Properties

Label 375.2.b.a.124.3
Level $375$
Weight $2$
Character 375.124
Analytic conductor $2.994$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [375,2,Mod(124,375)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(375, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("375.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 124.3
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 375.124
Dual form 375.2.b.a.124.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.381966i q^{2} +1.00000i q^{3} +1.85410 q^{4} -0.381966 q^{6} +3.61803i q^{7} +1.47214i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+0.381966i q^{2} +1.00000i q^{3} +1.85410 q^{4} -0.381966 q^{6} +3.61803i q^{7} +1.47214i q^{8} -1.00000 q^{9} -1.76393 q^{11} +1.85410i q^{12} -3.00000i q^{13} -1.38197 q^{14} +3.14590 q^{16} +5.61803i q^{17} -0.381966i q^{18} +1.00000 q^{19} -3.61803 q^{21} -0.673762i q^{22} -6.70820i q^{23} -1.47214 q^{24} +1.14590 q^{26} -1.00000i q^{27} +6.70820i q^{28} -0.236068 q^{29} +8.09017 q^{31} +4.14590i q^{32} -1.76393i q^{33} -2.14590 q^{34} -1.85410 q^{36} +5.00000i q^{37} +0.381966i q^{38} +3.00000 q^{39} -10.8541 q^{41} -1.38197i q^{42} +4.61803i q^{43} -3.27051 q^{44} +2.56231 q^{46} -13.1803i q^{47} +3.14590i q^{48} -6.09017 q^{49} -5.61803 q^{51} -5.56231i q^{52} +1.38197i q^{53} +0.381966 q^{54} -5.32624 q^{56} +1.00000i q^{57} -0.0901699i q^{58} +13.7984 q^{59} +6.09017 q^{61} +3.09017i q^{62} -3.61803i q^{63} +4.70820 q^{64} +0.673762 q^{66} -8.00000i q^{67} +10.4164i q^{68} +6.70820 q^{69} +7.85410 q^{71} -1.47214i q^{72} -15.8541i q^{73} -1.90983 q^{74} +1.85410 q^{76} -6.38197i q^{77} +1.14590i q^{78} -7.23607 q^{79} +1.00000 q^{81} -4.14590i q^{82} -7.32624i q^{83} -6.70820 q^{84} -1.76393 q^{86} -0.236068i q^{87} -2.59675i q^{88} -3.47214 q^{89} +10.8541 q^{91} -12.4377i q^{92} +8.09017i q^{93} +5.03444 q^{94} -4.14590 q^{96} -10.5623i q^{97} -2.32624i q^{98} +1.76393 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{4} - 6 q^{6} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{4} - 6 q^{6} - 4 q^{9} - 16 q^{11} - 10 q^{14} + 26 q^{16} + 4 q^{19} - 10 q^{21} + 12 q^{24} + 18 q^{26} + 8 q^{29} + 10 q^{31} - 22 q^{34} + 6 q^{36} + 12 q^{39} - 30 q^{41} + 54 q^{44} - 30 q^{46} - 2 q^{49} - 18 q^{51} + 6 q^{54} + 10 q^{56} + 6 q^{59} + 2 q^{61} - 8 q^{64} + 34 q^{66} + 18 q^{71} - 30 q^{74} - 6 q^{76} - 20 q^{79} + 4 q^{81} - 16 q^{86} + 4 q^{89} + 30 q^{91} - 38 q^{94} - 30 q^{96} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.381966i 0.270091i 0.990839 + 0.135045i \(0.0431180\pi\)
−0.990839 + 0.135045i \(0.956882\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.85410 0.927051
\(5\) 0 0
\(6\) −0.381966 −0.155937
\(7\) 3.61803i 1.36749i 0.729722 + 0.683744i \(0.239650\pi\)
−0.729722 + 0.683744i \(0.760350\pi\)
\(8\) 1.47214i 0.520479i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.76393 −0.531846 −0.265923 0.963994i \(-0.585677\pi\)
−0.265923 + 0.963994i \(0.585677\pi\)
\(12\) 1.85410i 0.535233i
\(13\) − 3.00000i − 0.832050i −0.909353 0.416025i \(-0.863423\pi\)
0.909353 0.416025i \(-0.136577\pi\)
\(14\) −1.38197 −0.369346
\(15\) 0 0
\(16\) 3.14590 0.786475
\(17\) 5.61803i 1.36257i 0.732017 + 0.681287i \(0.238579\pi\)
−0.732017 + 0.681287i \(0.761421\pi\)
\(18\) − 0.381966i − 0.0900303i
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) −3.61803 −0.789520
\(22\) − 0.673762i − 0.143647i
\(23\) − 6.70820i − 1.39876i −0.714751 0.699379i \(-0.753460\pi\)
0.714751 0.699379i \(-0.246540\pi\)
\(24\) −1.47214 −0.300498
\(25\) 0 0
\(26\) 1.14590 0.224729
\(27\) − 1.00000i − 0.192450i
\(28\) 6.70820i 1.26773i
\(29\) −0.236068 −0.0438367 −0.0219184 0.999760i \(-0.506977\pi\)
−0.0219184 + 0.999760i \(0.506977\pi\)
\(30\) 0 0
\(31\) 8.09017 1.45304 0.726519 0.687147i \(-0.241137\pi\)
0.726519 + 0.687147i \(0.241137\pi\)
\(32\) 4.14590i 0.732898i
\(33\) − 1.76393i − 0.307061i
\(34\) −2.14590 −0.368018
\(35\) 0 0
\(36\) −1.85410 −0.309017
\(37\) 5.00000i 0.821995i 0.911636 + 0.410997i \(0.134819\pi\)
−0.911636 + 0.410997i \(0.865181\pi\)
\(38\) 0.381966i 0.0619631i
\(39\) 3.00000 0.480384
\(40\) 0 0
\(41\) −10.8541 −1.69513 −0.847563 0.530695i \(-0.821931\pi\)
−0.847563 + 0.530695i \(0.821931\pi\)
\(42\) − 1.38197i − 0.213242i
\(43\) 4.61803i 0.704244i 0.935954 + 0.352122i \(0.114540\pi\)
−0.935954 + 0.352122i \(0.885460\pi\)
\(44\) −3.27051 −0.493048
\(45\) 0 0
\(46\) 2.56231 0.377791
\(47\) − 13.1803i − 1.92255i −0.275591 0.961275i \(-0.588873\pi\)
0.275591 0.961275i \(-0.411127\pi\)
\(48\) 3.14590i 0.454071i
\(49\) −6.09017 −0.870024
\(50\) 0 0
\(51\) −5.61803 −0.786682
\(52\) − 5.56231i − 0.771353i
\(53\) 1.38197i 0.189828i 0.995485 + 0.0949138i \(0.0302576\pi\)
−0.995485 + 0.0949138i \(0.969742\pi\)
\(54\) 0.381966 0.0519790
\(55\) 0 0
\(56\) −5.32624 −0.711748
\(57\) 1.00000i 0.132453i
\(58\) − 0.0901699i − 0.0118399i
\(59\) 13.7984 1.79640 0.898198 0.439592i \(-0.144877\pi\)
0.898198 + 0.439592i \(0.144877\pi\)
\(60\) 0 0
