Properties

Label 1100.6.a.i.1.5
Level $1100$
Weight $6$
Character 1100.1
Self dual yes
Analytic conductor $176.422$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(176.422201794\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 1155x^{6} + 1122x^{5} + 365994x^{4} - 476334x^{3} - 28296355x^{2} + 54177943x + 132029745 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7}\cdot 3\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.42686\) of defining polynomial
Character \(\chi\) \(=\) 1100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.426864 q^{3} +59.7938 q^{7} -242.818 q^{9} -121.000 q^{11} +1125.47 q^{13} -1949.47 q^{17} -1244.75 q^{19} +25.5238 q^{21} +4642.40 q^{23} -207.378 q^{27} +1000.22 q^{29} -2478.21 q^{31} -51.6505 q^{33} +10827.6 q^{37} +480.423 q^{39} -11727.8 q^{41} -6900.79 q^{43} +4951.00 q^{47} -13231.7 q^{49} -832.158 q^{51} -8177.38 q^{53} -531.337 q^{57} +36965.0 q^{59} -11885.0 q^{61} -14519.0 q^{63} +825.191 q^{67} +1981.67 q^{69} -11961.1 q^{71} +59009.3 q^{73} -7235.05 q^{77} -2638.60 q^{79} +58916.2 q^{81} -108055. q^{83} +426.958 q^{87} +32135.2 q^{89} +67296.2 q^{91} -1057.86 q^{93} -165772. q^{97} +29381.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 9 q^{3} - 175 q^{7} + 377 q^{9} - 968 q^{11} + 1072 q^{13} - 37 q^{17} - 1356 q^{19} + 5462 q^{21} - 1327 q^{23} - 2670 q^{27} - 11785 q^{29} + 3532 q^{31} + 1089 q^{33} + 8176 q^{37} - 16831 q^{39}+ \cdots - 45617 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.426864 0.0273833 0.0136917 0.999906i \(-0.495642\pi\)
0.0136917 + 0.999906i \(0.495642\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 59.7938 0.461223 0.230611 0.973046i \(-0.425927\pi\)
0.230611 + 0.973046i \(0.425927\pi\)
\(8\) 0 0
\(9\) −242.818 −0.999250
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) 1125.47 1.84704 0.923521 0.383549i \(-0.125298\pi\)
0.923521 + 0.383549i \(0.125298\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1949.47 −1.63604 −0.818021 0.575188i \(-0.804929\pi\)
−0.818021 + 0.575188i \(0.804929\pi\)
\(18\) 0 0
\(19\) −1244.75 −0.791037 −0.395518 0.918458i \(-0.629435\pi\)
−0.395518 + 0.918458i \(0.629435\pi\)
\(20\) 0 0
\(21\) 25.5238 0.0126298
\(22\) 0 0
\(23\) 4642.40 1.82988 0.914941 0.403587i \(-0.132237\pi\)
0.914941 + 0.403587i \(0.132237\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −207.378 −0.0547461
\(28\) 0 0
\(29\) 1000.22 0.220852 0.110426 0.993884i \(-0.464778\pi\)
0.110426 + 0.993884i \(0.464778\pi\)
\(30\) 0 0
\(31\) −2478.21 −0.463164 −0.231582 0.972815i \(-0.574390\pi\)
−0.231582 + 0.972815i \(0.574390\pi\)
\(32\) 0 0
\(33\) −51.6505 −0.00825638
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10827.6 1.30025 0.650127 0.759825i \(-0.274716\pi\)
0.650127 + 0.759825i \(0.274716\pi\)
\(38\) 0 0
\(39\) 480.423 0.0505781
\(40\) 0 0
\(41\) −11727.8 −1.08958 −0.544789 0.838573i \(-0.683390\pi\)
−0.544789 + 0.838573i \(0.683390\pi\)
\(42\) 0 0
\(43\) −6900.79 −0.569151 −0.284576 0.958654i \(-0.591853\pi\)
−0.284576 + 0.958654i \(0.591853\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4951.00 0.326925 0.163463 0.986550i \(-0.447734\pi\)
0.163463 + 0.986550i \(0.447734\pi\)
\(48\) 0 0
\(49\) −13231.7 −0.787273
\(50\) 0 0
\(51\) −832.158 −0.0448003
\(52\) 0 0
\(53\) −8177.38 −0.399875 −0.199938 0.979809i \(-0.564074\pi\)
−0.199938 + 0.979809i \(0.564074\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −531.337 −0.0216612
\(58\) 0 0
\(59\) 36965.0 1.38249 0.691244 0.722622i \(-0.257063\pi\)
0.691244 + 0.722622i \(0.257063\pi\)
\(60\) 0 0
\(61\) −11885.0 −0.408954 −0.204477 0.978871i \(-0.565549\pi\)
−0.204477 + 0.978871i \(0.565549\pi\)
\(62\) 0 0
\(63\) −14519.0 −0.460877
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 825.191 0.0224578 0.0112289 0.999937i \(-0.496426\pi\)
0.0112289 + 0.999937i \(0.496426\pi\)
\(68\) 0 0
\(69\) 1981.67 0.0501082
\(70\) 0 0
\(71\) −11961.1 −0.281594 −0.140797 0.990038i \(-0.544967\pi\)
−0.140797 + 0.990038i \(0.544967\pi\)
\(72\) 0 0
\(73\) 59009.3 1.29602 0.648012 0.761630i \(-0.275601\pi\)
