Properties

Label 1100.4.b.j.749.8
Level $1100$
Weight $4$
Character 1100.749
Analytic conductor $64.902$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,4,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1100.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.9021010063\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 187x^{8} + 12537x^{6} + 358849x^{4} + 3893659x^{2} + 7371225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 749.8
Root \(4.57551i\) of defining polynomial
Character \(\chi\) \(=\) 1100.749
Dual form 1100.4.b.j.749.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.57551i q^{3} +20.7640i q^{7} -4.08629 q^{9} +11.0000 q^{11} +37.3507i q^{13} -32.4508i q^{17} -71.7593 q^{19} -115.770 q^{21} +86.2767i q^{23} +127.756i q^{27} +19.4826 q^{29} -113.280 q^{31} +61.3306i q^{33} +36.6594i q^{37} -208.249 q^{39} +152.019 q^{41} +75.7880i q^{43} +216.190i q^{47} -88.1454 q^{49} +180.930 q^{51} +291.842i q^{53} -400.095i q^{57} -673.318 q^{59} +267.522 q^{61} -84.8479i q^{63} -682.646i q^{67} -481.036 q^{69} +410.937 q^{71} -137.968i q^{73} +228.404i q^{77} -918.618 q^{79} -822.632 q^{81} +959.791i q^{83} +108.626i q^{87} -622.193 q^{89} -775.552 q^{91} -631.594i q^{93} -1390.64i q^{97} -44.9492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 118 q^{9} + 110 q^{11} - 6 q^{19} + 316 q^{21} - 314 q^{29} + 114 q^{31} - 1036 q^{39} + 148 q^{41} - 1054 q^{49} - 2292 q^{51} - 1384 q^{59} - 1996 q^{61} - 2492 q^{69} - 3290 q^{71} - 2640 q^{79}+ \cdots - 1298 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.57551i 1.07301i 0.843898 + 0.536504i \(0.180255\pi\)
−0.843898 + 0.536504i \(0.819745\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 20.7640i 1.12115i 0.828103 + 0.560576i \(0.189420\pi\)
−0.828103 + 0.560576i \(0.810580\pi\)
\(8\) 0 0
\(9\) −4.08629 −0.151344
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 37.3507i 0.796864i 0.917198 + 0.398432i \(0.130446\pi\)
−0.917198 + 0.398432i \(0.869554\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 32.4508i − 0.462969i −0.972839 0.231485i \(-0.925642\pi\)
0.972839 0.231485i \(-0.0743583\pi\)
\(18\) 0 0
\(19\) −71.7593 −0.866459 −0.433229 0.901284i \(-0.642626\pi\)
−0.433229 + 0.901284i \(0.642626\pi\)
\(20\) 0 0
\(21\) −115.770 −1.20300
\(22\) 0 0
\(23\) 86.2767i 0.782171i 0.920354 + 0.391086i \(0.127900\pi\)
−0.920354 + 0.391086i \(0.872100\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 127.756i 0.910614i
\(28\) 0 0
\(29\) 19.4826 0.124753 0.0623764 0.998053i \(-0.480132\pi\)
0.0623764 + 0.998053i \(0.480132\pi\)
\(30\) 0 0
\(31\) −113.280 −0.656313 −0.328156 0.944623i \(-0.606427\pi\)
−0.328156 + 0.944623i \(0.606427\pi\)
\(32\) 0 0
\(33\) 61.3306i 0.323524i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 36.6594i 0.162886i 0.996678 + 0.0814429i \(0.0259528\pi\)
−0.996678 + 0.0814429i \(0.974047\pi\)
\(38\) 0 0
\(39\) −208.249 −0.855041
\(40\) 0 0
\(41\) 152.019 0.579058 0.289529 0.957169i \(-0.406501\pi\)
0.289529 + 0.957169i \(0.406501\pi\)
\(42\) 0 0
\(43\) 75.7880i 0.268781i 0.990928 + 0.134390i \(0.0429076\pi\)
−0.990928 + 0.134390i \(0.957092\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 216.190i 0.670947i 0.942050 + 0.335474i \(0.108896\pi\)
−0.942050 + 0.335474i \(0.891104\pi\)
\(48\) 0 0
\(49\) −88.1454 −0.256984
\(50\) 0 0
\(51\) 180.930 0.496769
\(52\) 0 0
\(53\) 291.842i 0.756370i 0.925730 + 0.378185i \(0.123452\pi\)
−0.925730 + 0.378185i \(0.876548\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 400.095i − 0.929716i
\(58\) 0 0
\(59\) −673.318 −1.48574 −0.742869 0.669437i \(-0.766535\pi\)
−0.742869 + 0.669437i \(0.766535\pi\)
\(60\) 0 0
\(61\) 267.522 0.561520 0.280760 0.959778i \(-0.409413\pi\)
0.280760 + 0.959778i \(0.409413\pi\)
\(62\) 0 0
\(63\) − 84.8479i − 0.169680i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 682.646i − 1.24475i −0.782718 0.622377i \(-0.786167\pi\)
0.782718 0.622377i \(-0.213833\pi\)
\(68\) 0 0
\(69\) −481.036 −0.839275
\(70\) 0 0
\(71\) 410.937 0.686890 0.343445 0.939173i \(-0.388406\pi\)
0.343445 + 0.939173i \(0.388406\pi\)
\(72\) 0 0
