\(638\) 990.000 0.0614333
\(639\) 17094.0 1.05826
\(640\) −640.000 −0.0395285
\(641\) 8847.00 0.545141 0.272571 0.962136i \(-0.412126\pi\)
0.272571 + 0.962136i \(0.412126\pi\)
\(642\) 29904.0 1.83834
\(643\) −1213.00 −0.0743951 −0.0371976 0.999308i \(-0.511843\pi\)
−0.0371976 + 0.999308i \(0.511843\pi\)
\(644\) −6072.00 −0.371538
\(645\) 3080.00 0.188023
\(646\) 1530.00 0.0931843
\(647\) −9774.00 −0.593904 −0.296952 0.954892i \(-0.595970\pi\)
−0.296952 + 0.954892i \(0.595970\pi\)
\(648\) −6712.00 −0.406902
\(649\) −4950.00 −0.299391
\(650\) 100.000 0.00603434
\(651\) 17479.0 1.05231
\(652\) −11092.0 −0.666252
\(653\) −14433.0 −0.864942 −0.432471 0.901648i \(-0.642358\pi\)
−0.432471 + 0.901648i \(0.642358\pi\)
\(654\) 3220.00 0.192526
\(655\) 7965.00 0.475142
\(656\) −2208.00 −0.131415
\(657\) 21164.0 1.25675
\(658\) −11748.0 −0.696025
\(659\) 22905.0 1.35395 0.676974 0.736007i \(-0.263291\pi\)
0.676974 + 0.736007i \(0.263291\pi\)
\(660\) −1540.00 −0.0908249
\(661\) 2942.00 0.173117 0.0865587 0.996247i \(-0.472413\pi\)
0.0865587 + 0.996247i \(0.472413\pi\)
\(662\) 17104.0 1.00418
\(663\) −126.000 −0.00738075
\(664\) 11376.0 0.664871
\(665\) 4675.00 0.272615
\(666\) −836.000 −0.0486402
\(667\) −6210.00 −0.360498
\(668\) −8436.00 −0.488621
\(669\) 37814.0 2.18531
\(670\) 3040.00 0.175292
\(671\) 3157.00 0.181631
\(672\) 2464.00 0.141445
\(673\) −13813.0 −0.791162 −0.395581 0.918431i \(-0.629457\pi\)
−0.395581 + 0.918431i \(0.629457\pi\)
\(674\) 2242.00 0.128129
\(675\) −875.000 −0.0498945
\(676\) −8772.00 −0.499090
\(677\) 8436.00 0.478910 0.239455 0.970908i \(-0.423031\pi\)
0.239455 + 0.970908i \(0.423031\pi\)
\(678\) −1512.00 −0.0856460
\(679\) 1276.00 0.0721184
\(680\) 360.000 0.0203020
\(681\) 19782.0 1.11314
\(682\) 4994.00 0.280396
\(683\) 10377.0 0.581354 0.290677 0.956821i \(-0.406119\pi\)
0.290677 + 0.956821i \(0.406119\pi\)
\(684\) −7480.00 −0.418136
\(685\) −3780.00 −0.210841
\(686\) −12430.0 −0.691807
\(687\) −16870.0 −0.936871
\(688\) −1408.00 −0.0780225
\(689\) 594.000 0.0328441
\(690\) 9660.00 0.532971
\(691\) 18602.0 1.02410 0.512050 0.858956i \(-0.328886\pi\)
0.512050 + 0.858956i \(0.328886\pi\)
\(692\) −14232.0 −0.781820
\(693\) 2662.00 0.145918
\(694\) 21972.0 1.20179
\(695\) −7300.00 −0.398424
\(696\) 2520.00 0.137242
\(697\) 1242.00 0.0674951
\(698\) −2180.00 −0.118215
\(699\) 4809.00 0.260219
\(700\) 1100.00 0.0593944
\(701\) −31353.0 −1.68928 −0.844641 0.535333i \(-0.820186\pi\)
−0.844641 + 0.535333i \(0.820186\pi\)
\(702\) −140.000 −0.00752701
\(703\) 1615.00 0.0866442
\(704\) 704.000 0.0376889
\(705\) 18690.0 0.998448
\(706\) 924.000 0.0492567
\(707\) 4422.00 0.235228
\(708\) −12600.0 −0.668838
\(709\) 27470.0 1.45509 0.727544 0.686061i \(-0.240662\pi\)
0.727544 + 0.686061i \(0.240662\pi\)
