Properties

Label 1125.2.a.f.1.1
Level $1125$
Weight $2$
Character 1125.1
Self dual yes
Analytic conductor $8.983$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1125,2,Mod(1,1125)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1125, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1125.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1125 = 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1125.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.98317022739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 375)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1125.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.381966 q^{2} -1.85410 q^{4} -3.61803 q^{7} -1.47214 q^{8} +O(q^{10})\) \(q+0.381966 q^{2} -1.85410 q^{4} -3.61803 q^{7} -1.47214 q^{8} +1.76393 q^{11} -3.00000 q^{13} -1.38197 q^{14} +3.14590 q^{16} +5.61803 q^{17} -1.00000 q^{19} +0.673762 q^{22} +6.70820 q^{23} -1.14590 q^{26} +6.70820 q^{28} -0.236068 q^{29} +8.09017 q^{31} +4.14590 q^{32} +2.14590 q^{34} -5.00000 q^{37} -0.381966 q^{38} +10.8541 q^{41} +4.61803 q^{43} -3.27051 q^{44} +2.56231 q^{46} -13.1803 q^{47} +6.09017 q^{49} +5.56231 q^{52} -1.38197 q^{53} +5.32624 q^{56} -0.0901699 q^{58} +13.7984 q^{59} +6.09017 q^{61} +3.09017 q^{62} -4.70820 q^{64} +8.00000 q^{67} -10.4164 q^{68} -7.85410 q^{71} -15.8541 q^{73} -1.90983 q^{74} +1.85410 q^{76} -6.38197 q^{77} +7.23607 q^{79} +4.14590 q^{82} +7.32624 q^{83} +1.76393 q^{86} -2.59675 q^{88} -3.47214 q^{89} +10.8541 q^{91} -12.4377 q^{92} -5.03444 q^{94} +10.5623 q^{97} +2.32624 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + 3 q^{4} - 5 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} + 3 q^{4} - 5 q^{7} + 6 q^{8} + 8 q^{11} - 6 q^{13} - 5 q^{14} + 13 q^{16} + 9 q^{17} - 2 q^{19} + 17 q^{22} - 9 q^{26} + 4 q^{29} + 5 q^{31} + 15 q^{32} + 11 q^{34} - 10 q^{37} - 3 q^{38} + 15 q^{41} + 7 q^{43} + 27 q^{44} - 15 q^{46} - 4 q^{47} + q^{49} - 9 q^{52} - 5 q^{53} - 5 q^{56} + 11 q^{58} + 3 q^{59} + q^{61} - 5 q^{62} + 4 q^{64} + 16 q^{67} + 6 q^{68} - 9 q^{71} - 25 q^{73} - 15 q^{74} - 3 q^{76} - 15 q^{77} + 10 q^{79} + 15 q^{82} - q^{83} + 8 q^{86} + 44 q^{88} + 2 q^{89} + 15 q^{91} - 45 q^{92} + 19 q^{94} + q^{97} - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.381966 0.270091 0.135045 0.990839i \(-0.456882\pi\)
0.135045 + 0.990839i \(0.456882\pi\)
\(3\) 0 0
\(4\) −1.85410 −0.927051
\(5\) 0 0
\(6\) 0 0
\(7\) −3.61803 −1.36749 −0.683744 0.729722i \(-0.739650\pi\)
−0.683744 + 0.729722i \(0.739650\pi\)
\(8\) −1.47214 −0.520479
\(9\) 0 0
\(10\) 0 0
\(11\) 1.76393 0.531846 0.265923 0.963994i \(-0.414323\pi\)
0.265923 + 0.963994i \(0.414323\pi\)
\(12\) 0 0
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) −1.38197 −0.369346
\(15\) 0 0
\(16\) 3.14590 0.786475
\(17\) 5.61803 1.36257 0.681287 0.732017i \(-0.261421\pi\)
0.681287 + 0.732017i \(0.261421\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.673762 0.143647
\(23\) 6.70820 1.39876 0.699379 0.714751i \(-0.253460\pi\)
0.699379 + 0.714751i \(0.253460\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.14590 −0.224729
\(27\) 0 0
\(28\) 6.70820 1.26773
\(29\) −0.236068 −0.0438367 −0.0219184 0.999760i \(-0.506977\pi\)
−0.0219184 + 0.999760i \(0.506977\pi\)
\(30\) 0 0
\(31\) 8.09017 1.45304 0.726519 0.687147i \(-0.241137\pi\)
0.726519 + 0.687147i \(0.241137\pi\)
\(32\) 4.14590 0.732898
\(33\) 0 0
\(34\) 2.14590 0.368018
\(35\) 0 0
\(36\) 0 0
\(37\) −5.00000 −0.821995 −0.410997 0.911636i \(-0.634819\pi\)
−0.410997 + 0.911636i \(0.634819\pi\)
\(38\) −0.381966 −0.0619631
\(39\) 0 0
\(40\) 0 0
\(41\) 10.8541 1.69513 0.847563 0.530695i \(-0.178069\pi\)
0.847563 + 0.530695i \(0.178069\pi\)
\(42\) 0 0
\(43\) 4.61803 0.704244 0.352122 0.935954i \(-0.385460\pi\)
0.352122 + 0.935954i \(0.385460\pi\)
\(44\) −3.27051 −0.493048
\(45\) 0 0
\(46\) 2.56231 0.377791
\(47\) −13.1803 −1.92255 −0.961275 0.275591i \(-0.911127\pi\)
−0.961275 + 0.275591i \(0.911127\pi\)
\(48\) 0 0
\(49\) 6.09017 0.870024
\(50\) 0 0
\(51\) 0 0
\(52\) 5.56231 0.771353
\(53\) −1.38197 −0.189828 −0.0949138 0.995485i \(-0.530258\pi\)
−0.0949138 + 0.995485i \(0.530258\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.32624 0.711748
\(57\) 0 0
\(58\) −0.0901699 −0.0118399
\(59\) 13.7984 1.79640 0.898198 0.439592i \(-0.144877\pi\)
0.898198 + 0.439592i \(0.144877\pi\)
\(60\) 0 0
\(61\) 6.09017 0.779766 0.389883 0.920864i \(-0.372515\pi\)
