Properties

Label 1100.6.a.m.1.2
Level $1100$
Weight $6$
Character 1100.1
Self dual yes
Analytic conductor $176.422$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(176.422201794\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2272 x^{12} + 1983198 x^{10} - 827062096 x^{8} + 165415157329 x^{6} - 13843733383152 x^{4} + \cdots - 27\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{2}\cdot 5^{8} \)
Twist minimal: no (minimal twist has level 220)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-24.5916\) of defining polynomial
Character \(\chi\) \(=\) 1100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-24.5916 q^{3} -68.6167 q^{7} +361.745 q^{9} +121.000 q^{11} -322.943 q^{13} -1078.94 q^{17} -2901.39 q^{19} +1687.39 q^{21} +1136.77 q^{23} -2920.12 q^{27} +732.481 q^{29} +6971.80 q^{31} -2975.58 q^{33} -3293.91 q^{37} +7941.68 q^{39} +15016.5 q^{41} -15377.2 q^{43} +6002.58 q^{47} -12098.7 q^{49} +26532.8 q^{51} -35344.7 q^{53} +71349.6 q^{57} +20735.0 q^{59} -44901.6 q^{61} -24821.7 q^{63} -67912.8 q^{67} -27954.9 q^{69} +11219.8 q^{71} -51188.9 q^{73} -8302.62 q^{77} -49679.5 q^{79} -16093.8 q^{81} -1551.85 q^{83} -18012.8 q^{87} -103366. q^{89} +22159.3 q^{91} -171447. q^{93} +541.081 q^{97} +43771.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 1142 q^{9} + 1694 q^{11} + 4540 q^{19} + 3824 q^{21} + 9972 q^{29} + 19076 q^{31} + 13616 q^{39} + 15052 q^{41} + 55346 q^{49} - 13380 q^{51} + 2108 q^{59} + 11660 q^{61} - 1620 q^{69} - 89284 q^{71}+ \cdots + 138182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −24.5916 −1.57755 −0.788775 0.614683i \(-0.789284\pi\)
−0.788775 + 0.614683i \(0.789284\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −68.6167 −0.529279 −0.264640 0.964347i \(-0.585253\pi\)
−0.264640 + 0.964347i \(0.585253\pi\)
\(8\) 0 0
\(9\) 361.745 1.48866
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) 0 0
\(13\) −322.943 −0.529991 −0.264995 0.964250i \(-0.585370\pi\)
−0.264995 + 0.964250i \(0.585370\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1078.94 −0.905471 −0.452736 0.891645i \(-0.649552\pi\)
−0.452736 + 0.891645i \(0.649552\pi\)
\(18\) 0 0
\(19\) −2901.39 −1.84383 −0.921917 0.387387i \(-0.873378\pi\)
−0.921917 + 0.387387i \(0.873378\pi\)
\(20\) 0 0
\(21\) 1687.39 0.834964
\(22\) 0 0
\(23\) 1136.77 0.448076 0.224038 0.974580i \(-0.428076\pi\)
0.224038 + 0.974580i \(0.428076\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −2920.12 −0.770887
\(28\) 0 0
\(29\) 732.481 0.161734 0.0808670 0.996725i \(-0.474231\pi\)
0.0808670 + 0.996725i \(0.474231\pi\)
\(30\) 0 0
\(31\) 6971.80 1.30299 0.651495 0.758653i \(-0.274142\pi\)
0.651495 + 0.758653i \(0.274142\pi\)
\(32\) 0 0
\(33\) −2975.58 −0.475649
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3293.91 −0.395556 −0.197778 0.980247i \(-0.563373\pi\)
−0.197778 + 0.980247i \(0.563373\pi\)
\(38\) 0 0
\(39\) 7941.68 0.836086
\(40\) 0 0
\(41\) 15016.5 1.39511 0.697555 0.716531i \(-0.254271\pi\)
0.697555 + 0.716531i \(0.254271\pi\)
\(42\) 0 0
\(43\) −15377.2 −1.26825 −0.634127 0.773229i \(-0.718640\pi\)
−0.634127 + 0.773229i \(0.718640\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6002.58 0.396363 0.198182 0.980165i \(-0.436496\pi\)
0.198182 + 0.980165i \(0.436496\pi\)
\(48\) 0 0
\(49\) −12098.7 −0.719864
\(50\) 0 0
\(51\) 26532.8 1.42842
\(52\) 0 0
\(53\) −35344.7 −1.72836 −0.864180 0.503183i \(-0.832162\pi\)
−0.864180 + 0.503183i \(0.832162\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 71349.6 2.90874
\(58\) 0 0
\(59\) 20735.0 0.775486 0.387743 0.921768i \(-0.373255\pi\)
0.387743 + 0.921768i \(0.373255\pi\)
\(60\) 0 0
\(61\) −44901.6 −1.54503 −0.772516 0.634995i \(-0.781002\pi\)
−0.772516 + 0.634995i \(0.781002\pi\)
\(62\) 0 0
\(63\) −24821.7 −0.787917
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −67912.8 −1.84827 −0.924133 0.382071i \(-0.875211\pi\)
−0.924133 + 0.382071i \(0.875211\pi\)
\(68\) 0 0
\(69\) −27954.9 −0.706862
\(70\) 0 0
\(71\) 11219.8 0.264142 0.132071 0.991240i \(-0.457837\pi\)
0.132071 + 0.991240i \(0.457837\pi\)
\(72\) 0 0
\(73\) −51188.9 −1.12426 −0.562132 0.827047i \(-0.690019\pi\)