\(61\) 6.09017 0.779766 0.389883 0.920864i \(-0.372515\pi\)
0.389883 + 0.920864i \(0.372515\pi\)
\(62\) 3.09017i 0.392452i
\(63\) − 3.61803i − 0.455829i
\(64\) 4.70820 0.588525
\(65\) 0 0
\(66\) 0.673762 0.0829344
\(67\) − 8.00000i − 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 10.4164i 1.26317i
\(69\) 6.70820 0.807573
\(70\) 0 0
\(71\) 7.85410 0.932110 0.466055 0.884756i \(-0.345675\pi\)
0.466055 + 0.884756i \(0.345675\pi\)
\(72\) − 1.47214i − 0.173493i
\(73\) − 15.8541i − 1.85558i −0.373100 0.927791i \(-0.621705\pi\)
0.373100 0.927791i \(-0.378295\pi\)
\(74\) −1.90983 −0.222013
\(75\) 0 0
\(76\) 1.85410 0.212680
\(77\) − 6.38197i − 0.727293i
\(78\) 1.14590i 0.129747i
\(79\) −7.23607 −0.814121 −0.407061 0.913401i \(-0.633446\pi\)
−0.407061 + 0.913401i \(0.633446\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 4.14590i − 0.457838i
\(83\) − 7.32624i − 0.804159i −0.915605 0.402080i \(-0.868288\pi\)
0.915605 0.402080i \(-0.131712\pi\)
\(84\) −6.70820 −0.731925
\(85\) 0 0
\(86\) −1.76393 −0.190210
\(87\) − 0.236068i − 0.0253091i
\(88\) − 2.59675i − 0.276814i
\(89\) −3.47214 −0.368046 −0.184023 0.982922i \(-0.558912\pi\)
−0.184023 + 0.982922i \(0.558912\pi\)
\(90\) 0 0
\(91\) 10.8541 1.13782
\(92\) − 12.4377i − 1.29672i
\(93\) 8.09017i 0.838912i
\(94\) 5.03444 0.519263
\(95\) 0 0
\(96\) −4.14590 −0.423139
\(97\) − 10.5623i − 1.07244i −0.844078 0.536220i \(-0.819852\pi\)
0.844078 0.536220i \(-0.180148\pi\)
\(98\) − 2.32624i − 0.234986i
\(99\) 1.76393 0.177282
\(100\) 0 0
\(101\) 1.52786 0.152028 0.0760141 0.997107i \(-0.475781\pi\)
0.0760141 + 0.997107i \(0.475781\pi\)
\(102\) − 2.14590i − 0.212476i
\(103\) − 0.909830i − 0.0896482i −0.998995 0.0448241i \(-0.985727\pi\)
0.998995 0.0448241i \(-0.0142727\pi\)
\(104\) 4.41641 0.433064
\(105\) 0 0
\(106\) −0.527864 −0.0512707
\(107\) − 0.618034i − 0.0597476i −0.999554 0.0298738i \(-0.990489\pi\)
0.999554 0.0298738i \(-0.00951054\pi\)
\(108\) − 1.85410i − 0.178411i
\(109\) −9.00000 −0.862044 −0.431022 0.902342i \(-0.641847\pi\)
−0.431022 + 0.902342i \(0.641847\pi\)
\(110\) 0 0
\(111\) −5.00000 −0.474579
\(112\) 11.3820i 1.07549i
\(113\) 0.763932i 0.0718647i 0.999354 + 0.0359323i \(0.0114401\pi\)
−0.999354 + 0.0359323i \(0.988560\pi\)
\(114\) −0.381966 −0.0357744
\(115\) 0 0
\(116\) −0.437694 −0.0406389
\(117\) 3.00000i 0.277350i
\(118\) 5.27051i 0.485190i
\(119\) −20.3262 −1.86330
\(120\) 0 0
\(121\) −7.88854 −0.717140
\(122\) 2.32624i 0.210608i
\(123\) − 10.8541i − 0.978681i
\(124\) 15.0000 1.34704
\(125\) 0 0
\(126\) 1.38197 0.123115
\(127\) − 6.41641i − 0.569364i −0.958622 0.284682i \(-0.908112\pi\)
0.958622 0.284682i \(-0.0918880\pi\)
\(128\) 10.0902i 0.891853i
\(129\) −4.61803 −0.406595
\(130\) 0 0
\(131\) −10.0902 −0.881582 −0.440791 0.897610i \(-0.645302\pi\)
−0.440791 + 0.897610i \(0.645302\pi\)
\(132\) − 3.27051i − 0.284661i
\(133\) 3.61803i 0.313723i
\(134\) 3.05573 0.263975
\(135\) 0 0
\(136\) −8.27051 −0.709190
\(137\) 16.2361i 1.38714i 0.720389 + 0.693570i \(0.243963\pi\)
−0.720389 + 0.693570i \(0.756037\pi\)
\(138\) 2.56231i 0.218118i
\(139\) 1.76393 0.149615 0.0748074 0.997198i \(-0.476166\pi\)
0.0748074 + 0.997198i \(0.476166\pi\)
\(140\) 0 0
\(141\) 13.1803 1.10998
\(142\) 3.00000i 0.251754i
\(143\) 5.29180i 0.442522i
\(144\) −3.14590 −0.262158
\(145\) 0 0
\(146\) 6.05573 0.501176
\(147\) − 6.09017i − 0.502309i
\(148\) 9.27051i 0.762031i
\(149\) 11.9443 0.978513 0.489256 0.872140i \(-0.337268\pi\)
0.489256 + 0.872140i \(0.337268\pi\)
\(150\) 0 0
\(151\) −4.18034 −0.340191 −0.170096 0.985428i \(-0.554408\pi\)
−0.170096 + 0.985428i \(0.554408\pi\)
\(152\) 1.47214i 0.119406i
\(153\) − 5.61803i − 0.454191i
\(154\) 2.43769 0.196435
\(155\) 0 0
\(156\) 5.56231 0.445341
\(157\) 16.5623i 1.32182i 0.750467 + 0.660908i \(0.229829\pi\)
−0.750467 + 0.660908i \(0.770171\pi\)
\(158\) − 2.76393i − 0.219887i
\(159\) −1.38197 −0.109597
\(160\) 0 0
\(161\) 24.2705 1.91278
\(162\) 0.381966i 0.0300101i
\(163\) 9.00000i 0.704934i 0.935824 + 0.352467i \(0.114657\pi\)
−0.935824 + 0.352467i \(0.885343\pi\)
\(164\) −20.1246 −1.57147
\(165\) 0 0
\(166\) 2.79837 0.217196
\(167\) 4.47214i 0.346064i 0.984916 + 0.173032i \(0.0553564\pi\)
−0.984916 + 0.173032i \(0.944644\pi\)
\(168\) − 5.32624i − 0.410928i
\(169\) 4.00000 0.307692
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 8.56231i 0.652870i
\(173\) 3.32624i 0.252889i 0.991974 + 0.126445i \(0.0403566\pi\)
−0.991974 + 0.126445i \(0.959643\pi\)
\(174\) 0.0901699 0.00683577
\(175\) 0 0
\(176\) −5.54915 −0.418283
\(177\) 13.7984i 1.03715i
\(178\) − 1.32624i − 0.0994057i
\(179\) 17.7639 1.32774 0.663869 0.747849i \(-0.268913\pi\)
0.663869 + 0.747849i \(0.268913\pi\)
\(180\) 0 0
\(181\) −13.4164 −0.997234 −0.498617 0.866822i \(-0.666159\pi\)
−0.498617 + 0.866822i \(0.666159\pi\)
\(182\) 4.14590i 0.307314i
\(183\) 6.09017i 0.450198i
\(184\) 9.87539 0.728023
\(185\) 0 0
\(186\) −3.09017 −0.226582
\(187\) − 9.90983i − 0.724679i
\(188\) − 24.4377i − 1.78230i
\(189\) 3.61803 0.263173
\(190\) 0 0
\(191\) −17.9443 −1.29840 −0.649201 0.760617i \(-0.724897\pi\)
