Properties

Label 1100.4.a.j.1.2
Level $1100$
Weight $4$
Character 1100.1
Self dual yes
Analytic conductor $64.902$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,4,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.9021010063\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 93x^{3} + 71x^{2} + 1873x - 2715 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.57551\) of defining polynomial
Character \(\chi\) \(=\) 1100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.57551 q^{3} +20.7640 q^{7} +4.08629 q^{9} +11.0000 q^{11} -37.3507 q^{13} -32.4508 q^{17} +71.7593 q^{19} -115.770 q^{21} -86.2767 q^{23} +127.756 q^{27} -19.4826 q^{29} -113.280 q^{31} -61.3306 q^{33} +36.6594 q^{37} +208.249 q^{39} +152.019 q^{41} -75.7880 q^{43} +216.190 q^{47} +88.1454 q^{49} +180.930 q^{51} -291.842 q^{53} -400.095 q^{57} +673.318 q^{59} +267.522 q^{61} +84.8479 q^{63} -682.646 q^{67} +481.036 q^{69} +410.937 q^{71} +137.968 q^{73} +228.404 q^{77} +918.618 q^{79} -822.632 q^{81} -959.791 q^{83} +108.626 q^{87} +622.193 q^{89} -775.552 q^{91} +631.594 q^{93} -1390.64 q^{97} +44.9492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 6 q^{3} - 50 q^{7} + 59 q^{9} + 55 q^{11} - 45 q^{13} - 62 q^{17} + 3 q^{19} + 158 q^{21} - 73 q^{23} - 312 q^{27} + 157 q^{29} + 57 q^{31} - 66 q^{33} + 72 q^{37} + 518 q^{39} + 74 q^{41} + 213 q^{43}+ \cdots + 649 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.57551 −1.07301 −0.536504 0.843898i \(-0.680255\pi\)
−0.536504 + 0.843898i \(0.680255\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 20.7640 1.12115 0.560576 0.828103i \(-0.310580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(8\) 0 0
\(9\) 4.08629 0.151344
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −37.3507 −0.796864 −0.398432 0.917198i \(-0.630446\pi\)
−0.398432 + 0.917198i \(0.630446\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −32.4508 −0.462969 −0.231485 0.972839i \(-0.574358\pi\)
−0.231485 + 0.972839i \(0.574358\pi\)
\(18\) 0 0
\(19\) 71.7593 0.866459 0.433229 0.901284i \(-0.357374\pi\)
0.433229 + 0.901284i \(0.357374\pi\)
\(20\) 0 0
\(21\) −115.770 −1.20300
\(22\) 0 0
\(23\) −86.2767 −0.782171 −0.391086 0.920354i \(-0.627900\pi\)
−0.391086 + 0.920354i \(0.627900\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 127.756 0.910614
\(28\) 0 0
\(29\) −19.4826 −0.124753 −0.0623764 0.998053i \(-0.519868\pi\)
−0.0623764 + 0.998053i \(0.519868\pi\)
\(30\) 0 0
\(31\) −113.280 −0.656313 −0.328156 0.944623i \(-0.606427\pi\)
−0.328156 + 0.944623i \(0.606427\pi\)
\(32\) 0 0
\(33\) −61.3306 −0.323524
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 36.6594 0.162886 0.0814429 0.996678i \(-0.474047\pi\)
0.0814429 + 0.996678i \(0.474047\pi\)
\(38\) 0 0
\(39\) 208.249 0.855041
\(40\) 0 0
\(41\) 152.019 0.579058 0.289529 0.957169i \(-0.406501\pi\)
0.289529 + 0.957169i \(0.406501\pi\)
\(42\) 0 0
\(43\) −75.7880 −0.268781 −0.134390 0.990928i \(-0.542908\pi\)
−0.134390 + 0.990928i \(0.542908\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 216.190 0.670947 0.335474 0.942050i \(-0.391104\pi\)
0.335474 + 0.942050i \(0.391104\pi\)
\(48\) 0 0
\(49\) 88.1454 0.256984
\(50\) 0 0
\(51\) 180.930 0.496769
\(52\) 0 0
\(53\) −291.842 −0.756370 −0.378185 0.925730i \(-0.623452\pi\)
−0.378185 + 0.925730i \(0.623452\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −400.095 −0.929716
\(58\) 0 0
\(59\) 673.318 1.48574 0.742869 0.669437i \(-0.233465\pi\)
0.742869 + 0.669437i \(0.233465\pi\)
\(60\) 0 0
\(61\) 267.522 0.561520 0.280760 0.959778i \(-0.409413\pi\)
0.280760 + 0.959778i \(0.409413\pi\)
\(62\) 0 0
\(63\) 84.8479 0.169680
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −682.646 −1.24475 −0.622377 0.782718i \(-0.713833\pi\)
−0.622377 + 0.782718i \(0.713833\pi\)
\(68\) 0 0
\(69\) 481.036 0.839275
\(70\) 0 0
\(71\) 410.937 0.686890 0.343445 0.939173i \(-0.388406\pi\)
0.343445 + 0.939173i \(0.388406\pi\)
\(72\) 0 0
\(73\) 137.968 0.221205 0.110603 0.993865i \(-0.464722\pi\)
