Properties

Label 220.6.b.b.89.2
Level $220$
Weight $6$
Character 220.89
Analytic conductor $35.284$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,6,Mod(89,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.89");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 220.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.2844403589\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 2272 x^{12} + 1983198 x^{10} + 827062096 x^{8} + 165415157329 x^{6} + 13843733383152 x^{4} + \cdots + 27\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{2}\cdot 5^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.2
Root \(-24.5916i\) of defining polynomial
Character \(\chi\) \(=\) 220.89
Dual form 220.6.b.b.89.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-24.5916i q^{3} +(39.2421 + 39.8128i) q^{5} +68.6167i q^{7} -361.745 q^{9} +121.000 q^{11} -322.943i q^{13} +(979.058 - 965.025i) q^{15} +1078.94i q^{17} +2901.39 q^{19} +1687.39 q^{21} +1136.77i q^{23} +(-45.1117 + 3124.67i) q^{25} +2920.12i q^{27} -732.481 q^{29} +6971.80 q^{31} -2975.58i q^{33} +(-2731.82 + 2692.66i) q^{35} +3293.91i q^{37} -7941.68 q^{39} +15016.5 q^{41} -15377.2i q^{43} +(-14195.6 - 14402.1i) q^{45} -6002.58i q^{47} +12098.7 q^{49} +26532.8 q^{51} -35344.7i q^{53} +(4748.30 + 4817.34i) q^{55} -71349.6i q^{57} -20735.0 q^{59} -44901.6 q^{61} -24821.7i q^{63} +(12857.3 - 12673.0i) q^{65} +67912.8i q^{67} +27954.9 q^{69} +11219.8 q^{71} -51188.9i q^{73} +(76840.6 + 1109.37i) q^{75} +8302.62i q^{77} +49679.5 q^{79} -16093.8 q^{81} -1551.85i q^{83} +(-42955.5 + 42339.9i) q^{85} +18012.8i q^{87} +103366. q^{89} +22159.3 q^{91} -171447. i q^{93} +(113857. + 115512. i) q^{95} -541.081i q^{97} -43771.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 44 q^{5} - 1142 q^{9} + 1694 q^{11} + 326 q^{15} - 4540 q^{19} + 3824 q^{21} - 3816 q^{25} - 9972 q^{29} + 19076 q^{31} + 5136 q^{35} - 13616 q^{39} + 15052 q^{41} - 8374 q^{45} - 55346 q^{49} - 13380 q^{51}+ \cdots - 138182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 24.5916i 1.57755i −0.614683 0.788775i \(-0.710716\pi\)
0.614683 0.788775i \(-0.289284\pi\)
\(4\) 0 0
\(5\) 39.2421 + 39.8128i 0.701984 + 0.712192i
\(6\) 0 0
\(7\) 68.6167i 0.529279i 0.964347 + 0.264640i \(0.0852530\pi\)
−0.964347 + 0.264640i \(0.914747\pi\)
\(8\) 0 0
\(9\) −361.745 −1.48866
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) 0 0
\(13\) 322.943i 0.529991i −0.964250 0.264995i \(-0.914630\pi\)
0.964250 0.264995i \(-0.0853704\pi\)
\(14\) 0 0
\(15\) 979.058 965.025i 1.12352 1.10741i
\(16\) 0 0
\(17\) 1078.94i 0.905471i 0.891645 + 0.452736i \(0.149552\pi\)
−0.891645 + 0.452736i \(0.850448\pi\)
\(18\) 0 0
\(19\) 2901.39 1.84383 0.921917 0.387387i \(-0.126622\pi\)
0.921917 + 0.387387i \(0.126622\pi\)
\(20\) 0 0
\(21\) 1687.39 0.834964
\(22\) 0 0
\(23\) 1136.77i 0.448076i 0.974580 + 0.224038i \(0.0719240\pi\)
−0.974580 + 0.224038i \(0.928076\pi\)
\(24\) 0 0
\(25\) −45.1117 + 3124.67i −0.0144357 + 0.999896i
\(26\) 0 0
\(27\) 2920.12i 0.770887i
\(28\) 0 0
\(29\) −732.481 −0.161734 −0.0808670 0.996725i \(-0.525769\pi\)
−0.0808670 + 0.996725i \(0.525769\pi\)
\(30\) 0 0
\(31\) 6971.80 1.30299 0.651495 0.758653i \(-0.274142\pi\)
0.651495 + 0.758653i \(0.274142\pi\)
\(32\) 0 0
\(33\) 2975.58i 0.475649i
\(34\) 0 0
\(35\) −2731.82 + 2692.66i −0.376948 + 0.371546i
\(36\) 0 0
\(37\) 3293.91i 0.395556i 0.980247 + 0.197778i \(0.0633725\pi\)
−0.980247 + 0.197778i \(0.936627\pi\)
\(38\) 0 0
\(39\) −7941.68 −0.836086
\(40\) 0 0
\(41\) 15016.5 1.39511 0.697555 0.716531i \(-0.254271\pi\)
0.697555 + 0.716531i \(0.254271\pi\)
\(42\) 0 0
\(43\) 15377.2i 1.26825i −0.773229 0.634127i \(-0.781360\pi\)
0.773229 0.634127i \(-0.218640\pi\)
\(44\) 0 0
\(45\) −14195.6 14402.1i −1.04502 1.06021i
\(46\) 0 0
\(47\) 6002.58i 0.396363i −0.980165 0.198182i \(-0.936496\pi\)
0.980165 0.198182i \(-0.0635036\pi\)
\(48\) 0 0
\(49\) 12098.7 0.719864
\(50\) 0 0
\(51\) 26532.8 1.42842
\(52\) 0 0
\(53\) 35344.7i 1.72836i −0.503183 0.864180i \(-0.667838\pi\)
0.503183 0.864180i \(-0.332162\pi\)
\(54\) 0 0
\(55\) 4748.30 + 4817.34i 0.211656 + 0.214734i
\(56\) 0 0
\(57\) 71349.6i 2.90874i
\(58\) 0 0
\(59\) −20735.0 −0.775486 −0.387743 0.921768i \(-0.626745\pi\)
−0.387743 + 0.921768i \(0.626745\pi\)
\(60\) 0 0
\(61\) −44901.6 −1.54503 −0.772516 0.634995i \(-0.781002\pi\)
−0.772516 + 0.634995i \(0.781002\pi\)
\(62\) 0 0
\(63\) 24821.7i 0.787917i
\(64\) 0 0
\(65\) 12857.3 12673.0i 0.377455 0.372045i
\(66\) 0 0
\(67\) 67912.8i 1.84827i 0.382071 + 0.924133i \(0.375211\pi\)
−0.382071 + 0.924133i \(0.624789\pi\)
\(68\) 0 0