0.389883 + 0.920864i \(0.372515\pi\)
\(62\) 3.09017 0.392452
\(63\) 0 0
\(64\) −4.70820 −0.588525
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −10.4164 −1.26317
\(69\) 0 0
\(70\) 0 0
\(71\) −7.85410 −0.932110 −0.466055 0.884756i \(-0.654325\pi\)
−0.466055 + 0.884756i \(0.654325\pi\)
\(72\) 0 0
\(73\) −15.8541 −1.85558 −0.927791 0.373100i \(-0.878295\pi\)
−0.927791 + 0.373100i \(0.878295\pi\)
\(74\) −1.90983 −0.222013
\(75\) 0 0
\(76\) 1.85410 0.212680
\(77\) −6.38197 −0.727293
\(78\) 0 0
\(79\) 7.23607 0.814121 0.407061 0.913401i \(-0.366554\pi\)
0.407061 + 0.913401i \(0.366554\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4.14590 0.457838
\(83\) 7.32624 0.804159 0.402080 0.915605i \(-0.368288\pi\)
0.402080 + 0.915605i \(0.368288\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.76393 0.190210
\(87\) 0 0
\(88\) −2.59675 −0.276814
\(89\) −3.47214 −0.368046 −0.184023 0.982922i \(-0.558912\pi\)
−0.184023 + 0.982922i \(0.558912\pi\)
\(90\) 0 0
\(91\) 10.8541 1.13782
\(92\) −12.4377 −1.29672
\(93\) 0 0
\(94\) −5.03444 −0.519263
\(95\) 0 0
\(96\) 0 0
\(97\) 10.5623 1.07244 0.536220 0.844078i \(-0.319852\pi\)
0.536220 + 0.844078i \(0.319852\pi\)
\(98\) 2.32624 0.234986
\(99\) 0 0
\(100\) 0 0
\(101\) −1.52786 −0.152028 −0.0760141 0.997107i \(-0.524219\pi\)
−0.0760141 + 0.997107i \(0.524219\pi\)
\(102\) 0 0
\(103\) −0.909830 −0.0896482 −0.0448241 0.998995i \(-0.514273\pi\)
−0.0448241 + 0.998995i \(0.514273\pi\)
\(104\) 4.41641 0.433064
\(105\) 0 0
\(106\) −0.527864 −0.0512707
\(107\) −0.618034 −0.0597476 −0.0298738 0.999554i \(-0.509511\pi\)
−0.0298738 + 0.999554i \(0.509511\pi\)
\(108\) 0 0
\(109\) 9.00000 0.862044 0.431022 0.902342i \(-0.358153\pi\)
0.431022 + 0.902342i \(0.358153\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −11.3820 −1.07549
\(113\) −0.763932 −0.0718647 −0.0359323 0.999354i \(-0.511440\pi\)
−0.0359323 + 0.999354i \(0.511440\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.437694 0.0406389
\(117\) 0 0
\(118\) 5.27051 0.485190
\(119\) −20.3262 −1.86330
\(120\) 0 0
\(121\) −7.88854 −0.717140
\(122\) 2.32624 0.210608
\(123\) 0 0
\(124\) −15.0000 −1.34704
\(125\) 0 0
\(126\) 0 0
\(127\) 6.41641 0.569364 0.284682 0.958622i \(-0.408112\pi\)
0.284682 + 0.958622i \(0.408112\pi\)
\(128\) −10.0902 −0.891853
\(129\) 0 0
\(130\) 0 0
\(131\) 10.0902 0.881582 0.440791 0.897610i \(-0.354698\pi\)
0.440791 + 0.897610i \(0.354698\pi\)
\(132\) 0 0
\(133\) 3.61803 0.313723
\(134\) 3.05573 0.263975
\(135\) 0 0
\(136\) −8.27051 −0.709190
\(137\) 16.2361 1.38714 0.693570 0.720389i \(-0.256037\pi\)
0.693570 + 0.720389i \(0.256037\pi\)
\(138\) 0 0
\(139\) −1.76393 −0.149615 −0.0748074 0.997198i \(-0.523834\pi\)
−0.0748074 + 0.997198i \(0.523834\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.00000 −0.251754
\(143\) −5.29180 −0.442522
\(144\) 0 0
\(145\) 0 0
\(146\) −6.05573 −0.501176
\(147\) 0 0
\(148\) 9.27051 0.762031
\(149\) 11.9443 0.978513 0.489256 0.872140i \(-0.337268\pi\)
0.489256 + 0.872140i \(0.337268\pi\)
\(150\) 0 0
\(151\) −4.18034 −0.340191 −0.170096 0.985428i \(-0.554408\pi\)
−0.170096 + 0.985428i \(0.554408\pi\)
\(152\) 1.47214 0.119406
\(153\) 0 0
\(154\) −2.43769 −0.196435
\(155\) 0 0
\(156\) 0 0
\(157\) −16.5623 −1.32182 −0.660908 0.750467i \(-0.729829\pi\)
−0.660908 + 0.750467i \(0.729829\pi\)
\(158\) 2.76393 0.219887
\(159\) 0 0
\(160\) 0 0
\(161\) −24.2705 −1.91278
\(162\) 0 0
\(163\) 9.00000 0.704934 0.352467 0.935824i \(-0.385343\pi\)
0.352467 + 0.935824i \(0.385343\pi\)
\(164\) −20.1246 −1.57147
\(165\) 0 0
\(166\) 2.79837 0.217196
\(167\) 4.47214 0.346064 0.173032 0.984916i \(-0.444644\pi\)
0.173032 + 0.984916i \(0.444644\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) 0 0
\(172\) −8.56231 −0.652870
\(173\) −3.32624 −0.252889 −0.126445 0.991974i \(-0.540357\pi\)
−0.126445 + 0.991974i \(0.540357\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.54915 0.418283
\(177\) 0 0
\(178\) −1.32624 −0.0994057
\(179\) 17.7639 1.32774 0.663869 0.747849i \(-0.268913\pi\)
0.663869 + 0.747849i \(0.268913\pi\)
\(180\) 0 0
\(181\) −13.4164 −0.997234 −0.498617 0.866822i \(-0.666159\pi\)
−0.498617 + 0.866822i \(0.666159\pi\)
\(182\) 4.14590 0.307314
\(183\) 0 0
\(184\) −9.87539 −0.728023
\(185\) 0 0
\(186\) 0 0
\(187\) 9.90983 0.724679
\(188\) 24.4377 1.78230
\(189\) 0 0
\(190\) 0 0
\(191\) 17.9443 1.29840 0.649201 0.760617i \(-0.275103\pi\)