0.110603 + 0.993865i \(0.464722\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 228.404 0.338040
\(78\) 0 0
\(79\) 918.618 1.30826 0.654130 0.756382i \(-0.273035\pi\)
0.654130 + 0.756382i \(0.273035\pi\)
\(80\) 0 0
\(81\) −822.632 −1.12844
\(82\) 0 0
\(83\) −959.791 −1.26929 −0.634643 0.772805i \(-0.718853\pi\)
−0.634643 + 0.772805i \(0.718853\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 108.626 0.133861
\(88\) 0 0
\(89\) 622.193 0.741038 0.370519 0.928825i \(-0.379180\pi\)
0.370519 + 0.928825i \(0.379180\pi\)
\(90\) 0 0
\(91\) −775.552 −0.893406
\(92\) 0 0
\(93\) 631.594 0.704228
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1390.64 −1.45565 −0.727823 0.685765i \(-0.759468\pi\)
−0.727823 + 0.685765i \(0.759468\pi\)
\(98\) 0 0
\(99\) 44.9492 0.0456320
\(100\) 0 0
\(101\) 94.0599 0.0926664 0.0463332 0.998926i \(-0.485246\pi\)
0.0463332 + 0.998926i \(0.485246\pi\)
\(102\) 0 0
\(103\) −1032.75 −0.987963 −0.493982 0.869472i \(-0.664459\pi\)
−0.493982 + 0.869472i \(0.664459\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −743.781 −0.672000 −0.336000 0.941862i \(-0.609074\pi\)
−0.336000 + 0.941862i \(0.609074\pi\)
\(108\) 0 0
\(109\) −668.924 −0.587811 −0.293905 0.955835i \(-0.594955\pi\)
−0.293905 + 0.955835i \(0.594955\pi\)
\(110\) 0 0
\(111\) −204.395 −0.174778
\(112\) 0 0
\(113\) −80.1193 −0.0666990 −0.0333495 0.999444i \(-0.510617\pi\)
−0.0333495 + 0.999444i \(0.510617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −152.626 −0.120601
\(118\) 0 0
\(119\) −673.810 −0.519059
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −847.583 −0.621333
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1126.07 −0.786788 −0.393394 0.919370i \(-0.628699\pi\)
−0.393394 + 0.919370i \(0.628699\pi\)
\(128\) 0 0
\(129\) 422.557 0.288403
\(130\) 0 0
\(131\) −2360.03 −1.57402 −0.787011 0.616940i \(-0.788372\pi\)
−0.787011 + 0.616940i \(0.788372\pi\)
\(132\) 0 0
\(133\) 1490.01 0.971433
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1823.51 −1.13718 −0.568588 0.822622i \(-0.692510\pi\)
−0.568588 + 0.822622i \(0.692510\pi\)
\(138\) 0 0
\(139\) −1826.28 −1.11441 −0.557206 0.830374i \(-0.688127\pi\)
−0.557206 + 0.830374i \(0.688127\pi\)
\(140\) 0 0
\(141\) −1205.37 −0.719931
\(142\) 0 0
\(143\) −410.858 −0.240264
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −491.455 −0.275745
\(148\) 0 0
\(149\) 287.973 0.158333 0.0791666 0.996861i \(-0.474774\pi\)
0.0791666 + 0.996861i \(0.474774\pi\)
\(150\) 0 0
\(151\) −2881.09 −1.55272 −0.776358 0.630292i \(-0.782935\pi\)
−0.776358 + 0.630292i \(0.782935\pi\)
\(152\) 0 0
\(153\) −132.603 −0.0700677
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2405.81 −1.22296 −0.611480 0.791260i \(-0.709425\pi\)
−0.611480 + 0.791260i \(0.709425\pi\)
\(158\) 0 0
\(159\) 1627.17 0.811590
\(160\) 0 0
\(161\) −1791.45 −0.876933
\(162\) 0 0
\(163\) −1160.53 −0.557667 −0.278834 0.960339i \(-0.589948\pi\)
−0.278834 + 0.960339i \(0.589948\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 468.123 0.216913 0.108456 0.994101i \(-0.465409\pi\)
0.108456 + 0.994101i \(0.465409\pi\)
\(168\) 0 0
\(169\) −801.922 −0.365008
\(170\) 0 0
\(171\) 293.229 0.131133
\(172\) 0 0
\(173\) 56.1596 0.0246806 0.0123403 0.999924i \(-0.496072\pi\)
0.0123403 + 0.999924i \(0.496072\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3754.09 −1.59421
\(178\) 0 0
\(179\) 1508.71 0.629978 0.314989 0.949095i \(-0.397999\pi\)
0.314989 + 0.949095i \(0.397999\pi\)
\(180\) 0 0
\(181\) 438.185 0.179945 0.0899725 0.995944i \(-0.471322\pi\)
0.0899725 + 0.995944i \(0.471322\pi\)
\(182\) 0 0
\(183\) −1491.57 −0.602515
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −356.959 −0.139591
\(188\) 0 0
\(189\) 2652.72 1.02094
\(190\) 0 0
\(191\) −3870.97 −1.46646 −0.733229 0.679982i \(-0.761988\pi\)
−0.733229 + 0.679982i \(0.761988\pi\)
\(192\) 0 0
\(193\) 4160.69 1.55178 0.775888 0.630871i \(-0.217302\pi\)
0.775888 + 0.630871i \(0.217302\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −419.528 −0.151727 −0.0758633 0.997118i \(-0.524171\pi\)
−0.0758633 + 0.997118i \(0.524171\pi\)