−0.649201 + 0.760617i \(0.724897\pi\)
\(192\) 4.70820i 0.339785i
\(193\) − 8.70820i − 0.626830i −0.949616 0.313415i \(-0.898527\pi\)
0.949616 0.313415i \(-0.101473\pi\)
\(194\) 4.03444 0.289656
\(195\) 0 0
\(196\) −11.2918 −0.806557
\(197\) 7.18034i 0.511578i 0.966733 + 0.255789i \(0.0823352\pi\)
−0.966733 + 0.255789i \(0.917665\pi\)
\(198\) 0.673762i 0.0478822i
\(199\) −5.29180 −0.375125 −0.187563 0.982253i \(-0.560059\pi\)
−0.187563 + 0.982253i \(0.560059\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0.583592i 0.0410614i
\(203\) − 0.854102i − 0.0599462i
\(204\) −10.4164 −0.729294
\(205\) 0 0
\(206\) 0.347524 0.0242132
\(207\) 6.70820i 0.466252i
\(208\) − 9.43769i − 0.654386i
\(209\) −1.76393 −0.122014
\(210\) 0 0
\(211\) −23.4164 −1.61205 −0.806026 0.591880i \(-0.798386\pi\)
−0.806026 + 0.591880i \(0.798386\pi\)
\(212\) 2.56231i 0.175980i
\(213\) 7.85410i 0.538154i
\(214\) 0.236068 0.0161373
\(215\) 0 0
\(216\) 1.47214 0.100166
\(217\) 29.2705i 1.98701i
\(218\) − 3.43769i − 0.232830i
\(219\) 15.8541 1.07132
\(220\) 0 0
\(221\) 16.8541 1.13373
\(222\) − 1.90983i − 0.128179i
\(223\) − 10.8885i − 0.729151i −0.931174 0.364575i \(-0.881214\pi\)
0.931174 0.364575i \(-0.118786\pi\)
\(224\) −15.0000 −1.00223
\(225\) 0 0
\(226\) −0.291796 −0.0194100
\(227\) 6.18034i 0.410204i 0.978741 + 0.205102i \(0.0657525\pi\)
−0.978741 + 0.205102i \(0.934247\pi\)
\(228\) 1.85410i 0.122791i
\(229\) −21.1246 −1.39595 −0.697977 0.716120i \(-0.745916\pi\)
−0.697977 + 0.716120i \(0.745916\pi\)
\(230\) 0 0
\(231\) 6.38197 0.419903
\(232\) − 0.347524i − 0.0228161i
\(233\) 12.5066i 0.819333i 0.912235 + 0.409667i \(0.134355\pi\)
−0.912235 + 0.409667i \(0.865645\pi\)
\(234\) −1.14590 −0.0749097
\(235\) 0 0
\(236\) 25.5836 1.66535
\(237\) − 7.23607i − 0.470033i
\(238\) − 7.76393i − 0.503261i
\(239\) 24.0902 1.55826 0.779132 0.626860i \(-0.215660\pi\)
0.779132 + 0.626860i \(0.215660\pi\)
\(240\) 0 0
\(241\) −15.7082 −1.01185 −0.505927 0.862576i \(-0.668850\pi\)
−0.505927 + 0.862576i \(0.668850\pi\)
\(242\) − 3.01316i − 0.193693i
\(243\) 1.00000i 0.0641500i
\(244\) 11.2918 0.722883
\(245\) 0 0
\(246\) 4.14590 0.264333
\(247\) − 3.00000i − 0.190885i
\(248\) 11.9098i 0.756275i
\(249\) 7.32624 0.464281
\(250\) 0 0
\(251\) 2.32624 0.146831 0.0734154 0.997301i \(-0.476610\pi\)
0.0734154 + 0.997301i \(0.476610\pi\)
\(252\) − 6.70820i − 0.422577i
\(253\) 11.8328i 0.743923i
\(254\) 2.45085 0.153780
\(255\) 0 0
\(256\) 5.56231 0.347644
\(257\) − 3.18034i − 0.198384i −0.995068 0.0991921i \(-0.968374\pi\)
0.995068 0.0991921i \(-0.0316258\pi\)
\(258\) − 1.76393i − 0.109818i
\(259\) −18.0902 −1.12407
\(260\) 0 0
\(261\) 0.236068 0.0146122
\(262\) − 3.85410i − 0.238107i
\(263\) 13.1459i 0.810611i 0.914181 + 0.405305i \(0.132835\pi\)
−0.914181 + 0.405305i \(0.867165\pi\)
\(264\) 2.59675 0.159819
\(265\) 0 0
\(266\) −1.38197 −0.0847338
\(267\) − 3.47214i − 0.212491i
\(268\) − 14.8328i − 0.906058i
\(269\) −20.3820 −1.24271 −0.621355 0.783529i \(-0.713418\pi\)
−0.621355 + 0.783529i \(0.713418\pi\)
\(270\) 0 0
\(271\) 1.85410 0.112629 0.0563143 0.998413i \(-0.482065\pi\)
0.0563143 + 0.998413i \(0.482065\pi\)
\(272\) 17.6738i 1.07163i
\(273\) 10.8541i 0.656920i
\(274\) −6.20163 −0.374654
\(275\) 0 0
\(276\) 12.4377 0.748661
\(277\) 15.2705i 0.917516i 0.888561 + 0.458758i \(0.151706\pi\)
−0.888561 + 0.458758i \(0.848294\pi\)
\(278\) 0.673762i 0.0404096i
\(279\) −8.09017 −0.484346
\(280\) 0 0
\(281\) 3.27051 0.195102 0.0975511 0.995231i \(-0.468899\pi\)
0.0975511 + 0.995231i \(0.468899\pi\)
\(282\) 5.03444i 0.299797i
\(283\) 21.4721i 1.27639i 0.769876 + 0.638193i \(0.220318\pi\)
−0.769876 + 0.638193i \(0.779682\pi\)
\(284\) 14.5623 0.864114
\(285\) 0 0
\(286\) −2.02129 −0.119521
\(287\) − 39.2705i − 2.31806i
\(288\) − 4.14590i − 0.244299i
\(289\) −14.5623 −0.856606
\(290\) 0 0
\(291\) 10.5623 0.619173
\(292\) − 29.3951i − 1.72022i
\(293\) − 19.4164i − 1.13432i −0.823608 0.567159i \(-0.808042\pi\)
0.823608 0.567159i \(-0.191958\pi\)
\(294\) 2.32624 0.135669
\(295\) 0 0
\(296\) −7.36068 −0.427831
\(297\) 1.76393i 0.102354i
\(298\) 4.56231i 0.264287i
\(299\) −20.1246 −1.16384
\(300\) 0 0
\(301\) −16.7082 −0.963045
\(302\) − 1.59675i − 0.0918825i
\(303\) 1.52786i 0.0877735i
\(304\) 3.14590 0.180430
\(305\) 0 0
\(306\) 2.14590 0.122673
\(307\) − 22.1246i − 1.26272i −0.775491 0.631359i \(-0.782497\pi\)
0.775491 0.631359i \(-0.217503\pi\)
\(308\) − 11.8328i − 0.674237i
\(309\) 0.909830 0.0517584
\(310\) 0 0
\(311\) 19.0902 1.08250 0.541252 0.840860i \(-0.317950\pi\)
0.541252 + 0.840860i \(0.317950\pi\)
\(312\) 4.41641i 0.250030i
\(313\) 19.9787i 1.12926i 0.825343 + 0.564632i \(0.190982\pi\)
−0.825343 + 0.564632i \(0.809018\pi\)
\(314\) −6.32624 −0.357010
\(315\) 0 0
\(316\) −13.4164 −0.754732
\(317\) 16.4164i 0.922037i 0.887390 + 0.461019i \(0.152516\pi\)
−0.887390 + 0.461019i \(0.847484\pi\)
\(318\) − 0.527864i − 0.0296011i
\(319\) 0.416408 0.0233144
\(320\) 0 0
\(321\) 0.618034 0.0344953
\(322\) 9.27051i 0.516625i