\(69\) 27954.9 0.706862
\(70\) 0 0
\(71\) 11219.8 0.264142 0.132071 0.991240i \(-0.457837\pi\)
0.132071 + 0.991240i \(0.457837\pi\)
\(72\) 0 0
\(73\) 51188.9i 1.12426i −0.827047 0.562132i \(-0.809981\pi\)
0.827047 0.562132i \(-0.190019\pi\)
\(74\) 0 0
\(75\) 76840.6 + 1109.37i 1.57738 + 0.0227731i
\(76\) 0 0
\(77\) 8302.62i 0.159584i
\(78\) 0 0
\(79\) 49679.5 0.895591 0.447795 0.894136i \(-0.352209\pi\)
0.447795 + 0.894136i \(0.352209\pi\)
\(80\) 0 0
\(81\) −16093.8 −0.272549
\(82\) 0 0
\(83\) 1551.85i 0.0247260i −0.999924 0.0123630i \(-0.996065\pi\)
0.999924 0.0123630i \(-0.00393537\pi\)
\(84\) 0 0
\(85\) −42955.5 + 42339.9i −0.644870 + 0.635627i
\(86\) 0 0
\(87\) 18012.8i 0.255143i
\(88\) 0 0
\(89\) 103366. 1.38325 0.691627 0.722255i \(-0.256894\pi\)
0.691627 + 0.722255i \(0.256894\pi\)
\(90\) 0 0
\(91\) 22159.3 0.280513
\(92\) 0 0
\(93\) 171447.i 2.05553i
\(94\) 0 0
\(95\) 113857. + 115512.i 1.29434 + 1.31316i
\(96\) 0 0
\(97\) 541.081i 0.00583893i −0.999996 0.00291946i \(-0.999071\pi\)
0.999996 0.00291946i \(-0.000929295\pi\)
\(98\) 0 0
\(99\) −43771.1 −0.448848
\(100\) 0 0
\(101\) 6404.26 0.0624691 0.0312346 0.999512i \(-0.490056\pi\)
0.0312346 + 0.999512i \(0.490056\pi\)
\(102\) 0 0
\(103\) 45740.8i 0.424826i 0.977180 + 0.212413i \(0.0681322\pi\)
−0.977180 + 0.212413i \(0.931868\pi\)
\(104\) 0 0
\(105\) 66216.8 + 67179.7i 0.586132 + 0.594655i
\(106\) 0 0
\(107\) 95191.4i 0.803782i 0.915687 + 0.401891i \(0.131647\pi\)
−0.915687 + 0.401891i \(0.868353\pi\)
\(108\) 0 0
\(109\) 55413.3 0.446733 0.223366 0.974735i \(-0.428295\pi\)
0.223366 + 0.974735i \(0.428295\pi\)
\(110\) 0 0
\(111\) 81002.5 0.624009
\(112\) 0 0
\(113\) 93724.8i 0.690492i −0.938512 0.345246i \(-0.887796\pi\)
0.938512 0.345246i \(-0.112204\pi\)
\(114\) 0 0
\(115\) −45257.8 + 44609.2i −0.319117 + 0.314543i
\(116\) 0 0
\(117\) 116823.i 0.788976i
\(118\) 0 0
\(119\) −74033.2 −0.479247
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) 369279.i 2.20085i
\(124\) 0 0
\(125\) −126172. + 120823.i −0.722252 + 0.691630i
\(126\) 0 0
\(127\) 29470.4i 0.162135i −0.996709 0.0810675i \(-0.974167\pi\)
0.996709 0.0810675i \(-0.0258329\pi\)
\(128\) 0 0
\(129\) −378149. −2.00073
\(130\) 0 0
\(131\) −39243.8 −0.199799 −0.0998993 0.994998i \(-0.531852\pi\)
−0.0998993 + 0.994998i \(0.531852\pi\)
\(132\) 0 0
\(133\) 199084.i 0.975903i
\(134\) 0 0
\(135\) −116258. + 114592.i −0.549020 + 0.541150i
\(136\) 0 0
\(137\) 337986.i 1.53850i −0.638949 0.769249i \(-0.720631\pi\)
0.638949 0.769249i \(-0.279369\pi\)
\(138\) 0 0
\(139\) −18346.5 −0.0805407 −0.0402704 0.999189i \(-0.512822\pi\)
−0.0402704 + 0.999189i \(0.512822\pi\)
\(140\) 0 0
\(141\) −147613. −0.625282
\(142\) 0 0
\(143\) 39076.2i 0.159798i
\(144\) 0 0
\(145\) −28744.1 29162.1i −0.113535 0.115186i
\(146\) 0 0
\(147\) 297527.i 1.13562i
\(148\) 0 0
\(149\) −146424. −0.540314 −0.270157 0.962816i \(-0.587076\pi\)
−0.270157 + 0.962816i \(0.587076\pi\)
\(150\) 0 0
\(151\) 290139. 1.03553 0.517766 0.855522i \(-0.326764\pi\)
0.517766 + 0.855522i \(0.326764\pi\)
\(152\) 0 0
\(153\) 390300.i 1.34794i
\(154\) 0 0
\(155\) 273588. + 277567.i 0.914678 + 0.927979i
\(156\) 0 0
\(157\) 597096.i 1.93328i 0.256138 + 0.966640i \(0.417550\pi\)
−0.256138 + 0.966640i \(0.582450\pi\)
\(158\) 0 0
\(159\) −869180. −2.72657
\(160\) 0 0
\(161\) −78001.2 −0.237157
\(162\) 0 0
\(163\) 112140.i 0.330591i 0.986244 + 0.165296i \(0.0528578\pi\)
−0.986244 + 0.165296i \(0.947142\pi\)
\(164\) 0 0
\(165\) 118466. 116768.i 0.338754 0.333898i
\(166\) 0 0
\(167\) 504282.i 1.39921i 0.714530 + 0.699604i \(0.246640\pi\)
−0.714530 + 0.699604i \(0.753360\pi\)
\(168\) 0 0
\(169\) 267001. 0.719110
\(170\) 0 0
\(171\) −1.04956e6 −2.74484
\(172\) 0 0
\(173\) 143639.i 0.364886i 0.983216 + 0.182443i \(0.0584004\pi\)
−0.983216 + 0.182443i \(0.941600\pi\)
\(174\) 0 0
\(175\) −214405. 3095.41i −0.529224 0.00764053i
\(176\) 0 0
\(177\) 509906.i 1.22337i
\(178\) 0 0
\(179\) −429976. −1.00302 −0.501512 0.865151i \(-0.667223\pi\)
−0.501512 + 0.865151i \(0.667223\pi\)
\(180\) 0 0
\(181\) 491559. 1.11527 0.557634 0.830087i \(-0.311709\pi\)
0.557634 + 0.830087i \(0.311709\pi\)
\(182\) 0 0
\(183\) 1.10420e6i 2.43736i
\(184\) 0 0
\(185\) −131140. + 129260.i −0.281712 + 0.277674i
\(186\) 0 0
\(187\) 130552.i 0.273010i
\(188\) 0 0
\(189\) −200369. −0.408014
\(190\) 0 0
\(191\) 514282. 1.02004 0.510021 0.860162i \(-0.329638\pi\)
0.510021 + 0.860162i \(0.329638\pi\)
\(192\) 0 0
\(193\) 484037.i 0.935374i −0.883894 0.467687i \(-0.845087\pi\)
0.883894 0.467687i \(-0.154913\pi\)
\(194\) 0 0
\(195\) −311648. 316180.i −0.586919 0.595454i