\(198\) 0 0
\(199\) −2278.61 −0.811689 −0.405845 0.913942i \(-0.633023\pi\)
−0.405845 + 0.913942i \(0.633023\pi\)
\(200\) 0 0
\(201\) 3806.10 1.33563
\(202\) 0 0
\(203\) −404.538 −0.139867
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −352.552 −0.118377
\(208\) 0 0
\(209\) 789.352 0.261247
\(210\) 0 0
\(211\) 757.812 0.247251 0.123625 0.992329i \(-0.460548\pi\)
0.123625 + 0.992329i \(0.460548\pi\)
\(212\) 0 0
\(213\) −2291.18 −0.737038
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2352.15 −0.735827
\(218\) 0 0
\(219\) −769.243 −0.237355
\(220\) 0 0
\(221\) 1212.06 0.368924
\(222\) 0 0
\(223\) 2132.39 0.640337 0.320169 0.947361i \(-0.396260\pi\)
0.320169 + 0.947361i \(0.396260\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3797.04 −1.11021 −0.555107 0.831779i \(-0.687323\pi\)
−0.555107 + 0.831779i \(0.687323\pi\)
\(228\) 0 0
\(229\) 1965.66 0.567226 0.283613 0.958939i \(-0.408467\pi\)
0.283613 + 0.958939i \(0.408467\pi\)
\(230\) 0 0
\(231\) −1273.47 −0.362720
\(232\) 0 0
\(233\) −638.658 −0.179570 −0.0897851 0.995961i \(-0.528618\pi\)
−0.0897851 + 0.995961i \(0.528618\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −5121.76 −1.40377
\(238\) 0 0
\(239\) −4736.52 −1.28193 −0.640963 0.767572i \(-0.721465\pi\)
−0.640963 + 0.767572i \(0.721465\pi\)
\(240\) 0 0
\(241\) −2834.52 −0.757625 −0.378812 0.925473i \(-0.623667\pi\)
−0.378812 + 0.925473i \(0.623667\pi\)
\(242\) 0 0
\(243\) 1137.19 0.300209
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2680.26 −0.690450
\(248\) 0 0
\(249\) 5351.32 1.36195
\(250\) 0 0
\(251\) 3290.48 0.827464 0.413732 0.910399i \(-0.364225\pi\)
0.413732 + 0.910399i \(0.364225\pi\)
\(252\) 0 0
\(253\) −949.044 −0.235833
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2904.96 0.705084 0.352542 0.935796i \(-0.385317\pi\)
0.352542 + 0.935796i \(0.385317\pi\)
\(258\) 0 0
\(259\) 761.198 0.182620
\(260\) 0 0
\(261\) −79.6117 −0.0188806
\(262\) 0 0
\(263\) −4947.48 −1.15998 −0.579989 0.814624i \(-0.696943\pi\)
−0.579989 + 0.814624i \(0.696943\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3469.04 −0.795139
\(268\) 0 0
\(269\) 6891.83 1.56209 0.781046 0.624474i \(-0.214687\pi\)
0.781046 + 0.624474i \(0.214687\pi\)
\(270\) 0 0
\(271\) −3875.28 −0.868660 −0.434330 0.900754i \(-0.643015\pi\)
−0.434330 + 0.900754i \(0.643015\pi\)
\(272\) 0 0
\(273\) 4324.10 0.958631
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6658.20 1.44423 0.722117 0.691771i \(-0.243169\pi\)
0.722117 + 0.691771i \(0.243169\pi\)
\(278\) 0 0
\(279\) −462.895 −0.0993291
\(280\) 0 0
\(281\) −2564.20 −0.544369 −0.272184 0.962245i \(-0.587746\pi\)
−0.272184 + 0.962245i \(0.587746\pi\)
\(282\) 0 0
\(283\) −5367.22 −1.12738 −0.563689 0.825987i \(-0.690618\pi\)
−0.563689 + 0.825987i \(0.690618\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3156.53 0.649212
\(288\) 0 0
\(289\) −3859.94 −0.785659
\(290\) 0 0
\(291\) 7753.50 1.56192
\(292\) 0 0
\(293\) 3189.28 0.635903 0.317952 0.948107i \(-0.397005\pi\)
0.317952 + 0.948107i \(0.397005\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1405.31 0.274560
\(298\) 0 0
\(299\) 3222.50 0.623284
\(300\) 0 0
\(301\) −1573.67 −0.301344
\(302\) 0 0
\(303\) −524.431 −0.0994317
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5223.47 0.971072 0.485536 0.874217i \(-0.338624\pi\)
0.485536 + 0.874217i \(0.338624\pi\)
\(308\) 0 0
\(309\) 5758.13 1.06009
\(310\) 0 0
\(311\) −778.172 −0.141885 −0.0709423 0.997480i \(-0.522601\pi\)
−0.0709423 + 0.997480i \(0.522601\pi\)
\(312\) 0 0
\(313\) −5903.88 −1.06616 −0.533078 0.846066i \(-0.678965\pi\)
−0.533078 + 0.846066i \(0.678965\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8015.21 1.42012 0.710062 0.704140i \(-0.248667\pi\)
0.710062 + 0.704140i \(0.248667\pi\)
\(318\) 0 0
\(319\) −214.309 −0.0376144
\(320\) 0 0
\(321\) 4146.96 0.721061
\(322\) 0 0
\(323\) −2328.65 −0.401144
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3729.59 0.630725
\(328\) 0 0
\(329\) 4488.97 0.752234
\(330\) 0 0
\(331\) 1945.09 0.322996 0.161498 0.986873i \(-0.448367\pi\)