0.649201 + 0.760617i \(0.275103\pi\)
\(192\) 0 0
\(193\) −8.70820 −0.626830 −0.313415 0.949616i \(-0.601473\pi\)
−0.313415 + 0.949616i \(0.601473\pi\)
\(194\) 4.03444 0.289656
\(195\) 0 0
\(196\) −11.2918 −0.806557
\(197\) 7.18034 0.511578 0.255789 0.966733i \(-0.417665\pi\)
0.255789 + 0.966733i \(0.417665\pi\)
\(198\) 0 0
\(199\) 5.29180 0.375125 0.187563 0.982253i \(-0.439941\pi\)
0.187563 + 0.982253i \(0.439941\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −0.583592 −0.0410614
\(203\) 0.854102 0.0599462
\(204\) 0 0
\(205\) 0 0
\(206\) −0.347524 −0.0242132
\(207\) 0 0
\(208\) −9.43769 −0.654386
\(209\) −1.76393 −0.122014
\(210\) 0 0
\(211\) −23.4164 −1.61205 −0.806026 0.591880i \(-0.798386\pi\)
−0.806026 + 0.591880i \(0.798386\pi\)
\(212\) 2.56231 0.175980
\(213\) 0 0
\(214\) −0.236068 −0.0161373
\(215\) 0 0
\(216\) 0 0
\(217\) −29.2705 −1.98701
\(218\) 3.43769 0.232830
\(219\) 0 0
\(220\) 0 0
\(221\) −16.8541 −1.13373
\(222\) 0 0
\(223\) −10.8885 −0.729151 −0.364575 0.931174i \(-0.618786\pi\)
−0.364575 + 0.931174i \(0.618786\pi\)
\(224\) −15.0000 −1.00223
\(225\) 0 0
\(226\) −0.291796 −0.0194100
\(227\) 6.18034 0.410204 0.205102 0.978741i \(-0.434247\pi\)
0.205102 + 0.978741i \(0.434247\pi\)
\(228\) 0 0
\(229\) 21.1246 1.39595 0.697977 0.716120i \(-0.254084\pi\)
0.697977 + 0.716120i \(0.254084\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.347524 0.0228161
\(233\) −12.5066 −0.819333 −0.409667 0.912235i \(-0.634355\pi\)
−0.409667 + 0.912235i \(0.634355\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −25.5836 −1.66535
\(237\) 0 0
\(238\) −7.76393 −0.503261
\(239\) 24.0902 1.55826 0.779132 0.626860i \(-0.215660\pi\)
0.779132 + 0.626860i \(0.215660\pi\)
\(240\) 0 0
\(241\) −15.7082 −1.01185 −0.505927 0.862576i \(-0.668850\pi\)
−0.505927 + 0.862576i \(0.668850\pi\)
\(242\) −3.01316 −0.193693
\(243\) 0 0
\(244\) −11.2918 −0.722883
\(245\) 0 0
\(246\) 0 0
\(247\) 3.00000 0.190885
\(248\) −11.9098 −0.756275
\(249\) 0 0
\(250\) 0 0
\(251\) −2.32624 −0.146831 −0.0734154 0.997301i \(-0.523390\pi\)
−0.0734154 + 0.997301i \(0.523390\pi\)
\(252\) 0 0
\(253\) 11.8328 0.743923
\(254\) 2.45085 0.153780
\(255\) 0 0
\(256\) 5.56231 0.347644
\(257\) −3.18034 −0.198384 −0.0991921 0.995068i \(-0.531626\pi\)
−0.0991921 + 0.995068i \(0.531626\pi\)
\(258\) 0 0
\(259\) 18.0902 1.12407
\(260\) 0 0
\(261\) 0 0
\(262\) 3.85410 0.238107
\(263\) −13.1459 −0.810611 −0.405305 0.914181i \(-0.632835\pi\)
−0.405305 + 0.914181i \(0.632835\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.38197 0.0847338
\(267\) 0 0
\(268\) −14.8328 −0.906058
\(269\) −20.3820 −1.24271 −0.621355 0.783529i \(-0.713418\pi\)
−0.621355 + 0.783529i \(0.713418\pi\)
\(270\) 0 0
\(271\) 1.85410 0.112629 0.0563143 0.998413i \(-0.482065\pi\)
0.0563143 + 0.998413i \(0.482065\pi\)
\(272\) 17.6738 1.07163
\(273\) 0 0
\(274\) 6.20163 0.374654
\(275\) 0 0
\(276\) 0 0
\(277\) −15.2705 −0.917516 −0.458758 0.888561i \(-0.651706\pi\)
−0.458758 + 0.888561i \(0.651706\pi\)
\(278\) −0.673762 −0.0404096
\(279\) 0 0
\(280\) 0 0
\(281\) −3.27051 −0.195102 −0.0975511 0.995231i \(-0.531101\pi\)
−0.0975511 + 0.995231i \(0.531101\pi\)
\(282\) 0 0
\(283\) 21.4721 1.27639 0.638193 0.769876i \(-0.279682\pi\)
0.638193 + 0.769876i \(0.279682\pi\)
\(284\) 14.5623 0.864114
\(285\) 0 0
\(286\) −2.02129 −0.119521
\(287\) −39.2705 −2.31806
\(288\) 0 0
\(289\) 14.5623 0.856606
\(290\) 0 0
\(291\) 0 0
\(292\) 29.3951 1.72022
\(293\) 19.4164 1.13432 0.567159 0.823608i \(-0.308042\pi\)
0.567159 + 0.823608i \(0.308042\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 7.36068 0.427831
\(297\) 0 0
\(298\) 4.56231 0.264287
\(299\) −20.1246 −1.16384
\(300\) 0 0
\(301\) −16.7082 −0.963045
\(302\) −1.59675 −0.0918825
\(303\) 0 0
\(304\) −3.14590 −0.180430
\(305\) 0 0
\(306\) 0 0
\(307\) 22.1246 1.26272 0.631359 0.775491i \(-0.282497\pi\)
0.631359 + 0.775491i \(0.282497\pi\)
\(308\) 11.8328 0.674237
\(309\) 0 0
\(310\) 0 0
\(311\) −19.0902 −1.08250 −0.541252 0.840860i \(-0.682050\pi\)
−0.541252 + 0.840860i \(0.682050\pi\)
\(312\) 0 0
\(313\) 19.9787 1.12926 0.564632 0.825343i \(-0.309018\pi\)
0.564632 + 0.825343i \(0.309018\pi\)
\(314\) −6.32624 −0.357010
\(315\) 0 0
\(316\) −13.4164 −0.754732
\(317\) 16.4164 0.922037 0.461019 0.887390i \(-0.347484\pi\)
0.461019 + 0.887390i \(0.347484\pi\)
\(318\) 0 0
\(319\) −0.416408 −0.0233144
\(320\) 0 0
\(321\) 0 0