\(710\) −7770.00 −0.410708
\(711\) 6380.00 0.336524
\(712\) −11640.0 −0.612679
\(713\) −31326.0 −1.64540
\(714\) −1386.00 −0.0726467
\(715\) −110.000 −0.00575352
\(716\) 1200.00 0.0626342
\(717\) 11550.0 0.601594
\(718\) −120.000 −0.00623727
\(719\) −10425.0 −0.540733 −0.270366 0.962758i \(-0.587145\pi\)
−0.270366 + 0.962758i \(0.587145\pi\)
\(720\) −1760.00 −0.0910991
\(721\) 15532.0 0.802277
\(722\) 732.000 0.0377316
\(723\) 20174.0 1.03773
\(724\) 12488.0 0.641040
\(725\) 1125.00 0.0576296
\(726\) 1694.00 0.0865981
\(727\) −26854.0 −1.36996 −0.684979 0.728563i \(-0.740189\pi\)
−0.684979 + 0.728563i \(0.740189\pi\)
\(728\) 176.000 0.00896016
\(729\) −11843.0 −0.601687
\(730\) −9620.00 −0.487743
\(731\) 792.000 0.0400727
\(732\) 8036.00 0.405764
\(733\) −22228.0 −1.12007 −0.560034 0.828470i \(-0.689212\pi\)
−0.560034 + 0.828470i \(0.689212\pi\)
\(734\) −3848.00 −0.193504
\(735\) 7770.00 0.389933
\(736\) −4416.00 −0.221163
\(737\) −3344.00 −0.167134
\(738\) −6072.00 −0.302864
\(739\) −12640.0 −0.629188 −0.314594 0.949226i \(-0.601868\pi\)
−0.314594 + 0.949226i \(0.601868\pi\)
\(740\) 380.000 0.0188771
\(741\) −1190.00 −0.0589956
\(742\) 6534.00 0.323276
\(743\) 24507.0 1.21006 0.605030 0.796203i \(-0.293161\pi\)
0.605030 + 0.796203i \(0.293161\pi\)
\(744\) 12712.0 0.626404
\(745\) 10725.0 0.527428
\(746\) −12476.0 −0.612304
\(747\) 31284.0 1.53229
\(748\) −396.000 −0.0193572
\(749\) 23496.0 1.14623
\(750\) −1750.00 −0.0852013
\(751\) 17087.0 0.830244 0.415122 0.909766i \(-0.363739\pi\)
0.415122 + 0.909766i \(0.363739\pi\)
\(752\) −8544.00 −0.414319
\(753\) −53886.0 −2.60786
\(754\) 180.000 0.00869392
\(755\) −13510.0 −0.651231
\(756\) −1540.00 −0.0740863
\(757\) 7106.00 0.341178 0.170589 0.985342i \(-0.445433\pi\)
0.170589 + 0.985342i \(0.445433\pi\)
\(758\) 1660.00 0.0795434
\(759\) −10626.0 −0.508168
\(760\) 3400.00 0.162278
\(761\) −2238.00 −0.106606 −0.0533032 0.998578i \(-0.516975\pi\)
−0.0533032 + 0.998578i \(0.516975\pi\)
\(762\) 19264.0 0.915828
\(763\) 2530.00 0.120042
\(764\) −6192.00 −0.293218
\(765\) 990.000 0.0467889
\(766\) 7524.00 0.354900
\(767\) −900.000 −0.0423691
\(768\) 1792.00 0.0841969
\(769\) −12730.0 −0.596951 −0.298476 0.954417i \(-0.596478\pi\)
−0.298476 + 0.954417i \(0.596478\pi\)
\(770\) −1210.00 −0.0566304
\(771\) −44478.0 −2.07761
\(772\) 3308.00 0.154220
\(773\) −22323.0 −1.03868 −0.519342 0.854567i \(-0.673823\pi\)
−0.519342 + 0.854567i \(0.673823\pi\)
\(774\) −3872.00 −0.179814
\(775\) 5675.00 0.263035
\(776\) 928.000 0.0429295
\(777\) −1463.00 −0.0675480
\(778\) −11100.0 −0.511509
\(779\) 11730.0 0.539500
\(780\) −280.000 −0.0128533
\(781\) 8547.00 0.391595
\(782\) 2484.00 0.113590
\(783\) −1575.00 −0.0718849
\(784\) −3552.00 −0.161808
\(785\) −7105.00 −0.323042
\(786\) −22302.0 −1.01207