0.161498 + 0.986873i \(0.448367\pi\)
\(332\) 0 0
\(333\) 149.801 0.0246518
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3833.73 0.619693 0.309847 0.950787i \(-0.399722\pi\)
0.309847 + 0.950787i \(0.399722\pi\)
\(338\) 0 0
\(339\) 446.706 0.0715685
\(340\) 0 0
\(341\) −1246.08 −0.197886
\(342\) 0 0
\(343\) −5291.81 −0.833035
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3031.17 −0.468938 −0.234469 0.972124i \(-0.575335\pi\)
−0.234469 + 0.972124i \(0.575335\pi\)
\(348\) 0 0
\(349\) −9140.37 −1.40193 −0.700964 0.713197i \(-0.747246\pi\)
−0.700964 + 0.713197i \(0.747246\pi\)
\(350\) 0 0
\(351\) −4771.77 −0.725635
\(352\) 0 0
\(353\) −352.940 −0.0532156 −0.0266078 0.999646i \(-0.508471\pi\)
−0.0266078 + 0.999646i \(0.508471\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3756.83 0.556954
\(358\) 0 0
\(359\) −9308.76 −1.36852 −0.684258 0.729240i \(-0.739874\pi\)
−0.684258 + 0.729240i \(0.739874\pi\)
\(360\) 0 0
\(361\) −1709.60 −0.249249
\(362\) 0 0
\(363\) −674.636 −0.0975461
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 730.769 0.103940 0.0519698 0.998649i \(-0.483450\pi\)
0.0519698 + 0.998649i \(0.483450\pi\)
\(368\) 0 0
\(369\) 621.193 0.0876370
\(370\) 0 0
\(371\) −6059.82 −0.848006
\(372\) 0 0
\(373\) −3886.41 −0.539493 −0.269746 0.962931i \(-0.586940\pi\)
−0.269746 + 0.962931i \(0.586940\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 727.690 0.0994111
\(378\) 0 0
\(379\) 9925.81 1.34526 0.672631 0.739978i \(-0.265164\pi\)
0.672631 + 0.739978i \(0.265164\pi\)
\(380\) 0 0
\(381\) 6278.38 0.844229
\(382\) 0 0
\(383\) −4658.20 −0.621469 −0.310735 0.950497i \(-0.600575\pi\)
−0.310735 + 0.950497i \(0.600575\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −309.692 −0.0406784
\(388\) 0 0
\(389\) 9334.00 1.21659 0.608294 0.793712i \(-0.291854\pi\)
0.608294 + 0.793712i \(0.291854\pi\)
\(390\) 0 0
\(391\) 2799.75 0.362121
\(392\) 0 0
\(393\) 13158.4 1.68894
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3045.11 −0.384961 −0.192481 0.981301i \(-0.561653\pi\)
−0.192481 + 0.981301i \(0.561653\pi\)
\(398\) 0 0
\(399\) −8307.58 −1.04235
\(400\) 0 0
\(401\) 8566.65 1.06683 0.533414 0.845854i \(-0.320909\pi\)
0.533414 + 0.845854i \(0.320909\pi\)
\(402\) 0 0
\(403\) 4231.09 0.522992
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 403.254 0.0491119
\(408\) 0 0
\(409\) −2673.21 −0.323183 −0.161592 0.986858i \(-0.551663\pi\)
−0.161592 + 0.986858i \(0.551663\pi\)
\(410\) 0 0
\(411\) 10167.0 1.22020
\(412\) 0 0
\(413\) 13980.8 1.66574
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 10182.5 1.19577
\(418\) 0 0
\(419\) 585.643 0.0682829 0.0341415 0.999417i \(-0.489130\pi\)
0.0341415 + 0.999417i \(0.489130\pi\)
\(420\) 0 0
\(421\) −2506.29 −0.290141 −0.145070 0.989421i \(-0.546341\pi\)
−0.145070 + 0.989421i \(0.546341\pi\)
\(422\) 0 0
\(423\) 883.414 0.101544
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5554.85 0.629550
\(428\) 0 0
\(429\) 2290.74 0.257804
\(430\) 0 0
\(431\) 4307.54 0.481408 0.240704 0.970599i \(-0.422622\pi\)
0.240704 + 0.970599i \(0.422622\pi\)
\(432\) 0 0
\(433\) −7599.55 −0.843443 −0.421722 0.906725i \(-0.638574\pi\)
−0.421722 + 0.906725i \(0.638574\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6191.16 −0.677719
\(438\) 0 0
\(439\) −14291.1 −1.55371 −0.776855 0.629680i \(-0.783186\pi\)
−0.776855 + 0.629680i \(0.783186\pi\)
\(440\) 0 0
\(441\) 360.188 0.0388930
\(442\) 0 0
\(443\) 8334.33 0.893851 0.446925 0.894571i \(-0.352519\pi\)
0.446925 + 0.894571i \(0.352519\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1605.59 −0.169893
\(448\) 0 0
\(449\) −3682.55 −0.387061 −0.193530 0.981094i \(-0.561994\pi\)
−0.193530 + 0.981094i \(0.561994\pi\)
\(450\) 0 0
\(451\) 1672.21 0.174592
\(452\) 0 0
\(453\) 16063.6 1.66607
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1348.62 0.138044 0.0690218 0.997615i \(-0.478012\pi\)
0.0690218 + 0.997615i \(0.478012\pi\)
\(458\) 0 0
\(459\) −4145.77 −0.421586
\(460\) 0 0
\(461\) 2058.01 0.207920 0.103960 0.994582i \(-0.466849\pi\)