\(73\) − 137.968i − 0.221205i −0.993865 0.110603i \(-0.964722\pi\)
0.993865 0.110603i \(-0.0352781\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 228.404i 0.338040i
\(78\) 0 0
\(79\) −918.618 −1.30826 −0.654130 0.756382i \(-0.726965\pi\)
−0.654130 + 0.756382i \(0.726965\pi\)
\(80\) 0 0
\(81\) −822.632 −1.12844
\(82\) 0 0
\(83\) 959.791i 1.26929i 0.772805 + 0.634643i \(0.218853\pi\)
−0.772805 + 0.634643i \(0.781147\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 108.626i 0.133861i
\(88\) 0 0
\(89\) −622.193 −0.741038 −0.370519 0.928825i \(-0.620820\pi\)
−0.370519 + 0.928825i \(0.620820\pi\)
\(90\) 0 0
\(91\) −775.552 −0.893406
\(92\) 0 0
\(93\) − 631.594i − 0.704228i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1390.64i − 1.45565i −0.685765 0.727823i \(-0.740532\pi\)
0.685765 0.727823i \(-0.259468\pi\)
\(98\) 0 0
\(99\) −44.9492 −0.0456320
\(100\) 0 0
\(101\) 94.0599 0.0926664 0.0463332 0.998926i \(-0.485246\pi\)
0.0463332 + 0.998926i \(0.485246\pi\)
\(102\) 0 0
\(103\) 1032.75i 0.987963i 0.869472 + 0.493982i \(0.164459\pi\)
−0.869472 + 0.493982i \(0.835541\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 743.781i − 0.672000i −0.941862 0.336000i \(-0.890926\pi\)
0.941862 0.336000i \(-0.109074\pi\)
\(108\) 0 0
\(109\) 668.924 0.587811 0.293905 0.955835i \(-0.405045\pi\)
0.293905 + 0.955835i \(0.405045\pi\)
\(110\) 0 0
\(111\) −204.395 −0.174778
\(112\) 0 0
\(113\) 80.1193i 0.0666990i 0.999444 + 0.0333495i \(0.0106174\pi\)
−0.999444 + 0.0333495i \(0.989383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 152.626i − 0.120601i
\(118\) 0 0
\(119\) 673.810 0.519059
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 847.583i 0.621333i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1126.07i − 0.786788i −0.919370 0.393394i \(-0.871301\pi\)
0.919370 0.393394i \(-0.128699\pi\)
\(128\) 0 0
\(129\) −422.557 −0.288403
\(130\) 0 0
\(131\) −2360.03 −1.57402 −0.787011 0.616940i \(-0.788372\pi\)
−0.787011 + 0.616940i \(0.788372\pi\)
\(132\) 0 0
\(133\) − 1490.01i − 0.971433i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1823.51i − 1.13718i −0.822622 0.568588i \(-0.807490\pi\)
0.822622 0.568588i \(-0.192510\pi\)
\(138\) 0 0
\(139\) 1826.28 1.11441 0.557206 0.830374i \(-0.311873\pi\)
0.557206 + 0.830374i \(0.311873\pi\)
\(140\) 0 0
\(141\) −1205.37 −0.719931
\(142\) 0 0
\(143\) 410.858i 0.240264i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 491.455i − 0.275745i
\(148\) 0 0
\(149\) −287.973 −0.158333 −0.0791666 0.996861i \(-0.525226\pi\)
−0.0791666 + 0.996861i \(0.525226\pi\)
\(150\) 0 0
\(151\) −2881.09 −1.55272 −0.776358 0.630292i \(-0.782935\pi\)
−0.776358 + 0.630292i \(0.782935\pi\)
\(152\) 0 0
\(153\) 132.603i 0.0700677i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 2405.81i − 1.22296i −0.791260 0.611480i \(-0.790575\pi\)
0.791260 0.611480i \(-0.209425\pi\)
\(158\) 0 0
\(159\) −1627.17 −0.811590
\(160\) 0 0
\(161\) −1791.45 −0.876933
\(162\) 0 0
\(163\) 1160.53i 0.557667i 0.960339 + 0.278834i \(0.0899478\pi\)
−0.960339 + 0.278834i \(0.910052\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 468.123i 0.216913i 0.994101 + 0.108456i \(0.0345908\pi\)
−0.994101 + 0.108456i \(0.965409\pi\)
\(168\) 0 0
\(169\) 801.922 0.365008
\(170\) 0 0
\(171\) 293.229 0.131133
\(172\) 0 0
\(173\) − 56.1596i − 0.0246806i −0.999924 0.0123403i \(-0.996072\pi\)
0.999924 0.0123403i \(-0.00392813\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 3754.09i − 1.59421i
\(178\) 0 0
\(179\) −1508.71 −0.629978 −0.314989 0.949095i \(-0.602001\pi\)
−0.314989 + 0.949095i \(0.602001\pi\)
\(180\) 0 0
\(181\) 438.185 0.179945 0.0899725 0.995944i \(-0.471322\pi\)
0.0899725 + 0.995944i \(0.471322\pi\)
\(182\) 0 0
\(183\) 1491.57i 0.602515i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 356.959i − 0.139591i
\(188\) 0 0
\(189\) −2652.72 −1.02094
\(190\) 0 0
\(191\) −3870.97 −1.46646 −0.733229 0.679982i \(-0.761988\pi\)
−0.733229 + 0.679982i \(0.761988\pi\)
\(192\) 0 0
\(193\) − 4160.69i − 1.55178i −0.630871 0.775888i \(-0.717302\pi\)
0.630871 0.775888i \(-0.282698\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 419.528i − 0.151727i −0.997118 0.0758633i \(-0.975829\pi\)