\(196\) 0 0
\(197\) 44622.0i 0.0819188i −0.999161 0.0409594i \(-0.986959\pi\)
0.999161 0.0409594i \(-0.0130414\pi\)
\(198\) 0 0
\(199\) 550206. 0.984900 0.492450 0.870341i \(-0.336101\pi\)
0.492450 + 0.870341i \(0.336101\pi\)
\(200\) 0 0
\(201\) 1.67008e6 2.91573
\(202\) 0 0
\(203\) 50260.4i 0.0856024i
\(204\) 0 0
\(205\) 589278. + 597847.i 0.979345 + 0.993587i
\(206\) 0 0
\(207\) 411219.i 0.667034i
\(208\) 0 0
\(209\) 351068. 0.555937
\(210\) 0 0
\(211\) −1.17040e6 −1.80979 −0.904894 0.425636i \(-0.860050\pi\)
−0.904894 + 0.425636i \(0.860050\pi\)
\(212\) 0 0
\(213\) 275911.i 0.416697i
\(214\) 0 0
\(215\) 612209. 603434.i 0.903241 0.890294i
\(216\) 0 0
\(217\) 478382.i 0.689645i
\(218\) 0 0
\(219\) −1.25881e6 −1.77358
\(220\) 0 0
\(221\) 348436. 0.479891
\(222\) 0 0
\(223\) 957130.i 1.28887i 0.764660 + 0.644434i \(0.222907\pi\)
−0.764660 + 0.644434i \(0.777093\pi\)
\(224\) 0 0
\(225\) 16318.9 1.13033e6i 0.0214899 1.48851i
\(226\) 0 0
\(227\) 411895.i 0.530544i 0.964174 + 0.265272i \(0.0854617\pi\)
−0.964174 + 0.265272i \(0.914538\pi\)
\(228\) 0 0
\(229\) 304437. 0.383627 0.191813 0.981431i \(-0.438563\pi\)
0.191813 + 0.981431i \(0.438563\pi\)
\(230\) 0 0
\(231\) 204174. 0.251751
\(232\) 0 0
\(233\) 15539.4i 0.0187519i −0.999956 0.00937593i \(-0.997016\pi\)
0.999956 0.00937593i \(-0.00298450\pi\)
\(234\) 0 0
\(235\) 238979. 235554.i 0.282287 0.278241i
\(236\) 0 0
\(237\) 1.22170e6i 1.41284i
\(238\) 0 0
\(239\) −794336. −0.899517 −0.449758 0.893150i \(-0.648490\pi\)
−0.449758 + 0.893150i \(0.648490\pi\)
\(240\) 0 0
\(241\) −1.42354e6 −1.57880 −0.789400 0.613879i \(-0.789608\pi\)
−0.789400 + 0.613879i \(0.789608\pi\)
\(242\) 0 0
\(243\) 1.10536e6i 1.20085i
\(244\) 0 0
\(245\) 474781. + 481685.i 0.505333 + 0.512681i
\(246\) 0 0
\(247\) 936984.i 0.977215i
\(248\) 0 0
\(249\) −38162.4 −0.0390065
\(250\) 0 0
\(251\) 45704.8 0.0457908 0.0228954 0.999738i \(-0.492712\pi\)
0.0228954 + 0.999738i \(0.492712\pi\)
\(252\) 0 0
\(253\) 137549.i 0.135100i
\(254\) 0 0
\(255\) 1.04120e6 + 1.05634e6i 1.00273 + 1.01731i
\(256\) 0 0
\(257\) 258018.i 0.243679i 0.992550 + 0.121839i \(0.0388793\pi\)
−0.992550 + 0.121839i \(0.961121\pi\)
\(258\) 0 0
\(259\) −226018. −0.209360
\(260\) 0 0
\(261\) 264971. 0.240767
\(262\) 0 0
\(263\) 523132.i 0.466360i 0.972434 + 0.233180i \(0.0749132\pi\)
−0.972434 + 0.233180i \(0.925087\pi\)
\(264\) 0 0
\(265\) 1.40717e6 1.38700e6i 1.23092 1.21328i
\(266\) 0 0
\(267\) 2.54193e6i 2.18215i
\(268\) 0 0
\(269\) −1.02600e6 −0.864503 −0.432251 0.901753i \(-0.642281\pi\)
−0.432251 + 0.901753i \(0.642281\pi\)
\(270\) 0 0
\(271\) 1.55354e6 1.28499 0.642494 0.766291i \(-0.277900\pi\)
0.642494 + 0.766291i \(0.277900\pi\)
\(272\) 0 0
\(273\) 544932.i 0.442523i
\(274\) 0 0
\(275\) −5458.51 + 378086.i −0.00435254 + 0.301480i
\(276\) 0 0
\(277\) 742412.i 0.581361i −0.956820 0.290680i \(-0.906118\pi\)
0.956820 0.290680i \(-0.0938816\pi\)
\(278\) 0 0
\(279\) −2.52201e6 −1.93971
\(280\) 0 0
\(281\) −1.47286e6 −1.11274 −0.556372 0.830933i \(-0.687807\pi\)
−0.556372 + 0.830933i \(0.687807\pi\)
\(282\) 0 0
\(283\) 1.26344e6i 0.937756i −0.883263 0.468878i \(-0.844658\pi\)
0.883263 0.468878i \(-0.155342\pi\)
\(284\) 0 0
\(285\) 2.84063e6 2.79991e6i 2.07158 2.04189i
\(286\) 0 0
\(287\) 1.03038e6i 0.738403i
\(288\) 0 0
\(289\) 255748. 0.180122
\(290\) 0 0
\(291\) −13306.0 −0.00921119
\(292\) 0 0
\(293\) 1.50653e6i 1.02520i 0.858627 + 0.512600i \(0.171318\pi\)
−0.858627 + 0.512600i \(0.828682\pi\)
\(294\) 0 0
\(295\) −813685. 825517.i −0.544379 0.552295i
\(296\) 0 0
\(297\) 353334.i 0.232431i
\(298\) 0 0
\(299\) 367112. 0.237476
\(300\) 0 0
\(301\) 1.05513e6 0.671260
\(302\) 0 0
\(303\) 157491.i 0.0985481i
\(304\) 0 0
\(305\) −1.76204e6 1.78766e6i −1.08459 1.10036i
\(306\) 0 0
\(307\) 2.16775e6i 1.31269i −0.754460 0.656346i \(-0.772101\pi\)
0.754460 0.656346i \(-0.227899\pi\)
\(308\) 0 0
\(309\) 1.12484e6 0.670184
\(310\) 0 0
\(311\) 1.82214e6 1.06827 0.534135 0.845399i \(-0.320637\pi\)
0.534135 + 0.845399i \(0.320637\pi\)
\(312\) 0 0
\(313\) 475864.i 0.274550i −0.990533 0.137275i \(-0.956166\pi\)
0.990533 0.137275i \(-0.0438344\pi\)
\(314\) 0 0
\(315\) 988221. 974057.i 0.561148 0.553106i
\(316\) 0 0
\(317\) 763607.i 0.426797i −0.976965 0.213399i \(-0.931547\pi\)
0.976965 0.213399i \(-0.0684533\pi\)
\(318\) 0 0
\(319\) −88630.2 −0.0487646
\(320\) 0 0
\(321\) 2.34091e6 1.26801
\(322\) 0 0
\(323\) 3.13042e6i 1.66954i
\(324\) 0 0
\(325\) 1.00909e6 + 14568.5i 0.529935 + 0.00765080i
\(326\) 0 0
\(327\) 1.36270e6i 0.704743i
\(328\) 0 0
\(329\) 411877. 0.209787
\(330\) 0 0