0.103960 + 0.994582i \(0.466849\pi\)
\(462\) 0 0
\(463\) −8850.65 −0.888390 −0.444195 0.895930i \(-0.646510\pi\)
−0.444195 + 0.895930i \(0.646510\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19339.3 1.91631 0.958154 0.286252i \(-0.0924094\pi\)
0.958154 + 0.286252i \(0.0924094\pi\)
\(468\) 0 0
\(469\) −14174.5 −1.39556
\(470\) 0 0
\(471\) 13413.6 1.31224
\(472\) 0 0
\(473\) −833.668 −0.0810404
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1192.55 −0.114472
\(478\) 0 0
\(479\) −19045.4 −1.81671 −0.908356 0.418198i \(-0.862662\pi\)
−0.908356 + 0.418198i \(0.862662\pi\)
\(480\) 0 0
\(481\) −1369.26 −0.129798
\(482\) 0 0
\(483\) 9988.26 0.940956
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7083.95 −0.659147 −0.329573 0.944130i \(-0.606905\pi\)
−0.329573 + 0.944130i \(0.606905\pi\)
\(488\) 0 0
\(489\) 6470.55 0.598381
\(490\) 0 0
\(491\) 11531.5 1.05990 0.529949 0.848030i \(-0.322211\pi\)
0.529949 + 0.848030i \(0.322211\pi\)
\(492\) 0 0
\(493\) 632.227 0.0577567
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8532.71 0.770109
\(498\) 0 0
\(499\) 8817.35 0.791019 0.395510 0.918462i \(-0.370568\pi\)
0.395510 + 0.918462i \(0.370568\pi\)
\(500\) 0 0
\(501\) −2610.03 −0.232749
\(502\) 0 0
\(503\) 10596.4 0.939308 0.469654 0.882851i \(-0.344379\pi\)
0.469654 + 0.882851i \(0.344379\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4471.12 0.391656
\(508\) 0 0
\(509\) −18347.7 −1.59773 −0.798867 0.601508i \(-0.794567\pi\)
−0.798867 + 0.601508i \(0.794567\pi\)
\(510\) 0 0
\(511\) 2864.78 0.248005
\(512\) 0 0
\(513\) 9167.65 0.789009
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2378.09 0.202298
\(518\) 0 0
\(519\) −313.119 −0.0264824
\(520\) 0 0
\(521\) −18494.2 −1.55518 −0.777588 0.628775i \(-0.783557\pi\)
−0.777588 + 0.628775i \(0.783557\pi\)
\(522\) 0 0
\(523\) −15387.2 −1.28649 −0.643244 0.765661i \(-0.722412\pi\)
−0.643244 + 0.765661i \(0.722412\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3676.03 0.303853
\(528\) 0 0
\(529\) −4723.33 −0.388208
\(530\) 0 0
\(531\) 2751.37 0.224858
\(532\) 0 0
\(533\) −5678.02 −0.461430
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −8411.81 −0.675971
\(538\) 0 0
\(539\) 969.599 0.0774835
\(540\) 0 0
\(541\) 5424.06 0.431051 0.215525 0.976498i \(-0.430854\pi\)
0.215525 + 0.976498i \(0.430854\pi\)
\(542\) 0 0
\(543\) −2443.10 −0.193082
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −10544.7 −0.824241 −0.412120 0.911129i \(-0.635212\pi\)
−0.412120 + 0.911129i \(0.635212\pi\)
\(548\) 0 0
\(549\) 1093.17 0.0849828
\(550\) 0 0
\(551\) −1398.06 −0.108093
\(552\) 0 0
\(553\) 19074.2 1.46676
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15977.6 1.21542 0.607712 0.794158i \(-0.292088\pi\)
0.607712 + 0.794158i \(0.292088\pi\)
\(558\) 0 0
\(559\) 2830.74 0.214182
\(560\) 0 0
\(561\) 1990.23 0.149782
\(562\) 0 0
\(563\) −17264.6 −1.29239 −0.646196 0.763172i \(-0.723641\pi\)
−0.646196 + 0.763172i \(0.723641\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −17081.2 −1.26515
\(568\) 0 0
\(569\) −11626.6 −0.856613 −0.428306 0.903634i \(-0.640890\pi\)
−0.428306 + 0.903634i \(0.640890\pi\)
\(570\) 0 0
\(571\) 26947.0 1.97495 0.987474 0.157781i \(-0.0504339\pi\)
0.987474 + 0.157781i \(0.0504339\pi\)
\(572\) 0 0
\(573\) 21582.6 1.57352
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 23399.2 1.68825 0.844127 0.536143i \(-0.180119\pi\)
0.844127 + 0.536143i \(0.180119\pi\)
\(578\) 0 0
\(579\) −23197.9 −1.66507
\(580\) 0 0
\(581\) −19929.1 −1.42306
\(582\) 0 0
\(583\) −3210.26 −0.228054
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4653.92 −0.327236 −0.163618 0.986524i \(-0.552316\pi\)
−0.163618 + 0.986524i \(0.552316\pi\)
\(588\) 0 0
\(589\) −8128.90 −0.568668
\(590\) 0 0
\(591\) 2339.08 0.162804
\(592\) 0 0
\(593\) 8192.48 0.567327 0.283663 0.958924i \(-0.408450\pi\)
0.283663 + 0.958924i \(0.408450\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 12704.4 0.870948
\(598\) 0 0
\(599\) 6761.31 0.461201 0.230601 0.973048i \(-0.425931\pi\)