0.997118 0.0758633i \(-0.0241713\pi\)
\(198\) 0 0
\(199\) 2278.61 0.811689 0.405845 0.913942i \(-0.366977\pi\)
0.405845 + 0.913942i \(0.366977\pi\)
\(200\) 0 0
\(201\) 3806.10 1.33563
\(202\) 0 0
\(203\) 404.538i 0.139867i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 352.552i − 0.118377i
\(208\) 0 0
\(209\) −789.352 −0.261247
\(210\) 0 0
\(211\) 757.812 0.247251 0.123625 0.992329i \(-0.460548\pi\)
0.123625 + 0.992329i \(0.460548\pi\)
\(212\) 0 0
\(213\) 2291.18i 0.737038i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 2352.15i − 0.735827i
\(218\) 0 0
\(219\) 769.243 0.237355
\(220\) 0 0
\(221\) 1212.06 0.368924
\(222\) 0 0
\(223\) − 2132.39i − 0.640337i −0.947361 0.320169i \(-0.896260\pi\)
0.947361 0.320169i \(-0.103740\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 3797.04i − 1.11021i −0.831779 0.555107i \(-0.812677\pi\)
0.831779 0.555107i \(-0.187323\pi\)
\(228\) 0 0
\(229\) −1965.66 −0.567226 −0.283613 0.958939i \(-0.591533\pi\)
−0.283613 + 0.958939i \(0.591533\pi\)
\(230\) 0 0
\(231\) −1273.47 −0.362720
\(232\) 0 0
\(233\) 638.658i 0.179570i 0.995961 + 0.0897851i \(0.0286180\pi\)
−0.995961 + 0.0897851i \(0.971382\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 5121.76i − 1.40377i
\(238\) 0 0
\(239\) 4736.52 1.28193 0.640963 0.767572i \(-0.278535\pi\)
0.640963 + 0.767572i \(0.278535\pi\)
\(240\) 0 0
\(241\) −2834.52 −0.757625 −0.378812 0.925473i \(-0.623667\pi\)
−0.378812 + 0.925473i \(0.623667\pi\)
\(242\) 0 0
\(243\) − 1137.19i − 0.300209i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 2680.26i − 0.690450i
\(248\) 0 0
\(249\) −5351.32 −1.36195
\(250\) 0 0
\(251\) 3290.48 0.827464 0.413732 0.910399i \(-0.364225\pi\)
0.413732 + 0.910399i \(0.364225\pi\)
\(252\) 0 0
\(253\) 949.044i 0.235833i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2904.96i 0.705084i 0.935796 + 0.352542i \(0.114683\pi\)
−0.935796 + 0.352542i \(0.885317\pi\)
\(258\) 0 0
\(259\) −761.198 −0.182620
\(260\) 0 0
\(261\) −79.6117 −0.0188806
\(262\) 0 0
\(263\) 4947.48i 1.15998i 0.814624 + 0.579989i \(0.196943\pi\)
−0.814624 + 0.579989i \(0.803057\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 3469.04i − 0.795139i
\(268\) 0 0
\(269\) −6891.83 −1.56209 −0.781046 0.624474i \(-0.785313\pi\)
−0.781046 + 0.624474i \(0.785313\pi\)
\(270\) 0 0
\(271\) −3875.28 −0.868660 −0.434330 0.900754i \(-0.643015\pi\)
−0.434330 + 0.900754i \(0.643015\pi\)
\(272\) 0 0
\(273\) − 4324.10i − 0.958631i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6658.20i 1.44423i 0.691771 + 0.722117i \(0.256831\pi\)
−0.691771 + 0.722117i \(0.743169\pi\)
\(278\) 0 0
\(279\) 462.895 0.0993291
\(280\) 0 0
\(281\) −2564.20 −0.544369 −0.272184 0.962245i \(-0.587746\pi\)
−0.272184 + 0.962245i \(0.587746\pi\)
\(282\) 0 0
\(283\) 5367.22i 1.12738i 0.825987 + 0.563689i \(0.190618\pi\)
−0.825987 + 0.563689i \(0.809382\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3156.53i 0.649212i
\(288\) 0 0
\(289\) 3859.94 0.785659
\(290\) 0 0
\(291\) 7753.50 1.56192
\(292\) 0 0
\(293\) − 3189.28i − 0.635903i −0.948107 0.317952i \(-0.897005\pi\)
0.948107 0.317952i \(-0.102995\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1405.31i 0.274560i
\(298\) 0 0
\(299\) −3222.50 −0.623284
\(300\) 0 0
\(301\) −1573.67 −0.301344
\(302\) 0 0
\(303\) 524.431i 0.0994317i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5223.47i 0.971072i 0.874217 + 0.485536i \(0.161376\pi\)
−0.874217 + 0.485536i \(0.838624\pi\)
\(308\) 0 0
\(309\) −5758.13 −1.06009
\(310\) 0 0
\(311\) −778.172 −0.141885 −0.0709423 0.997480i \(-0.522601\pi\)
−0.0709423 + 0.997480i \(0.522601\pi\)
\(312\) 0 0
\(313\) 5903.88i 1.06616i 0.846066 + 0.533078i \(0.178965\pi\)
−0.846066 + 0.533078i \(0.821035\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8015.21i 1.42012i 0.704140 + 0.710062i \(0.251333\pi\)
−0.704140 + 0.710062i \(0.748667\pi\)
\(318\) 0 0
\(319\) 214.309 0.0376144
\(320\) 0 0
\(321\) 4146.96 0.721061
\(322\) 0 0
\(323\) 2328.65i 0.401144i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3729.59i 0.630725i
\(328\) 0 0
\(329\) −4488.97 −0.752234