−0.562132 + 0.827047i \(0.690019\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8302.62 −0.159584
\(78\) 0 0
\(79\) −49679.5 −0.895591 −0.447795 0.894136i \(-0.647791\pi\)
−0.447795 + 0.894136i \(0.647791\pi\)
\(80\) 0 0
\(81\) −16093.8 −0.272549
\(82\) 0 0
\(83\) −1551.85 −0.0247260 −0.0123630 0.999924i \(-0.503935\pi\)
−0.0123630 + 0.999924i \(0.503935\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −18012.8 −0.255143
\(88\) 0 0
\(89\) −103366. −1.38325 −0.691627 0.722255i \(-0.743106\pi\)
−0.691627 + 0.722255i \(0.743106\pi\)
\(90\) 0 0
\(91\) 22159.3 0.280513
\(92\) 0 0
\(93\) −171447. −2.05553
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 541.081 0.00583893 0.00291946 0.999996i \(-0.499071\pi\)
0.00291946 + 0.999996i \(0.499071\pi\)
\(98\) 0 0
\(99\) 43771.1 0.448848
\(100\) 0 0
\(101\) 6404.26 0.0624691 0.0312346 0.999512i \(-0.490056\pi\)
0.0312346 + 0.999512i \(0.490056\pi\)
\(102\) 0 0
\(103\) 45740.8 0.424826 0.212413 0.977180i \(-0.431868\pi\)
0.212413 + 0.977180i \(0.431868\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −95191.4 −0.803782 −0.401891 0.915687i \(-0.631647\pi\)
−0.401891 + 0.915687i \(0.631647\pi\)
\(108\) 0 0
\(109\) −55413.3 −0.446733 −0.223366 0.974735i \(-0.571705\pi\)
−0.223366 + 0.974735i \(0.571705\pi\)
\(110\) 0 0
\(111\) 81002.5 0.624009
\(112\) 0 0
\(113\) −93724.8 −0.690492 −0.345246 0.938512i \(-0.612204\pi\)
−0.345246 + 0.938512i \(0.612204\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −116823. −0.788976
\(118\) 0 0
\(119\) 74033.2 0.479247
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) −369279. −2.20085
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 29470.4 0.162135 0.0810675 0.996709i \(-0.474167\pi\)
0.0810675 + 0.996709i \(0.474167\pi\)
\(128\) 0 0
\(129\) 378149. 2.00073
\(130\) 0 0
\(131\) −39243.8 −0.199799 −0.0998993 0.994998i \(-0.531852\pi\)
−0.0998993 + 0.994998i \(0.531852\pi\)
\(132\) 0 0
\(133\) 199084. 0.975903
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 337986. 1.53850 0.769249 0.638949i \(-0.220631\pi\)
0.769249 + 0.638949i \(0.220631\pi\)
\(138\) 0 0
\(139\) 18346.5 0.0805407 0.0402704 0.999189i \(-0.487178\pi\)
0.0402704 + 0.999189i \(0.487178\pi\)
\(140\) 0 0
\(141\) −147613. −0.625282
\(142\) 0 0
\(143\) −39076.2 −0.159798
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 297527. 1.13562
\(148\) 0 0
\(149\) 146424. 0.540314 0.270157 0.962816i \(-0.412924\pi\)
0.270157 + 0.962816i \(0.412924\pi\)
\(150\) 0 0
\(151\) 290139. 1.03553 0.517766 0.855522i \(-0.326764\pi\)
0.517766 + 0.855522i \(0.326764\pi\)
\(152\) 0 0
\(153\) −390300. −1.34794
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −597096. −1.93328 −0.966640 0.256138i \(-0.917550\pi\)
−0.966640 + 0.256138i \(0.917550\pi\)
\(158\) 0 0
\(159\) 869180. 2.72657
\(160\) 0 0
\(161\) −78001.2 −0.237157
\(162\) 0 0
\(163\) 112140. 0.330591 0.165296 0.986244i \(-0.447142\pi\)
0.165296 + 0.986244i \(0.447142\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −504282. −1.39921 −0.699604 0.714530i \(-0.746640\pi\)
−0.699604 + 0.714530i \(0.746640\pi\)
\(168\) 0 0
\(169\) −267001. −0.719110
\(170\) 0 0
\(171\) −1.04956e6 −2.74484
\(172\) 0 0
\(173\) 143639. 0.364886 0.182443 0.983216i \(-0.441600\pi\)
0.182443 + 0.983216i \(0.441600\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −509906. −1.22337
\(178\) 0 0
\(179\) 429976. 1.00302 0.501512 0.865151i \(-0.332777\pi\)
0.501512 + 0.865151i \(0.332777\pi\)
\(180\) 0 0
\(181\) 491559. 1.11527 0.557634 0.830087i \(-0.311709\pi\)
0.557634 + 0.830087i \(0.311709\pi\)
\(182\) 0 0
\(183\) 1.10420e6 2.43736
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −130552. −0.273010
\(188\) 0 0
\(189\) 200369. 0.408014
\(190\) 0 0
\(191\) 514282. 1.02004 0.510021 0.860162i \(-0.329638\pi\)
0.510021 + 0.860162i \(0.329638\pi\)
\(192\) 0 0
\(193\) −484037. −0.935374 −0.467687 0.883894i \(-0.654913\pi\)
−0.467687 + 0.883894i \(0.654913\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 44622.0 0.0819188 0.0409594 0.999161i \(-0.486959\pi\)
0.0409594 + 0.999161i \(0.486959\pi\)