\(331\) 1.13499e6 0.569407 0.284703 0.958616i \(-0.408105\pi\)
0.284703 + 0.958616i \(0.408105\pi\)
\(332\) 0 0
\(333\) 1.19156e6i 0.588849i
\(334\) 0 0
\(335\) −2.70379e6 + 2.66504e6i −1.31632 + 1.29745i
\(336\) 0 0
\(337\) 1.08011e6i 0.518078i 0.965867 + 0.259039i \(0.0834058\pi\)
−0.965867 + 0.259039i \(0.916594\pi\)
\(338\) 0 0
\(339\) −2.30484e6 −1.08928
\(340\) 0 0
\(341\) 843588. 0.392866
\(342\) 0 0
\(343\) 1.98342e6i 0.910288i
\(344\) 0 0
\(345\) 1.09701e6 + 1.11296e6i 0.496206 + 0.503422i
\(346\) 0 0
\(347\) 2.31228e6i 1.03090i −0.856920 0.515449i \(-0.827625\pi\)
0.856920 0.515449i \(-0.172375\pi\)
\(348\) 0 0
\(349\) −3.32947e6 −1.46323 −0.731614 0.681719i \(-0.761233\pi\)
−0.731614 + 0.681719i \(0.761233\pi\)
\(350\) 0 0
\(351\) 943032. 0.408563
\(352\) 0 0
\(353\) 3.35633e6i 1.43360i 0.697278 + 0.716801i \(0.254394\pi\)
−0.697278 + 0.716801i \(0.745606\pi\)
\(354\) 0 0
\(355\) 440287. + 446690.i 0.185424 + 0.188120i
\(356\) 0 0
\(357\) 1.82059e6i 0.756035i
\(358\) 0 0
\(359\) −600243. −0.245805 −0.122903 0.992419i \(-0.539220\pi\)
−0.122903 + 0.992419i \(0.539220\pi\)
\(360\) 0 0
\(361\) 5.94195e6 2.39972
\(362\) 0 0
\(363\) 360045.i 0.143414i
\(364\) 0 0
\(365\) 2.03797e6 2.00876e6i 0.800693 0.789216i
\(366\) 0 0
\(367\) 2.60152e6i 1.00824i 0.863635 + 0.504118i \(0.168182\pi\)
−0.863635 + 0.504118i \(0.831818\pi\)
\(368\) 0 0
\(369\) −5.43213e6 −2.07685
\(370\) 0 0
\(371\) 2.42523e6 0.914784
\(372\) 0 0
\(373\) 4.00605e6i 1.49089i −0.666570 0.745443i \(-0.732238\pi\)
0.666570 0.745443i \(-0.267762\pi\)
\(374\) 0 0
\(375\) 2.97122e6 + 3.10277e6i 1.09108 + 1.13939i
\(376\) 0 0
\(377\) 236550.i 0.0857175i
\(378\) 0 0
\(379\) −1.27812e6 −0.457059 −0.228529 0.973537i \(-0.573392\pi\)
−0.228529 + 0.973537i \(0.573392\pi\)
\(380\) 0 0
\(381\) −724723. −0.255776
\(382\) 0 0
\(383\) 1.93797e6i 0.675073i 0.941312 + 0.337536i \(0.109594\pi\)
−0.941312 + 0.337536i \(0.890406\pi\)
\(384\) 0 0
\(385\) −330550. + 325812.i −0.113654 + 0.112025i
\(386\) 0 0
\(387\) 5.56262e6i 1.88800i
\(388\) 0 0
\(389\) 1.01122e6 0.338823 0.169412 0.985545i \(-0.445813\pi\)
0.169412 + 0.985545i \(0.445813\pi\)
\(390\) 0 0
\(391\) −1.22650e6 −0.405720
\(392\) 0 0
\(393\) 965065.i 0.315192i
\(394\) 0 0
\(395\) 1.94953e6 + 1.97788e6i 0.628691 + 0.637833i
\(396\) 0 0
\(397\) 2.31935e6i 0.738566i −0.929317 0.369283i \(-0.879603\pi\)
0.929317 0.369283i \(-0.120397\pi\)
\(398\) 0 0
\(399\) 4.89578e6 1.53953
\(400\) 0 0
\(401\) 159220. 0.0494467 0.0247233 0.999694i \(-0.492130\pi\)
0.0247233 + 0.999694i \(0.492130\pi\)
\(402\) 0 0
\(403\) 2.25150e6i 0.690572i
\(404\) 0 0
\(405\) −631554. 640737.i −0.191325 0.194108i
\(406\) 0 0
\(407\) 398564.i 0.119265i
\(408\) 0 0
\(409\) −5.97006e6 −1.76470 −0.882348 0.470597i \(-0.844039\pi\)
−0.882348 + 0.470597i \(0.844039\pi\)
\(410\) 0 0
\(411\) −8.31159e6 −2.42706
\(412\) 0 0
\(413\) 1.42277e6i 0.410448i
\(414\) 0 0
\(415\) 61783.4 60897.8i 0.0176097 0.0173573i
\(416\) 0 0
\(417\) 451168.i 0.127057i
\(418\) 0 0
\(419\) −5.36018e6 −1.49157 −0.745786 0.666186i \(-0.767926\pi\)
−0.745786 + 0.666186i \(0.767926\pi\)
\(420\) 0 0
\(421\) −4.23113e6 −1.16346 −0.581729 0.813383i \(-0.697624\pi\)
−0.581729 + 0.813383i \(0.697624\pi\)
\(422\) 0 0
\(423\) 2.17140e6i 0.590050i
\(424\) 0 0
\(425\) −3.37133e6 48672.7i −0.905377 0.0130711i
\(426\) 0 0
\(427\) 3.08100e6i 0.817753i
\(428\) 0 0
\(429\) −960944. −0.252089
\(430\) 0 0
\(431\) −7.37436e6 −1.91219 −0.956096 0.293055i \(-0.905328\pi\)
−0.956096 + 0.293055i \(0.905328\pi\)
\(432\) 0 0
\(433\) 4.04144e6i 1.03590i −0.855412 0.517948i \(-0.826696\pi\)
0.855412 0.517948i \(-0.173304\pi\)
\(434\) 0 0
\(435\) −717141. + 706862.i −0.181711 + 0.179107i
\(436\) 0 0
\(437\) 3.29820e6i 0.826178i
\(438\) 0 0
\(439\) 3.79231e6 0.939165 0.469583 0.882889i \(-0.344404\pi\)
0.469583 + 0.882889i \(0.344404\pi\)
\(440\) 0 0
\(441\) −4.37666e6 −1.07163
\(442\) 0 0
\(443\) 5.95941e6i 1.44276i −0.692540 0.721380i \(-0.743508\pi\)
0.692540 0.721380i \(-0.256492\pi\)
\(444\) 0 0
\(445\) 4.05630e6 + 4.11528e6i 0.971023 + 0.985143i
\(446\) 0 0
\(447\) 3.60079e6i 0.852372i
\(448\) 0 0
\(449\) −5.90973e6 −1.38341 −0.691706 0.722179i \(-0.743141\pi\)
−0.691706 + 0.722179i \(0.743141\pi\)
\(450\) 0 0
\(451\) 1.81699e6 0.420641
\(452\) 0 0
\(453\) 7.13497e6i 1.63360i
\(454\) 0 0
\(455\) 869579. + 882223.i 0.196916 + 0.199779i
\(456\) 0 0
\(457\) 3.15000e6i 0.705537i 0.935711 + 0.352769i \(0.114760\pi\)
−0.935711 + 0.352769i \(0.885240\pi\)
\(458\) 0 0
\(459\) −3.15063e6 −0.698016
\(460\) 0 0
\(461\) −8.43560e6 −1.84869 −0.924344 0.381561i \(-0.875387\pi\)