0.648012 + 0.761630i \(0.275601\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7235.05 −0.139064
\(78\) 0 0
\(79\) −2638.60 −0.0475671 −0.0237835 0.999717i \(-0.507571\pi\)
−0.0237835 + 0.999717i \(0.507571\pi\)
\(80\) 0 0
\(81\) 58916.2 0.997751
\(82\) 0 0
\(83\) −108055. −1.72167 −0.860836 0.508882i \(-0.830059\pi\)
−0.860836 + 0.508882i \(0.830059\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 426.958 0.00604766
\(88\) 0 0
\(89\) 32135.2 0.430038 0.215019 0.976610i \(-0.431019\pi\)
0.215019 + 0.976610i \(0.431019\pi\)
\(90\) 0 0
\(91\) 67296.2 0.851898
\(92\) 0 0
\(93\) −1057.86 −0.0126830
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −165772. −1.78888 −0.894440 0.447187i \(-0.852426\pi\)
−0.894440 + 0.447187i \(0.852426\pi\)
\(98\) 0 0
\(99\) 29381.0 0.301285
\(100\) 0 0
\(101\) −41646.8 −0.406236 −0.203118 0.979154i \(-0.565107\pi\)
−0.203118 + 0.979154i \(0.565107\pi\)
\(102\) 0 0
\(103\) 29129.0 0.270541 0.135270 0.990809i \(-0.456810\pi\)
0.135270 + 0.990809i \(0.456810\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 97108.3 0.819968 0.409984 0.912093i \(-0.365534\pi\)
0.409984 + 0.912093i \(0.365534\pi\)
\(108\) 0 0
\(109\) −157166. −1.26705 −0.633524 0.773723i \(-0.718392\pi\)
−0.633524 + 0.773723i \(0.718392\pi\)
\(110\) 0 0
\(111\) 4621.91 0.0356053
\(112\) 0 0
\(113\) 55971.5 0.412354 0.206177 0.978515i \(-0.433898\pi\)
0.206177 + 0.978515i \(0.433898\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −273285. −1.84566
\(118\) 0 0
\(119\) −116566. −0.754580
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) −5006.19 −0.0298363
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 123758. 0.680872 0.340436 0.940268i \(-0.389425\pi\)
0.340436 + 0.940268i \(0.389425\pi\)
\(128\) 0 0
\(129\) −2945.70 −0.0155853
\(130\) 0 0
\(131\) −231335. −1.17778 −0.588889 0.808214i \(-0.700434\pi\)
−0.588889 + 0.808214i \(0.700434\pi\)
\(132\) 0 0
\(133\) −74428.0 −0.364844
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13429.0 −0.0611283 −0.0305642 0.999533i \(-0.509730\pi\)
−0.0305642 + 0.999533i \(0.509730\pi\)
\(138\) 0 0
\(139\) −137339. −0.602916 −0.301458 0.953479i \(-0.597473\pi\)
−0.301458 + 0.953479i \(0.597473\pi\)
\(140\) 0 0
\(141\) 2113.40 0.00895229
\(142\) 0 0
\(143\) −136182. −0.556904
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5648.13 −0.0215582
\(148\) 0 0
\(149\) 456905. 1.68601 0.843005 0.537906i \(-0.180785\pi\)
0.843005 + 0.537906i \(0.180785\pi\)
\(150\) 0 0
\(151\) −479355. −1.71086 −0.855431 0.517917i \(-0.826708\pi\)
−0.855431 + 0.517917i \(0.826708\pi\)
\(152\) 0 0
\(153\) 473366. 1.63482
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −70972.6 −0.229796 −0.114898 0.993377i \(-0.536654\pi\)
−0.114898 + 0.993377i \(0.536654\pi\)
\(158\) 0 0
\(159\) −3490.62 −0.0109499
\(160\) 0 0
\(161\) 277587. 0.843983
\(162\) 0 0
\(163\) 56957.6 0.167912 0.0839561 0.996469i \(-0.473244\pi\)
0.0839561 + 0.996469i \(0.473244\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 35650.3 0.0989172 0.0494586 0.998776i \(-0.484250\pi\)
0.0494586 + 0.998776i \(0.484250\pi\)
\(168\) 0 0
\(169\) 895396. 2.41156
\(170\) 0 0
\(171\) 302246. 0.790444
\(172\) 0 0
\(173\) −395809. −1.00547 −0.502736 0.864440i \(-0.667673\pi\)
−0.502736 + 0.864440i \(0.667673\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 15779.0 0.0378571
\(178\) 0 0
\(179\) 852131. 1.98780 0.993902 0.110264i \(-0.0351696\pi\)
0.993902 + 0.110264i \(0.0351696\pi\)
\(180\) 0 0
\(181\) −423532. −0.960927 −0.480463 0.877015i \(-0.659531\pi\)
−0.480463 + 0.877015i \(0.659531\pi\)
\(182\) 0 0
\(183\) −5073.27 −0.0111985
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 235886. 0.493285
\(188\) 0 0
\(189\) −12399.9 −0.0252502
\(190\) 0 0
\(191\) 647068. 1.28341 0.641706 0.766951i \(-0.278227\pi\)
0.641706 + 0.766951i \(0.278227\pi\)
\(192\) 0 0
\(193\) −527210. −1.01880 −0.509402 0.860529i \(-0.670133\pi\)
−0.509402 + 0.860529i \(0.670133\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −590667. −1.08437 −0.542184 0.840260i \(-0.682403\pi\)
−0.542184 + 0.840260i \(0.682403\pi\)
\(198\) 0 0
\(199\) −891266. −1.59542 −0.797709 0.603042i \(-0.793955\pi\)