\(323\) 5.61803i 0.312596i
\(324\) 1.85410 0.103006
\(325\) 0 0
\(326\) −3.43769 −0.190396
\(327\) − 9.00000i − 0.497701i
\(328\) − 15.9787i − 0.882277i
\(329\) 47.6869 2.62906
\(330\) 0 0
\(331\) 6.14590 0.337809 0.168905 0.985632i \(-0.445977\pi\)
0.168905 + 0.985632i \(0.445977\pi\)
\(332\) − 13.5836i − 0.745496i
\(333\) − 5.00000i − 0.273998i
\(334\) −1.70820 −0.0934688
\(335\) 0 0
\(336\) −11.3820 −0.620937
\(337\) − 18.4721i − 1.00624i −0.864216 0.503121i \(-0.832185\pi\)
0.864216 0.503121i \(-0.167815\pi\)
\(338\) 1.52786i 0.0831048i
\(339\) −0.763932 −0.0414911
\(340\) 0 0
\(341\) −14.2705 −0.772791
\(342\) − 0.381966i − 0.0206544i
\(343\) 3.29180i 0.177740i
\(344\) −6.79837 −0.366544
\(345\) 0 0
\(346\) −1.27051 −0.0683030
\(347\) − 14.5066i − 0.778754i −0.921078 0.389377i \(-0.872690\pi\)
0.921078 0.389377i \(-0.127310\pi\)
\(348\) − 0.437694i − 0.0234629i
\(349\) 18.9098 1.01222 0.506110 0.862469i \(-0.331083\pi\)
0.506110 + 0.862469i \(0.331083\pi\)
\(350\) 0 0
\(351\) −3.00000 −0.160128
\(352\) − 7.31308i − 0.389789i
\(353\) − 33.3262i − 1.77378i −0.461984 0.886888i \(-0.652862\pi\)
0.461984 0.886888i \(-0.347138\pi\)
\(354\) −5.27051 −0.280124
\(355\) 0 0
\(356\) −6.43769 −0.341197
\(357\) − 20.3262i − 1.07578i
\(358\) 6.78522i 0.358610i
\(359\) −11.5279 −0.608417 −0.304209 0.952605i \(-0.598392\pi\)
−0.304209 + 0.952605i \(0.598392\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) − 5.12461i − 0.269344i
\(363\) − 7.88854i − 0.414041i
\(364\) 20.1246 1.05482
\(365\) 0 0
\(366\) −2.32624 −0.121594
\(367\) − 20.9098i − 1.09148i −0.837953 0.545742i \(-0.816248\pi\)
0.837953 0.545742i \(-0.183752\pi\)
\(368\) − 21.1033i − 1.10009i
\(369\) 10.8541 0.565042
\(370\) 0 0
\(371\) −5.00000 −0.259587
\(372\) 15.0000i 0.777714i
\(373\) 35.2705i 1.82624i 0.407693 + 0.913119i \(0.366333\pi\)
−0.407693 + 0.913119i \(0.633667\pi\)
\(374\) 3.78522 0.195729
\(375\) 0 0
\(376\) 19.4033 1.00065
\(377\) 0.708204i 0.0364744i
\(378\) 1.38197i 0.0710807i
\(379\) 2.56231 0.131617 0.0658084 0.997832i \(-0.479037\pi\)
0.0658084 + 0.997832i \(0.479037\pi\)
\(380\) 0 0
\(381\) 6.41641 0.328723
\(382\) − 6.85410i − 0.350686i
\(383\) 9.97871i 0.509888i 0.966956 + 0.254944i \(0.0820571\pi\)
−0.966956 + 0.254944i \(0.917943\pi\)
\(384\) −10.0902 −0.514912
\(385\) 0 0
\(386\) 3.32624 0.169301
\(387\) − 4.61803i − 0.234748i
\(388\) − 19.5836i − 0.994206i
\(389\) −18.0344 −0.914382 −0.457191 0.889368i \(-0.651145\pi\)
−0.457191 + 0.889368i \(0.651145\pi\)
\(390\) 0 0
\(391\) 37.6869 1.90591
\(392\) − 8.96556i − 0.452829i
\(393\) − 10.0902i − 0.508982i
\(394\) −2.74265 −0.138172
\(395\) 0 0
\(396\) 3.27051 0.164349
\(397\) 16.9443i 0.850409i 0.905097 + 0.425204i \(0.139798\pi\)
−0.905097 + 0.425204i \(0.860202\pi\)
\(398\) − 2.02129i − 0.101318i
\(399\) −3.61803 −0.181128
\(400\) 0 0
\(401\) 13.6525 0.681772 0.340886 0.940105i \(-0.389273\pi\)
0.340886 + 0.940105i \(0.389273\pi\)
\(402\) 3.05573i 0.152406i
\(403\) − 24.2705i − 1.20900i
\(404\) 2.83282 0.140938
\(405\) 0 0
\(406\) 0.326238 0.0161909
\(407\) − 8.81966i − 0.437174i
\(408\) − 8.27051i − 0.409451i
\(409\) 16.7639 0.828923 0.414462 0.910067i \(-0.363970\pi\)
0.414462 + 0.910067i \(0.363970\pi\)
\(410\) 0 0
\(411\) −16.2361 −0.800866
\(412\) − 1.68692i − 0.0831085i
\(413\) 49.9230i 2.45655i
\(414\) −2.56231 −0.125930
\(415\) 0 0
\(416\) 12.4377 0.609808
\(417\) 1.76393i 0.0863801i
\(418\) − 0.673762i − 0.0329548i
\(419\) −3.27051 −0.159775 −0.0798874 0.996804i \(-0.525456\pi\)
−0.0798874 + 0.996804i \(0.525456\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) − 8.94427i − 0.435400i
\(423\) 13.1803i 0.640850i
\(424\) −2.03444 −0.0988012
\(425\) 0 0
\(426\) −3.00000 −0.145350
\(427\) 22.0344i 1.06632i
\(428\) − 1.14590i − 0.0553891i
\(429\) −5.29180 −0.255490
\(430\) 0 0
\(431\) −7.76393 −0.373975 −0.186988 0.982362i \(-0.559872\pi\)
−0.186988 + 0.982362i \(0.559872\pi\)
\(432\) − 3.14590i − 0.151357i
\(433\) − 27.3050i − 1.31219i −0.754677 0.656096i \(-0.772207\pi\)
0.754677 0.656096i \(-0.227793\pi\)
\(434\) −11.1803 −0.536673
\(435\) 0 0
\(436\) −16.6869 −0.799158
\(437\) − 6.70820i − 0.320897i
\(438\) 6.05573i 0.289354i
\(439\) −1.38197 −0.0659576 −0.0329788 0.999456i \(-0.510499\pi\)
−0.0329788 + 0.999456i \(0.510499\pi\)
\(440\) 0 0
\(441\) 6.09017 0.290008
\(442\) 6.43769i 0.306210i
\(443\) 22.4508i 1.06667i 0.845903 + 0.533336i \(0.179062\pi\)
−0.845903 + 0.533336i \(0.820938\pi\)
\(444\) −9.27051 −0.439959
\(445\) 0 0
\(446\) 4.15905 0.196937
\(447\) 11.9443i 0.564945i
\(448\) 17.0344i 0.804802i
\(449\) 4.50658 0.212679 0.106339 0.994330i \(-0.466087\pi\)
0.106339 + 0.994330i \(0.466087\pi\)
\(450\) 0 0
\(451\) 19.1459 0.901545
\(452\) 1.41641i 0.0666222i
\(453\) − 4.18034i − 0.196410i
\(454\) −2.36068 −0.110792
\(455\) 0 0
\(456\) −1.47214 −0.0689391
\(457\) − 17.6869i − 0.827359i −0.910423 0.413680i \(-0.864243\pi\)
0.910423 0.413680i \(-0.135757\pi\)
\(458\) − 8.06888i − 0.377034i
\(459\) 5.61803 0.262227
\(460\) 0 0