\(787\) 40376.0 1.82878 0.914389 0.404836i \(-0.132671\pi\)
0.914389 + 0.404836i \(0.132671\pi\)
\(788\) 1824.00 0.0824585
\(789\) −36561.0 −1.64969
\(790\) −2900.00 −0.130604
\(791\) −1188.00 −0.0534013
\(792\) 1936.00 0.0868596
\(793\) 574.000 0.0257041
\(794\) 17572.0 0.785399
\(795\) −10395.0 −0.463739
\(796\) 11300.0 0.503163
\(797\) −21114.0 −0.938389 −0.469195 0.883095i \(-0.655456\pi\)
−0.469195 + 0.883095i \(0.655456\pi\)
\(798\) −13090.0 −0.580678
\(799\) 4806.00 0.212796
\(800\) 800.000 0.0353553
\(801\) −32010.0 −1.41201
\(802\) −6666.00 −0.293497
\(803\) 10582.0 0.465044
\(804\) −8512.00 −0.373377
\(805\) 7590.00 0.332313
\(806\) 908.000 0.0396811
\(807\) −31500.0 −1.37404
\(808\) 3216.00 0.140023
\(809\) −38550.0 −1.67533 −0.837667 0.546181i \(-0.816081\pi\)
−0.837667 + 0.546181i \(0.816081\pi\)
\(810\) 8390.00 0.363944
\(811\) −43063.0 −1.86455 −0.932273 0.361756i \(-0.882177\pi\)
−0.932273 + 0.361756i \(0.882177\pi\)
\(812\) 1980.00 0.0855719
\(813\) −11956.0 −0.515763
\(814\) −418.000 −0.0179986
\(815\) 13865.0 0.595914
\(816\) −1008.00 −0.0432439
\(817\) 7480.00 0.320309
\(818\) −25640.0 −1.09594
\(819\) 484.000 0.0206500
\(820\) 2760.00 0.117541
\(821\) −2298.00 −0.0976867 −0.0488433 0.998806i \(-0.515554\pi\)
−0.0488433 + 0.998806i \(0.515554\pi\)
\(822\) 10584.0 0.449099
\(823\) −5428.00 −0.229901 −0.114950 0.993371i \(-0.536671\pi\)
−0.114950 + 0.993371i \(0.536671\pi\)
\(824\) 11296.0 0.477567
\(825\) 1925.00 0.0812362
\(826\) −9900.00 −0.417028
\(827\) −5004.00 −0.210406 −0.105203 0.994451i \(-0.533549\pi\)
−0.105203 + 0.994451i \(0.533549\pi\)
\(828\) −12144.0 −0.509702
\(829\) −25180.0 −1.05493 −0.527465 0.849577i \(-0.676858\pi\)
−0.527465 + 0.849577i \(0.676858\pi\)
\(830\) −14220.0 −0.594679
\(831\) 39452.0 1.64690
\(832\) 128.000 0.00533366
\(833\) 1998.00 0.0831052
\(834\) 20440.0 0.848656
\(835\) 10545.0 0.437036
\(836\) −3740.00 −0.154726
\(837\) −7945.00 −0.328100
\(838\) 27360.0 1.12785
\(839\) −8760.00 −0.360463 −0.180232 0.983624i \(-0.557685\pi\)
−0.180232 + 0.983624i \(0.557685\pi\)
\(840\) −3080.00 −0.126512
\(841\) −22364.0 −0.916971
\(842\) 9904.00 0.405361
\(843\) −35406.0 −1.44656
\(844\) −8932.00 −0.364280
\(845\) 10965.0 0.446399
\(846\) −23496.0 −0.954857
\(847\) 1331.00 0.0539949
\(848\) 4752.00 0.192434
\(849\) −34006.0 −1.37466
\(850\) −450.000 −0.0181587
\(851\) 2622.00 0.105618
\(852\) 21756.0 0.874822
\(853\) 35462.0 1.42344 0.711721 0.702462i \(-0.247916\pi\)
0.711721 + 0.702462i \(0.247916\pi\)
\(854\) 6314.00 0.252998
\(855\) 9350.00 0.373992
\(856\) 17088.0 0.682308
\(857\) −12489.0 −0.497802 −0.248901 0.968529i \(-0.580069\pi\)
−0.248901 + 0.968529i \(0.580069\pi\)
\(858\) 308.000 0.0122552
\(859\) 10970.0 0.435729 0.217865 0.975979i \(-0.430091\pi\)