\(330\) 0 0
\(331\) 1945.09 0.322996 0.161498 0.986873i \(-0.448367\pi\)
0.161498 + 0.986873i \(0.448367\pi\)
\(332\) 0 0
\(333\) − 149.801i − 0.0246518i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3833.73i 0.619693i 0.950787 + 0.309847i \(0.100278\pi\)
−0.950787 + 0.309847i \(0.899722\pi\)
\(338\) 0 0
\(339\) −446.706 −0.0715685
\(340\) 0 0
\(341\) −1246.08 −0.197886
\(342\) 0 0
\(343\) 5291.81i 0.833035i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 3031.17i − 0.468938i −0.972124 0.234469i \(-0.924665\pi\)
0.972124 0.234469i \(-0.0753351\pi\)
\(348\) 0 0
\(349\) 9140.37 1.40193 0.700964 0.713197i \(-0.252754\pi\)
0.700964 + 0.713197i \(0.252754\pi\)
\(350\) 0 0
\(351\) −4771.77 −0.725635
\(352\) 0 0
\(353\) 352.940i 0.0532156i 0.999646 + 0.0266078i \(0.00847052\pi\)
−0.999646 + 0.0266078i \(0.991529\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3756.83i 0.556954i
\(358\) 0 0
\(359\) 9308.76 1.36852 0.684258 0.729240i \(-0.260126\pi\)
0.684258 + 0.729240i \(0.260126\pi\)
\(360\) 0 0
\(361\) −1709.60 −0.249249
\(362\) 0 0
\(363\) 674.636i 0.0975461i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 730.769i 0.103940i 0.998649 + 0.0519698i \(0.0165499\pi\)
−0.998649 + 0.0519698i \(0.983450\pi\)
\(368\) 0 0
\(369\) −621.193 −0.0876370
\(370\) 0 0
\(371\) −6059.82 −0.848006
\(372\) 0 0
\(373\) 3886.41i 0.539493i 0.962931 + 0.269746i \(0.0869399\pi\)
−0.962931 + 0.269746i \(0.913060\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 727.690i 0.0994111i
\(378\) 0 0
\(379\) −9925.81 −1.34526 −0.672631 0.739978i \(-0.734836\pi\)
−0.672631 + 0.739978i \(0.734836\pi\)
\(380\) 0 0
\(381\) 6278.38 0.844229
\(382\) 0 0
\(383\) 4658.20i 0.621469i 0.950497 + 0.310735i \(0.100575\pi\)
−0.950497 + 0.310735i \(0.899425\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 309.692i − 0.0406784i
\(388\) 0 0
\(389\) −9334.00 −1.21659 −0.608294 0.793712i \(-0.708146\pi\)
−0.608294 + 0.793712i \(0.708146\pi\)
\(390\) 0 0
\(391\) 2799.75 0.362121
\(392\) 0 0
\(393\) − 13158.4i − 1.68894i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 3045.11i − 0.384961i −0.981301 0.192481i \(-0.938347\pi\)
0.981301 0.192481i \(-0.0616532\pi\)
\(398\) 0 0
\(399\) 8307.58 1.04235
\(400\) 0 0
\(401\) 8566.65 1.06683 0.533414 0.845854i \(-0.320909\pi\)
0.533414 + 0.845854i \(0.320909\pi\)
\(402\) 0 0
\(403\) − 4231.09i − 0.522992i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 403.254i 0.0491119i
\(408\) 0 0
\(409\) 2673.21 0.323183 0.161592 0.986858i \(-0.448337\pi\)
0.161592 + 0.986858i \(0.448337\pi\)
\(410\) 0 0
\(411\) 10167.0 1.22020
\(412\) 0 0
\(413\) − 13980.8i − 1.66574i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 10182.5i 1.19577i
\(418\) 0 0
\(419\) −585.643 −0.0682829 −0.0341415 0.999417i \(-0.510870\pi\)
−0.0341415 + 0.999417i \(0.510870\pi\)
\(420\) 0 0
\(421\) −2506.29 −0.290141 −0.145070 0.989421i \(-0.546341\pi\)
−0.145070 + 0.989421i \(0.546341\pi\)
\(422\) 0 0
\(423\) − 883.414i − 0.101544i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5554.85i 0.629550i
\(428\) 0 0
\(429\) −2290.74 −0.257804
\(430\) 0 0
\(431\) 4307.54 0.481408 0.240704 0.970599i \(-0.422622\pi\)
0.240704 + 0.970599i \(0.422622\pi\)
\(432\) 0 0
\(433\) 7599.55i 0.843443i 0.906725 + 0.421722i \(0.138574\pi\)
−0.906725 + 0.421722i \(0.861426\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 6191.16i − 0.677719i
\(438\) 0 0
\(439\) 14291.1 1.55371 0.776855 0.629680i \(-0.216814\pi\)
0.776855 + 0.629680i \(0.216814\pi\)
\(440\) 0 0
\(441\) 360.188 0.0388930
\(442\) 0 0
\(443\) − 8334.33i − 0.893851i −0.894571 0.446925i \(-0.852519\pi\)
0.894571 0.446925i \(-0.147481\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 1605.59i − 0.169893i
\(448\) 0 0
\(449\) 3682.55 0.387061 0.193530 0.981094i \(-0.438006\pi\)
0.193530 + 0.981094i \(0.438006\pi\)
\(450\) 0 0
\(451\) 1672.21 0.174592
\(452\) 0 0
\(453\) − 16063.6i − 1.66607i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1348.62i 0.138044i 0.997615 + 0.0690218i \(0.0219878\pi\)
−0.997615 + 0.0690218i \(0.978012\pi\)
\(458\) 0 0
\(459\) 4145.77 0.421586
\(460\) 0 0