\(322\) −9.27051 −0.516625
\(323\) −5.61803 −0.312596
\(324\) 0 0
\(325\) 0 0
\(326\) 3.43769 0.190396
\(327\) 0 0
\(328\) −15.9787 −0.882277
\(329\) 47.6869 2.62906
\(330\) 0 0
\(331\) 6.14590 0.337809 0.168905 0.985632i \(-0.445977\pi\)
0.168905 + 0.985632i \(0.445977\pi\)
\(332\) −13.5836 −0.745496
\(333\) 0 0
\(334\) 1.70820 0.0934688
\(335\) 0 0
\(336\) 0 0
\(337\) 18.4721 1.00624 0.503121 0.864216i \(-0.332185\pi\)
0.503121 + 0.864216i \(0.332185\pi\)
\(338\) −1.52786 −0.0831048
\(339\) 0 0
\(340\) 0 0
\(341\) 14.2705 0.772791
\(342\) 0 0
\(343\) 3.29180 0.177740
\(344\) −6.79837 −0.366544
\(345\) 0 0
\(346\) −1.27051 −0.0683030
\(347\) −14.5066 −0.778754 −0.389377 0.921078i \(-0.627310\pi\)
−0.389377 + 0.921078i \(0.627310\pi\)
\(348\) 0 0
\(349\) −18.9098 −1.01222 −0.506110 0.862469i \(-0.668917\pi\)
−0.506110 + 0.862469i \(0.668917\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 7.31308 0.389789
\(353\) 33.3262 1.77378 0.886888 0.461984i \(-0.152862\pi\)
0.886888 + 0.461984i \(0.152862\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.43769 0.341197
\(357\) 0 0
\(358\) 6.78522 0.358610
\(359\) −11.5279 −0.608417 −0.304209 0.952605i \(-0.598392\pi\)
−0.304209 + 0.952605i \(0.598392\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) −5.12461 −0.269344
\(363\) 0 0
\(364\) −20.1246 −1.05482
\(365\) 0 0
\(366\) 0 0
\(367\) 20.9098 1.09148 0.545742 0.837953i \(-0.316248\pi\)
0.545742 + 0.837953i \(0.316248\pi\)
\(368\) 21.1033 1.10009
\(369\) 0 0
\(370\) 0 0
\(371\) 5.00000 0.259587
\(372\) 0 0
\(373\) 35.2705 1.82624 0.913119 0.407693i \(-0.133667\pi\)
0.913119 + 0.407693i \(0.133667\pi\)
\(374\) 3.78522 0.195729
\(375\) 0 0
\(376\) 19.4033 1.00065
\(377\) 0.708204 0.0364744
\(378\) 0 0
\(379\) −2.56231 −0.131617 −0.0658084 0.997832i \(-0.520963\pi\)
−0.0658084 + 0.997832i \(0.520963\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 6.85410 0.350686
\(383\) −9.97871 −0.509888 −0.254944 0.966956i \(-0.582057\pi\)
−0.254944 + 0.966956i \(0.582057\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.32624 −0.169301
\(387\) 0 0
\(388\) −19.5836 −0.994206
\(389\) −18.0344 −0.914382 −0.457191 0.889368i \(-0.651145\pi\)
−0.457191 + 0.889368i \(0.651145\pi\)
\(390\) 0 0
\(391\) 37.6869 1.90591
\(392\) −8.96556 −0.452829
\(393\) 0 0
\(394\) 2.74265 0.138172
\(395\) 0 0
\(396\) 0 0
\(397\) −16.9443 −0.850409 −0.425204 0.905097i \(-0.639798\pi\)
−0.425204 + 0.905097i \(0.639798\pi\)
\(398\) 2.02129 0.101318
\(399\) 0 0
\(400\) 0 0
\(401\) −13.6525 −0.681772 −0.340886 0.940105i \(-0.610727\pi\)
−0.340886 + 0.940105i \(0.610727\pi\)
\(402\) 0 0
\(403\) −24.2705 −1.20900
\(404\) 2.83282 0.140938
\(405\) 0 0
\(406\) 0.326238 0.0161909
\(407\) −8.81966 −0.437174
\(408\) 0 0
\(409\) −16.7639 −0.828923 −0.414462 0.910067i \(-0.636030\pi\)
−0.414462 + 0.910067i \(0.636030\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.68692 0.0831085
\(413\) −49.9230 −2.45655
\(414\) 0 0
\(415\) 0 0
\(416\) −12.4377 −0.609808
\(417\) 0 0
\(418\) −0.673762 −0.0329548
\(419\) −3.27051 −0.159775 −0.0798874 0.996804i \(-0.525456\pi\)
−0.0798874 + 0.996804i \(0.525456\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) −8.94427 −0.435400
\(423\) 0 0
\(424\) 2.03444 0.0988012
\(425\) 0 0
\(426\) 0 0
\(427\) −22.0344 −1.06632
\(428\) 1.14590 0.0553891
\(429\) 0 0
\(430\) 0 0
\(431\) 7.76393 0.373975 0.186988 0.982362i \(-0.440128\pi\)
0.186988 + 0.982362i \(0.440128\pi\)
\(432\) 0 0
\(433\) −27.3050 −1.31219 −0.656096 0.754677i \(-0.727793\pi\)
−0.656096 + 0.754677i \(0.727793\pi\)
\(434\) −11.1803 −0.536673
\(435\) 0 0
\(436\) −16.6869 −0.799158
\(437\) −6.70820 −0.320897
\(438\) 0 0
\(439\) 1.38197 0.0659576 0.0329788 0.999456i \(-0.489501\pi\)
0.0329788 + 0.999456i \(0.489501\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −6.43769 −0.306210
\(443\) −22.4508 −1.06667 −0.533336 0.845903i \(-0.679062\pi\)
−0.533336 + 0.845903i \(0.679062\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −4.15905 −0.196937
\(447\) 0 0
\(448\) 17.0344 0.804802
\(449\) 4.50658 0.212679 0.106339 0.994330i \(-0.466087\pi\)
0.106339 + 0.994330i \(0.466087\pi\)
\(450\) 0 0
\(451\) 19.1459 0.901545
\(452\) 1.41641 0.0666222
\(453\) 0 0
\(454\) 2.36068 0.110792
\(455\) 0 0
\(456\) 0 0
\(457\) 17.6869 0.827359 0.413680 0.910423i \(-0.364243\pi\)
0.413680 + 0.910423i \(0.364243\pi\)
\(458\) 8.06888 0.377034
\(459\) 0 0