−0.797709 + 0.603042i \(0.793955\pi\)
\(200\) 0 0
\(201\) 352.244 0.000614970 0
\(202\) 0 0
\(203\) 59807.0 0.101862
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.12726e6 −1.82851
\(208\) 0 0
\(209\) 150614. 0.238507
\(210\) 0 0
\(211\) −587022. −0.907712 −0.453856 0.891075i \(-0.649952\pi\)
−0.453856 + 0.891075i \(0.649952\pi\)
\(212\) 0 0
\(213\) −5105.74 −0.00771098
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −148182. −0.213622
\(218\) 0 0
\(219\) 25188.9 0.0354894
\(220\) 0 0
\(221\) −2.19408e6 −3.02184
\(222\) 0 0
\(223\) −126468. −0.170301 −0.0851505 0.996368i \(-0.527137\pi\)
−0.0851505 + 0.996368i \(0.527137\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −442024. −0.569353 −0.284676 0.958624i \(-0.591886\pi\)
−0.284676 + 0.958624i \(0.591886\pi\)
\(228\) 0 0
\(229\) −1.50388e6 −1.89507 −0.947533 0.319659i \(-0.896432\pi\)
−0.947533 + 0.319659i \(0.896432\pi\)
\(230\) 0 0
\(231\) −3088.38 −0.00380803
\(232\) 0 0
\(233\) −925184. −1.11645 −0.558224 0.829691i \(-0.688517\pi\)
−0.558224 + 0.829691i \(0.688517\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1126.32 −0.00130254
\(238\) 0 0
\(239\) 142193. 0.161022 0.0805109 0.996754i \(-0.474345\pi\)
0.0805109 + 0.996754i \(0.474345\pi\)
\(240\) 0 0
\(241\) −749243. −0.830960 −0.415480 0.909602i \(-0.636386\pi\)
−0.415480 + 0.909602i \(0.636386\pi\)
\(242\) 0 0
\(243\) 75542.0 0.0820678
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.40093e6 −1.46108
\(248\) 0 0
\(249\) −46124.8 −0.0471451
\(250\) 0 0
\(251\) 1.06930e6 1.07131 0.535655 0.844437i \(-0.320065\pi\)
0.535655 + 0.844437i \(0.320065\pi\)
\(252\) 0 0
\(253\) −561731. −0.551730
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.18220e6 −1.11650 −0.558249 0.829673i \(-0.688527\pi\)
−0.558249 + 0.829673i \(0.688527\pi\)
\(258\) 0 0
\(259\) 647424. 0.599707
\(260\) 0 0
\(261\) −242872. −0.220686
\(262\) 0 0
\(263\) 571345. 0.509342 0.254671 0.967028i \(-0.418033\pi\)
0.254671 + 0.967028i \(0.418033\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 13717.4 0.0117759
\(268\) 0 0
\(269\) −483732. −0.407591 −0.203795 0.979013i \(-0.565328\pi\)
−0.203795 + 0.979013i \(0.565328\pi\)
\(270\) 0 0
\(271\) −582909. −0.482145 −0.241072 0.970507i \(-0.577499\pi\)
−0.241072 + 0.970507i \(0.577499\pi\)
\(272\) 0 0
\(273\) 28726.3 0.0233278
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.21640e6 0.952528 0.476264 0.879302i \(-0.341991\pi\)
0.476264 + 0.879302i \(0.341991\pi\)
\(278\) 0 0
\(279\) 601754. 0.462816
\(280\) 0 0
\(281\) 791954. 0.598321 0.299160 0.954203i \(-0.403293\pi\)
0.299160 + 0.954203i \(0.403293\pi\)
\(282\) 0 0
\(283\) −2.01071e6 −1.49239 −0.746196 0.665726i \(-0.768122\pi\)
−0.746196 + 0.665726i \(0.768122\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −701252. −0.502538
\(288\) 0 0
\(289\) 2.38058e6 1.67663
\(290\) 0 0
\(291\) −70762.0 −0.0489855
\(292\) 0 0
\(293\) 554775. 0.377527 0.188763 0.982023i \(-0.439552\pi\)
0.188763 + 0.982023i \(0.439552\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 25092.7 0.0165066
\(298\) 0 0
\(299\) 5.22490e6 3.37987
\(300\) 0 0
\(301\) −412624. −0.262506
\(302\) 0 0
\(303\) −17777.5 −0.0111241
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.93272e6 −1.17037 −0.585185 0.810900i \(-0.698978\pi\)
−0.585185 + 0.810900i \(0.698978\pi\)
\(308\) 0 0
\(309\) 12434.1 0.00740830
\(310\) 0 0
\(311\) 582591. 0.341557 0.170778 0.985309i \(-0.445372\pi\)
0.170778 + 0.985309i \(0.445372\pi\)
\(312\) 0 0
\(313\) −240474. −0.138742 −0.0693710 0.997591i \(-0.522099\pi\)
−0.0693710 + 0.997591i \(0.522099\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.07237e6 −1.15829 −0.579146 0.815223i \(-0.696614\pi\)
−0.579146 + 0.815223i \(0.696614\pi\)
\(318\) 0 0
\(319\) −121027. −0.0665894
\(320\) 0 0
\(321\) 41452.0 0.0224534
\(322\) 0 0
\(323\) 2.42660e6 1.29417
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −67088.6 −0.0346960
\(328\) 0 0
\(329\) 296039. 0.150785
\(330\) 0 0
\(331\) −2.74738e6 −1.37832 −0.689158 0.724611i \(-0.742020\pi\)
−0.689158 + 0.724611i \(0.742020\pi\)