\(461\) 2058.01 0.207920 0.103960 0.994582i \(-0.466849\pi\)
0.103960 + 0.994582i \(0.466849\pi\)
\(462\) 0 0
\(463\) 8850.65i 0.888390i 0.895930 + 0.444195i \(0.146510\pi\)
−0.895930 + 0.444195i \(0.853490\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19339.3i 1.91631i 0.286252 + 0.958154i \(0.407591\pi\)
−0.286252 + 0.958154i \(0.592409\pi\)
\(468\) 0 0
\(469\) 14174.5 1.39556
\(470\) 0 0
\(471\) 13413.6 1.31224
\(472\) 0 0
\(473\) 833.668i 0.0810404i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 1192.55i − 0.114472i
\(478\) 0 0
\(479\) 19045.4 1.81671 0.908356 0.418198i \(-0.137338\pi\)
0.908356 + 0.418198i \(0.137338\pi\)
\(480\) 0 0
\(481\) −1369.26 −0.129798
\(482\) 0 0
\(483\) − 9988.26i − 0.940956i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 7083.95i − 0.659147i −0.944130 0.329573i \(-0.893095\pi\)
0.944130 0.329573i \(-0.106905\pi\)
\(488\) 0 0
\(489\) −6470.55 −0.598381
\(490\) 0 0
\(491\) 11531.5 1.05990 0.529949 0.848030i \(-0.322211\pi\)
0.529949 + 0.848030i \(0.322211\pi\)
\(492\) 0 0
\(493\) − 632.227i − 0.0577567i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8532.71i 0.770109i
\(498\) 0 0
\(499\) −8817.35 −0.791019 −0.395510 0.918462i \(-0.629432\pi\)
−0.395510 + 0.918462i \(0.629432\pi\)
\(500\) 0 0
\(501\) −2610.03 −0.232749
\(502\) 0 0
\(503\) − 10596.4i − 0.939308i −0.882851 0.469654i \(-0.844379\pi\)
0.882851 0.469654i \(-0.155621\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4471.12i 0.391656i
\(508\) 0 0
\(509\) 18347.7 1.59773 0.798867 0.601508i \(-0.205433\pi\)
0.798867 + 0.601508i \(0.205433\pi\)
\(510\) 0 0
\(511\) 2864.78 0.248005
\(512\) 0 0
\(513\) − 9167.65i − 0.789009i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2378.09i 0.202298i
\(518\) 0 0
\(519\) 313.119 0.0264824
\(520\) 0 0
\(521\) −18494.2 −1.55518 −0.777588 0.628775i \(-0.783557\pi\)
−0.777588 + 0.628775i \(0.783557\pi\)
\(522\) 0 0
\(523\) 15387.2i 1.28649i 0.765661 + 0.643244i \(0.222412\pi\)
−0.765661 + 0.643244i \(0.777588\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3676.03i 0.303853i
\(528\) 0 0
\(529\) 4723.33 0.388208
\(530\) 0 0
\(531\) 2751.37 0.224858
\(532\) 0 0
\(533\) 5678.02i 0.461430i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 8411.81i − 0.675971i
\(538\) 0 0
\(539\) −969.599 −0.0774835
\(540\) 0 0
\(541\) 5424.06 0.431051 0.215525 0.976498i \(-0.430854\pi\)
0.215525 + 0.976498i \(0.430854\pi\)
\(542\) 0 0
\(543\) 2443.10i 0.193082i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 10544.7i − 0.824241i −0.911129 0.412120i \(-0.864788\pi\)
0.911129 0.412120i \(-0.135212\pi\)
\(548\) 0 0
\(549\) −1093.17 −0.0849828
\(550\) 0 0
\(551\) −1398.06 −0.108093
\(552\) 0 0
\(553\) − 19074.2i − 1.46676i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15977.6i 1.21542i 0.794158 + 0.607712i \(0.207912\pi\)
−0.794158 + 0.607712i \(0.792088\pi\)
\(558\) 0 0
\(559\) −2830.74 −0.214182
\(560\) 0 0
\(561\) 1990.23 0.149782
\(562\) 0 0
\(563\) 17264.6i 1.29239i 0.763172 + 0.646196i \(0.223641\pi\)
−0.763172 + 0.646196i \(0.776359\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 17081.2i − 1.26515i
\(568\) 0 0
\(569\) 11626.6 0.856613 0.428306 0.903634i \(-0.359110\pi\)
0.428306 + 0.903634i \(0.359110\pi\)
\(570\) 0 0
\(571\) 26947.0 1.97495 0.987474 0.157781i \(-0.0504339\pi\)
0.987474 + 0.157781i \(0.0504339\pi\)
\(572\) 0 0
\(573\) − 21582.6i − 1.57352i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 23399.2i 1.68825i 0.536143 + 0.844127i \(0.319881\pi\)
−0.536143 + 0.844127i \(0.680119\pi\)
\(578\) 0 0
\(579\) 23197.9 1.66507
\(580\) 0 0
\(581\) −19929.1 −1.42306
\(582\) 0 0
\(583\) 3210.26i 0.228054i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 4653.92i − 0.327236i −0.986524 0.163618i \(-0.947684\pi\)
0.986524 0.163618i \(-0.0523165\pi\)
\(588\) 0 0
\(589\) 8128.90 0.568668
\(590\) 0 0
\(591\) 2339.08 0.162804
\(592\) 0 0
\(593\) − 8192.48i − 0.567327i −0.958924 0.283663i \(-0.908450\pi\)
0.958924 0.283663i \(-0.0915498\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 12704.4i 0.870948i
\(598\) 0 0
\(599\) −6761.31 −0.461201 −0.230601 0.973048i \(-0.574069\pi\)