\(460\) 0 0
\(461\) 17.4721 0.813758 0.406879 0.913482i \(-0.366617\pi\)
0.406879 + 0.913482i \(0.366617\pi\)
\(462\) 0 0
\(463\) 0.673762 0.0313124 0.0156562 0.999877i \(-0.495016\pi\)
0.0156562 + 0.999877i \(0.495016\pi\)
\(464\) −0.742646 −0.0344765
\(465\) 0 0
\(466\) −4.77709 −0.221294
\(467\) 4.90983 0.227200 0.113600 0.993527i \(-0.463762\pi\)
0.113600 + 0.993527i \(0.463762\pi\)
\(468\) 0 0
\(469\) −28.9443 −1.33652
\(470\) 0 0
\(471\) 0 0
\(472\) −20.3131 −0.934985
\(473\) 8.14590 0.374549
\(474\) 0 0
\(475\) 0 0
\(476\) 37.6869 1.72738
\(477\) 0 0
\(478\) 9.20163 0.420873
\(479\) −19.5967 −0.895398 −0.447699 0.894184i \(-0.647756\pi\)
−0.447699 + 0.894184i \(0.647756\pi\)
\(480\) 0 0
\(481\) 15.0000 0.683941
\(482\) −6.00000 −0.273293
\(483\) 0 0
\(484\) 14.6262 0.664826
\(485\) 0 0
\(486\) 0 0
\(487\) 6.94427 0.314675 0.157337 0.987545i \(-0.449709\pi\)
0.157337 + 0.987545i \(0.449709\pi\)
\(488\) −8.96556 −0.405852
\(489\) 0 0
\(490\) 0 0
\(491\) 16.7984 0.758100 0.379050 0.925376i \(-0.376251\pi\)
0.379050 + 0.925376i \(0.376251\pi\)
\(492\) 0 0
\(493\) −1.32624 −0.0597308
\(494\) 1.14590 0.0515564
\(495\) 0 0
\(496\) 25.4508 1.14278
\(497\) 28.4164 1.27465
\(498\) 0 0
\(499\) 17.2918 0.774087 0.387044 0.922061i \(-0.373496\pi\)
0.387044 + 0.922061i \(0.373496\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.888544 −0.0396577
\(503\) 13.8541 0.617724 0.308862 0.951107i \(-0.400052\pi\)
0.308862 + 0.951107i \(0.400052\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 4.51973 0.200927
\(507\) 0 0
\(508\) −11.8967 −0.527830
\(509\) 34.6525 1.53594 0.767972 0.640483i \(-0.221266\pi\)
0.767972 + 0.640483i \(0.221266\pi\)
\(510\) 0 0
\(511\) 57.3607 2.53749
\(512\) 22.3050 0.985749
\(513\) 0 0
\(514\) −1.21478 −0.0535817
\(515\) 0 0
\(516\) 0 0
\(517\) −23.2492 −1.02250
\(518\) 6.90983 0.303601
\(519\) 0 0
\(520\) 0 0
\(521\) −0.326238 −0.0142927 −0.00714637 0.999974i \(-0.502275\pi\)
−0.00714637 + 0.999974i \(0.502275\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) −18.7082 −0.817272
\(525\) 0 0
\(526\) −5.02129 −0.218938
\(527\) 45.4508 1.97987
\(528\) 0 0
\(529\) 22.0000 0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) −6.70820 −0.290838
\(533\) −32.5623 −1.41043
\(534\) 0 0
\(535\) 0 0
\(536\) −11.7771 −0.508693
\(537\) 0 0
\(538\) −7.78522 −0.335645
\(539\) 10.7426 0.462719
\(540\) 0 0
\(541\) 17.0344 0.732368 0.366184 0.930542i \(-0.380664\pi\)
0.366184 + 0.930542i \(0.380664\pi\)
\(542\) 0.708204 0.0304200
\(543\) 0 0
\(544\) 23.2918 0.998628
\(545\) 0 0
\(546\) 0 0
\(547\) 1.50658 0.0644166 0.0322083 0.999481i \(-0.489746\pi\)
0.0322083 + 0.999481i \(0.489746\pi\)
\(548\) −30.1033 −1.28595
\(549\) 0 0
\(550\) 0 0
\(551\) 0.236068 0.0100568
\(552\) 0 0
\(553\) −26.1803 −1.11330
\(554\) −5.83282 −0.247813
\(555\) 0 0
\(556\) 3.27051 0.138701
\(557\) 20.2148 0.856528 0.428264 0.903654i \(-0.359125\pi\)
0.428264 + 0.903654i \(0.359125\pi\)
\(558\) 0 0
\(559\) −13.8541 −0.585966
\(560\) 0 0
\(561\) 0 0
\(562\) −1.24922 −0.0526953
\(563\) 30.2148 1.27340 0.636701 0.771111i \(-0.280299\pi\)
0.636701 + 0.771111i \(0.280299\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 8.20163 0.344740
\(567\) 0 0
\(568\) 11.5623 0.485144
\(569\) −29.6525 −1.24310 −0.621548 0.783376i \(-0.713496\pi\)
−0.621548 + 0.783376i \(0.713496\pi\)
\(570\) 0 0
\(571\) 31.4508 1.31618 0.658089 0.752941i \(-0.271365\pi\)
0.658089 + 0.752941i \(0.271365\pi\)
\(572\) 9.81153 0.410241
\(573\) 0 0
\(574\) −15.0000 −0.626088
\(575\) 0 0
\(576\) 0 0
\(577\) 9.83282 0.409345 0.204673 0.978830i \(-0.434387\pi\)
0.204673 + 0.978830i \(0.434387\pi\)
\(578\) 5.56231 0.231361
\(579\) 0 0
\(580\) 0 0
\(581\) −26.5066 −1.09968
\(582\) 0 0
\(583\) −2.43769 −0.100959
\(584\) 23.3394 0.965791
\(585\) 0 0
\(586\) 7.41641 0.306369
\(587\) −25.9443 −1.07083 −0.535417 0.844588i \(-0.679846\pi\)
−0.535417 + 0.844588i \(0.679846\pi\)
\(588\) 0 0
\(589\) −8.09017 −0.333350
\(590\) 0 0
\(591\) 0 0
\(592\) −15.7295 −0.646478
\(593\) 31.3607 1.28783 0.643914 0.765098i \(-0.277309\pi\)
0.643914 + 0.765098i \(0.277309\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −22.1459 −0.907131
\(597\) 0 0
\(598\) −7.68692 −0.314341
\(599\) 38.4508 1.57106 0.785530 0.618824i \(-0.212391\pi\)
0.785530 + 0.618824i \(0.212391\pi\)
\(600\) 0 0
\(601\) −9.00000 −0.367118 −0.183559 0.983009i \(-0.558762\pi\)