\(332\) 0 0
\(333\) −2.62914e6 −1.29928
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.79072e6 −0.858920 −0.429460 0.903086i \(-0.641296\pi\)
−0.429460 + 0.903086i \(0.641296\pi\)
\(338\) 0 0
\(339\) 23892.2 0.0112916
\(340\) 0 0
\(341\) 299864. 0.139649
\(342\) 0 0
\(343\) −1.79613e6 −0.824331
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.52763e6 −0.681073 −0.340537 0.940231i \(-0.610609\pi\)
−0.340537 + 0.940231i \(0.610609\pi\)
\(348\) 0 0
\(349\) −946310. −0.415882 −0.207941 0.978141i \(-0.566676\pi\)
−0.207941 + 0.978141i \(0.566676\pi\)
\(350\) 0 0
\(351\) −233398. −0.101118
\(352\) 0 0
\(353\) 2.53382e6 1.08228 0.541140 0.840933i \(-0.317993\pi\)
0.541140 + 0.840933i \(0.317993\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −49757.9 −0.0206629
\(358\) 0 0
\(359\) 2.70662e6 1.10839 0.554194 0.832388i \(-0.313027\pi\)
0.554194 + 0.832388i \(0.313027\pi\)
\(360\) 0 0
\(361\) −926707. −0.374261
\(362\) 0 0
\(363\) 6249.71 0.00248939
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3.22091e6 −1.24828 −0.624142 0.781311i \(-0.714551\pi\)
−0.624142 + 0.781311i \(0.714551\pi\)
\(368\) 0 0
\(369\) 2.84773e6 1.08876
\(370\) 0 0
\(371\) −488956. −0.184432
\(372\) 0 0
\(373\) 3.10550e6 1.15574 0.577869 0.816130i \(-0.303885\pi\)
0.577869 + 0.816130i \(0.303885\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.12572e6 0.407923
\(378\) 0 0
\(379\) −3.22941e6 −1.15485 −0.577424 0.816445i \(-0.695942\pi\)
−0.577424 + 0.816445i \(0.695942\pi\)
\(380\) 0 0
\(381\) 52828.0 0.0186445
\(382\) 0 0
\(383\) −5.12412e6 −1.78493 −0.892467 0.451113i \(-0.851027\pi\)
−0.892467 + 0.451113i \(0.851027\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.67564e6 0.568725
\(388\) 0 0
\(389\) −2.69794e6 −0.903978 −0.451989 0.892024i \(-0.649285\pi\)
−0.451989 + 0.892024i \(0.649285\pi\)
\(390\) 0 0
\(391\) −9.05023e6 −2.99376
\(392\) 0 0
\(393\) −98748.5 −0.0322514
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −4.53717e6 −1.44480 −0.722402 0.691473i \(-0.756962\pi\)
−0.722402 + 0.691473i \(0.756962\pi\)
\(398\) 0 0
\(399\) −31770.6 −0.00999064
\(400\) 0 0
\(401\) −4.16130e6 −1.29231 −0.646157 0.763204i \(-0.723625\pi\)
−0.646157 + 0.763204i \(0.723625\pi\)
\(402\) 0 0
\(403\) −2.78916e6 −0.855482
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.31014e6 −0.392041
\(408\) 0 0
\(409\) 4.47771e6 1.32357 0.661786 0.749693i \(-0.269799\pi\)
0.661786 + 0.749693i \(0.269799\pi\)
\(410\) 0 0
\(411\) −5732.35 −0.00167390
\(412\) 0 0
\(413\) 2.21028e6 0.637635
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −58625.0 −0.0165098
\(418\) 0 0
\(419\) −4.80723e6 −1.33770 −0.668852 0.743396i \(-0.733214\pi\)
−0.668852 + 0.743396i \(0.733214\pi\)
\(420\) 0 0
\(421\) 967052. 0.265916 0.132958 0.991122i \(-0.457552\pi\)
0.132958 + 0.991122i \(0.457552\pi\)
\(422\) 0 0
\(423\) −1.20219e6 −0.326680
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −710649. −0.188619
\(428\) 0 0
\(429\) −58131.2 −0.0152499
\(430\) 0 0
\(431\) 777588. 0.201630 0.100815 0.994905i \(-0.467855\pi\)
0.100815 + 0.994905i \(0.467855\pi\)
\(432\) 0 0
\(433\) −2.57482e6 −0.659973 −0.329987 0.943986i \(-0.607044\pi\)
−0.329987 + 0.943986i \(0.607044\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.77861e6 −1.44750
\(438\) 0 0
\(439\) 5.54606e6 1.37348 0.686742 0.726902i \(-0.259040\pi\)
0.686742 + 0.726902i \(0.259040\pi\)
\(440\) 0 0
\(441\) 3.21289e6 0.786683
\(442\) 0 0
\(443\) −3.53071e6 −0.854777 −0.427389 0.904068i \(-0.640566\pi\)
−0.427389 + 0.904068i \(0.640566\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 195036. 0.0461685
\(448\) 0 0
\(449\) 3.25993e6 0.763119 0.381560 0.924344i \(-0.375387\pi\)
0.381560 + 0.924344i \(0.375387\pi\)
\(450\) 0 0
\(451\) 1.41907e6 0.328520
\(452\) 0 0
\(453\) −204619. −0.0468491
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.68918e6 0.378344 0.189172 0.981944i \(-0.439420\pi\)
0.189172 + 0.981944i \(0.439420\pi\)
\(458\) 0 0
\(459\) 404277. 0.0895669
\(460\) 0 0
\(461\) −4.56288e6 −0.999969 −0.499985 0.866034i \(-0.666661\pi\)
−0.499985 + 0.866034i \(0.666661\pi\)