\(461\) −17.4721 −0.813758 −0.406879 0.913482i \(-0.633383\pi\)
−0.406879 + 0.913482i \(0.633383\pi\)
\(462\) 2.43769i 0.113412i
\(463\) 0.673762i 0.0313124i 0.999877 + 0.0156562i \(0.00498372\pi\)
−0.999877 + 0.0156562i \(0.995016\pi\)
\(464\) −0.742646 −0.0344765
\(465\) 0 0
\(466\) −4.77709 −0.221294
\(467\) 4.90983i 0.227200i 0.993527 + 0.113600i \(0.0362382\pi\)
−0.993527 + 0.113600i \(0.963762\pi\)
\(468\) 5.56231i 0.257118i
\(469\) 28.9443 1.33652
\(470\) 0 0
\(471\) −16.5623 −0.763151
\(472\) 20.3131i 0.934985i
\(473\) − 8.14590i − 0.374549i
\(474\) 2.76393 0.126952
\(475\) 0 0
\(476\) −37.6869 −1.72738
\(477\) − 1.38197i − 0.0632759i
\(478\) 9.20163i 0.420873i
\(479\) −19.5967 −0.895398 −0.447699 0.894184i \(-0.647756\pi\)
−0.447699 + 0.894184i \(0.647756\pi\)
\(480\) 0 0
\(481\) 15.0000 0.683941
\(482\) − 6.00000i − 0.273293i
\(483\) 24.2705i 1.10435i
\(484\) −14.6262 −0.664826
\(485\) 0 0
\(486\) −0.381966 −0.0173263
\(487\) − 6.94427i − 0.314675i −0.987545 0.157337i \(-0.949709\pi\)
0.987545 0.157337i \(-0.0502910\pi\)
\(488\) 8.96556i 0.405852i
\(489\) −9.00000 −0.406994
\(490\) 0 0
\(491\) −16.7984 −0.758100 −0.379050 0.925376i \(-0.623749\pi\)
−0.379050 + 0.925376i \(0.623749\pi\)
\(492\) − 20.1246i − 0.907288i
\(493\) − 1.32624i − 0.0597308i
\(494\) 1.14590 0.0515564
\(495\) 0 0
\(496\) 25.4508 1.14278
\(497\) 28.4164i 1.27465i
\(498\) 2.79837i 0.125398i
\(499\) −17.2918 −0.774087 −0.387044 0.922061i \(-0.626504\pi\)
−0.387044 + 0.922061i \(0.626504\pi\)
\(500\) 0 0
\(501\) −4.47214 −0.199800
\(502\) 0.888544i 0.0396577i
\(503\) − 13.8541i − 0.617724i −0.951107 0.308862i \(-0.900052\pi\)
0.951107 0.308862i \(-0.0999481\pi\)
\(504\) 5.32624 0.237249
\(505\) 0 0
\(506\) −4.51973 −0.200927
\(507\) 4.00000i 0.177646i
\(508\) − 11.8967i − 0.527830i
\(509\) 34.6525 1.53594 0.767972 0.640483i \(-0.221266\pi\)
0.767972 + 0.640483i \(0.221266\pi\)
\(510\) 0 0
\(511\) 57.3607 2.53749
\(512\) 22.3050i 0.985749i
\(513\) − 1.00000i − 0.0441511i
\(514\) 1.21478 0.0535817
\(515\) 0 0
\(516\) −8.56231 −0.376934
\(517\) 23.2492i 1.02250i
\(518\) − 6.90983i − 0.303601i
\(519\) −3.32624 −0.146006
\(520\) 0 0
\(521\) 0.326238 0.0142927 0.00714637 0.999974i \(-0.497725\pi\)
0.00714637 + 0.999974i \(0.497725\pi\)
\(522\) 0.0901699i 0.00394663i
\(523\) − 4.00000i − 0.174908i −0.996169 0.0874539i \(-0.972127\pi\)
0.996169 0.0874539i \(-0.0278730\pi\)
\(524\) −18.7082 −0.817272
\(525\) 0 0
\(526\) −5.02129 −0.218938
\(527\) 45.4508i 1.97987i
\(528\) − 5.54915i − 0.241496i
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) −13.7984 −0.598798
\(532\) 6.70820i 0.290838i
\(533\) 32.5623i 1.41043i
\(534\) 1.32624 0.0573919
\(535\) 0 0
\(536\) 11.7771 0.508693
\(537\) 17.7639i 0.766570i
\(538\) − 7.78522i − 0.335645i
\(539\) 10.7426 0.462719
\(540\) 0 0
\(541\) 17.0344 0.732368 0.366184 0.930542i \(-0.380664\pi\)
0.366184 + 0.930542i \(0.380664\pi\)
\(542\) 0.708204i 0.0304200i
\(543\) − 13.4164i − 0.575753i
\(544\) −23.2918 −0.998628
\(545\) 0 0
\(546\) −4.14590 −0.177428
\(547\) − 1.50658i − 0.0644166i −0.999481 0.0322083i \(-0.989746\pi\)
0.999481 0.0322083i \(-0.0102540\pi\)
\(548\) 30.1033i 1.28595i
\(549\) −6.09017 −0.259922
\(550\) 0 0
\(551\) −0.236068 −0.0100568
\(552\) 9.87539i 0.420324i
\(553\) − 26.1803i − 1.11330i
\(554\) −5.83282 −0.247813
\(555\) 0 0
\(556\) 3.27051 0.138701
\(557\) 20.2148i 0.856528i 0.903654 + 0.428264i \(0.140875\pi\)
−0.903654 + 0.428264i \(0.859125\pi\)
\(558\) − 3.09017i − 0.130817i
\(559\) 13.8541 0.585966
\(560\) 0 0
\(561\) 9.90983 0.418393
\(562\) 1.24922i 0.0526953i
\(563\) − 30.2148i − 1.27340i −0.771111 0.636701i \(-0.780299\pi\)
0.771111 0.636701i \(-0.219701\pi\)
\(564\) 24.4377 1.02901
\(565\) 0 0
\(566\) −8.20163 −0.344740
\(567\) 3.61803i 0.151943i
\(568\) 11.5623i 0.485144i
\(569\) −29.6525 −1.24310 −0.621548 0.783376i \(-0.713496\pi\)
−0.621548 + 0.783376i \(0.713496\pi\)
\(570\) 0 0
\(571\) 31.4508 1.31618 0.658089 0.752941i \(-0.271365\pi\)
0.658089 + 0.752941i \(0.271365\pi\)
\(572\) 9.81153i 0.410241i
\(573\) − 17.9443i − 0.749633i
\(574\) 15.0000 0.626088
\(575\) 0 0
\(576\) −4.70820 −0.196175
\(577\) − 9.83282i − 0.409345i −0.978830 0.204673i \(-0.934387\pi\)
0.978830 0.204673i \(-0.0656130\pi\)
\(578\) − 5.56231i − 0.231361i
\(579\) 8.70820 0.361901
\(580\) 0 0
\(581\) 26.5066 1.09968
\(582\) 4.03444i 0.167233i
\(583\) − 2.43769i − 0.100959i
\(584\) 23.3394 0.965791
\(585\) 0 0
\(586\) 7.41641 0.306369
\(587\) − 25.9443i − 1.07083i −0.844588 0.535417i \(-0.820154\pi\)
0.844588 0.535417i \(-0.179846\pi\)
\(588\) − 11.2918i − 0.465666i
\(589\) 8.09017 0.333350
\(590\) 0 0
\(591\) −7.18034 −0.295360
\(592\) 15.7295i 0.646478i
\(593\) − 31.3607i − 1.28783i −0.765098 0.643914i \(-0.777309\pi\)
0.765098 0.643914i \(-0.222691\pi\)
\(594\) −0.673762 −0.0276448
\(595\) 0 0
\(596\) 22.1459 0.907131
\(597\) − 5.29180i − 0.216579i
\(598\) − 7.68692i − 0.314341i
\(599\) 38.4508 1.57106 0.785530 0.618824i \(-0.212391\pi\)
0.785530 + 0.618824i \(0.212391\pi\)
\(600\) 0 0
