Properties

Label 1110.2.i.a
Level 11101110
Weight 22
Character orbit 1110.i
Analytic conductor 8.8638.863
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1110,2,Mod(121,1110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1110, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1110.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1110=23537 1110 = 2 \cdot 3 \cdot 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1110.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.863394624368.86339462436
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q2ζ6q3ζ6q4+ζ6q5+q6+4ζ6q7+q8+(ζ61)q9q10+3q11+(ζ61)q12+ζ6q13++(3ζ63)q99+O(q100) q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{3} - \zeta_{6} q^{4} + \zeta_{6} q^{5} + q^{6} + 4 \zeta_{6} q^{7} + q^{8} + (\zeta_{6} - 1) q^{9} - q^{10} + 3 q^{11} + (\zeta_{6} - 1) q^{12} + \zeta_{6} q^{13} + \cdots + (3 \zeta_{6} - 3) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2q3q4+q5+2q6+4q7+2q8q92q10+6q11q12+q138q14+q15q163q17q182q19+q20+4q21+3q99+O(q100) 2 q - q^{2} - q^{3} - q^{4} + q^{5} + 2 q^{6} + 4 q^{7} + 2 q^{8} - q^{9} - 2 q^{10} + 6 q^{11} - q^{12} + q^{13} - 8 q^{14} + q^{15} - q^{16} - 3 q^{17} - q^{18} - 2 q^{19} + q^{20} + 4 q^{21}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1110Z)×\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times.

nn 371371 631631 667667
χ(n)\chi(n) 11 ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
121.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i 1.00000 2.00000 + 3.46410i 1.00000 −0.500000 + 0.866025i −1.00000
211.1 −0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i 1.00000 2.00000 3.46410i 1.00000 −0.500000 0.866025i −1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1110.2.i.a 2
37.c even 3 1 inner 1110.2.i.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.2.i.a 2 1.a even 1 1 trivial
1110.2.i.a 2 37.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1110,[χ])S_{2}^{\mathrm{new}}(1110, [\chi]):

T724T7+16 T_{7}^{2} - 4T_{7} + 16 Copy content Toggle raw display
T113 T_{11} - 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
77 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1111 (T3)2 (T - 3)^{2} Copy content Toggle raw display
1313 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1717 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
1919 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
3131 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
3737 T211T+37 T^{2} - 11T + 37 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T8)2 (T - 8)^{2} Copy content Toggle raw display
4747 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
6161 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
6767 T213T+169 T^{2} - 13T + 169 Copy content Toggle raw display
7171 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
7373 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
7979 T216T+256 T^{2} - 16T + 256 Copy content Toggle raw display
8383 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
8989 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
9797 (T2)2 (T - 2)^{2} Copy content Toggle raw display
show more
show less