−0.230601 + 0.973048i \(0.574069\pi\)
\(600\) 0 0
\(601\) −15266.1 −1.03613 −0.518067 0.855340i \(-0.673348\pi\)
−0.518067 + 0.855340i \(0.673348\pi\)
\(602\) 0 0
\(603\) 2789.49i 0.188386i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 25104.0i 1.67865i 0.543629 + 0.839326i \(0.317050\pi\)
−0.543629 + 0.839326i \(0.682950\pi\)
\(608\) 0 0
\(609\) −2255.50 −0.150078
\(610\) 0 0
\(611\) −8074.85 −0.534654
\(612\) 0 0
\(613\) − 8848.85i − 0.583037i −0.956565 0.291519i \(-0.905840\pi\)
0.956565 0.291519i \(-0.0941605\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 3042.72i − 0.198534i −0.995061 0.0992668i \(-0.968350\pi\)
0.995061 0.0992668i \(-0.0316497\pi\)
\(618\) 0 0
\(619\) 3391.98 0.220251 0.110125 0.993918i \(-0.464875\pi\)
0.110125 + 0.993918i \(0.464875\pi\)
\(620\) 0 0
\(621\) −11022.3 −0.712256
\(622\) 0 0
\(623\) − 12919.2i − 0.830816i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 4401.04i − 0.280320i
\(628\) 0 0
\(629\) 1189.63 0.0754111
\(630\) 0 0
\(631\) 5791.13 0.365358 0.182679 0.983173i \(-0.441523\pi\)
0.182679 + 0.983173i \(0.441523\pi\)
\(632\) 0 0
\(633\) 4225.19i 0.265302i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 3292.30i − 0.204781i
\(638\) 0 0
\(639\) −1679.21 −0.103957
\(640\) 0 0
\(641\) −25616.3 −1.57844 −0.789221 0.614110i \(-0.789515\pi\)
−0.789221 + 0.614110i \(0.789515\pi\)
\(642\) 0 0
\(643\) 16568.5i 1.01617i 0.861306 + 0.508086i \(0.169647\pi\)
−0.861306 + 0.508086i \(0.830353\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8340.07i 0.506773i 0.967365 + 0.253386i \(0.0815444\pi\)
−0.967365 + 0.253386i \(0.918456\pi\)
\(648\) 0 0
\(649\) −7406.50 −0.447967
\(650\) 0 0
\(651\) 13114.4 0.789547
\(652\) 0 0
\(653\) − 8570.19i − 0.513595i −0.966465 0.256798i \(-0.917333\pi\)
0.966465 0.256798i \(-0.0826673\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 563.779i 0.0334781i
\(658\) 0 0
\(659\) 3184.90 0.188264 0.0941320 0.995560i \(-0.469992\pi\)
0.0941320 + 0.995560i \(0.469992\pi\)
\(660\) 0 0
\(661\) −5043.56 −0.296780 −0.148390 0.988929i \(-0.547409\pi\)
−0.148390 + 0.988929i \(0.547409\pi\)
\(662\) 0 0
\(663\) 6757.86i 0.395858i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1680.90i 0.0975781i
\(668\) 0 0
\(669\) 11889.1 0.687087
\(670\) 0 0
\(671\) 2942.75 0.169305
\(672\) 0 0
\(673\) 17554.6i 1.00547i 0.864440 + 0.502735i \(0.167673\pi\)
−0.864440 + 0.502735i \(0.832327\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 2667.67i − 0.151443i −0.997129 0.0757214i \(-0.975874\pi\)
0.997129 0.0757214i \(-0.0241260\pi\)
\(678\) 0 0
\(679\) 28875.2 1.63200
\(680\) 0 0
\(681\) 21170.4 1.19127
\(682\) 0 0
\(683\) 23516.3i 1.31746i 0.752378 + 0.658732i \(0.228907\pi\)
−0.752378 + 0.658732i \(0.771093\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 10959.6i − 0.608637i
\(688\) 0 0
\(689\) −10900.5 −0.602724
\(690\) 0 0
\(691\) 32061.4 1.76508 0.882542 0.470234i \(-0.155831\pi\)
0.882542 + 0.470234i \(0.155831\pi\)
\(692\) 0 0
\(693\) − 933.327i − 0.0511604i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 4933.14i − 0.268086i
\(698\) 0 0
\(699\) −3560.84 −0.192680
\(700\) 0 0
\(701\) −4590.65 −0.247341 −0.123671 0.992323i \(-0.539467\pi\)
−0.123671 + 0.992323i \(0.539467\pi\)
\(702\) 0 0
\(703\) − 2630.66i − 0.141134i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1953.06i 0.103893i
\(708\) 0 0
\(709\) −24836.3 −1.31558 −0.657791 0.753201i \(-0.728509\pi\)
−0.657791 + 0.753201i \(0.728509\pi\)
\(710\) 0 0
\(711\) 3753.74 0.197998
\(712\) 0 0
\(713\) − 9773.43i − 0.513349i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 26408.5i 1.37552i
\(718\) 0 0
\(719\) −33950.9 −1.76099 −0.880497 0.474051i \(-0.842791\pi\)
−0.880497 + 0.474051i \(0.842791\pi\)
\(720\) 0 0
\(721\) −21444.1 −1.10766
\(722\) 0 0
\(723\) − 15803.9i − 0.812937i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 16954.1i − 0.864913i −0.901655 0.432457i \(-0.857647\pi\)
0.901655 0.432457i \(-0.142353\pi\)
\(728\) 0 0
\(729\) −15870.6 −0.806312
\(730\) 0 0
\(731\) 2459.38 0.124437
\(732\) 0 0
\(733\) 23218.8i 1.16999i 0.811036 + 0.584996i \(0.198904\pi\)