\(601\) −9.00000 −0.367118 −0.183559 0.983009i \(-0.558762\pi\)
−0.183559 + 0.983009i \(0.558762\pi\)
\(602\) − 6.38197i − 0.260110i
\(603\) 8.00000i 0.325785i
\(604\) −7.75078 −0.315375
\(605\) 0 0
\(606\) −0.583592 −0.0237068
\(607\) 24.3607i 0.988769i 0.869243 + 0.494385i \(0.164607\pi\)
−0.869243 + 0.494385i \(0.835393\pi\)
\(608\) 4.14590i 0.168138i
\(609\) 0.854102 0.0346100
\(610\) 0 0
\(611\) −39.5410 −1.59966
\(612\) − 10.4164i − 0.421058i
\(613\) 32.5967i 1.31657i 0.752769 + 0.658285i \(0.228718\pi\)
−0.752769 + 0.658285i \(0.771282\pi\)
\(614\) 8.45085 0.341049
\(615\) 0 0
\(616\) 9.39512 0.378540
\(617\) 6.23607i 0.251055i 0.992090 + 0.125527i \(0.0400623\pi\)
−0.992090 + 0.125527i \(0.959938\pi\)
\(618\) 0.347524i 0.0139795i
\(619\) −19.4164 −0.780411 −0.390206 0.920728i \(-0.627596\pi\)
−0.390206 + 0.920728i \(0.627596\pi\)
\(620\) 0 0
\(621\) −6.70820 −0.269191
\(622\) 7.29180i 0.292374i
\(623\) − 12.5623i − 0.503298i
\(624\) 9.43769 0.377810
\(625\) 0 0
\(626\) −7.63119 −0.305004
\(627\) − 1.76393i − 0.0704447i
\(628\) 30.7082i 1.22539i
\(629\) −28.0902 −1.12003
\(630\) 0 0
\(631\) −1.29180 −0.0514256 −0.0257128 0.999669i \(-0.508186\pi\)
−0.0257128 + 0.999669i \(0.508186\pi\)
\(632\) − 10.6525i − 0.423733i
\(633\) − 23.4164i − 0.930719i
\(634\) −6.27051 −0.249034
\(635\) 0 0
\(636\) −2.56231 −0.101602
\(637\) 18.2705i 0.723904i
\(638\) 0.159054i 0.00629699i
\(639\) −7.85410 −0.310703
\(640\) 0 0
\(641\) −9.59675 −0.379049 −0.189524 0.981876i \(-0.560695\pi\)
−0.189524 + 0.981876i \(0.560695\pi\)
\(642\) 0.236068i 0.00931686i
\(643\) − 22.9443i − 0.904834i −0.891807 0.452417i \(-0.850562\pi\)
0.891807 0.452417i \(-0.149438\pi\)
\(644\) 45.0000 1.77325
\(645\) 0 0
\(646\) −2.14590 −0.0844292
\(647\) 22.8541i 0.898487i 0.893409 + 0.449244i \(0.148307\pi\)
−0.893409 + 0.449244i \(0.851693\pi\)
\(648\) 1.47214i 0.0578310i
\(649\) −24.3394 −0.955405
\(650\) 0 0
\(651\) −29.2705 −1.14720
\(652\) 16.6869i 0.653510i
\(653\) 37.0132i 1.44844i 0.689571 + 0.724218i \(0.257799\pi\)
−0.689571 + 0.724218i \(0.742201\pi\)
\(654\) 3.43769 0.134424
\(655\) 0 0
\(656\) −34.1459 −1.33317
\(657\) 15.8541i 0.618527i
\(658\) 18.2148i 0.710086i
\(659\) −29.0689 −1.13236 −0.566181 0.824281i \(-0.691580\pi\)
−0.566181 + 0.824281i \(0.691580\pi\)
\(660\) 0 0
\(661\) −13.9787 −0.543709 −0.271854 0.962338i \(-0.587637\pi\)
−0.271854 + 0.962338i \(0.587637\pi\)
\(662\) 2.34752i 0.0912391i
\(663\) 16.8541i 0.654559i
\(664\) 10.7852 0.418548
\(665\) 0 0
\(666\) 1.90983 0.0740044
\(667\) 1.58359i 0.0613169i
\(668\) 8.29180i 0.320819i
\(669\) 10.8885 0.420975
\(670\) 0 0
\(671\) −10.7426 −0.414715
\(672\) − 15.0000i − 0.578638i
\(673\) 16.5836i 0.639250i 0.947544 + 0.319625i \(0.103557\pi\)
−0.947544 + 0.319625i \(0.896443\pi\)
\(674\) 7.05573 0.271776
\(675\) 0 0
\(676\) 7.41641 0.285246
\(677\) − 38.0689i − 1.46311i −0.681785 0.731553i \(-0.738796\pi\)
0.681785 0.731553i \(-0.261204\pi\)
\(678\) − 0.291796i − 0.0112064i
\(679\) 38.2148 1.46655
\(680\) 0 0
\(681\) −6.18034 −0.236831
\(682\) − 5.45085i − 0.208724i
\(683\) − 21.0000i − 0.803543i −0.915740 0.401771i \(-0.868395\pi\)
0.915740 0.401771i \(-0.131605\pi\)
\(684\) −1.85410 −0.0708934
\(685\) 0 0
\(686\) −1.25735 −0.0480060
\(687\) − 21.1246i − 0.805954i
\(688\) 14.5279i 0.553870i
\(689\) 4.14590 0.157946
\(690\) 0 0
\(691\) 14.8197 0.563766 0.281883 0.959449i \(-0.409041\pi\)
0.281883 + 0.959449i \(0.409041\pi\)
\(692\) 6.16718i 0.234441i
\(693\) 6.38197i 0.242431i
\(694\) 5.54102 0.210334
\(695\) 0 0
\(696\) 0.347524 0.0131729
\(697\) − 60.9787i − 2.30973i
\(698\) 7.22291i 0.273391i
\(699\) −12.5066 −0.473042
\(700\) 0 0
\(701\) 34.1803 1.29097 0.645487 0.763771i \(-0.276655\pi\)
0.645487 + 0.763771i \(0.276655\pi\)
\(702\) − 1.14590i − 0.0432491i
\(703\) 5.00000i 0.188579i
\(704\) −8.30495 −0.313005
\(705\) 0 0
\(706\) 12.7295 0.479081
\(707\) 5.52786i 0.207897i
\(708\) 25.5836i 0.961490i
\(709\) −0.708204 −0.0265972 −0.0132986 0.999912i \(-0.504233\pi\)
−0.0132986 + 0.999912i \(0.504233\pi\)
\(710\) 0 0
\(711\) 7.23607 0.271374
\(712\) − 5.11146i − 0.191560i
\(713\) − 54.2705i − 2.03245i
\(714\) 7.76393 0.290558
\(715\) 0 0
\(716\) 32.9361 1.23088
\(717\) 24.0902i 0.899664i
\(718\) − 4.40325i − 0.164328i
\(719\) −1.47214 −0.0549014 −0.0274507 0.999623i \(-0.508739\pi\)
−0.0274507 + 0.999623i \(0.508739\pi\)
\(720\) 0 0
\(721\) 3.29180 0.122593
\(722\) − 6.87539i − 0.255875i
\(723\) − 15.7082i − 0.584194i
\(724\) −24.8754 −0.924487
\(725\) 0 0
\(726\) 3.01316 0.111829
\(727\) − 4.41641i − 0.163796i −0.996641 0.0818978i \(-0.973902\pi\)
0.996641 0.0818978i \(-0.0260981\pi\)
\(728\) 15.9787i 0.592211i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −25.9443 −0.959584
\(732\) 11.2918i 0.417357i
\(733\) 7.05573i 0.260609i 0.991474 + 0.130305i \(0.0415955\pi\)
−0.991474 + 0.130305i \(0.958404\pi\)
\(734\) 7.98684 0.294800
\(735\) 0 0
\(736\) 27.8115 1.02515
\(737\) 14.1115i 0.519802i
\(738\) 4.14590i 0.152613i
\(739\) −40.2705 −1.48137 −0.740687 0.671850i \(-0.765500\pi\)