\(198\) 0 0
\(199\) −550206. −0.984900 −0.492450 0.870341i \(-0.663899\pi\)
−0.492450 + 0.870341i \(0.663899\pi\)
\(200\) 0 0
\(201\) 1.67008e6 2.91573
\(202\) 0 0
\(203\) −50260.4 −0.0856024
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 411219. 0.667034
\(208\) 0 0
\(209\) −351068. −0.555937
\(210\) 0 0
\(211\) −1.17040e6 −1.80979 −0.904894 0.425636i \(-0.860050\pi\)
−0.904894 + 0.425636i \(0.860050\pi\)
\(212\) 0 0
\(213\) −275911. −0.416697
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −478382. −0.689645
\(218\) 0 0
\(219\) 1.25881e6 1.77358
\(220\) 0 0
\(221\) 348436. 0.479891
\(222\) 0 0
\(223\) 957130. 1.28887 0.644434 0.764660i \(-0.277093\pi\)
0.644434 + 0.764660i \(0.277093\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −411895. −0.530544 −0.265272 0.964174i \(-0.585462\pi\)
−0.265272 + 0.964174i \(0.585462\pi\)
\(228\) 0 0
\(229\) −304437. −0.383627 −0.191813 0.981431i \(-0.561437\pi\)
−0.191813 + 0.981431i \(0.561437\pi\)
\(230\) 0 0
\(231\) 204174. 0.251751
\(232\) 0 0
\(233\) −15539.4 −0.0187519 −0.00937593 0.999956i \(-0.502984\pi\)
−0.00937593 + 0.999956i \(0.502984\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.22170e6 1.41284
\(238\) 0 0
\(239\) 794336. 0.899517 0.449758 0.893150i \(-0.351510\pi\)
0.449758 + 0.893150i \(0.351510\pi\)
\(240\) 0 0
\(241\) −1.42354e6 −1.57880 −0.789400 0.613879i \(-0.789608\pi\)
−0.789400 + 0.613879i \(0.789608\pi\)
\(242\) 0 0
\(243\) 1.10536e6 1.20085
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 936984. 0.977215
\(248\) 0 0
\(249\) 38162.4 0.0390065
\(250\) 0 0
\(251\) 45704.8 0.0457908 0.0228954 0.999738i \(-0.492712\pi\)
0.0228954 + 0.999738i \(0.492712\pi\)
\(252\) 0 0
\(253\) 137549. 0.135100
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −258018. −0.243679 −0.121839 0.992550i \(-0.538879\pi\)
−0.121839 + 0.992550i \(0.538879\pi\)
\(258\) 0 0
\(259\) 226018. 0.209360
\(260\) 0 0
\(261\) 264971. 0.240767
\(262\) 0 0
\(263\) 523132. 0.466360 0.233180 0.972434i \(-0.425087\pi\)
0.233180 + 0.972434i \(0.425087\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.54193e6 2.18215
\(268\) 0 0
\(269\) 1.02600e6 0.864503 0.432251 0.901753i \(-0.357719\pi\)
0.432251 + 0.901753i \(0.357719\pi\)
\(270\) 0 0
\(271\) 1.55354e6 1.28499 0.642494 0.766291i \(-0.277900\pi\)
0.642494 + 0.766291i \(0.277900\pi\)
\(272\) 0 0
\(273\) −544932. −0.442523
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 742412. 0.581361 0.290680 0.956820i \(-0.406118\pi\)
0.290680 + 0.956820i \(0.406118\pi\)
\(278\) 0 0
\(279\) 2.52201e6 1.93971
\(280\) 0 0
\(281\) −1.47286e6 −1.11274 −0.556372 0.830933i \(-0.687807\pi\)
−0.556372 + 0.830933i \(0.687807\pi\)
\(282\) 0 0
\(283\) −1.26344e6 −0.937756 −0.468878 0.883263i \(-0.655342\pi\)
−0.468878 + 0.883263i \(0.655342\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.03038e6 −0.738403
\(288\) 0 0
\(289\) −255748. −0.180122
\(290\) 0 0
\(291\) −13306.0 −0.00921119
\(292\) 0 0
\(293\) 1.50653e6 1.02520 0.512600 0.858627i \(-0.328682\pi\)
0.512600 + 0.858627i \(0.328682\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −353334. −0.232431
\(298\) 0 0
\(299\) −367112. −0.237476
\(300\) 0 0
\(301\) 1.05513e6 0.671260
\(302\) 0 0
\(303\) −157491. −0.0985481
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.16775e6 1.31269 0.656346 0.754460i \(-0.272101\pi\)
0.656346 + 0.754460i \(0.272101\pi\)
\(308\) 0 0
\(309\) −1.12484e6 −0.670184
\(310\) 0 0
\(311\) 1.82214e6 1.06827 0.534135 0.845399i \(-0.320637\pi\)
0.534135 + 0.845399i \(0.320637\pi\)
\(312\) 0 0
\(313\) −475864. −0.274550 −0.137275 0.990533i \(-0.543834\pi\)
−0.137275 + 0.990533i \(0.543834\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 763607. 0.426797 0.213399 0.976965i \(-0.431547\pi\)
0.213399 + 0.976965i \(0.431547\pi\)
\(318\) 0 0
\(319\) 88630.2 0.0487646
\(320\) 0 0
\(321\) 2.34091e6 1.26801
\(322\) 0 0
\(323\) 3.13042e6 1.66954
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.36270e6 0.704743
\(328\) 0 0
\(329\) −411877. −0.209787
\(330\) 0 0
\(331\) 1.13499e6 0.569407 0.284703 0.958616i \(-0.408105\pi\)