−0.811036 + 0.584996i \(0.801096\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 7509.11i − 0.375307i
\(738\) 0 0
\(739\) −33365.8 −1.66086 −0.830432 0.557119i \(-0.811907\pi\)
−0.830432 + 0.557119i \(0.811907\pi\)
\(740\) 0 0
\(741\) 14943.8 0.740857
\(742\) 0 0
\(743\) − 13612.4i − 0.672128i −0.941839 0.336064i \(-0.890904\pi\)
0.941839 0.336064i \(-0.109096\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 3921.99i − 0.192099i
\(748\) 0 0
\(749\) 15443.9 0.753415
\(750\) 0 0
\(751\) 18882.2 0.917470 0.458735 0.888573i \(-0.348303\pi\)
0.458735 + 0.888573i \(0.348303\pi\)
\(752\) 0 0
\(753\) 18346.1i 0.887875i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 31967.8i 1.53486i 0.641134 + 0.767429i \(0.278464\pi\)
−0.641134 + 0.767429i \(0.721536\pi\)
\(758\) 0 0
\(759\) −5291.40 −0.253051
\(760\) 0 0
\(761\) 20438.6 0.973588 0.486794 0.873517i \(-0.338166\pi\)
0.486794 + 0.873517i \(0.338166\pi\)
\(762\) 0 0
\(763\) 13889.6i 0.659025i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 25148.9i − 1.18393i
\(768\) 0 0
\(769\) −26825.0 −1.25791 −0.628956 0.777441i \(-0.716517\pi\)
−0.628956 + 0.777441i \(0.716517\pi\)
\(770\) 0 0
\(771\) −16196.6 −0.756560
\(772\) 0 0
\(773\) 1020.11i 0.0474655i 0.999718 + 0.0237327i \(0.00755508\pi\)
−0.999718 + 0.0237327i \(0.992445\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 4244.07i − 0.195952i
\(778\) 0 0
\(779\) −10908.8 −0.501729
\(780\) 0 0
\(781\) 4520.30 0.207105
\(782\) 0 0
\(783\) 2489.01i 0.113602i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 23236.5i − 1.05247i −0.850339 0.526235i \(-0.823603\pi\)
0.850339 0.526235i \(-0.176397\pi\)
\(788\) 0 0
\(789\) −27584.7 −1.24467
\(790\) 0 0
\(791\) −1663.60 −0.0747798
\(792\) 0 0
\(793\) 9992.16i 0.447455i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20354.2i 0.904619i 0.891861 + 0.452310i \(0.149400\pi\)
−0.891861 + 0.452310i \(0.850600\pi\)
\(798\) 0 0
\(799\) 7015.53 0.310628
\(800\) 0 0
\(801\) 2542.46 0.112152
\(802\) 0 0
\(803\) − 1517.65i − 0.0666958i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 38425.5i − 1.67613i
\(808\) 0 0
\(809\) −14015.2 −0.609084 −0.304542 0.952499i \(-0.598503\pi\)
−0.304542 + 0.952499i \(0.598503\pi\)
\(810\) 0 0
\(811\) 18874.0 0.817207 0.408604 0.912712i \(-0.366016\pi\)
0.408604 + 0.912712i \(0.366016\pi\)
\(812\) 0 0
\(813\) − 21606.7i − 0.932078i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 5438.50i − 0.232887i
\(818\) 0 0
\(819\) 3169.13 0.135212
\(820\) 0 0
\(821\) 2299.94 0.0977690 0.0488845 0.998804i \(-0.484433\pi\)
0.0488845 + 0.998804i \(0.484433\pi\)
\(822\) 0 0
\(823\) − 11685.4i − 0.494931i −0.968897 0.247466i \(-0.920402\pi\)
0.968897 0.247466i \(-0.0795977\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38022.6i 1.59876i 0.600825 + 0.799380i \(0.294839\pi\)
−0.600825 + 0.799380i \(0.705161\pi\)
\(828\) 0 0
\(829\) −2077.11 −0.0870219 −0.0435110 0.999053i \(-0.513854\pi\)
−0.0435110 + 0.999053i \(0.513854\pi\)
\(830\) 0 0
\(831\) −37122.9 −1.54967
\(832\) 0 0
\(833\) 2860.39i 0.118976i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 14472.2i − 0.597647i
\(838\) 0 0
\(839\) 26534.0 1.09184 0.545921 0.837837i \(-0.316180\pi\)
0.545921 + 0.837837i \(0.316180\pi\)
\(840\) 0 0
\(841\) −24009.4 −0.984437
\(842\) 0 0
\(843\) − 14296.7i − 0.584111i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2512.45i 0.101923i
\(848\) 0 0
\(849\) −29925.0 −1.20968
\(850\) 0 0
\(851\) −3162.86 −0.127405
\(852\) 0 0
\(853\) 24845.2i 0.997283i 0.866808 + 0.498641i \(0.166168\pi\)
−0.866808 + 0.498641i \(0.833832\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 18710.0i − 0.745767i −0.927878 0.372883i \(-0.878369\pi\)
0.927878 0.372883i \(-0.121631\pi\)
\(858\) 0 0
\(859\) 4277.39 0.169898 0.0849492 0.996385i \(-0.472927\pi\)
0.0849492 + 0.996385i \(0.472927\pi\)
\(860\) 0 0
\(861\) −17599.2 −0.696609
\(862\) 0 0
\(863\) 17711.3i 0.698611i 0.937009 + 0.349306i \(0.113582\pi\)
−0.937009 + 0.349306i \(0.886418\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 21521.2i 0.843018i
\(868\) 0 0
\(869\) −10104.8 −0.394455
\(870\) 0 0
\(871\) 25497.3 0.991899