−0.924344 + 0.381561i \(0.875387\pi\)
\(462\) 0 0
\(463\) 4.81421e6i 1.04369i −0.853040 0.521846i \(-0.825244\pi\)
0.853040 0.521846i \(-0.174756\pi\)
\(464\) 0 0
\(465\) 6.82580e6 6.72796e6i 1.46393 1.44295i
\(466\) 0 0
\(467\) 1.34298e6i 0.284956i −0.989798 0.142478i \(-0.954493\pi\)
0.989798 0.142478i \(-0.0455071\pi\)
\(468\) 0 0
\(469\) −4.65995e6 −0.978248
\(470\) 0 0
\(471\) 1.46835e7 3.04984
\(472\) 0 0
\(473\) 1.86064e6i 0.382393i
\(474\) 0 0
\(475\) −130886. + 9.06589e6i −0.0266171 + 1.84364i
\(476\) 0 0
\(477\) 1.27857e7i 2.57294i
\(478\) 0 0
\(479\) 2.57179e6 0.512149 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(480\) 0 0
\(481\) 1.06375e6 0.209641
\(482\) 0 0
\(483\) 1.91817e6i 0.374127i
\(484\) 0 0
\(485\) 21541.9 21233.2i 0.00415844 0.00409884i
\(486\) 0 0
\(487\) 5.80826e6i 1.10975i −0.831935 0.554874i \(-0.812767\pi\)
0.831935 0.554874i \(-0.187233\pi\)
\(488\) 0 0
\(489\) 2.75770e6 0.521524
\(490\) 0 0
\(491\) −7.13394e6 −1.33544 −0.667722 0.744411i \(-0.732730\pi\)
−0.667722 + 0.744411i \(0.732730\pi\)
\(492\) 0 0
\(493\) 790302.i 0.146445i
\(494\) 0 0
\(495\) −1.71767e6 1.74265e6i −0.315084 0.319666i
\(496\) 0 0
\(497\) 769863.i 0.139805i
\(498\) 0 0
\(499\) −5.11035e6 −0.918755 −0.459377 0.888241i \(-0.651927\pi\)
−0.459377 + 0.888241i \(0.651927\pi\)
\(500\) 0 0
\(501\) 1.24011e7 2.20732
\(502\) 0 0
\(503\) 9.08121e6i 1.60038i 0.599745 + 0.800191i \(0.295268\pi\)
−0.599745 + 0.800191i \(0.704732\pi\)
\(504\) 0 0
\(505\) 251317. + 254971.i 0.0438523 + 0.0444900i
\(506\) 0 0
\(507\) 6.56596e6i 1.13443i
\(508\) 0 0
\(509\) −8.26612e6 −1.41419 −0.707094 0.707119i \(-0.749994\pi\)
−0.707094 + 0.707119i \(0.749994\pi\)
\(510\) 0 0
\(511\) 3.51241e6 0.595050
\(512\) 0 0
\(513\) 8.47239e6i 1.42139i
\(514\) 0 0
\(515\) −1.82107e6 + 1.79497e6i −0.302558 + 0.298221i
\(516\) 0 0
\(517\) 726312.i 0.119508i
\(518\) 0 0
\(519\) 3.53230e6 0.575625
\(520\) 0 0
\(521\) 2.07813e6 0.335412 0.167706 0.985837i \(-0.446364\pi\)
0.167706 + 0.985837i \(0.446364\pi\)
\(522\) 0 0
\(523\) 1.94810e6i 0.311427i 0.987802 + 0.155714i \(0.0497677\pi\)
−0.987802 + 0.155714i \(0.950232\pi\)
\(524\) 0 0
\(525\) −76121.0 + 5.27255e6i −0.0120533 + 0.834877i
\(526\) 0 0
\(527\) 7.52215e6i 1.17982i
\(528\) 0 0
\(529\) 5.14410e6 0.799228
\(530\) 0 0
\(531\) 7.50077e6 1.15444
\(532\) 0 0
\(533\) 4.84947e6i 0.739395i
\(534\) 0 0
\(535\) −3.78983e6 + 3.73551e6i −0.572448 + 0.564243i
\(536\) 0 0
\(537\) 1.05738e7i 1.58232i
\(538\) 0 0
\(539\) 1.46395e6 0.217047
\(540\) 0 0
\(541\) −8.56903e6 −1.25875 −0.629374 0.777103i \(-0.716688\pi\)
−0.629374 + 0.777103i \(0.716688\pi\)
\(542\) 0 0
\(543\) 1.20882e7i 1.75939i
\(544\) 0 0
\(545\) 2.17454e6 + 2.20616e6i 0.313599 + 0.318160i
\(546\) 0 0
\(547\) 5.59536e6i 0.799577i −0.916607 0.399788i \(-0.869084\pi\)
0.916607 0.399788i \(-0.130916\pi\)
\(548\) 0 0
\(549\) 1.62429e7 2.30003
\(550\) 0 0
\(551\) −2.12521e6 −0.298211
\(552\) 0 0
\(553\) 3.40884e6i 0.474017i
\(554\) 0 0
\(555\) 3.17871e6 + 3.22493e6i 0.438045 + 0.444414i
\(556\) 0 0
\(557\) 774159.i 0.105728i −0.998602 0.0528642i \(-0.983165\pi\)
0.998602 0.0528642i \(-0.0168351\pi\)
\(558\) 0 0
\(559\) −4.96597e6 −0.672163
\(560\) 0 0
\(561\) 3.21047e6 0.430686
\(562\) 0 0
\(563\) 7.62044e6i 1.01323i 0.862172 + 0.506616i \(0.169104\pi\)
−0.862172 + 0.506616i \(0.830896\pi\)
\(564\) 0 0
\(565\) 3.73144e6 3.67796e6i 0.491763 0.484714i
\(566\) 0 0
\(567\) 1.10430e6i 0.144255i
\(568\) 0 0
\(569\) −592534. −0.0767243 −0.0383622 0.999264i \(-0.512214\pi\)
−0.0383622 + 0.999264i \(0.512214\pi\)
\(570\) 0 0
\(571\) 1.30108e7 1.66999 0.834995 0.550257i \(-0.185470\pi\)
0.834995 + 0.550257i \(0.185470\pi\)
\(572\) 0 0
\(573\) 1.26470e7i 1.60917i
\(574\) 0 0
\(575\) −3.55203e6 51281.5i −0.448030 0.00646831i
\(576\) 0 0
\(577\) 6.70946e6i 0.838973i 0.907762 + 0.419486i \(0.137790\pi\)
−0.907762 + 0.419486i \(0.862210\pi\)
\(578\) 0 0
\(579\) −1.19032e7 −1.47560
\(580\) 0 0
\(581\) 106483. 0.0130870
\(582\) 0 0
\(583\) 4.27670e6i 0.521120i
\(584\) 0 0
\(585\) −4.65105e6 + 4.58438e6i −0.561903 + 0.553849i
\(586\) 0 0
\(587\) 1.19616e7i 1.43283i −0.697674 0.716415i \(-0.745782\pi\)
0.697674 0.716415i \(-0.254218\pi\)
\(588\) 0 0
\(589\) 2.02279e7 2.40250
\(590\) 0 0
\(591\) −1.09732e6 −0.129231
\(592\) 0 0
\(593\) 1.36302e7i 1.59172i −0.605481 0.795860i \(-0.707019\pi\)
0.605481 0.795860i \(-0.292981\pi\)
\(594\) 0 0
\(595\) −2.90522e6 2.94747e6i −0.336424 0.341316i
\(596\) 0 0
\(597\) 1.35304e7i 1.55373i
\(598\) 0 0
\(599\) −3.87186e6 −0.440913 −0.220456 0.975397i \(-0.570755\pi\)
−0.220456 + 0.975397i \(0.570755\pi\)