0.284703 + 0.958616i \(0.408105\pi\)
\(332\) 0 0
\(333\) −1.19156e6 −0.588849
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.08011e6 −0.518078 −0.259039 0.965867i \(-0.583406\pi\)
−0.259039 + 0.965867i \(0.583406\pi\)
\(338\) 0 0
\(339\) 2.30484e6 1.08928
\(340\) 0 0
\(341\) 843588. 0.392866
\(342\) 0 0
\(343\) 1.98342e6 0.910288
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.31228e6 1.03090 0.515449 0.856920i \(-0.327625\pi\)
0.515449 + 0.856920i \(0.327625\pi\)
\(348\) 0 0
\(349\) 3.32947e6 1.46323 0.731614 0.681719i \(-0.238767\pi\)
0.731614 + 0.681719i \(0.238767\pi\)
\(350\) 0 0
\(351\) 943032. 0.408563
\(352\) 0 0
\(353\) 3.35633e6 1.43360 0.716801 0.697278i \(-0.245606\pi\)
0.716801 + 0.697278i \(0.245606\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.82059e6 −0.756035
\(358\) 0 0
\(359\) 600243. 0.245805 0.122903 0.992419i \(-0.460780\pi\)
0.122903 + 0.992419i \(0.460780\pi\)
\(360\) 0 0
\(361\) 5.94195e6 2.39972
\(362\) 0 0
\(363\) −360045. −0.143414
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.60152e6 −1.00824 −0.504118 0.863635i \(-0.668182\pi\)
−0.504118 + 0.863635i \(0.668182\pi\)
\(368\) 0 0
\(369\) 5.43213e6 2.07685
\(370\) 0 0
\(371\) 2.42523e6 0.914784
\(372\) 0 0
\(373\) −4.00605e6 −1.49089 −0.745443 0.666570i \(-0.767762\pi\)
−0.745443 + 0.666570i \(0.767762\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −236550. −0.0857175
\(378\) 0 0
\(379\) 1.27812e6 0.457059 0.228529 0.973537i \(-0.426608\pi\)
0.228529 + 0.973537i \(0.426608\pi\)
\(380\) 0 0
\(381\) −724723. −0.255776
\(382\) 0 0
\(383\) 1.93797e6 0.675073 0.337536 0.941312i \(-0.390406\pi\)
0.337536 + 0.941312i \(0.390406\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.56262e6 −1.88800
\(388\) 0 0
\(389\) −1.01122e6 −0.338823 −0.169412 0.985545i \(-0.554187\pi\)
−0.169412 + 0.985545i \(0.554187\pi\)
\(390\) 0 0
\(391\) −1.22650e6 −0.405720
\(392\) 0 0
\(393\) 965065. 0.315192
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.31935e6 0.738566 0.369283 0.929317i \(-0.379603\pi\)
0.369283 + 0.929317i \(0.379603\pi\)
\(398\) 0 0
\(399\) −4.89578e6 −1.53953
\(400\) 0 0
\(401\) 159220. 0.0494467 0.0247233 0.999694i \(-0.492130\pi\)
0.0247233 + 0.999694i \(0.492130\pi\)
\(402\) 0 0
\(403\) −2.25150e6 −0.690572
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −398564. −0.119265
\(408\) 0 0
\(409\) 5.97006e6 1.76470 0.882348 0.470597i \(-0.155961\pi\)
0.882348 + 0.470597i \(0.155961\pi\)
\(410\) 0 0
\(411\) −8.31159e6 −2.42706
\(412\) 0 0
\(413\) −1.42277e6 −0.410448
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −451168. −0.127057
\(418\) 0 0
\(419\) 5.36018e6 1.49157 0.745786 0.666186i \(-0.232074\pi\)
0.745786 + 0.666186i \(0.232074\pi\)
\(420\) 0 0
\(421\) −4.23113e6 −1.16346 −0.581729 0.813383i \(-0.697624\pi\)
−0.581729 + 0.813383i \(0.697624\pi\)
\(422\) 0 0
\(423\) 2.17140e6 0.590050
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.08100e6 0.817753
\(428\) 0 0
\(429\) 960944. 0.252089
\(430\) 0 0
\(431\) −7.37436e6 −1.91219 −0.956096 0.293055i \(-0.905328\pi\)
−0.956096 + 0.293055i \(0.905328\pi\)
\(432\) 0 0
\(433\) −4.04144e6 −1.03590 −0.517948 0.855412i \(-0.673304\pi\)
−0.517948 + 0.855412i \(0.673304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.29820e6 −0.826178
\(438\) 0 0
\(439\) −3.79231e6 −0.939165 −0.469583 0.882889i \(-0.655596\pi\)
−0.469583 + 0.882889i \(0.655596\pi\)
\(440\) 0 0
\(441\) −4.37666e6 −1.07163
\(442\) 0 0
\(443\) −5.95941e6 −1.44276 −0.721380 0.692540i \(-0.756492\pi\)
−0.721380 + 0.692540i \(0.756492\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −3.60079e6 −0.852372
\(448\) 0 0
\(449\) 5.90973e6 1.38341 0.691706 0.722179i \(-0.256859\pi\)
0.691706 + 0.722179i \(0.256859\pi\)
\(450\) 0 0
\(451\) 1.81699e6 0.420641
\(452\) 0 0
\(453\) −7.13497e6 −1.63360
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.15000e6 −0.705537 −0.352769 0.935711i \(-0.614760\pi\)
−0.352769 + 0.935711i \(0.614760\pi\)
\(458\) 0 0
\(459\) 3.15063e6 0.698016
\(460\) 0 0
\(461\) −8.43560e6 −1.84869 −0.924344 0.381561i \(-0.875387\pi\)
−0.924344 + 0.381561i \(0.875387\pi\)