0.230601 + 0.973048i \(0.425931\pi\)
\(600\) 0 0
\(601\) −15266.1 −1.03613 −0.518067 0.855340i \(-0.673348\pi\)
−0.518067 + 0.855340i \(0.673348\pi\)
\(602\) 0 0
\(603\) −2789.49 −0.188386
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 25104.0 1.67865 0.839326 0.543629i \(-0.182950\pi\)
0.839326 + 0.543629i \(0.182950\pi\)
\(608\) 0 0
\(609\) 2255.50 0.150078
\(610\) 0 0
\(611\) −8074.85 −0.534654
\(612\) 0 0
\(613\) 8848.85 0.583037 0.291519 0.956565i \(-0.405840\pi\)
0.291519 + 0.956565i \(0.405840\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3042.72 −0.198534 −0.0992668 0.995061i \(-0.531650\pi\)
−0.0992668 + 0.995061i \(0.531650\pi\)
\(618\) 0 0
\(619\) −3391.98 −0.220251 −0.110125 0.993918i \(-0.535125\pi\)
−0.110125 + 0.993918i \(0.535125\pi\)
\(620\) 0 0
\(621\) −11022.3 −0.712256
\(622\) 0 0
\(623\) 12919.2 0.830816
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −4401.04 −0.280320
\(628\) 0 0
\(629\) −1189.63 −0.0754111
\(630\) 0 0
\(631\) 5791.13 0.365358 0.182679 0.983173i \(-0.441523\pi\)
0.182679 + 0.983173i \(0.441523\pi\)
\(632\) 0 0
\(633\) −4225.19 −0.265302
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3292.30 −0.204781
\(638\) 0 0
\(639\) 1679.21 0.103957
\(640\) 0 0
\(641\) −25616.3 −1.57844 −0.789221 0.614110i \(-0.789515\pi\)
−0.789221 + 0.614110i \(0.789515\pi\)
\(642\) 0 0
\(643\) −16568.5 −1.01617 −0.508086 0.861306i \(-0.669647\pi\)
−0.508086 + 0.861306i \(0.669647\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8340.07 0.506773 0.253386 0.967365i \(-0.418456\pi\)
0.253386 + 0.967365i \(0.418456\pi\)
\(648\) 0 0
\(649\) 7406.50 0.447967
\(650\) 0 0
\(651\) 13114.4 0.789547
\(652\) 0 0
\(653\) 8570.19 0.513595 0.256798 0.966465i \(-0.417333\pi\)
0.256798 + 0.966465i \(0.417333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 563.779 0.0334781
\(658\) 0 0
\(659\) −3184.90 −0.188264 −0.0941320 0.995560i \(-0.530008\pi\)
−0.0941320 + 0.995560i \(0.530008\pi\)
\(660\) 0 0
\(661\) −5043.56 −0.296780 −0.148390 0.988929i \(-0.547409\pi\)
−0.148390 + 0.988929i \(0.547409\pi\)
\(662\) 0 0
\(663\) −6757.86 −0.395858
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1680.90 0.0975781
\(668\) 0 0
\(669\) −11889.1 −0.687087
\(670\) 0 0
\(671\) 2942.75 0.169305
\(672\) 0 0
\(673\) −17554.6 −1.00547 −0.502735 0.864440i \(-0.667673\pi\)
−0.502735 + 0.864440i \(0.667673\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2667.67 −0.151443 −0.0757214 0.997129i \(-0.524126\pi\)
−0.0757214 + 0.997129i \(0.524126\pi\)
\(678\) 0 0
\(679\) −28875.2 −1.63200
\(680\) 0 0
\(681\) 21170.4 1.19127
\(682\) 0 0
\(683\) −23516.3 −1.31746 −0.658732 0.752378i \(-0.728907\pi\)
−0.658732 + 0.752378i \(0.728907\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10959.6 −0.608637
\(688\) 0 0
\(689\) 10900.5 0.602724
\(690\) 0 0
\(691\) 32061.4 1.76508 0.882542 0.470234i \(-0.155831\pi\)
0.882542 + 0.470234i \(0.155831\pi\)
\(692\) 0 0
\(693\) 933.327 0.0511604
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −4933.14 −0.268086
\(698\) 0 0
\(699\) 3560.84 0.192680
\(700\) 0 0
\(701\) −4590.65 −0.247341 −0.123671 0.992323i \(-0.539467\pi\)
−0.123671 + 0.992323i \(0.539467\pi\)
\(702\) 0 0
\(703\) 2630.66 0.141134
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1953.06 0.103893
\(708\) 0 0
\(709\) 24836.3 1.31558 0.657791 0.753201i \(-0.271491\pi\)
0.657791 + 0.753201i \(0.271491\pi\)
\(710\) 0 0
\(711\) 3753.74 0.197998
\(712\) 0 0
\(713\) 9773.43 0.513349
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 26408.5 1.37552
\(718\) 0 0
\(719\) 33950.9 1.76099 0.880497 0.474051i \(-0.157209\pi\)
0.880497 + 0.474051i \(0.157209\pi\)
\(720\) 0 0
\(721\) −21444.1 −1.10766
\(722\) 0 0
\(723\) 15803.9 0.812937
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −16954.1 −0.864913 −0.432457 0.901655i \(-0.642353\pi\)
−0.432457 + 0.901655i \(0.642353\pi\)
\(728\) 0 0
\(729\) 15870.6 0.806312
\(730\) 0 0
\(731\) 2459.38 0.124437
\(732\) 0 0
\(733\) −23218.8 −1.16999 −0.584996 0.811036i \(-0.698904\pi\)