\(872\) 0 0
\(873\) 5682.54i 0.220303i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 789.730i 0.0304074i 0.999884 + 0.0152037i \(0.00483967\pi\)
−0.999884 + 0.0152037i \(0.995160\pi\)
\(878\) 0 0
\(879\) 17781.8 0.682329
\(880\) 0 0
\(881\) −34340.8 −1.31325 −0.656624 0.754218i \(-0.728016\pi\)
−0.656624 + 0.754218i \(0.728016\pi\)
\(882\) 0 0
\(883\) 43311.3i 1.65067i 0.564644 + 0.825335i \(0.309014\pi\)
−0.564644 + 0.825335i \(0.690986\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 39802.8i − 1.50670i −0.657617 0.753352i \(-0.728435\pi\)
0.657617 0.753352i \(-0.271565\pi\)
\(888\) 0 0
\(889\) 23381.7 0.882110
\(890\) 0 0
\(891\) −9048.95 −0.340237
\(892\) 0 0
\(893\) − 15513.6i − 0.581348i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 17967.1i − 0.668788i
\(898\) 0 0
\(899\) −2206.99 −0.0818769
\(900\) 0 0
\(901\) 9470.52 0.350176
\(902\) 0 0
\(903\) − 8773.99i − 0.323344i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 28916.2i − 1.05859i −0.848436 0.529297i \(-0.822456\pi\)
0.848436 0.529297i \(-0.177544\pi\)
\(908\) 0 0
\(909\) −384.356 −0.0140245
\(910\) 0 0
\(911\) −3182.17 −0.115730 −0.0578651 0.998324i \(-0.518429\pi\)
−0.0578651 + 0.998324i \(0.518429\pi\)
\(912\) 0 0
\(913\) 10557.7i 0.382704i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 49003.8i − 1.76472i
\(918\) 0 0
\(919\) −6946.10 −0.249326 −0.124663 0.992199i \(-0.539785\pi\)
−0.124663 + 0.992199i \(0.539785\pi\)
\(920\) 0 0
\(921\) −29123.5 −1.04197
\(922\) 0 0
\(923\) 15348.8i 0.547358i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 4220.13i − 0.149522i
\(928\) 0 0
\(929\) −44519.8 −1.57228 −0.786139 0.618050i \(-0.787923\pi\)
−0.786139 + 0.618050i \(0.787923\pi\)
\(930\) 0 0
\(931\) 6325.25 0.222666
\(932\) 0 0
\(933\) − 4338.70i − 0.152243i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 7802.11i − 0.272021i −0.990707 0.136011i \(-0.956572\pi\)
0.990707 0.136011i \(-0.0434281\pi\)
\(938\) 0 0
\(939\) −32917.1 −1.14399
\(940\) 0 0
\(941\) −24835.3 −0.860369 −0.430184 0.902741i \(-0.641551\pi\)
−0.430184 + 0.902741i \(0.641551\pi\)
\(942\) 0 0
\(943\) 13115.7i 0.452922i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26433.4i 0.907045i 0.891245 + 0.453522i \(0.149833\pi\)
−0.891245 + 0.453522i \(0.850167\pi\)
\(948\) 0 0
\(949\) 5153.22 0.176270
\(950\) 0 0
\(951\) −44688.9 −1.52380
\(952\) 0 0
\(953\) − 40389.2i − 1.37286i −0.727197 0.686429i \(-0.759177\pi\)
0.727197 0.686429i \(-0.240823\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1194.88i 0.0403605i
\(958\) 0 0
\(959\) 37863.5 1.27495
\(960\) 0 0
\(961\) −16958.6 −0.569254
\(962\) 0 0
\(963\) 3039.31i 0.101703i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 20108.7i − 0.668719i −0.942446 0.334359i \(-0.891480\pi\)
0.942446 0.334359i \(-0.108520\pi\)
\(968\) 0 0
\(969\) −12983.4 −0.430430
\(970\) 0 0
\(971\) −6054.35 −0.200096 −0.100048 0.994983i \(-0.531900\pi\)
−0.100048 + 0.994983i \(0.531900\pi\)
\(972\) 0 0
\(973\) 37921.0i 1.24943i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4573.59i 0.149767i 0.997192 + 0.0748833i \(0.0238584\pi\)
−0.997192 + 0.0748833i \(0.976142\pi\)
\(978\) 0 0
\(979\) −6844.12 −0.223431
\(980\) 0 0
\(981\) −2733.42 −0.0889617
\(982\) 0 0
\(983\) 27498.3i 0.892226i 0.894977 + 0.446113i \(0.147192\pi\)
−0.894977 + 0.446113i \(0.852808\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 25028.3i − 0.807153i
\(988\) 0 0
\(989\) −6538.74 −0.210232
\(990\) 0 0
\(991\) −22415.6 −0.718521 −0.359261 0.933237i \(-0.616971\pi\)
−0.359261 + 0.933237i \(0.616971\pi\)
\(992\) 0 0
\(993\) 10844.8i 0.346577i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 27064.0i 0.859706i 0.902899 + 0.429853i \(0.141435\pi\)
−0.902899 + 0.429853i \(0.858565\pi\)
\(998\) 0 0
\(999\) −4683.45 −0.148326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.4.b.j.749.8 10
5.2 odd 4 1100.4.a.m.1.4 yes 5
5.3 odd 4 1100.4.a.j.1.2 5
5.4 even 2 inner 1100.4.b.j.749.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.4.a.j.1.2 5 5.3 odd 4
1100.4.a.m.1.4 yes 5 5.2 odd 4
1100.4.b.j.749.3 10 5.4 even 2 inner
1100.4.b.j.749.8 10 1.1 even 1 trivial