\(462\) 0 0
\(463\) 4.27642e6 0.927103 0.463551 0.886070i \(-0.346575\pi\)
0.463551 + 0.886070i \(0.346575\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.53049e6 −0.961286 −0.480643 0.876916i \(-0.659597\pi\)
−0.480643 + 0.876916i \(0.659597\pi\)
\(468\) 0 0
\(469\) 49341.3 0.0103581
\(470\) 0 0
\(471\) −30295.6 −0.00629257
\(472\) 0 0
\(473\) 834996. 0.171606
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.98561e6 0.399575
\(478\) 0 0
\(479\) −5.10458e6 −1.01653 −0.508267 0.861200i \(-0.669714\pi\)
−0.508267 + 0.861200i \(0.669714\pi\)
\(480\) 0 0
\(481\) 1.21862e7 2.40162
\(482\) 0 0
\(483\) 118492. 0.0231111
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −2.12419e6 −0.405854 −0.202927 0.979194i \(-0.565045\pi\)
−0.202927 + 0.979194i \(0.565045\pi\)
\(488\) 0 0
\(489\) 24313.1 0.00459799
\(490\) 0 0
\(491\) −328018. −0.0614036 −0.0307018 0.999529i \(-0.509774\pi\)
−0.0307018 + 0.999529i \(0.509774\pi\)
\(492\) 0 0
\(493\) −1.94990e6 −0.361323
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −715197. −0.129878
\(498\) 0 0
\(499\) −1.23315e6 −0.221699 −0.110850 0.993837i \(-0.535357\pi\)
−0.110850 + 0.993837i \(0.535357\pi\)
\(500\) 0 0
\(501\) 15217.8 0.00270868
\(502\) 0 0
\(503\) −6.31783e6 −1.11339 −0.556696 0.830716i \(-0.687931\pi\)
−0.556696 + 0.830716i \(0.687931\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 382212. 0.0660365
\(508\) 0 0
\(509\) −2.21357e6 −0.378702 −0.189351 0.981909i \(-0.560638\pi\)
−0.189351 + 0.981909i \(0.560638\pi\)
\(510\) 0 0
\(511\) 3.52839e6 0.597756
\(512\) 0 0
\(513\) 258133. 0.0433062
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −599071. −0.0985716
\(518\) 0 0
\(519\) −168956. −0.0275332
\(520\) 0 0
\(521\) −7.47689e6 −1.20678 −0.603388 0.797448i \(-0.706183\pi\)
−0.603388 + 0.797448i \(0.706183\pi\)
\(522\) 0 0
\(523\) 3.94795e6 0.631127 0.315564 0.948904i \(-0.397806\pi\)
0.315564 + 0.948904i \(0.397806\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.83121e6 0.757755
\(528\) 0 0
\(529\) 1.51155e7 2.34847
\(530\) 0 0
\(531\) −8.97577e6 −1.38145
\(532\) 0 0
\(533\) −1.31994e7 −2.01249
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 363744. 0.0544327
\(538\) 0 0
\(539\) 1.60104e6 0.237372
\(540\) 0 0
\(541\) −3.36070e6 −0.493670 −0.246835 0.969057i \(-0.579391\pi\)
−0.246835 + 0.969057i \(0.579391\pi\)
\(542\) 0 0
\(543\) −180791. −0.0263134
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −4.96941e6 −0.710127 −0.355064 0.934842i \(-0.615541\pi\)
−0.355064 + 0.934842i \(0.615541\pi\)
\(548\) 0 0
\(549\) 2.88589e6 0.408647
\(550\) 0 0
\(551\) −1.24502e6 −0.174702
\(552\) 0 0
\(553\) −157772. −0.0219390
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.69093e6 0.504079 0.252039 0.967717i \(-0.418899\pi\)
0.252039 + 0.967717i \(0.418899\pi\)
\(558\) 0 0
\(559\) −7.76665e6 −1.05125
\(560\) 0 0
\(561\) 100691. 0.0135078
\(562\) 0 0
\(563\) 1.15522e7 1.53600 0.768002 0.640447i \(-0.221251\pi\)
0.768002 + 0.640447i \(0.221251\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.52282e6 0.460186
\(568\) 0 0
\(569\) 4.16683e6 0.539541 0.269771 0.962925i \(-0.413052\pi\)
0.269771 + 0.962925i \(0.413052\pi\)
\(570\) 0 0
\(571\) 1.39436e7 1.78972 0.894860 0.446346i \(-0.147275\pi\)
0.894860 + 0.446346i \(0.147275\pi\)
\(572\) 0 0
\(573\) 276210. 0.0351441
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 9.67114e6 1.20931 0.604656 0.796487i \(-0.293311\pi\)
0.604656 + 0.796487i \(0.293311\pi\)
\(578\) 0 0
\(579\) −225047. −0.0278982
\(580\) 0 0
\(581\) −6.46103e6 −0.794075
\(582\) 0 0
\(583\) 989463. 0.120567
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.06654e6 −0.127756 −0.0638779 0.997958i \(-0.520347\pi\)
−0.0638779 + 0.997958i \(0.520347\pi\)
\(588\) 0 0
\(589\) 3.08475e6 0.366379
\(590\) 0 0
\(591\) −252134. −0.0296936
\(592\) 0 0
\(593\) 1.18923e7 1.38876 0.694382 0.719607i \(-0.255678\pi\)
0.694382 + 0.719607i \(0.255678\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −380449. −0.0436878
\(598\) 0 0
\(599\) 3.67655e6 0.418672 0.209336 0.977844i \(-0.432870\pi\)
0.209336 + 0.977844i \(0.432870\pi\)