\(600\) 0 0
\(601\) −2.64964e6 −0.299227 −0.149613 0.988745i \(-0.547803\pi\)
−0.149613 + 0.988745i \(0.547803\pi\)
\(602\) 0 0
\(603\) 2.45671e7i 2.75144i
\(604\) 0 0
\(605\) 574544. + 582899.i 0.0638168 + 0.0647448i
\(606\) 0 0
\(607\) 1.36476e7i 1.50343i −0.659486 0.751717i \(-0.729226\pi\)
0.659486 0.751717i \(-0.270774\pi\)
\(608\) 0 0
\(609\) −1.23598e6 −0.135042
\(610\) 0 0
\(611\) −1.93849e6 −0.210069
\(612\) 0 0
\(613\) 1.60364e7i 1.72367i 0.507185 + 0.861837i \(0.330686\pi\)
−0.507185 + 0.861837i \(0.669314\pi\)
\(614\) 0 0
\(615\) 1.47020e7 1.44913e7i 1.56743 1.54497i
\(616\) 0 0
\(617\) 7.42285e6i 0.784979i −0.919757 0.392489i \(-0.871614\pi\)
0.919757 0.392489i \(-0.128386\pi\)
\(618\) 0 0
\(619\) 1.37805e7 1.44557 0.722784 0.691074i \(-0.242862\pi\)
0.722784 + 0.691074i \(0.242862\pi\)
\(620\) 0 0
\(621\) −3.31949e6 −0.345416
\(622\) 0 0
\(623\) 7.09262e6i 0.732128i
\(624\) 0 0
\(625\) −9.76155e6 281919.i −0.999583 0.0288685i
\(626\) 0 0
\(627\) 8.63331e6i 0.877018i
\(628\) 0 0
\(629\) −3.55393e6 −0.358165
\(630\) 0 0
\(631\) 2.22868e6 0.222830 0.111415 0.993774i \(-0.464462\pi\)
0.111415 + 0.993774i \(0.464462\pi\)
\(632\) 0 0
\(633\) 2.87819e7i 2.85503i
\(634\) 0 0
\(635\) 1.17330e6 1.15648e6i 0.115471 0.113816i
\(636\) 0 0
\(637\) 3.90721e6i 0.381521i
\(638\) 0 0
\(639\) −4.05869e6 −0.393218
\(640\) 0 0
\(641\) 1.75304e6 0.168519 0.0842593 0.996444i \(-0.473148\pi\)
0.0842593 + 0.996444i \(0.473148\pi\)
\(642\) 0 0
\(643\) 1.68507e7i 1.60727i −0.595121 0.803636i \(-0.702896\pi\)
0.595121 0.803636i \(-0.297104\pi\)
\(644\) 0 0
\(645\) −1.48394e7 1.50552e7i −1.40448 1.42491i
\(646\) 0 0
\(647\) 1.86231e6i 0.174901i −0.996169 0.0874505i \(-0.972128\pi\)
0.996169 0.0874505i \(-0.0278720\pi\)
\(648\) 0 0
\(649\) −2.50893e6 −0.233818
\(650\) 0 0
\(651\) 1.17642e7 1.08795
\(652\) 0 0
\(653\) 1.64223e7i 1.50713i 0.657375 + 0.753563i \(0.271667\pi\)
−0.657375 + 0.753563i \(0.728333\pi\)
\(654\) 0 0
\(655\) −1.54001e6 1.56240e6i −0.140256 0.142295i
\(656\) 0 0
\(657\) 1.85173e7i 1.67365i
\(658\) 0 0
\(659\) 6.16058e6 0.552596 0.276298 0.961072i \(-0.410892\pi\)
0.276298 + 0.961072i \(0.410892\pi\)
\(660\) 0 0
\(661\) −2.06032e7 −1.83413 −0.917065 0.398737i \(-0.869449\pi\)
−0.917065 + 0.398737i \(0.869449\pi\)
\(662\) 0 0
\(663\) 8.56859e6i 0.757052i
\(664\) 0 0
\(665\) −7.92607e6 + 7.81247e6i −0.695030 + 0.685069i
\(666\) 0 0
\(667\) 832660.i 0.0724692i
\(668\) 0 0
\(669\) 2.35373e7 2.03325
\(670\) 0 0
\(671\) −5.43310e6 −0.465845
\(672\) 0 0
\(673\) 1.14267e7i 0.972488i −0.873823 0.486244i \(-0.838367\pi\)
0.873823 0.486244i \(-0.161633\pi\)
\(674\) 0 0
\(675\) −9.12441e6 131731.i −0.770806 0.0111283i
\(676\) 0 0
\(677\) 679572.i 0.0569854i −0.999594 0.0284927i \(-0.990929\pi\)
0.999594 0.0284927i \(-0.00907074\pi\)
\(678\) 0 0
\(679\) 37127.2 0.00309042
\(680\) 0 0
\(681\) 1.01291e7 0.836959
\(682\) 0 0
\(683\) 6.88710e6i 0.564917i 0.959280 + 0.282458i \(0.0911499\pi\)
−0.959280 + 0.282458i \(0.908850\pi\)
\(684\) 0 0
\(685\) 1.34561e7 1.32633e7i 1.09571 1.08000i
\(686\) 0 0
\(687\) 7.48659e6i 0.605190i
\(688\) 0 0
\(689\) −1.14143e7 −0.916014
\(690\) 0 0
\(691\) 4.64486e6 0.370065 0.185032 0.982732i \(-0.440761\pi\)
0.185032 + 0.982732i \(0.440761\pi\)
\(692\) 0 0
\(693\) 3.00343e6i 0.237566i
\(694\) 0 0
\(695\) −719954. 730424.i −0.0565383 0.0573605i
\(696\) 0 0
\(697\) 1.62019e7i 1.26323i
\(698\) 0 0
\(699\) −382138. −0.0295820
\(700\) 0 0
\(701\) −3.04696e6 −0.234192 −0.117096 0.993121i \(-0.537358\pi\)
−0.117096 + 0.993121i \(0.537358\pi\)
\(702\) 0 0
\(703\) 9.55692e6i 0.729340i
\(704\) 0 0
\(705\) −5.79264e6 5.87687e6i −0.438938 0.445321i
\(706\) 0 0
\(707\) 439439.i 0.0330636i
\(708\) 0 0
\(709\) 1.50817e7 1.12677 0.563385 0.826194i \(-0.309499\pi\)
0.563385 + 0.826194i \(0.309499\pi\)
\(710\) 0 0
\(711\) −1.79713e7 −1.33323
\(712\) 0 0
\(713\) 7.92532e6i 0.583839i
\(714\) 0 0
\(715\) 1.55573e6 1.53343e6i 0.113807 0.112176i
\(716\) 0 0
\(717\) 1.95339e7i 1.41903i
\(718\) 0 0
\(719\) −1.20848e7 −0.871803 −0.435901 0.899994i \(-0.643570\pi\)
−0.435901 + 0.899994i \(0.643570\pi\)
\(720\) 0 0
\(721\) −3.13858e6 −0.224851
\(722\) 0 0
\(723\) 3.50071e7i 2.49063i
\(724\) 0 0
\(725\) 33043.4 2.28876e6i 0.00233475 0.161717i
\(726\) 0 0
\(727\) 2.52669e7i 1.77303i −0.462697 0.886516i \(-0.653118\pi\)
0.462697 0.886516i \(-0.346882\pi\)
\(728\) 0 0
\(729\) 2.32717e7 1.62185
\(730\) 0 0
\(731\) 1.65911e7 1.14837
\(732\) 0 0
\(733\) 3.21976e6i 0.221342i 0.993857 + 0.110671i \(0.0352999\pi\)
−0.993857 + 0.110671i \(0.964700\pi\)
\(734\) 0 0