0.217865 + 0.975979i \(0.430091\pi\)
\(860\) 1760.00 0.0697855
\(861\) −10626.0 −0.420596
\(862\) 32064.0 1.26694
\(863\) 36942.0 1.45715 0.728575 0.684966i \(-0.240183\pi\)
0.728575 + 0.684966i \(0.240183\pi\)
\(864\) −1120.00 −0.0441009
\(865\) 17790.0 0.699281
\(866\) 1384.00 0.0543074
\(867\) −33824.0 −1.32494
\(868\) 9988.00 0.390570
\(869\) 3190.00 0.124526
\(870\) −3150.00 −0.122753
\(871\) −608.000 −0.0236525
\(872\) 1840.00 0.0714567
\(873\) 2552.00 0.0989371
\(874\) 23460.0 0.907948
\(875\) −1375.00 −0.0531240
\(876\) 26936.0 1.03891
\(877\) −48094.0 −1.85179 −0.925895 0.377782i \(-0.876687\pi\)
−0.925895 + 0.377782i \(0.876687\pi\)
\(878\) −35840.0 −1.37761
\(879\) 65814.0 2.52543
\(880\) −880.000 −0.0337100
\(881\) −28878.0 −1.10434 −0.552171 0.833731i \(-0.686200\pi\)
−0.552171 + 0.833731i \(0.686200\pi\)
\(882\) −9768.00 −0.372909
\(883\) 6497.00 0.247612 0.123806 0.992306i \(-0.460490\pi\)
0.123806 + 0.992306i \(0.460490\pi\)
\(884\) −72.0000 −0.00273939
\(885\) 15750.0 0.598227
\(886\) 31704.0 1.20216
\(887\) 15696.0 0.594160 0.297080 0.954853i \(-0.403987\pi\)
0.297080 + 0.954853i \(0.403987\pi\)
\(888\) −1064.00 −0.0402089
\(889\) 15136.0 0.571029
\(890\) 14550.0 0.547997
\(891\) −9229.00 −0.347007
\(892\) 21608.0 0.811087
\(893\) 45390.0 1.70092
\(894\) −30030.0 −1.12344
\(895\) −1500.00 −0.0560218
\(896\) 1408.00 0.0524977
\(897\) −1932.00 −0.0719148
\(898\) 13860.0 0.515049
\(899\) 10215.0 0.378965
\(900\) 2200.00 0.0814815
\(901\) −2673.00 −0.0988352
\(902\) −3036.00 −0.112071
\(903\) −6776.00 −0.249713
\(904\) −864.000 −0.0317878
\(905\) −15610.0 −0.573363
\(906\) 37828.0 1.38714
\(907\) 9551.00 0.349654 0.174827 0.984599i \(-0.444063\pi\)
0.174827 + 0.984599i \(0.444063\pi\)
\(908\) 11304.0 0.413146
\(909\) 8844.00 0.322703
\(910\) −220.000 −0.00801421
\(911\) 1317.00 0.0478970 0.0239485 0.999713i \(-0.492376\pi\)
0.0239485 + 0.999713i \(0.492376\pi\)
\(912\) −9520.00 −0.345656
\(913\) 15642.0 0.567004
\(914\) −1238.00 −0.0448024
\(915\) −10045.0 −0.362926
\(916\) −9640.00 −0.347723
\(917\) −17523.0 −0.631036
\(918\) 630.000 0.0226504
\(919\) 43460.0 1.55997 0.779985 0.625798i \(-0.215226\pi\)
0.779985 + 0.625798i \(0.215226\pi\)
\(920\) 5520.00 0.197814
\(921\) −46018.0 −1.64641
\(922\) −21066.0 −0.752464
\(923\) 1554.00 0.0554177
\(924\) 3388.00 0.120624
\(925\) −475.000 −0.0168842
\(926\) −23396.0 −0.830281
\(927\) 31064.0 1.10062
\(928\) 1440.00 0.0509378
\(929\) 40995.0 1.44780 0.723898 0.689907i \(-0.242349\pi\)
0.723898 + 0.689907i \(0.242349\pi\)
\(930\) −15890.0 −0.560273
\(931\) 18870.0 0.664274
\(932\) 2748.00 0.0965813
\(933\) −57771.0 −2.02716
\(934\) 2862.00 0.100265
\(935\) 495.000 0.0173136
\(936\) 352.000 0.0122922
\(937\) −31174.0 −1.08688 −0.543442 0.839447i \(-0.682879\pi\)