\(600\) 0 0
\(601\) −9.72241e6 −1.09796 −0.548981 0.835835i \(-0.684984\pi\)
−0.548981 + 0.835835i \(0.684984\pi\)
\(602\) 0 0
\(603\) −200371. −0.0224410
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.36077e7 −1.49904 −0.749521 0.661981i \(-0.769716\pi\)
−0.749521 + 0.661981i \(0.769716\pi\)
\(608\) 0 0
\(609\) 25529.4 0.00278932
\(610\) 0 0
\(611\) 5.57221e6 0.603844
\(612\) 0 0
\(613\) 1.39912e7 1.50385 0.751923 0.659251i \(-0.229126\pi\)
0.751923 + 0.659251i \(0.229126\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.17574e7 1.24336 0.621681 0.783270i \(-0.286450\pi\)
0.621681 + 0.783270i \(0.286450\pi\)
\(618\) 0 0
\(619\) −1.28405e7 −1.34696 −0.673482 0.739203i \(-0.735202\pi\)
−0.673482 + 0.739203i \(0.735202\pi\)
\(620\) 0 0
\(621\) −962732. −0.100179
\(622\) 0 0
\(623\) 1.92149e6 0.198343
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 64291.7 0.00653110
\(628\) 0 0
\(629\) −2.11081e7 −2.12727
\(630\) 0 0
\(631\) 9.84645e6 0.984479 0.492239 0.870460i \(-0.336179\pi\)
0.492239 + 0.870460i \(0.336179\pi\)
\(632\) 0 0
\(633\) −250578. −0.0248562
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.48919e7 −1.45413
\(638\) 0 0
\(639\) 2.90436e6 0.281383
\(640\) 0 0
\(641\) −8.11995e6 −0.780563 −0.390282 0.920696i \(-0.627622\pi\)
−0.390282 + 0.920696i \(0.627622\pi\)
\(642\) 0 0
\(643\) 5.61124e6 0.535219 0.267610 0.963527i \(-0.413766\pi\)
0.267610 + 0.963527i \(0.413766\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.85057e6 0.831210 0.415605 0.909545i \(-0.363570\pi\)
0.415605 + 0.909545i \(0.363570\pi\)
\(648\) 0 0
\(649\) −4.47277e6 −0.416836
\(650\) 0 0
\(651\) −63253.4 −0.00584967
\(652\) 0 0
\(653\) −1.55563e6 −0.142765 −0.0713827 0.997449i \(-0.522741\pi\)
−0.0713827 + 0.997449i \(0.522741\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.43285e7 −1.29505
\(658\) 0 0
\(659\) 3.19066e6 0.286198 0.143099 0.989708i \(-0.454293\pi\)
0.143099 + 0.989708i \(0.454293\pi\)
\(660\) 0 0
\(661\) 9.58530e6 0.853301 0.426650 0.904417i \(-0.359693\pi\)
0.426650 + 0.904417i \(0.359693\pi\)
\(662\) 0 0
\(663\) −936571. −0.0827479
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.64343e6 0.404133
\(668\) 0 0
\(669\) −53984.4 −0.00466340
\(670\) 0 0
\(671\) 1.43808e6 0.123304
\(672\) 0 0
\(673\) 1.39002e7 1.18300 0.591500 0.806305i \(-0.298536\pi\)
0.591500 + 0.806305i \(0.298536\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.61469e6 0.806239 0.403119 0.915147i \(-0.367926\pi\)
0.403119 + 0.915147i \(0.367926\pi\)
\(678\) 0 0
\(679\) −9.91212e6 −0.825073
\(680\) 0 0
\(681\) −188684. −0.0155908
\(682\) 0 0
\(683\) −1.83927e7 −1.50867 −0.754333 0.656492i \(-0.772039\pi\)
−0.754333 + 0.656492i \(0.772039\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −641951. −0.0518932
\(688\) 0 0
\(689\) −9.20341e6 −0.738586
\(690\) 0 0
\(691\) 1.95250e7 1.55560 0.777798 0.628514i \(-0.216337\pi\)
0.777798 + 0.628514i \(0.216337\pi\)
\(692\) 0 0
\(693\) 1.75680e6 0.138960
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.28631e7 1.78260
\(698\) 0 0
\(699\) −394927. −0.0305720
\(700\) 0 0
\(701\) 1.50246e7 1.15480 0.577402 0.816460i \(-0.304066\pi\)
0.577402 + 0.816460i \(0.304066\pi\)
\(702\) 0 0
\(703\) −1.34776e7 −1.02855
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.49022e6 −0.187365
\(708\) 0 0
\(709\) 1.25193e7 0.935329 0.467664 0.883906i \(-0.345096\pi\)
0.467664 + 0.883906i \(0.345096\pi\)
\(710\) 0 0
\(711\) 640700. 0.0475314
\(712\) 0 0
\(713\) −1.15049e7 −0.847535
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 60697.2 0.00440931
\(718\) 0 0
\(719\) 2.65725e7 1.91694 0.958472 0.285186i \(-0.0920555\pi\)
0.958472 + 0.285186i \(0.0920555\pi\)
\(720\) 0 0
\(721\) 1.74173e6 0.124780
\(722\) 0 0
\(723\) −319825. −0.0227544
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.16513e7 1.51931 0.759657 0.650324i \(-0.225367\pi\)
0.759657 + 0.650324i \(0.225367\pi\)
\(728\) 0 0
\(729\) −1.42844e7 −0.995504
\(730\) 0 0
\(731\) 1.34529e7 0.931156
\(732\) 0 0
\(733\) −1.64375e6 −0.112999 −0.0564996 0.998403i \(-0.517994\pi\)