\(735\) 1.18454e7 1.16756e7i 0.808780 0.797188i
\(736\) 0 0
\(737\) 8.21744e6i 0.557273i
\(738\) 0 0
\(739\) 1.83282e7 1.23455 0.617274 0.786748i \(-0.288237\pi\)
0.617274 + 0.786748i \(0.288237\pi\)
\(740\) 0 0
\(741\) −2.30419e7 −1.54160
\(742\) 0 0
\(743\) 2.56985e7i 1.70779i 0.520444 + 0.853896i \(0.325767\pi\)
−0.520444 + 0.853896i \(0.674233\pi\)
\(744\) 0 0
\(745\) −5.74599e6 5.82954e6i −0.379292 0.384808i
\(746\) 0 0
\(747\) 561373.i 0.0368086i
\(748\) 0 0
\(749\) −6.53172e6 −0.425425
\(750\) 0 0
\(751\) 1.44321e7 0.933748 0.466874 0.884324i \(-0.345380\pi\)
0.466874 + 0.884324i \(0.345380\pi\)
\(752\) 0 0
\(753\) 1.12395e6i 0.0722372i
\(754\) 0 0
\(755\) 1.13857e7 + 1.15512e7i 0.726927 + 0.737498i
\(756\) 0 0
\(757\) 2.39198e7i 1.51712i −0.651606 0.758558i \(-0.725904\pi\)
0.651606 0.758558i \(-0.274096\pi\)
\(758\) 0 0
\(759\) 3.38254e6 0.213127
\(760\) 0 0
\(761\) −2.78047e7 −1.74043 −0.870215 0.492672i \(-0.836020\pi\)
−0.870215 + 0.492672i \(0.836020\pi\)
\(762\) 0 0
\(763\) 3.80228e6i 0.236446i
\(764\) 0 0
\(765\) 1.55389e7 1.53162e7i 0.959992 0.946232i
\(766\) 0 0
\(767\) 6.69623e6i 0.411000i
\(768\) 0 0
\(769\) −1.25298e7 −0.764063 −0.382031 0.924149i \(-0.624775\pi\)
−0.382031 + 0.924149i \(0.624775\pi\)
\(770\) 0 0
\(771\) 6.34507e6 0.384415
\(772\) 0 0
\(773\) 2.17300e7i 1.30801i 0.756490 + 0.654006i \(0.226913\pi\)
−0.756490 + 0.654006i \(0.773087\pi\)
\(774\) 0 0
\(775\) −314510. + 2.17846e7i −0.0188096 + 1.30285i
\(776\) 0 0
\(777\) 5.55812e6i 0.330275i
\(778\) 0 0
\(779\) 4.35686e7 2.57235
\(780\) 0 0
\(781\) 1.35759e6 0.0796419
\(782\) 0 0
\(783\) 2.13893e6i 0.124679i
\(784\) 0 0
\(785\) −2.37720e7 + 2.34313e7i −1.37687 + 1.35713i
\(786\) 0 0
\(787\) 7.47679e6i 0.430307i 0.976580 + 0.215153i \(0.0690252\pi\)
−0.976580 + 0.215153i \(0.930975\pi\)
\(788\) 0 0
\(789\) 1.28646e7 0.735706
\(790\) 0 0
\(791\) 6.43109e6 0.365463
\(792\) 0 0
\(793\) 1.45007e7i 0.818852i
\(794\) 0 0
\(795\) −3.41085e7 3.46045e7i −1.91401 1.94184i
\(796\) 0 0
\(797\) 8.58463e6i 0.478714i 0.970932 + 0.239357i \(0.0769366\pi\)
−0.970932 + 0.239357i \(0.923063\pi\)
\(798\) 0 0
\(799\) 6.47642e6 0.358895
\(800\) 0 0
\(801\) −3.73920e7 −2.05920
\(802\) 0 0
\(803\) 6.19386e6i 0.338979i
\(804\) 0 0
\(805\) −3.06093e6 3.10544e6i −0.166481 0.168902i
\(806\) 0 0
\(807\) 2.52309e7i 1.36380i
\(808\) 0 0
\(809\) −2.00739e7 −1.07835 −0.539176 0.842193i \(-0.681264\pi\)
−0.539176 + 0.842193i \(0.681264\pi\)
\(810\) 0 0
\(811\) 345528. 0.0184472 0.00922362 0.999957i \(-0.497064\pi\)
0.00922362 + 0.999957i \(0.497064\pi\)
\(812\) 0 0
\(813\) 3.82039e7i 2.02713i
\(814\) 0 0
\(815\) −4.46460e6 + 4.40061e6i −0.235445 + 0.232070i
\(816\) 0 0
\(817\) 4.46152e7i 2.33845i
\(818\) 0 0
\(819\) −8.01601e6 −0.417589
\(820\) 0 0
\(821\) −3.55582e7 −1.84112 −0.920560 0.390601i \(-0.872267\pi\)
−0.920560 + 0.390601i \(0.872267\pi\)
\(822\) 0 0
\(823\) 2.18881e7i 1.12644i 0.826307 + 0.563220i \(0.190438\pi\)
−0.826307 + 0.563220i \(0.809562\pi\)
\(824\) 0 0
\(825\) 9.29771e6 + 134233.i 0.475599 + 0.00686634i
\(826\) 0 0
\(827\) 3.08664e7i 1.56936i 0.619901 + 0.784680i \(0.287173\pi\)
−0.619901 + 0.784680i \(0.712827\pi\)
\(828\) 0 0
\(829\) 1.02344e7 0.517219 0.258610 0.965982i \(-0.416736\pi\)
0.258610 + 0.965982i \(0.416736\pi\)
\(830\) 0 0
\(831\) −1.82571e7 −0.917125
\(832\) 0 0
\(833\) 1.30538e7i 0.651816i
\(834\) 0 0
\(835\) −2.00769e7 + 1.97891e7i −0.996506 + 0.982223i
\(836\) 0 0
\(837\) 2.03585e7i 1.00446i
\(838\) 0 0
\(839\) 1.42644e7 0.699596 0.349798 0.936825i \(-0.386250\pi\)
0.349798 + 0.936825i \(0.386250\pi\)
\(840\) 0 0
\(841\) −1.99746e7 −0.973842
\(842\) 0 0
\(843\) 3.62199e7i 1.75541i
\(844\) 0 0
\(845\) 1.04777e7 + 1.06300e7i 0.504804 + 0.512145i
\(846\) 0 0
\(847\) 1.00462e6i 0.0481163i
\(848\) 0 0
\(849\) −3.10700e7 −1.47936
\(850\) 0 0
\(851\) −3.74441e6 −0.177239
\(852\) 0 0
\(853\) 6.85288e6i 0.322478i −0.986915 0.161239i \(-0.948451\pi\)
0.986915 0.161239i \(-0.0515491\pi\)
\(854\) 0 0
\(855\) −4.11870e7 4.17859e7i −1.92684 1.95486i
\(856\) 0 0
\(857\) 3.51342e7i 1.63410i −0.576567 0.817050i \(-0.695608\pi\)
0.576567 0.817050i \(-0.304392\pi\)
\(858\) 0 0
\(859\) −8.48281e6 −0.392244 −0.196122 0.980579i \(-0.562835\pi\)
−0.196122 + 0.980579i \(0.562835\pi\)
\(860\) 0 0
\(861\) 2.53387e7 1.16487
\(862\) 0 0
\(863\) 3.84664e7i 1.75815i −0.476687 0.879073i \(-0.658162\pi\)
0.476687 0.879073i \(-0.341838\pi\)
\(864\) 0 0
\(865\) −5.71866e6 + 5.63669e6i −0.259869 + 0.256144i
\(866\) 0 0
\(867\) 6.28924e6i 0.284152i
\(868\) 0 0
\(869\) 6.01122e6 0.270031
\(870\) 0 0
\(871\) 2.19320e7 0.979563