\(462\) 0 0
\(463\) −4.81421e6 −1.04369 −0.521846 0.853040i \(-0.674756\pi\)
−0.521846 + 0.853040i \(0.674756\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.34298e6 0.284956 0.142478 0.989798i \(-0.454493\pi\)
0.142478 + 0.989798i \(0.454493\pi\)
\(468\) 0 0
\(469\) 4.65995e6 0.978248
\(470\) 0 0
\(471\) 1.46835e7 3.04984
\(472\) 0 0
\(473\) −1.86064e6 −0.382393
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.27857e7 −2.57294
\(478\) 0 0
\(479\) −2.57179e6 −0.512149 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(480\) 0 0
\(481\) 1.06375e6 0.209641
\(482\) 0 0
\(483\) 1.91817e6 0.374127
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5.80826e6 1.10975 0.554874 0.831935i \(-0.312767\pi\)
0.554874 + 0.831935i \(0.312767\pi\)
\(488\) 0 0
\(489\) −2.75770e6 −0.521524
\(490\) 0 0
\(491\) −7.13394e6 −1.33544 −0.667722 0.744411i \(-0.732730\pi\)
−0.667722 + 0.744411i \(0.732730\pi\)
\(492\) 0 0
\(493\) −790302. −0.146445
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −769863. −0.139805
\(498\) 0 0
\(499\) 5.11035e6 0.918755 0.459377 0.888241i \(-0.348073\pi\)
0.459377 + 0.888241i \(0.348073\pi\)
\(500\) 0 0
\(501\) 1.24011e7 2.20732
\(502\) 0 0
\(503\) 9.08121e6 1.60038 0.800191 0.599745i \(-0.204732\pi\)
0.800191 + 0.599745i \(0.204732\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.56596e6 1.13443
\(508\) 0 0
\(509\) 8.26612e6 1.41419 0.707094 0.707119i \(-0.250006\pi\)
0.707094 + 0.707119i \(0.250006\pi\)
\(510\) 0 0
\(511\) 3.51241e6 0.595050
\(512\) 0 0
\(513\) 8.47239e6 1.42139
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 726312. 0.119508
\(518\) 0 0
\(519\) −3.53230e6 −0.575625
\(520\) 0 0
\(521\) 2.07813e6 0.335412 0.167706 0.985837i \(-0.446364\pi\)
0.167706 + 0.985837i \(0.446364\pi\)
\(522\) 0 0
\(523\) 1.94810e6 0.311427 0.155714 0.987802i \(-0.450232\pi\)
0.155714 + 0.987802i \(0.450232\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.52215e6 −1.17982
\(528\) 0 0
\(529\) −5.14410e6 −0.799228
\(530\) 0 0
\(531\) 7.50077e6 1.15444
\(532\) 0 0
\(533\) −4.84947e6 −0.739395
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.05738e7 −1.58232
\(538\) 0 0
\(539\) −1.46395e6 −0.217047
\(540\) 0 0
\(541\) −8.56903e6 −1.25875 −0.629374 0.777103i \(-0.716688\pi\)
−0.629374 + 0.777103i \(0.716688\pi\)
\(542\) 0 0
\(543\) −1.20882e7 −1.75939
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 5.59536e6 0.799577 0.399788 0.916607i \(-0.369084\pi\)
0.399788 + 0.916607i \(0.369084\pi\)
\(548\) 0 0
\(549\) −1.62429e7 −2.30003
\(550\) 0 0
\(551\) −2.12521e6 −0.298211
\(552\) 0 0
\(553\) 3.40884e6 0.474017
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 774159. 0.105728 0.0528642 0.998602i \(-0.483165\pi\)
0.0528642 + 0.998602i \(0.483165\pi\)
\(558\) 0 0
\(559\) 4.96597e6 0.672163
\(560\) 0 0
\(561\) 3.21047e6 0.430686
\(562\) 0 0
\(563\) 7.62044e6 1.01323 0.506616 0.862172i \(-0.330896\pi\)
0.506616 + 0.862172i \(0.330896\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.10430e6 0.144255
\(568\) 0 0
\(569\) 592534. 0.0767243 0.0383622 0.999264i \(-0.487786\pi\)
0.0383622 + 0.999264i \(0.487786\pi\)
\(570\) 0 0
\(571\) 1.30108e7 1.66999 0.834995 0.550257i \(-0.185470\pi\)
0.834995 + 0.550257i \(0.185470\pi\)
\(572\) 0 0
\(573\) −1.26470e7 −1.60917
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −6.70946e6 −0.838973 −0.419486 0.907762i \(-0.637790\pi\)
−0.419486 + 0.907762i \(0.637790\pi\)
\(578\) 0 0
\(579\) 1.19032e7 1.47560
\(580\) 0 0
\(581\) 106483. 0.0130870
\(582\) 0 0
\(583\) −4.27670e6 −0.521120
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.19616e7 1.43283 0.716415 0.697674i \(-0.245782\pi\)
0.716415 + 0.697674i \(0.245782\pi\)
\(588\) 0 0
\(589\) −2.02279e7 −2.40250
\(590\) 0 0
\(591\) −1.09732e6 −0.129231
\(592\) 0 0
\(593\) −1.36302e7 −1.59172 −0.795860 0.605481i \(-0.792981\pi\)
−0.795860 + 0.605481i \(0.792981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.35304e7 1.55373
\(598\) 0 0
\(599\) 3.87186e6 0.440913 0.220456 0.975397i \(-0.429245\pi\)
0.220456 + 0.975397i \(0.429245\pi\)
\(600\) 0 0