−0.543442 + 0.839447i \(0.682879\pi\)
\(938\) −6688.00 −0.232805
\(939\) −34006.0 −1.18184
\(940\) 10680.0 0.370578
\(941\) −41103.0 −1.42393 −0.711966 0.702214i \(-0.752195\pi\)
−0.711966 + 0.702214i \(0.752195\pi\)
\(942\) 19894.0 0.688091
\(943\) 19044.0 0.657644
\(944\) −7200.00 −0.248242
\(945\) 1925.00 0.0662648
\(946\) −1936.00 −0.0665378
\(947\) 18861.0 0.647202 0.323601 0.946194i \(-0.395106\pi\)
0.323601 + 0.946194i \(0.395106\pi\)
\(948\) 8120.00 0.278191
\(949\) 1924.00 0.0658121
\(950\) −4250.00 −0.145145
\(951\) 4977.00 0.169706
\(952\) −792.000 −0.0269631
\(953\) 4857.00 0.165093 0.0825465 0.996587i \(-0.473695\pi\)
0.0825465 + 0.996587i \(0.473695\pi\)
\(954\) 13068.0 0.443493
\(955\) 7740.00 0.262262
\(956\) 6600.00 0.223284
\(957\) 3465.00 0.117040
\(958\) −9480.00 −0.319713
\(959\) 8316.00 0.280018
\(960\) −2240.00 −0.0753080
\(961\) 21738.0 0.729683
\(962\) −76.0000 −0.00254713
\(963\) 46992.0 1.57248
\(964\) 11528.0 0.385158
\(965\) −4135.00 −0.137938
\(966\) −21252.0 −0.707838
\(967\) −18859.0 −0.627161 −0.313580 0.949562i \(-0.601529\pi\)
−0.313580 + 0.949562i \(0.601529\pi\)
\(968\) 968.000 0.0321412
\(969\) 5355.00 0.177531
\(970\) −1160.00 −0.0383973
\(971\) −20568.0 −0.679772 −0.339886 0.940467i \(-0.610388\pi\)
−0.339886 + 0.940467i \(0.610388\pi\)
\(972\) −19712.0 −0.650476
\(973\) 16060.0 0.529147
\(974\) −4208.00 −0.138432
\(975\) 350.000 0.0114964
\(976\) 4592.00 0.150601
\(977\) 45636.0 1.49440 0.747198 0.664601i \(-0.231399\pi\)
0.747198 + 0.664601i \(0.231399\pi\)
\(978\) −38822.0 −1.26932
\(979\) −16005.0 −0.522494
\(980\) 4440.00 0.144725
\(981\) 5060.00 0.164682
\(982\) −25866.0 −0.840547
\(983\) −33618.0 −1.09079 −0.545396 0.838179i \(-0.683621\pi\)
−0.545396 + 0.838179i \(0.683621\pi\)
\(984\) −7728.00 −0.250365
\(985\) −2280.00 −0.0737531
\(986\) −810.000 −0.0261619
\(987\) −41118.0 −1.32604
\(988\) −680.000 −0.0218964
\(989\) 12144.0 0.390452
\(990\) −2420.00 −0.0776895
\(991\) −42928.0 −1.37604 −0.688019 0.725693i \(-0.741519\pi\)
−0.688019 + 0.725693i \(0.741519\pi\)
\(992\) 7264.00 0.232492
\(993\) 59864.0 1.91312
\(994\) 17094.0 0.545462
\(995\) −14125.0 −0.450043
\(996\) 39816.0 1.26668
\(997\) 55316.0 1.75715 0.878573 0.477607i \(-0.158496\pi\)
0.878573 + 0.477607i \(0.158496\pi\)
\(998\) 35080.0 1.11266
\(999\) 665.000 0.0210607
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.4.a.g.1.1 1
3.2 odd 2 990.4.a.i.1.1 1
4.3 odd 2 880.4.a.c.1.1 1
5.2 odd 4 550.4.b.j.199.2 2
5.3 odd 4 550.4.b.j.199.1 2
5.4 even 2 550.4.a.b.1.1 1
11.10 odd 2 1210.4.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.4.a.g.1.1 1 1.1 even 1 trivial
550.4.a.b.1.1 1 5.4 even 2
550.4.b.j.199.1 2 5.3 odd 4
550.4.b.j.199.2 2 5.2 odd 4
880.4.a.c.1.1 1 4.3 odd 2
990.4.a.i.1.1 1 3.2 odd 2
1210.4.a.g.1.1 1 11.10 odd 2