−0.584996 + 0.811036i \(0.698904\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7509.11 −0.375307
\(738\) 0 0
\(739\) 33365.8 1.66086 0.830432 0.557119i \(-0.188093\pi\)
0.830432 + 0.557119i \(0.188093\pi\)
\(740\) 0 0
\(741\) 14943.8 0.740857
\(742\) 0 0
\(743\) 13612.4 0.672128 0.336064 0.941839i \(-0.390904\pi\)
0.336064 + 0.941839i \(0.390904\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3921.99 −0.192099
\(748\) 0 0
\(749\) −15443.9 −0.753415
\(750\) 0 0
\(751\) 18882.2 0.917470 0.458735 0.888573i \(-0.348303\pi\)
0.458735 + 0.888573i \(0.348303\pi\)
\(752\) 0 0
\(753\) −18346.1 −0.887875
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 31967.8 1.53486 0.767429 0.641134i \(-0.221536\pi\)
0.767429 + 0.641134i \(0.221536\pi\)
\(758\) 0 0
\(759\) 5291.40 0.253051
\(760\) 0 0
\(761\) 20438.6 0.973588 0.486794 0.873517i \(-0.338166\pi\)
0.486794 + 0.873517i \(0.338166\pi\)
\(762\) 0 0
\(763\) −13889.6 −0.659025
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25148.9 −1.18393
\(768\) 0 0
\(769\) 26825.0 1.25791 0.628956 0.777441i \(-0.283483\pi\)
0.628956 + 0.777441i \(0.283483\pi\)
\(770\) 0 0
\(771\) −16196.6 −0.756560
\(772\) 0 0
\(773\) −1020.11 −0.0474655 −0.0237327 0.999718i \(-0.507555\pi\)
−0.0237327 + 0.999718i \(0.507555\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4244.07 −0.195952
\(778\) 0 0
\(779\) 10908.8 0.501729
\(780\) 0 0
\(781\) 4520.30 0.207105
\(782\) 0 0
\(783\) −2489.01 −0.113602
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −23236.5 −1.05247 −0.526235 0.850339i \(-0.676397\pi\)
−0.526235 + 0.850339i \(0.676397\pi\)
\(788\) 0 0
\(789\) 27584.7 1.24467
\(790\) 0 0
\(791\) −1663.60 −0.0747798
\(792\) 0 0
\(793\) −9992.16 −0.447455
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20354.2 0.904619 0.452310 0.891861i \(-0.350600\pi\)
0.452310 + 0.891861i \(0.350600\pi\)
\(798\) 0 0
\(799\) −7015.53 −0.310628
\(800\) 0 0
\(801\) 2542.46 0.112152
\(802\) 0 0
\(803\) 1517.65 0.0666958
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −38425.5 −1.67613
\(808\) 0 0
\(809\) 14015.2 0.609084 0.304542 0.952499i \(-0.401497\pi\)
0.304542 + 0.952499i \(0.401497\pi\)
\(810\) 0 0
\(811\) 18874.0 0.817207 0.408604 0.912712i \(-0.366016\pi\)
0.408604 + 0.912712i \(0.366016\pi\)
\(812\) 0 0
\(813\) 21606.7 0.932078
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −5438.50 −0.232887
\(818\) 0 0
\(819\) −3169.13 −0.135212
\(820\) 0 0
\(821\) 2299.94 0.0977690 0.0488845 0.998804i \(-0.484433\pi\)
0.0488845 + 0.998804i \(0.484433\pi\)
\(822\) 0 0
\(823\) 11685.4 0.494931 0.247466 0.968897i \(-0.420402\pi\)
0.247466 + 0.968897i \(0.420402\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38022.6 1.59876 0.799380 0.600825i \(-0.205161\pi\)
0.799380 + 0.600825i \(0.205161\pi\)
\(828\) 0 0
\(829\) 2077.11 0.0870219 0.0435110 0.999053i \(-0.486146\pi\)
0.0435110 + 0.999053i \(0.486146\pi\)
\(830\) 0 0
\(831\) −37122.9 −1.54967
\(832\) 0 0
\(833\) −2860.39 −0.118976
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −14472.2 −0.597647
\(838\) 0 0
\(839\) −26534.0 −1.09184 −0.545921 0.837837i \(-0.683820\pi\)
−0.545921 + 0.837837i \(0.683820\pi\)
\(840\) 0 0
\(841\) −24009.4 −0.984437
\(842\) 0 0
\(843\) 14296.7 0.584111
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2512.45 0.101923
\(848\) 0 0
\(849\) 29925.0 1.20968
\(850\) 0 0
\(851\) −3162.86 −0.127405
\(852\) 0 0
\(853\) −24845.2 −0.997283 −0.498641 0.866808i \(-0.666168\pi\)
−0.498641 + 0.866808i \(0.666168\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18710.0 −0.745767 −0.372883 0.927878i \(-0.621631\pi\)
−0.372883 + 0.927878i \(0.621631\pi\)
\(858\) 0 0
\(859\) −4277.39 −0.169898 −0.0849492 0.996385i \(-0.527073\pi\)
−0.0849492 + 0.996385i \(0.527073\pi\)
\(860\) 0 0
\(861\) −17599.2 −0.696609
\(862\) 0 0
\(863\) −17711.3 −0.698611 −0.349306 0.937009i \(-0.613582\pi\)
−0.349306 + 0.937009i \(0.613582\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 21521.2 0.843018
\(868\) 0 0
\(869\) 10104.8 0.394455
\(870\) 0 0
\(871\) 25497.3 0.991899
\(872\) 0 0