\(601\) −2.64964e6 −0.299227 −0.149613 0.988745i \(-0.547803\pi\)
−0.149613 + 0.988745i \(0.547803\pi\)
\(602\) 0 0
\(603\) −2.45671e7 −2.75144
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.36476e7 1.50343 0.751717 0.659486i \(-0.229226\pi\)
0.751717 + 0.659486i \(0.229226\pi\)
\(608\) 0 0
\(609\) 1.23598e6 0.135042
\(610\) 0 0
\(611\) −1.93849e6 −0.210069
\(612\) 0 0
\(613\) 1.60364e7 1.72367 0.861837 0.507185i \(-0.169314\pi\)
0.861837 + 0.507185i \(0.169314\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.42285e6 0.784979 0.392489 0.919757i \(-0.371614\pi\)
0.392489 + 0.919757i \(0.371614\pi\)
\(618\) 0 0
\(619\) −1.37805e7 −1.44557 −0.722784 0.691074i \(-0.757138\pi\)
−0.722784 + 0.691074i \(0.757138\pi\)
\(620\) 0 0
\(621\) −3.31949e6 −0.345416
\(622\) 0 0
\(623\) 7.09262e6 0.732128
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 8.63331e6 0.877018
\(628\) 0 0
\(629\) 3.55393e6 0.358165
\(630\) 0 0
\(631\) 2.22868e6 0.222830 0.111415 0.993774i \(-0.464462\pi\)
0.111415 + 0.993774i \(0.464462\pi\)
\(632\) 0 0
\(633\) 2.87819e7 2.85503
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.90721e6 0.381521
\(638\) 0 0
\(639\) 4.05869e6 0.393218
\(640\) 0 0
\(641\) 1.75304e6 0.168519 0.0842593 0.996444i \(-0.473148\pi\)
0.0842593 + 0.996444i \(0.473148\pi\)
\(642\) 0 0
\(643\) −1.68507e7 −1.60727 −0.803636 0.595121i \(-0.797104\pi\)
−0.803636 + 0.595121i \(0.797104\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.86231e6 0.174901 0.0874505 0.996169i \(-0.472128\pi\)
0.0874505 + 0.996169i \(0.472128\pi\)
\(648\) 0 0
\(649\) 2.50893e6 0.233818
\(650\) 0 0
\(651\) 1.17642e7 1.08795
\(652\) 0 0
\(653\) 1.64223e7 1.50713 0.753563 0.657375i \(-0.228333\pi\)
0.753563 + 0.657375i \(0.228333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.85173e7 −1.67365
\(658\) 0 0
\(659\) −6.16058e6 −0.552596 −0.276298 0.961072i \(-0.589108\pi\)
−0.276298 + 0.961072i \(0.589108\pi\)
\(660\) 0 0
\(661\) −2.06032e7 −1.83413 −0.917065 0.398737i \(-0.869449\pi\)
−0.917065 + 0.398737i \(0.869449\pi\)
\(662\) 0 0
\(663\) −8.56859e6 −0.757052
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 832660. 0.0724692
\(668\) 0 0
\(669\) −2.35373e7 −2.03325
\(670\) 0 0
\(671\) −5.43310e6 −0.465845
\(672\) 0 0
\(673\) −1.14267e7 −0.972488 −0.486244 0.873823i \(-0.661633\pi\)
−0.486244 + 0.873823i \(0.661633\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 679572. 0.0569854 0.0284927 0.999594i \(-0.490929\pi\)
0.0284927 + 0.999594i \(0.490929\pi\)
\(678\) 0 0
\(679\) −37127.2 −0.00309042
\(680\) 0 0
\(681\) 1.01291e7 0.836959
\(682\) 0 0
\(683\) 6.88710e6 0.564917 0.282458 0.959280i \(-0.408850\pi\)
0.282458 + 0.959280i \(0.408850\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7.48659e6 0.605190
\(688\) 0 0
\(689\) 1.14143e7 0.916014
\(690\) 0 0
\(691\) 4.64486e6 0.370065 0.185032 0.982732i \(-0.440761\pi\)
0.185032 + 0.982732i \(0.440761\pi\)
\(692\) 0 0
\(693\) −3.00343e6 −0.237566
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.62019e7 −1.26323
\(698\) 0 0
\(699\) 382138. 0.0295820
\(700\) 0 0
\(701\) −3.04696e6 −0.234192 −0.117096 0.993121i \(-0.537358\pi\)
−0.117096 + 0.993121i \(0.537358\pi\)
\(702\) 0 0
\(703\) 9.55692e6 0.729340
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −439439. −0.0330636
\(708\) 0 0
\(709\) −1.50817e7 −1.12677 −0.563385 0.826194i \(-0.690501\pi\)
−0.563385 + 0.826194i \(0.690501\pi\)
\(710\) 0 0
\(711\) −1.79713e7 −1.33323
\(712\) 0 0
\(713\) 7.92532e6 0.583839
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.95339e7 −1.41903
\(718\) 0 0
\(719\) 1.20848e7 0.871803 0.435901 0.899994i \(-0.356430\pi\)
0.435901 + 0.899994i \(0.356430\pi\)
\(720\) 0 0
\(721\) −3.13858e6 −0.224851
\(722\) 0 0
\(723\) 3.50071e7 2.49063
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.52669e7 1.77303 0.886516 0.462697i \(-0.153118\pi\)
0.886516 + 0.462697i \(0.153118\pi\)
\(728\) 0 0
\(729\) −2.32717e7 −1.62185
\(730\) 0 0
\(731\) 1.65911e7 1.14837
\(732\) 0 0
\(733\) 3.21976e6 0.221342 0.110671 0.993857i \(-0.464700\pi\)
0.110671 + 0.993857i \(0.464700\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.21744e6 −0.557273