−0.740687 + 0.671850i \(0.765500\pi\)
\(740\) 0 0
\(741\) 3.00000 0.110208
\(742\) − 1.90983i − 0.0701121i
\(743\) 40.0689i 1.46998i 0.678075 + 0.734992i \(0.262814\pi\)
−0.678075 + 0.734992i \(0.737186\pi\)
\(744\) −11.9098 −0.436636
\(745\) 0 0
\(746\) −13.4721 −0.493250
\(747\) 7.32624i 0.268053i
\(748\) − 18.3738i − 0.671814i
\(749\) 2.23607 0.0817041
\(750\) 0 0
\(751\) −0.785218 −0.0286530 −0.0143265 0.999897i \(-0.504560\pi\)
−0.0143265 + 0.999897i \(0.504560\pi\)
\(752\) − 41.4640i − 1.51204i
\(753\) 2.32624i 0.0847728i
\(754\) −0.270510 −0.00985139
\(755\) 0 0
\(756\) 6.70820 0.243975
\(757\) − 11.6525i − 0.423516i −0.977322 0.211758i \(-0.932081\pi\)
0.977322 0.211758i \(-0.0679189\pi\)
\(758\) 0.978714i 0.0355485i
\(759\) −11.8328 −0.429504
\(760\) 0 0
\(761\) −35.0689 −1.27125 −0.635623 0.772000i \(-0.719257\pi\)
−0.635623 + 0.772000i \(0.719257\pi\)
\(762\) 2.45085i 0.0887849i
\(763\) − 32.5623i − 1.17883i
\(764\) −33.2705 −1.20368
\(765\) 0 0
\(766\) −3.81153 −0.137716
\(767\) − 41.3951i − 1.49469i
\(768\) 5.56231i 0.200712i
\(769\) 16.9443 0.611026 0.305513 0.952188i \(-0.401172\pi\)
0.305513 + 0.952188i \(0.401172\pi\)
\(770\) 0 0
\(771\) 3.18034 0.114537
\(772\) − 16.1459i − 0.581104i
\(773\) − 21.0000i − 0.755318i −0.925945 0.377659i \(-0.876729\pi\)
0.925945 0.377659i \(-0.123271\pi\)
\(774\) 1.76393 0.0634032
\(775\) 0 0
\(776\) 15.5492 0.558182
\(777\) − 18.0902i − 0.648981i
\(778\) − 6.88854i − 0.246966i
\(779\) −10.8541 −0.388889
\(780\) 0 0
\(781\) −13.8541 −0.495739
\(782\) 14.3951i 0.514768i
\(783\) 0.236068i 0.00843638i
\(784\) −19.1591 −0.684252
\(785\) 0 0
\(786\) 3.85410 0.137471
\(787\) − 14.4377i − 0.514648i −0.966325 0.257324i \(-0.917159\pi\)
0.966325 0.257324i \(-0.0828408\pi\)
\(788\) 13.3131i 0.474259i
\(789\) −13.1459 −0.468006
\(790\) 0 0
\(791\) −2.76393 −0.0982741
\(792\) 2.59675i 0.0922714i
\(793\) − 18.2705i − 0.648805i
\(794\) −6.47214 −0.229688
\(795\) 0 0
\(796\) −9.81153 −0.347760
\(797\) − 32.3262i − 1.14505i −0.819886 0.572527i \(-0.805963\pi\)
0.819886 0.572527i \(-0.194037\pi\)
\(798\) − 1.38197i − 0.0489211i
\(799\) 74.0476 2.61962
\(800\) 0 0
\(801\) 3.47214 0.122682
\(802\) 5.21478i 0.184140i
\(803\) 27.9656i 0.986883i
\(804\) 14.8328 0.523113
\(805\) 0 0
\(806\) 9.27051 0.326540
\(807\) − 20.3820i − 0.717479i
\(808\) 2.24922i 0.0791274i
\(809\) −19.7984 −0.696074 −0.348037 0.937481i \(-0.613152\pi\)
−0.348037 + 0.937481i \(0.613152\pi\)
\(810\) 0 0
\(811\) −0.0344419 −0.00120942 −0.000604709 1.00000i \(-0.500192\pi\)
−0.000604709 1.00000i \(0.500192\pi\)
\(812\) − 1.58359i − 0.0555732i
\(813\) 1.85410i 0.0650262i
\(814\) 3.36881 0.118077
\(815\) 0 0
\(816\) −17.6738 −0.618705
\(817\) 4.61803i 0.161565i
\(818\) 6.40325i 0.223884i
\(819\) −10.8541 −0.379273
\(820\) 0 0
\(821\) −8.23607 −0.287441 −0.143720 0.989618i \(-0.545907\pi\)
−0.143720 + 0.989618i \(0.545907\pi\)
\(822\) − 6.20163i − 0.216307i
\(823\) − 54.3607i − 1.89489i −0.319913 0.947447i \(-0.603654\pi\)
0.319913 0.947447i \(-0.396346\pi\)
\(824\) 1.33939 0.0466600
\(825\) 0 0
\(826\) −19.0689 −0.663491
\(827\) 17.3262i 0.602492i 0.953546 + 0.301246i \(0.0974026\pi\)
−0.953546 + 0.301246i \(0.902597\pi\)
\(828\) 12.4377i 0.432240i
\(829\) 45.1246 1.56724 0.783621 0.621239i \(-0.213370\pi\)
0.783621 + 0.621239i \(0.213370\pi\)
\(830\) 0 0
\(831\) −15.2705 −0.529728
\(832\) − 14.1246i − 0.489683i
\(833\) − 34.2148i − 1.18547i
\(834\) −0.673762 −0.0233305
\(835\) 0 0
\(836\) −3.27051 −0.113113
\(837\) − 8.09017i − 0.279637i
\(838\) − 1.24922i − 0.0431537i
\(839\) −0.527864 −0.0182239 −0.00911195 0.999958i \(-0.502900\pi\)
−0.00911195 + 0.999958i \(0.502900\pi\)
\(840\) 0 0
\(841\) −28.9443 −0.998078
\(842\) − 9.93112i − 0.342249i
\(843\) 3.27051i 0.112642i
\(844\) −43.4164 −1.49445
\(845\) 0 0
\(846\) −5.03444 −0.173088
\(847\) − 28.5410i − 0.980681i
\(848\) 4.34752i 0.149295i
\(849\) −21.4721 −0.736922
\(850\) 0 0
\(851\) 33.5410 1.14977
\(852\) 14.5623i 0.498896i
\(853\) − 9.29180i − 0.318145i −0.987267 0.159073i \(-0.949150\pi\)
0.987267 0.159073i \(-0.0508504\pi\)
\(854\) −8.41641 −0.288004
\(855\) 0 0
\(856\) 0.909830 0.0310974
\(857\) − 10.2148i − 0.348930i −0.984663 0.174465i \(-0.944180\pi\)
0.984663 0.174465i \(-0.0558196\pi\)
\(858\) − 2.02129i − 0.0690056i
\(859\) 8.81966 0.300923 0.150461 0.988616i \(-0.451924\pi\)
0.150461 + 0.988616i \(0.451924\pi\)
\(860\) 0 0
\(861\) 39.2705 1.33834
\(862\) − 2.96556i − 0.101007i
\(863\) − 32.2148i − 1.09660i −0.836280 0.548302i \(-0.815274\pi\)
0.836280 0.548302i \(-0.184726\pi\)
\(864\) 4.14590 0.141046
\(865\) 0 0
\(866\) 10.4296 0.354411
\(867\) − 14.5623i − 0.494562i
\(868\) 54.2705i 1.84206i
\(869\) 12.7639 0.432987
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) − 13.2492i − 0.448675i
\(873\) 10.5623i 0.357480i
\(874\) 2.56231 0.0866713
\(875\) 0 0
\(876\) 29.3951 0.993169
\(877\) − 33.9443i − 1.14622i −0.819480 0.573108i \(-0.805737\pi\)
0.819480 0.573108i \(-0.194263\pi\)
\(878\) − 0.527864i − 0.0178145i