−0.183559 + 0.983009i \(0.558762\pi\)
\(602\) −6.38197 −0.260110
\(603\) 0 0
\(604\) 7.75078 0.315375
\(605\) 0 0
\(606\) 0 0
\(607\) −24.3607 −0.988769 −0.494385 0.869243i \(-0.664607\pi\)
−0.494385 + 0.869243i \(0.664607\pi\)
\(608\) −4.14590 −0.168138
\(609\) 0 0
\(610\) 0 0
\(611\) 39.5410 1.59966
\(612\) 0 0
\(613\) 32.5967 1.31657 0.658285 0.752769i \(-0.271282\pi\)
0.658285 + 0.752769i \(0.271282\pi\)
\(614\) 8.45085 0.341049
\(615\) 0 0
\(616\) 9.39512 0.378540
\(617\) 6.23607 0.251055 0.125527 0.992090i \(-0.459938\pi\)
0.125527 + 0.992090i \(0.459938\pi\)
\(618\) 0 0
\(619\) 19.4164 0.780411 0.390206 0.920728i \(-0.372404\pi\)
0.390206 + 0.920728i \(0.372404\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −7.29180 −0.292374
\(623\) 12.5623 0.503298
\(624\) 0 0
\(625\) 0 0
\(626\) 7.63119 0.305004
\(627\) 0 0
\(628\) 30.7082 1.22539
\(629\) −28.0902 −1.12003
\(630\) 0 0
\(631\) −1.29180 −0.0514256 −0.0257128 0.999669i \(-0.508186\pi\)
−0.0257128 + 0.999669i \(0.508186\pi\)
\(632\) −10.6525 −0.423733
\(633\) 0 0
\(634\) 6.27051 0.249034
\(635\) 0 0
\(636\) 0 0
\(637\) −18.2705 −0.723904
\(638\) −0.159054 −0.00629699
\(639\) 0 0
\(640\) 0 0
\(641\) 9.59675 0.379049 0.189524 0.981876i \(-0.439305\pi\)
0.189524 + 0.981876i \(0.439305\pi\)
\(642\) 0 0
\(643\) −22.9443 −0.904834 −0.452417 0.891807i \(-0.649438\pi\)
−0.452417 + 0.891807i \(0.649438\pi\)
\(644\) 45.0000 1.77325
\(645\) 0 0
\(646\) −2.14590 −0.0844292
\(647\) 22.8541 0.898487 0.449244 0.893409i \(-0.351693\pi\)
0.449244 + 0.893409i \(0.351693\pi\)
\(648\) 0 0
\(649\) 24.3394 0.955405
\(650\) 0 0
\(651\) 0 0
\(652\) −16.6869 −0.653510
\(653\) −37.0132 −1.44844 −0.724218 0.689571i \(-0.757799\pi\)
−0.724218 + 0.689571i \(0.757799\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 34.1459 1.33317
\(657\) 0 0
\(658\) 18.2148 0.710086
\(659\) −29.0689 −1.13236 −0.566181 0.824281i \(-0.691580\pi\)
−0.566181 + 0.824281i \(0.691580\pi\)
\(660\) 0 0
\(661\) −13.9787 −0.543709 −0.271854 0.962338i \(-0.587637\pi\)
−0.271854 + 0.962338i \(0.587637\pi\)
\(662\) 2.34752 0.0912391
\(663\) 0 0
\(664\) −10.7852 −0.418548
\(665\) 0 0
\(666\) 0 0
\(667\) −1.58359 −0.0613169
\(668\) −8.29180 −0.320819
\(669\) 0 0
\(670\) 0 0
\(671\) 10.7426 0.414715
\(672\) 0 0
\(673\) 16.5836 0.639250 0.319625 0.947544i \(-0.396443\pi\)
0.319625 + 0.947544i \(0.396443\pi\)
\(674\) 7.05573 0.271776
\(675\) 0 0
\(676\) 7.41641 0.285246
\(677\) −38.0689 −1.46311 −0.731553 0.681785i \(-0.761204\pi\)
−0.731553 + 0.681785i \(0.761204\pi\)
\(678\) 0 0
\(679\) −38.2148 −1.46655
\(680\) 0 0
\(681\) 0 0
\(682\) 5.45085 0.208724
\(683\) 21.0000 0.803543 0.401771 0.915740i \(-0.368395\pi\)
0.401771 + 0.915740i \(0.368395\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.25735 0.0480060
\(687\) 0 0
\(688\) 14.5279 0.553870
\(689\) 4.14590 0.157946
\(690\) 0 0
\(691\) 14.8197 0.563766 0.281883 0.959449i \(-0.409041\pi\)
0.281883 + 0.959449i \(0.409041\pi\)
\(692\) 6.16718 0.234441
\(693\) 0 0
\(694\) −5.54102 −0.210334
\(695\) 0 0
\(696\) 0 0
\(697\) 60.9787 2.30973
\(698\) −7.22291 −0.273391
\(699\) 0 0
\(700\) 0 0
\(701\) −34.1803 −1.29097 −0.645487 0.763771i \(-0.723345\pi\)
−0.645487 + 0.763771i \(0.723345\pi\)
\(702\) 0 0
\(703\) 5.00000 0.188579
\(704\) −8.30495 −0.313005
\(705\) 0 0
\(706\) 12.7295 0.479081
\(707\) 5.52786 0.207897
\(708\) 0 0
\(709\) 0.708204 0.0265972 0.0132986 0.999912i \(-0.495767\pi\)
0.0132986 + 0.999912i \(0.495767\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 5.11146 0.191560
\(713\) 54.2705 2.03245
\(714\) 0 0
\(715\) 0 0
\(716\) −32.9361 −1.23088
\(717\) 0 0
\(718\) −4.40325 −0.164328
\(719\) −1.47214 −0.0549014 −0.0274507 0.999623i \(-0.508739\pi\)
−0.0274507 + 0.999623i \(0.508739\pi\)
\(720\) 0 0
\(721\) 3.29180 0.122593
\(722\) −6.87539 −0.255875
\(723\) 0 0
\(724\) 24.8754 0.924487
\(725\) 0 0
\(726\) 0 0
\(727\) 4.41641 0.163796 0.0818978 0.996641i \(-0.473902\pi\)
0.0818978 + 0.996641i \(0.473902\pi\)
\(728\) −15.9787 −0.592211
\(729\) 0 0
\(730\) 0 0
\(731\) 25.9443 0.959584
\(732\) 0 0
\(733\) 7.05573 0.260609 0.130305 0.991474i \(-0.458404\pi\)
0.130305 + 0.991474i \(0.458404\pi\)
\(734\) 7.98684 0.294800
\(735\) 0 0
\(736\) 27.8115 1.02515
\(737\) 14.1115 0.519802
\(738\) 0 0
\(739\) 40.2705 1.48137 0.740687 0.671850i \(-0.234500\pi\)
0.740687 + 0.671850i \(0.234500\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.90983 0.0701121