\(872\) 0 0
\(873\) 195733.i 0.00869218i
\(874\) 0 0
\(875\) −8.29046e6 8.65752e6i −0.366065 0.382273i
\(876\) 0 0
\(877\) 1.87813e7i 0.824567i −0.911056 0.412283i \(-0.864731\pi\)
0.911056 0.412283i \(-0.135269\pi\)
\(878\) 0 0
\(879\) 3.70479e7 1.61730
\(880\) 0 0
\(881\) 4.01661e7 1.74349 0.871745 0.489960i \(-0.162989\pi\)
0.871745 + 0.489960i \(0.162989\pi\)
\(882\) 0 0
\(883\) 5.55332e6i 0.239690i 0.992793 + 0.119845i \(0.0382398\pi\)
−0.992793 + 0.119845i \(0.961760\pi\)
\(884\) 0 0
\(885\) −2.03008e7 + 2.00098e7i −0.871272 + 0.858784i
\(886\) 0 0
\(887\) 2.28130e7i 0.973584i 0.873518 + 0.486792i \(0.161833\pi\)
−0.873518 + 0.486792i \(0.838167\pi\)
\(888\) 0 0
\(889\) 2.02216e6 0.0858147
\(890\) 0 0
\(891\) −1.94735e6 −0.0821767
\(892\) 0 0
\(893\) 1.74158e7i 0.730828i
\(894\) 0 0
\(895\) −1.68732e7 1.71185e7i −0.704107 0.714346i
\(896\) 0 0
\(897\) 9.02785e6i 0.374630i
\(898\) 0 0
\(899\) −5.10671e6 −0.210738
\(900\) 0 0
\(901\) 3.81347e7 1.56498
\(902\) 0 0
\(903\) 2.59474e7i 1.05895i
\(904\) 0 0
\(905\) 1.92898e7 + 1.95703e7i 0.782901 + 0.794285i
\(906\) 0 0
\(907\) 3.90037e7i 1.57430i 0.616761 + 0.787150i \(0.288444\pi\)
−0.616761 + 0.787150i \(0.711556\pi\)
\(908\) 0 0
\(909\) −2.31671e6 −0.0929953
\(910\) 0 0
\(911\) −3.68587e7 −1.47145 −0.735723 0.677283i \(-0.763157\pi\)
−0.735723 + 0.677283i \(0.763157\pi\)
\(912\) 0 0
\(913\) 187774.i 0.00745517i
\(914\) 0 0
\(915\) −4.39613e7 + 4.33312e7i −1.73587 + 1.71099i
\(916\) 0 0
\(917\) 2.69278e6i 0.105749i
\(918\) 0 0
\(919\) −1.03588e7 −0.404597 −0.202299 0.979324i \(-0.564841\pi\)
−0.202299 + 0.979324i \(0.564841\pi\)
\(920\) 0 0
\(921\) −5.33083e7 −2.07084
\(922\) 0 0
\(923\) 3.62335e6i 0.139993i
\(924\) 0 0
\(925\) −1.02924e7 148594.i −0.395515 0.00571014i
\(926\) 0 0
\(927\) 1.65465e7i 0.632422i
\(928\) 0 0
\(929\) −9.13177e6 −0.347149 −0.173574 0.984821i \(-0.555532\pi\)
−0.173574 + 0.984821i \(0.555532\pi\)
\(930\) 0 0
\(931\) 3.51032e7 1.32731
\(932\) 0 0
\(933\) 4.48093e7i 1.68525i
\(934\) 0 0
\(935\) −5.19762e6 + 5.12312e6i −0.194435 + 0.191649i
\(936\) 0 0
\(937\) 219135.i 0.00815384i −0.999992 0.00407692i \(-0.998702\pi\)
0.999992 0.00407692i \(-0.00129773\pi\)
\(938\) 0 0
\(939\) −1.17022e7 −0.433116
\(940\) 0 0
\(941\) 1.48284e7 0.545907 0.272954 0.962027i \(-0.411999\pi\)
0.272954 + 0.962027i \(0.411999\pi\)
\(942\) 0 0
\(943\) 1.70702e7i 0.625116i
\(944\) 0 0
\(945\) −7.86289e6 7.97723e6i −0.286420 0.290585i
\(946\) 0 0
\(947\) 5.18145e7i 1.87748i 0.344621 + 0.938742i \(0.388007\pi\)
−0.344621 + 0.938742i \(0.611993\pi\)
\(948\) 0 0
\(949\) −1.65311e7 −0.595850
\(950\) 0 0
\(951\) −1.87783e7 −0.673294
\(952\) 0 0
\(953\) 3.57043e7i 1.27347i 0.771083 + 0.636735i \(0.219715\pi\)
−0.771083 + 0.636735i \(0.780285\pi\)
\(954\) 0 0
\(955\) 2.01815e7 + 2.04750e7i 0.716054 + 0.726466i
\(956\) 0 0
\(957\) 2.17955e6i 0.0769286i
\(958\) 0 0
\(959\) 2.31915e7 0.814295
\(960\) 0 0
\(961\) 1.99769e7 0.697781
\(962\) 0 0
\(963\) 3.44350e7i 1.19656i
\(964\) 0 0
\(965\) 1.92708e7 1.89946e7i 0.666166 0.656618i
\(966\) 0 0
\(967\) 9.61627e6i 0.330705i −0.986235 0.165352i \(-0.947124\pi\)
0.986235 0.165352i \(-0.0528762\pi\)
\(968\) 0 0
\(969\) 7.69819e7 2.63378
\(970\) 0 0
\(971\) 2.39248e7 0.814330 0.407165 0.913355i \(-0.366517\pi\)
0.407165 + 0.913355i \(0.366517\pi\)
\(972\) 0 0
\(973\) 1.25887e6i 0.0426285i
\(974\) 0 0
\(975\) 358262. 2.48152e7i 0.0120695 0.835999i
\(976\) 0 0
\(977\) 3.46267e6i 0.116058i −0.998315 0.0580290i \(-0.981518\pi\)
0.998315 0.0580290i \(-0.0184816\pi\)
\(978\) 0 0
\(979\) 1.25073e7 0.417067
\(980\) 0 0
\(981\) −2.00455e7 −0.665033
\(982\) 0 0
\(983\) 3.74695e7i 1.23678i −0.785870 0.618392i \(-0.787784\pi\)
0.785870 0.618392i \(-0.212216\pi\)
\(984\) 0 0
\(985\) 1.77652e6 1.75106e6i 0.0583419 0.0575057i
\(986\) 0 0
\(987\) 1.01287e7i 0.330949i
\(988\) 0 0
\(989\) 1.74803e7 0.568275
\(990\) 0 0
\(991\) 2.73653e7 0.885150 0.442575 0.896732i \(-0.354065\pi\)
0.442575 + 0.896732i \(0.354065\pi\)
\(992\) 0 0
\(993\) 2.79112e7i 0.898267i
\(994\) 0 0
\(995\) 2.15912e7 + 2.19052e7i 0.691385 + 0.701438i
\(996\) 0 0
\(997\) 1.37185e7i 0.437087i −0.975827 0.218543i \(-0.929869\pi\)
0.975827 0.218543i \(-0.0701305\pi\)
\(998\) 0 0
\(999\) −9.61861e6 −0.304929
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.6.b.b.89.2 14
5.2 odd 4 1100.6.a.m.1.2 14
5.3 odd 4 1100.6.a.m.1.13 14
5.4 even 2 inner 220.6.b.b.89.13 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.6.b.b.89.2 14 1.1 even 1 trivial
220.6.b.b.89.13 yes 14 5.4 even 2 inner
1100.6.a.m.1.2 14 5.2 odd 4
1100.6.a.m.1.13 14 5.3 odd 4