−0.0564996 + 0.998403i \(0.517994\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −99848.2 −0.00677129
\(738\) 0 0
\(739\) −2.56963e7 −1.73085 −0.865425 0.501039i \(-0.832951\pi\)
−0.865425 + 0.501039i \(0.832951\pi\)
\(740\) 0 0
\(741\) −598005. −0.0400091
\(742\) 0 0
\(743\) −9.65474e6 −0.641606 −0.320803 0.947146i \(-0.603953\pi\)
−0.320803 + 0.947146i \(0.603953\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.62377e7 1.72038
\(748\) 0 0
\(749\) 5.80647e6 0.378188
\(750\) 0 0
\(751\) 7.87594e6 0.509569 0.254784 0.966998i \(-0.417996\pi\)
0.254784 + 0.966998i \(0.417996\pi\)
\(752\) 0 0
\(753\) 456445. 0.0293360
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 666629. 0.0422809 0.0211405 0.999777i \(-0.493270\pi\)
0.0211405 + 0.999777i \(0.493270\pi\)
\(758\) 0 0
\(759\) −239782. −0.0151082
\(760\) 0 0
\(761\) −1.51451e7 −0.948007 −0.474004 0.880523i \(-0.657192\pi\)
−0.474004 + 0.880523i \(0.657192\pi\)
\(762\) 0 0
\(763\) −9.39757e6 −0.584392
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.16031e7 2.55351
\(768\) 0 0
\(769\) −2.55800e6 −0.155986 −0.0779930 0.996954i \(-0.524851\pi\)
−0.0779930 + 0.996954i \(0.524851\pi\)
\(770\) 0 0
\(771\) −504638. −0.0305734
\(772\) 0 0
\(773\) 2.30532e7 1.38766 0.693831 0.720138i \(-0.255922\pi\)
0.693831 + 0.720138i \(0.255922\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 276362. 0.0164220
\(778\) 0 0
\(779\) 1.45982e7 0.861896
\(780\) 0 0
\(781\) 1.44729e6 0.0849039
\(782\) 0 0
\(783\) −207424. −0.0120908
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.09486e7 −0.630116 −0.315058 0.949072i \(-0.602024\pi\)
−0.315058 + 0.949072i \(0.602024\pi\)
\(788\) 0 0
\(789\) 243886. 0.0139475
\(790\) 0 0
\(791\) 3.34675e6 0.190187
\(792\) 0 0
\(793\) −1.33762e7 −0.755355
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.68503e7 1.49728 0.748640 0.662976i \(-0.230707\pi\)
0.748640 + 0.662976i \(0.230707\pi\)
\(798\) 0 0
\(799\) −9.65183e6 −0.534863
\(800\) 0 0
\(801\) −7.80301e6 −0.429715
\(802\) 0 0
\(803\) −7.14012e6 −0.390766
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −206488. −0.0111612
\(808\) 0 0
\(809\) −9.94941e6 −0.534474 −0.267237 0.963631i \(-0.586111\pi\)
−0.267237 + 0.963631i \(0.586111\pi\)
\(810\) 0 0
\(811\) −3.48705e7 −1.86168 −0.930841 0.365425i \(-0.880924\pi\)
−0.930841 + 0.365425i \(0.880924\pi\)
\(812\) 0 0
\(813\) −248823. −0.0132027
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.58973e6 0.450220
\(818\) 0 0
\(819\) −1.63407e7 −0.851259
\(820\) 0 0
\(821\) 2.58268e7 1.33725 0.668626 0.743599i \(-0.266883\pi\)
0.668626 + 0.743599i \(0.266883\pi\)
\(822\) 0 0
\(823\) 2.41044e7 1.24050 0.620251 0.784403i \(-0.287031\pi\)
0.620251 + 0.784403i \(0.287031\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.11476e7 −1.07522 −0.537610 0.843193i \(-0.680673\pi\)
−0.537610 + 0.843193i \(0.680673\pi\)
\(828\) 0 0
\(829\) −2.79313e7 −1.41158 −0.705789 0.708422i \(-0.749407\pi\)
−0.705789 + 0.708422i \(0.749407\pi\)
\(830\) 0 0
\(831\) 519238. 0.0260834
\(832\) 0 0
\(833\) 2.57948e7 1.28801
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 513927. 0.0253564
\(838\) 0 0
\(839\) −2.08785e7 −1.02399 −0.511994 0.858989i \(-0.671093\pi\)
−0.511994 + 0.858989i \(0.671093\pi\)
\(840\) 0 0
\(841\) −1.95107e7 −0.951224
\(842\) 0 0
\(843\) 338056. 0.0163840
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 875441. 0.0419294
\(848\) 0 0
\(849\) −858298. −0.0408666
\(850\) 0 0
\(851\) 5.02661e7 2.37931
\(852\) 0 0
\(853\) 7.61166e6 0.358185 0.179092 0.983832i \(-0.442684\pi\)
0.179092 + 0.983832i \(0.442684\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.51792e7 −0.705988 −0.352994 0.935626i \(-0.614836\pi\)
−0.352994 + 0.935626i \(0.614836\pi\)
\(858\) 0 0
\(859\) −6.25178e6 −0.289082 −0.144541 0.989499i \(-0.546170\pi\)
−0.144541 + 0.989499i \(0.546170\pi\)
\(860\) 0 0
\(861\) −299339. −0.0137612
\(862\) 0 0
\(863\) 2.05078e7 0.937331 0.468665 0.883376i \(-0.344735\pi\)
0.468665 + 0.883376i \(0.344735\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.01618e6 0.0459118
\(868\) 0 0
\(869\) 319271. 0.0143420
\(870\) 0 0
\(871\) 928730. 0.0414805