\(743\) −40.0689 −1.46998 −0.734992 0.678075i \(-0.762814\pi\)
−0.734992 + 0.678075i \(0.762814\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 13.4721 0.493250
\(747\) 0 0
\(748\) −18.3738 −0.671814
\(749\) 2.23607 0.0817041
\(750\) 0 0
\(751\) −0.785218 −0.0286530 −0.0143265 0.999897i \(-0.504560\pi\)
−0.0143265 + 0.999897i \(0.504560\pi\)
\(752\) −41.4640 −1.51204
\(753\) 0 0
\(754\) 0.270510 0.00985139
\(755\) 0 0
\(756\) 0 0
\(757\) 11.6525 0.423516 0.211758 0.977322i \(-0.432081\pi\)
0.211758 + 0.977322i \(0.432081\pi\)
\(758\) −0.978714 −0.0355485
\(759\) 0 0
\(760\) 0 0
\(761\) 35.0689 1.27125 0.635623 0.772000i \(-0.280743\pi\)
0.635623 + 0.772000i \(0.280743\pi\)
\(762\) 0 0
\(763\) −32.5623 −1.17883
\(764\) −33.2705 −1.20368
\(765\) 0 0
\(766\) −3.81153 −0.137716
\(767\) −41.3951 −1.49469
\(768\) 0 0
\(769\) −16.9443 −0.611026 −0.305513 0.952188i \(-0.598828\pi\)
−0.305513 + 0.952188i \(0.598828\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 16.1459 0.581104
\(773\) 21.0000 0.755318 0.377659 0.925945i \(-0.376729\pi\)
0.377659 + 0.925945i \(0.376729\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −15.5492 −0.558182
\(777\) 0 0
\(778\) −6.88854 −0.246966
\(779\) −10.8541 −0.388889
\(780\) 0 0
\(781\) −13.8541 −0.495739
\(782\) 14.3951 0.514768
\(783\) 0 0
\(784\) 19.1591 0.684252
\(785\) 0 0
\(786\) 0 0
\(787\) 14.4377 0.514648 0.257324 0.966325i \(-0.417159\pi\)
0.257324 + 0.966325i \(0.417159\pi\)
\(788\) −13.3131 −0.474259
\(789\) 0 0
\(790\) 0 0
\(791\) 2.76393 0.0982741
\(792\) 0 0
\(793\) −18.2705 −0.648805
\(794\) −6.47214 −0.229688
\(795\) 0 0
\(796\) −9.81153 −0.347760
\(797\) −32.3262 −1.14505 −0.572527 0.819886i \(-0.694037\pi\)
−0.572527 + 0.819886i \(0.694037\pi\)
\(798\) 0 0
\(799\) −74.0476 −2.61962
\(800\) 0 0
\(801\) 0 0
\(802\) −5.21478 −0.184140
\(803\) −27.9656 −0.986883
\(804\) 0 0
\(805\) 0 0
\(806\) −9.27051 −0.326540
\(807\) 0 0
\(808\) 2.24922 0.0791274
\(809\) −19.7984 −0.696074 −0.348037 0.937481i \(-0.613152\pi\)
−0.348037 + 0.937481i \(0.613152\pi\)
\(810\) 0 0
\(811\) −0.0344419 −0.00120942 −0.000604709 1.00000i \(-0.500192\pi\)
−0.000604709 1.00000i \(0.500192\pi\)
\(812\) −1.58359 −0.0555732
\(813\) 0 0
\(814\) −3.36881 −0.118077
\(815\) 0 0
\(816\) 0 0
\(817\) −4.61803 −0.161565
\(818\) −6.40325 −0.223884
\(819\) 0 0
\(820\) 0 0
\(821\) 8.23607 0.287441 0.143720 0.989618i \(-0.454093\pi\)
0.143720 + 0.989618i \(0.454093\pi\)
\(822\) 0 0
\(823\) −54.3607 −1.89489 −0.947447 0.319913i \(-0.896346\pi\)
−0.947447 + 0.319913i \(0.896346\pi\)
\(824\) 1.33939 0.0466600
\(825\) 0 0
\(826\) −19.0689 −0.663491
\(827\) 17.3262 0.602492 0.301246 0.953546i \(-0.402597\pi\)
0.301246 + 0.953546i \(0.402597\pi\)
\(828\) 0 0
\(829\) −45.1246 −1.56724 −0.783621 0.621239i \(-0.786630\pi\)
−0.783621 + 0.621239i \(0.786630\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 14.1246 0.489683
\(833\) 34.2148 1.18547
\(834\) 0 0
\(835\) 0 0
\(836\) 3.27051 0.113113
\(837\) 0 0
\(838\) −1.24922 −0.0431537
\(839\) −0.527864 −0.0182239 −0.00911195 0.999958i \(-0.502900\pi\)
−0.00911195 + 0.999958i \(0.502900\pi\)
\(840\) 0 0
\(841\) −28.9443 −0.998078
\(842\) −9.93112 −0.342249
\(843\) 0 0
\(844\) 43.4164 1.49445
\(845\) 0 0
\(846\) 0 0
\(847\) 28.5410 0.980681
\(848\) −4.34752 −0.149295
\(849\) 0 0
\(850\) 0 0
\(851\) −33.5410 −1.14977
\(852\) 0 0
\(853\) −9.29180 −0.318145 −0.159073 0.987267i \(-0.550850\pi\)
−0.159073 + 0.987267i \(0.550850\pi\)
\(854\) −8.41641 −0.288004
\(855\) 0 0
\(856\) 0.909830 0.0310974
\(857\) −10.2148 −0.348930 −0.174465 0.984663i \(-0.555820\pi\)
−0.174465 + 0.984663i \(0.555820\pi\)
\(858\) 0 0
\(859\) −8.81966 −0.300923 −0.150461 0.988616i \(-0.548076\pi\)
−0.150461 + 0.988616i \(0.548076\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2.96556 0.101007
\(863\) 32.2148 1.09660 0.548302 0.836280i \(-0.315274\pi\)
0.548302 + 0.836280i \(0.315274\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −10.4296 −0.354411
\(867\) 0 0
\(868\) 54.2705 1.84206
\(869\) 12.7639 0.432987
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) −13.2492 −0.448675
\(873\) 0 0
\(874\) −2.56231 −0.0866713
\(875\) 0 0
\(876\) 0 0
\(877\) 33.9443 1.14622 0.573108 0.819480i \(-0.305737\pi\)
0.573108 + 0.819480i \(0.305737\pi\)
\(878\) 0.527864 0.0178145
\(879\) 0 0
\(880\) 0 0
\(881\) −46.7639 −1.57552 −0.787758 0.615984i \(-0.788758\pi\)