\(738\) 0 0
\(739\) −1.83282e7 −1.23455 −0.617274 0.786748i \(-0.711763\pi\)
−0.617274 + 0.786748i \(0.711763\pi\)
\(740\) 0 0
\(741\) −2.30419e7 −1.54160
\(742\) 0 0
\(743\) 2.56985e7 1.70779 0.853896 0.520444i \(-0.174233\pi\)
0.853896 + 0.520444i \(0.174233\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −561373. −0.0368086
\(748\) 0 0
\(749\) 6.53172e6 0.425425
\(750\) 0 0
\(751\) 1.44321e7 0.933748 0.466874 0.884324i \(-0.345380\pi\)
0.466874 + 0.884324i \(0.345380\pi\)
\(752\) 0 0
\(753\) −1.12395e6 −0.0722372
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.39198e7 1.51712 0.758558 0.651606i \(-0.225904\pi\)
0.758558 + 0.651606i \(0.225904\pi\)
\(758\) 0 0
\(759\) −3.38254e6 −0.213127
\(760\) 0 0
\(761\) −2.78047e7 −1.74043 −0.870215 0.492672i \(-0.836020\pi\)
−0.870215 + 0.492672i \(0.836020\pi\)
\(762\) 0 0
\(763\) 3.80228e6 0.236446
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.69623e6 −0.411000
\(768\) 0 0
\(769\) 1.25298e7 0.764063 0.382031 0.924149i \(-0.375225\pi\)
0.382031 + 0.924149i \(0.375225\pi\)
\(770\) 0 0
\(771\) 6.34507e6 0.384415
\(772\) 0 0
\(773\) 2.17300e7 1.30801 0.654006 0.756490i \(-0.273087\pi\)
0.654006 + 0.756490i \(0.273087\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −5.55812e6 −0.330275
\(778\) 0 0
\(779\) −4.35686e7 −2.57235
\(780\) 0 0
\(781\) 1.35759e6 0.0796419
\(782\) 0 0
\(783\) −2.13893e6 −0.124679
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −7.47679e6 −0.430307 −0.215153 0.976580i \(-0.569025\pi\)
−0.215153 + 0.976580i \(0.569025\pi\)
\(788\) 0 0
\(789\) −1.28646e7 −0.735706
\(790\) 0 0
\(791\) 6.43109e6 0.365463
\(792\) 0 0
\(793\) 1.45007e7 0.818852
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.58463e6 −0.478714 −0.239357 0.970932i \(-0.576937\pi\)
−0.239357 + 0.970932i \(0.576937\pi\)
\(798\) 0 0
\(799\) −6.47642e6 −0.358895
\(800\) 0 0
\(801\) −3.73920e7 −2.05920
\(802\) 0 0
\(803\) −6.19386e6 −0.338979
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.52309e7 −1.36380
\(808\) 0 0
\(809\) 2.00739e7 1.07835 0.539176 0.842193i \(-0.318736\pi\)
0.539176 + 0.842193i \(0.318736\pi\)
\(810\) 0 0
\(811\) 345528. 0.0184472 0.00922362 0.999957i \(-0.497064\pi\)
0.00922362 + 0.999957i \(0.497064\pi\)
\(812\) 0 0
\(813\) −3.82039e7 −2.02713
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.46152e7 2.33845
\(818\) 0 0
\(819\) 8.01601e6 0.417589
\(820\) 0 0
\(821\) −3.55582e7 −1.84112 −0.920560 0.390601i \(-0.872267\pi\)
−0.920560 + 0.390601i \(0.872267\pi\)
\(822\) 0 0
\(823\) 2.18881e7 1.12644 0.563220 0.826307i \(-0.309562\pi\)
0.563220 + 0.826307i \(0.309562\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.08664e7 −1.56936 −0.784680 0.619901i \(-0.787173\pi\)
−0.784680 + 0.619901i \(0.787173\pi\)
\(828\) 0 0
\(829\) −1.02344e7 −0.517219 −0.258610 0.965982i \(-0.583264\pi\)
−0.258610 + 0.965982i \(0.583264\pi\)
\(830\) 0 0
\(831\) −1.82571e7 −0.917125
\(832\) 0 0
\(833\) 1.30538e7 0.651816
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.03585e7 −1.00446
\(838\) 0 0
\(839\) −1.42644e7 −0.699596 −0.349798 0.936825i \(-0.613750\pi\)
−0.349798 + 0.936825i \(0.613750\pi\)
\(840\) 0 0
\(841\) −1.99746e7 −0.973842
\(842\) 0 0
\(843\) 3.62199e7 1.75541
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.00462e6 −0.0481163
\(848\) 0 0
\(849\) 3.10700e7 1.47936
\(850\) 0 0
\(851\) −3.74441e6 −0.177239
\(852\) 0 0
\(853\) −6.85288e6 −0.322478 −0.161239 0.986915i \(-0.551549\pi\)
−0.161239 + 0.986915i \(0.551549\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.51342e7 1.63410 0.817050 0.576567i \(-0.195608\pi\)
0.817050 + 0.576567i \(0.195608\pi\)
\(858\) 0 0
\(859\) 8.48281e6 0.392244 0.196122 0.980579i \(-0.437165\pi\)
0.196122 + 0.980579i \(0.437165\pi\)
\(860\) 0 0
\(861\) 2.53387e7 1.16487
\(862\) 0 0
\(863\) −3.84664e7 −1.75815 −0.879073 0.476687i \(-0.841838\pi\)
−0.879073 + 0.476687i \(0.841838\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6.28924e6 0.284152
\(868\) 0 0
\(869\) −6.01122e6 −0.270031
\(870\) 0 0
\(871\) 2.19320e7 0.979563
\(872\) 0 0
\(873\) 195733. 0.00869218