\(872\) 0 0
\(873\) 4.02524e7 1.78754
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.50576e7 1.10012 0.550062 0.835124i \(-0.314604\pi\)
0.550062 + 0.835124i \(0.314604\pi\)
\(878\) 0 0
\(879\) 236813. 0.0103379
\(880\) 0 0
\(881\) 1.29790e7 0.563380 0.281690 0.959505i \(-0.409105\pi\)
0.281690 + 0.959505i \(0.409105\pi\)
\(882\) 0 0
\(883\) 3.40078e7 1.46783 0.733916 0.679240i \(-0.237691\pi\)
0.733916 + 0.679240i \(0.237691\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.23924e7 −1.38240 −0.691200 0.722664i \(-0.742918\pi\)
−0.691200 + 0.722664i \(0.742918\pi\)
\(888\) 0 0
\(889\) 7.39999e6 0.314034
\(890\) 0 0
\(891\) −7.12886e6 −0.300833
\(892\) 0 0
\(893\) −6.16274e6 −0.258610
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.23032e6 0.0925520
\(898\) 0 0
\(899\) −2.47876e6 −0.102291
\(900\) 0 0
\(901\) 1.59416e7 0.654212
\(902\) 0 0
\(903\) −176134. −0.00718827
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 2.26335e7 0.913551 0.456775 0.889582i \(-0.349004\pi\)
0.456775 + 0.889582i \(0.349004\pi\)
\(908\) 0 0
\(909\) 1.01126e7 0.405931
\(910\) 0 0
\(911\) 1.28865e7 0.514447 0.257223 0.966352i \(-0.417192\pi\)
0.257223 + 0.966352i \(0.417192\pi\)
\(912\) 0 0
\(913\) 1.30747e7 0.519104
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.38324e7 −0.543218
\(918\) 0 0
\(919\) −4.65224e7 −1.81708 −0.908539 0.417801i \(-0.862801\pi\)
−0.908539 + 0.417801i \(0.862801\pi\)
\(920\) 0 0
\(921\) −825008. −0.0320486
\(922\) 0 0
\(923\) −1.34618e7 −0.520116
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −7.07304e6 −0.270338
\(928\) 0 0
\(929\) 1.51531e7 0.576053 0.288026 0.957623i \(-0.407001\pi\)
0.288026 + 0.957623i \(0.407001\pi\)
\(930\) 0 0
\(931\) 1.64701e7 0.622762
\(932\) 0 0
\(933\) 248687. 0.00935295
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.58125e7 1.70465 0.852325 0.523013i \(-0.175192\pi\)
0.852325 + 0.523013i \(0.175192\pi\)
\(938\) 0 0
\(939\) −102650. −0.00379921
\(940\) 0 0
\(941\) 1.22426e7 0.450712 0.225356 0.974276i \(-0.427645\pi\)
0.225356 + 0.974276i \(0.427645\pi\)
\(942\) 0 0
\(943\) −5.44453e7 −1.99380
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.18830e7 0.430577 0.215289 0.976550i \(-0.430931\pi\)
0.215289 + 0.976550i \(0.430931\pi\)
\(948\) 0 0
\(949\) 6.64133e7 2.39381
\(950\) 0 0
\(951\) −884618. −0.0317179
\(952\) 0 0
\(953\) 3.26639e7 1.16503 0.582513 0.812821i \(-0.302069\pi\)
0.582513 + 0.812821i \(0.302069\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −51661.9 −0.00182344
\(958\) 0 0
\(959\) −802971. −0.0281938
\(960\) 0 0
\(961\) −2.24876e7 −0.785479
\(962\) 0 0
\(963\) −2.35796e7 −0.819353
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.06332e7 0.709579 0.354790 0.934946i \(-0.384553\pi\)
0.354790 + 0.934946i \(0.384553\pi\)
\(968\) 0 0
\(969\) 1.03583e6 0.0354386
\(970\) 0 0
\(971\) 2.69684e7 0.917926 0.458963 0.888455i \(-0.348221\pi\)
0.458963 + 0.888455i \(0.348221\pi\)
\(972\) 0 0
\(973\) −8.21201e6 −0.278079
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.57039e7 1.19668 0.598342 0.801241i \(-0.295826\pi\)
0.598342 + 0.801241i \(0.295826\pi\)
\(978\) 0 0
\(979\) −3.88836e6 −0.129661
\(980\) 0 0
\(981\) 3.81628e7 1.26610
\(982\) 0 0
\(983\) 1.97214e7 0.650958 0.325479 0.945549i \(-0.394474\pi\)
0.325479 + 0.945549i \(0.394474\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 126368. 0.00412900
\(988\) 0 0
\(989\) −3.20363e7 −1.04148
\(990\) 0 0
\(991\) −1.93715e7 −0.626582 −0.313291 0.949657i \(-0.601432\pi\)
−0.313291 + 0.949657i \(0.601432\pi\)
\(992\) 0 0
\(993\) −1.17276e6 −0.0377429
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.92775e7 1.25143 0.625713 0.780053i \(-0.284808\pi\)
0.625713 + 0.780053i \(0.284808\pi\)
\(998\) 0 0
\(999\) −2.24541e6 −0.0711838
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.6.a.i.1.5 8
5.2 odd 4 1100.6.b.h.749.8 16
5.3 odd 4 1100.6.b.h.749.9 16
5.4 even 2 1100.6.a.j.1.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.6.a.i.1.5 8 1.1 even 1 trivial
1100.6.a.j.1.4 yes 8 5.4 even 2
1100.6.b.h.749.8 16 5.2 odd 4
1100.6.b.h.749.9 16 5.3 odd 4