\(873\) −5682.54 −0.220303
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 789.730 0.0304074 0.0152037 0.999884i \(-0.495160\pi\)
0.0152037 + 0.999884i \(0.495160\pi\)
\(878\) 0 0
\(879\) −17781.8 −0.682329
\(880\) 0 0
\(881\) −34340.8 −1.31325 −0.656624 0.754218i \(-0.728016\pi\)
−0.656624 + 0.754218i \(0.728016\pi\)
\(882\) 0 0
\(883\) −43311.3 −1.65067 −0.825335 0.564644i \(-0.809014\pi\)
−0.825335 + 0.564644i \(0.809014\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39802.8 −1.50670 −0.753352 0.657617i \(-0.771565\pi\)
−0.753352 + 0.657617i \(0.771565\pi\)
\(888\) 0 0
\(889\) −23381.7 −0.882110
\(890\) 0 0
\(891\) −9048.95 −0.340237
\(892\) 0 0
\(893\) 15513.6 0.581348
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −17967.1 −0.668788
\(898\) 0 0
\(899\) 2206.99 0.0818769
\(900\) 0 0
\(901\) 9470.52 0.350176
\(902\) 0 0
\(903\) 8773.99 0.323344
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −28916.2 −1.05859 −0.529297 0.848436i \(-0.677544\pi\)
−0.529297 + 0.848436i \(0.677544\pi\)
\(908\) 0 0
\(909\) 384.356 0.0140245
\(910\) 0 0
\(911\) −3182.17 −0.115730 −0.0578651 0.998324i \(-0.518429\pi\)
−0.0578651 + 0.998324i \(0.518429\pi\)
\(912\) 0 0
\(913\) −10557.7 −0.382704
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −49003.8 −1.76472
\(918\) 0 0
\(919\) 6946.10 0.249326 0.124663 0.992199i \(-0.460215\pi\)
0.124663 + 0.992199i \(0.460215\pi\)
\(920\) 0 0
\(921\) −29123.5 −1.04197
\(922\) 0 0
\(923\) −15348.8 −0.547358
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −4220.13 −0.149522
\(928\) 0 0
\(929\) 44519.8 1.57228 0.786139 0.618050i \(-0.212077\pi\)
0.786139 + 0.618050i \(0.212077\pi\)
\(930\) 0 0
\(931\) 6325.25 0.222666
\(932\) 0 0
\(933\) 4338.70 0.152243
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −7802.11 −0.272021 −0.136011 0.990707i \(-0.543428\pi\)
−0.136011 + 0.990707i \(0.543428\pi\)
\(938\) 0 0
\(939\) 32917.1 1.14399
\(940\) 0 0
\(941\) −24835.3 −0.860369 −0.430184 0.902741i \(-0.641551\pi\)
−0.430184 + 0.902741i \(0.641551\pi\)
\(942\) 0 0
\(943\) −13115.7 −0.452922
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26433.4 0.907045 0.453522 0.891245i \(-0.350167\pi\)
0.453522 + 0.891245i \(0.350167\pi\)
\(948\) 0 0
\(949\) −5153.22 −0.176270
\(950\) 0 0
\(951\) −44688.9 −1.52380
\(952\) 0 0
\(953\) 40389.2 1.37286 0.686429 0.727197i \(-0.259177\pi\)
0.686429 + 0.727197i \(0.259177\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1194.88 0.0403605
\(958\) 0 0
\(959\) −37863.5 −1.27495
\(960\) 0 0
\(961\) −16958.6 −0.569254
\(962\) 0 0
\(963\) −3039.31 −0.101703
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −20108.7 −0.668719 −0.334359 0.942446i \(-0.608520\pi\)
−0.334359 + 0.942446i \(0.608520\pi\)
\(968\) 0 0
\(969\) 12983.4 0.430430
\(970\) 0 0
\(971\) −6054.35 −0.200096 −0.100048 0.994983i \(-0.531900\pi\)
−0.100048 + 0.994983i \(0.531900\pi\)
\(972\) 0 0
\(973\) −37921.0 −1.24943
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4573.59 0.149767 0.0748833 0.997192i \(-0.476142\pi\)
0.0748833 + 0.997192i \(0.476142\pi\)
\(978\) 0 0
\(979\) 6844.12 0.223431
\(980\) 0 0
\(981\) −2733.42 −0.0889617
\(982\) 0 0
\(983\) −27498.3 −0.892226 −0.446113 0.894977i \(-0.647192\pi\)
−0.446113 + 0.894977i \(0.647192\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −25028.3 −0.807153
\(988\) 0 0
\(989\) 6538.74 0.210232
\(990\) 0 0
\(991\) −22415.6 −0.718521 −0.359261 0.933237i \(-0.616971\pi\)
−0.359261 + 0.933237i \(0.616971\pi\)
\(992\) 0 0
\(993\) −10844.8 −0.346577
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 27064.0 0.859706 0.429853 0.902899i \(-0.358565\pi\)
0.429853 + 0.902899i \(0.358565\pi\)
\(998\) 0 0
\(999\) 4683.45 0.148326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.4.a.j.1.2 5
5.2 odd 4 1100.4.b.j.749.8 10
5.3 odd 4 1100.4.b.j.749.3 10
5.4 even 2 1100.4.a.m.1.4 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.4.a.j.1.2 5 1.1 even 1 trivial
1100.4.a.m.1.4 yes 5 5.4 even 2
1100.4.b.j.749.3 10 5.3 odd 4
1100.4.b.j.749.8 10 5.2 odd 4