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.87813e7 0.824567 0.412283 0.911056i \(-0.364731\pi\)
0.412283 + 0.911056i \(0.364731\pi\)
\(878\) 0 0
\(879\) −3.70479e7 −1.61730
\(880\) 0 0
\(881\) 4.01661e7 1.74349 0.871745 0.489960i \(-0.162989\pi\)
0.871745 + 0.489960i \(0.162989\pi\)
\(882\) 0 0
\(883\) 5.55332e6 0.239690 0.119845 0.992793i \(-0.461760\pi\)
0.119845 + 0.992793i \(0.461760\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.28130e7 −0.973584 −0.486792 0.873518i \(-0.661833\pi\)
−0.486792 + 0.873518i \(0.661833\pi\)
\(888\) 0 0
\(889\) −2.02216e6 −0.0858147
\(890\) 0 0
\(891\) −1.94735e6 −0.0821767
\(892\) 0 0
\(893\) −1.74158e7 −0.730828
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 9.02785e6 0.374630
\(898\) 0 0
\(899\) 5.10671e6 0.210738
\(900\) 0 0
\(901\) 3.81347e7 1.56498
\(902\) 0 0
\(903\) −2.59474e7 −1.05895
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −3.90037e7 −1.57430 −0.787150 0.616761i \(-0.788444\pi\)
−0.787150 + 0.616761i \(0.788444\pi\)
\(908\) 0 0
\(909\) 2.31671e6 0.0929953
\(910\) 0 0
\(911\) −3.68587e7 −1.47145 −0.735723 0.677283i \(-0.763157\pi\)
−0.735723 + 0.677283i \(0.763157\pi\)
\(912\) 0 0
\(913\) −187774. −0.00745517
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.69278e6 0.105749
\(918\) 0 0
\(919\) 1.03588e7 0.404597 0.202299 0.979324i \(-0.435159\pi\)
0.202299 + 0.979324i \(0.435159\pi\)
\(920\) 0 0
\(921\) −5.33083e7 −2.07084
\(922\) 0 0
\(923\) −3.62335e6 −0.139993
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.65465e7 0.632422
\(928\) 0 0
\(929\) 9.13177e6 0.347149 0.173574 0.984821i \(-0.444468\pi\)
0.173574 + 0.984821i \(0.444468\pi\)
\(930\) 0 0
\(931\) 3.51032e7 1.32731
\(932\) 0 0
\(933\) −4.48093e7 −1.68525
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 219135. 0.00815384 0.00407692 0.999992i \(-0.498702\pi\)
0.00407692 + 0.999992i \(0.498702\pi\)
\(938\) 0 0
\(939\) 1.17022e7 0.433116
\(940\) 0 0
\(941\) 1.48284e7 0.545907 0.272954 0.962027i \(-0.411999\pi\)
0.272954 + 0.962027i \(0.411999\pi\)
\(942\) 0 0
\(943\) 1.70702e7 0.625116
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.18145e7 −1.87748 −0.938742 0.344621i \(-0.888007\pi\)
−0.938742 + 0.344621i \(0.888007\pi\)
\(948\) 0 0
\(949\) 1.65311e7 0.595850
\(950\) 0 0
\(951\) −1.87783e7 −0.673294
\(952\) 0 0
\(953\) 3.57043e7 1.27347 0.636735 0.771083i \(-0.280285\pi\)
0.636735 + 0.771083i \(0.280285\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −2.17955e6 −0.0769286
\(958\) 0 0
\(959\) −2.31915e7 −0.814295
\(960\) 0 0
\(961\) 1.99769e7 0.697781
\(962\) 0 0
\(963\) −3.44350e7 −1.19656
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 9.61627e6 0.330705 0.165352 0.986235i \(-0.447124\pi\)
0.165352 + 0.986235i \(0.447124\pi\)
\(968\) 0 0
\(969\) −7.69819e7 −2.63378
\(970\) 0 0
\(971\) 2.39248e7 0.814330 0.407165 0.913355i \(-0.366517\pi\)
0.407165 + 0.913355i \(0.366517\pi\)
\(972\) 0 0
\(973\) −1.25887e6 −0.0426285
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.46267e6 0.116058 0.0580290 0.998315i \(-0.481518\pi\)
0.0580290 + 0.998315i \(0.481518\pi\)
\(978\) 0 0
\(979\) −1.25073e7 −0.417067
\(980\) 0 0
\(981\) −2.00455e7 −0.665033
\(982\) 0 0
\(983\) −3.74695e7 −1.23678 −0.618392 0.785870i \(-0.712216\pi\)
−0.618392 + 0.785870i \(0.712216\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.01287e7 0.330949
\(988\) 0 0
\(989\) −1.74803e7 −0.568275
\(990\) 0 0
\(991\) 2.73653e7 0.885150 0.442575 0.896732i \(-0.354065\pi\)
0.442575 + 0.896732i \(0.354065\pi\)
\(992\) 0 0
\(993\) −2.79112e7 −0.898267
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.37185e7 0.437087 0.218543 0.975827i \(-0.429869\pi\)
0.218543 + 0.975827i \(0.429869\pi\)
\(998\) 0 0
\(999\) 9.61861e6 0.304929
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.6.a.m.1.2 14
5.2 odd 4 220.6.b.b.89.13 yes 14
5.3 odd 4 220.6.b.b.89.2 14
5.4 even 2 inner 1100.6.a.m.1.13 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.6.b.b.89.2 14 5.3 odd 4
220.6.b.b.89.13 yes 14 5.2 odd 4
1100.6.a.m.1.2 14 1.1 even 1 trivial
1100.6.a.m.1.13 14 5.4 even 2 inner