−0.787758 + 0.615984i \(0.788758\pi\)
\(882\) 0 0
\(883\) −7.94427 −0.267346 −0.133673 0.991025i \(-0.542677\pi\)
−0.133673 + 0.991025i \(0.542677\pi\)
\(884\) 31.2492 1.05103
\(885\) 0 0
\(886\) −8.57546 −0.288098
\(887\) 54.3050 1.82338 0.911691 0.410877i \(-0.134777\pi\)
0.911691 + 0.410877i \(0.134777\pi\)
\(888\) 0 0
\(889\) −23.2148 −0.778599
\(890\) 0 0
\(891\) 0 0
\(892\) 20.1885 0.675960
\(893\) 13.1803 0.441063
\(894\) 0 0
\(895\) 0 0
\(896\) 36.5066 1.21960
\(897\) 0 0
\(898\) 1.72136 0.0574425
\(899\) −1.90983 −0.0636964
\(900\) 0 0
\(901\) −7.76393 −0.258654
\(902\) 7.31308 0.243499
\(903\) 0 0
\(904\) 1.12461 0.0374040
\(905\) 0 0
\(906\) 0 0
\(907\) −51.5410 −1.71139 −0.855696 0.517479i \(-0.826870\pi\)
−0.855696 + 0.517479i \(0.826870\pi\)
\(908\) −11.4590 −0.380280
\(909\) 0 0
\(910\) 0 0
\(911\) 12.2705 0.406540 0.203270 0.979123i \(-0.434843\pi\)
0.203270 + 0.979123i \(0.434843\pi\)
\(912\) 0 0
\(913\) 12.9230 0.427688
\(914\) 6.75580 0.223462
\(915\) 0 0
\(916\) −39.1672 −1.29412
\(917\) −36.5066 −1.20555
\(918\) 0 0
\(919\) −39.2705 −1.29541 −0.647707 0.761889i \(-0.724272\pi\)
−0.647707 + 0.761889i \(0.724272\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 6.67376 0.219789
\(923\) 23.5623 0.775563
\(924\) 0 0
\(925\) 0 0
\(926\) 0.257354 0.00845718
\(927\) 0 0
\(928\) −0.978714 −0.0321279
\(929\) −28.9230 −0.948932 −0.474466 0.880274i \(-0.657359\pi\)
−0.474466 + 0.880274i \(0.657359\pi\)
\(930\) 0 0
\(931\) −6.09017 −0.199597
\(932\) 23.1885 0.759564
\(933\) 0 0
\(934\) 1.87539 0.0613646
\(935\) 0 0
\(936\) 0 0
\(937\) −29.8197 −0.974166 −0.487083 0.873356i \(-0.661939\pi\)
−0.487083 + 0.873356i \(0.661939\pi\)
\(938\) −11.0557 −0.360982
\(939\) 0 0
\(940\) 0 0
\(941\) −32.5623 −1.06150 −0.530750 0.847528i \(-0.678090\pi\)
−0.530750 + 0.847528i \(0.678090\pi\)
\(942\) 0 0
\(943\) 72.8115 2.37107
\(944\) 43.4083 1.41282
\(945\) 0 0
\(946\) 3.11146 0.101162
\(947\) −38.8885 −1.26371 −0.631854 0.775087i \(-0.717706\pi\)
−0.631854 + 0.775087i \(0.717706\pi\)
\(948\) 0 0
\(949\) 47.5623 1.54394
\(950\) 0 0
\(951\) 0 0
\(952\) 29.9230 0.969810
\(953\) 7.92299 0.256651 0.128325 0.991732i \(-0.459040\pi\)
0.128325 + 0.991732i \(0.459040\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −44.6656 −1.44459
\(957\) 0 0
\(958\) −7.48529 −0.241839
\(959\) −58.7426 −1.89690
\(960\) 0 0
\(961\) 34.4508 1.11132
\(962\) 5.72949 0.184726
\(963\) 0 0
\(964\) 29.1246 0.938041
\(965\) 0 0
\(966\) 0 0
\(967\) −20.4164 −0.656547 −0.328274 0.944583i \(-0.606467\pi\)
−0.328274 + 0.944583i \(0.606467\pi\)
\(968\) 11.6130 0.373256
\(969\) 0 0
\(970\) 0 0
\(971\) −39.5967 −1.27072 −0.635360 0.772216i \(-0.719148\pi\)
−0.635360 + 0.772216i \(0.719148\pi\)
\(972\) 0 0
\(973\) 6.38197 0.204596
\(974\) 2.65248 0.0849908
\(975\) 0 0
\(976\) 19.1591 0.613266
\(977\) −43.8541 −1.40302 −0.701509 0.712661i \(-0.747490\pi\)
−0.701509 + 0.712661i \(0.747490\pi\)
\(978\) 0 0
\(979\) −6.12461 −0.195743
\(980\) 0 0
\(981\) 0 0
\(982\) 6.41641 0.204756
\(983\) −2.03444 −0.0648886 −0.0324443 0.999474i \(-0.510329\pi\)
−0.0324443 + 0.999474i \(0.510329\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −0.506578 −0.0161327
\(987\) 0 0
\(988\) −5.56231 −0.176961
\(989\) 30.9787 0.985066
\(990\) 0 0
\(991\) −32.1459 −1.02115 −0.510574 0.859834i \(-0.670567\pi\)
−0.510574 + 0.859834i \(0.670567\pi\)
\(992\) 33.5410 1.06493
\(993\) 0 0
\(994\) 10.8541 0.344271
\(995\) 0 0
\(996\) 0 0
\(997\) −43.7214 −1.38467 −0.692335 0.721577i \(-0.743418\pi\)
−0.692335 + 0.721577i \(0.743418\pi\)
\(998\) 6.60488 0.209074
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1125.2.a.f.1.1 2
3.2 odd 2 375.2.a.a.1.2 2
5.2 odd 4 1125.2.b.b.874.3 4
5.3 odd 4 1125.2.b.b.874.2 4
5.4 even 2 1125.2.a.a.1.2 2
12.11 even 2 6000.2.a.m.1.2 2
15.2 even 4 375.2.b.a.124.2 4
15.8 even 4 375.2.b.a.124.3 4
15.14 odd 2 375.2.a.d.1.1 yes 2
60.23 odd 4 6000.2.f.n.1249.1 4
60.47 odd 4 6000.2.f.n.1249.4 4
60.59 even 2 6000.2.a.q.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
375.2.a.a.1.2 2 3.2 odd 2
375.2.a.d.1.1 yes 2 15.14 odd 2
375.2.b.a.124.2 4 15.2 even 4
375.2.b.a.124.3 4 15.8 even 4
1125.2.a.a.1.2 2 5.4 even 2
1125.2.a.f.1.1 2 1.1 even 1 trivial
1125.2.b.b.874.2 4 5.3 odd 4
1125.2.b.b.874.3 4 5.2 odd 4
6000.2.a.m.1.2 2 12.11 even 2
6000.2.a.q.1.1 2 60.59 even 2
6000.2.f.n.1249.1 4 60.23 odd 4
6000.2.f.n.1249.4 4 60.47 odd 4