\(879\) 19.4164 0.654899
\(880\) 0 0
\(881\) 46.7639 1.57552 0.787758 0.615984i \(-0.211242\pi\)
0.787758 + 0.615984i \(0.211242\pi\)
\(882\) 2.32624i 0.0783285i
\(883\) − 7.94427i − 0.267346i −0.991025 0.133673i \(-0.957323\pi\)
0.991025 0.133673i \(-0.0426772\pi\)
\(884\) 31.2492 1.05103
\(885\) 0 0
\(886\) −8.57546 −0.288098
\(887\) 54.3050i 1.82338i 0.410877 + 0.911691i \(0.365223\pi\)
−0.410877 + 0.911691i \(0.634777\pi\)
\(888\) − 7.36068i − 0.247008i
\(889\) 23.2148 0.778599
\(890\) 0 0
\(891\) −1.76393 −0.0590939
\(892\) − 20.1885i − 0.675960i
\(893\) − 13.1803i − 0.441063i
\(894\) −4.56231 −0.152586
\(895\) 0 0
\(896\) −36.5066 −1.21960
\(897\) − 20.1246i − 0.671941i
\(898\) 1.72136i 0.0574425i
\(899\) −1.90983 −0.0636964
\(900\) 0 0
\(901\) −7.76393 −0.258654
\(902\) 7.31308i 0.243499i
\(903\) − 16.7082i − 0.556014i
\(904\) −1.12461 −0.0374040
\(905\) 0 0
\(906\) 1.59675 0.0530484
\(907\) 51.5410i 1.71139i 0.517479 + 0.855696i \(0.326870\pi\)
−0.517479 + 0.855696i \(0.673130\pi\)
\(908\) 11.4590i 0.380280i
\(909\) −1.52786 −0.0506761
\(910\) 0 0
\(911\) −12.2705 −0.406540 −0.203270 0.979123i \(-0.565157\pi\)
−0.203270 + 0.979123i \(0.565157\pi\)
\(912\) 3.14590i 0.104171i
\(913\) 12.9230i 0.427688i
\(914\) 6.75580 0.223462
\(915\) 0 0
\(916\) −39.1672 −1.29412
\(917\) − 36.5066i − 1.20555i
\(918\) 2.14590i 0.0708252i
\(919\) 39.2705 1.29541 0.647707 0.761889i \(-0.275728\pi\)
0.647707 + 0.761889i \(0.275728\pi\)
\(920\) 0 0
\(921\) 22.1246 0.729031
\(922\) − 6.67376i − 0.219789i
\(923\) − 23.5623i − 0.775563i
\(924\) 11.8328 0.389271
\(925\) 0 0
\(926\) −0.257354 −0.00845718
\(927\) 0.909830i 0.0298827i
\(928\) − 0.978714i − 0.0321279i
\(929\) −28.9230 −0.948932 −0.474466 0.880274i \(-0.657359\pi\)
−0.474466 + 0.880274i \(0.657359\pi\)
\(930\) 0 0
\(931\) −6.09017 −0.199597
\(932\) 23.1885i 0.759564i
\(933\) 19.0902i 0.624984i
\(934\) −1.87539 −0.0613646
\(935\) 0 0
\(936\) −4.41641 −0.144355
\(937\) 29.8197i 0.974166i 0.873356 + 0.487083i \(0.161939\pi\)
−0.873356 + 0.487083i \(0.838061\pi\)
\(938\) 11.0557i 0.360982i
\(939\) −19.9787 −0.651981
\(940\) 0 0
\(941\) 32.5623 1.06150 0.530750 0.847528i \(-0.321910\pi\)
0.530750 + 0.847528i \(0.321910\pi\)
\(942\) − 6.32624i − 0.206120i
\(943\) 72.8115i 2.37107i
\(944\) 43.4083 1.41282
\(945\) 0 0
\(946\) 3.11146 0.101162
\(947\) − 38.8885i − 1.26371i −0.775087 0.631854i \(-0.782294\pi\)
0.775087 0.631854i \(-0.217706\pi\)
\(948\) − 13.4164i − 0.435745i
\(949\) −47.5623 −1.54394
\(950\) 0 0
\(951\) −16.4164 −0.532338
\(952\) − 29.9230i − 0.969810i
\(953\) − 7.92299i − 0.256651i −0.991732 0.128325i \(-0.959040\pi\)
0.991732 0.128325i \(-0.0409602\pi\)
\(954\) 0.527864 0.0170902
\(955\) 0 0
\(956\) 44.6656 1.44459
\(957\) 0.416408i 0.0134606i
\(958\) − 7.48529i − 0.241839i
\(959\) −58.7426 −1.89690
\(960\) 0 0
\(961\) 34.4508 1.11132
\(962\) 5.72949i 0.184726i
\(963\) 0.618034i 0.0199159i
\(964\) −29.1246 −0.938041
\(965\) 0 0
\(966\) −9.27051 −0.298274
\(967\) 20.4164i 0.656547i 0.944583 + 0.328274i \(0.106467\pi\)
−0.944583 + 0.328274i \(0.893533\pi\)
\(968\) − 11.6130i − 0.373256i
\(969\) −5.61803 −0.180477
\(970\) 0 0
\(971\) 39.5967 1.27072 0.635360 0.772216i \(-0.280852\pi\)
0.635360 + 0.772216i \(0.280852\pi\)
\(972\) 1.85410i 0.0594703i
\(973\) 6.38197i 0.204596i
\(974\) 2.65248 0.0849908
\(975\) 0 0
\(976\) 19.1591 0.613266
\(977\) − 43.8541i − 1.40302i −0.712661 0.701509i \(-0.752510\pi\)
0.712661 0.701509i \(-0.247490\pi\)
\(978\) − 3.43769i − 0.109925i
\(979\) 6.12461 0.195743
\(980\) 0 0
\(981\) 9.00000 0.287348
\(982\) − 6.41641i − 0.204756i
\(983\) 2.03444i 0.0648886i 0.999474 + 0.0324443i \(0.0103292\pi\)
−0.999474 + 0.0324443i \(0.989671\pi\)
\(984\) 15.9787 0.509383
\(985\) 0 0
\(986\) 0.506578 0.0161327
\(987\) 47.6869i 1.51789i
\(988\) − 5.56231i − 0.176961i
\(989\) 30.9787 0.985066
\(990\) 0 0
\(991\) −32.1459 −1.02115 −0.510574 0.859834i \(-0.670567\pi\)
−0.510574 + 0.859834i \(0.670567\pi\)
\(992\) 33.5410i 1.06493i
\(993\) 6.14590i 0.195034i
\(994\) −10.8541 −0.344271
\(995\) 0 0
\(996\) 13.5836 0.430413
\(997\) 43.7214i 1.38467i 0.721577 + 0.692335i \(0.243418\pi\)
−0.721577 + 0.692335i \(0.756582\pi\)
\(998\) − 6.60488i − 0.209074i
\(999\) 5.00000 0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.2.b.a.124.3 4
3.2 odd 2 1125.2.b.b.874.2 4
4.3 odd 2 6000.2.f.n.1249.1 4
5.2 odd 4 375.2.a.a.1.2 2
5.3 odd 4 375.2.a.d.1.1 yes 2
5.4 even 2 inner 375.2.b.a.124.2 4
15.2 even 4 1125.2.a.f.1.1 2
15.8 even 4 1125.2.a.a.1.2 2
15.14 odd 2 1125.2.b.b.874.3 4
20.3 even 4 6000.2.a.q.1.1 2
20.7 even 4 6000.2.a.m.1.2 2
20.19 odd 2 6000.2.f.n.1249.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
375.2.a.a.1.2 2 5.2 odd 4
375.2.a.d.1.1 yes 2 5.3 odd 4
375.2.b.a.124.2 4 5.4 even 2 inner
375.2.b.a.124.3 4 1.1 even 1 trivial
1125.2.a.a.1.2 2 15.8 even 4
1125.2.a.f.1.1 2 15.2 even 4
1125.2.b.b.874.2 4 3.2 odd 2
1125.2.b.b.874.3 4 15.14 odd 2
6000.2.a.m.1.2 2 20.7 even 4
6000.2.a.q.1.1 2 20.3 even 4
6000.2.f.n.1249.1 4 4.3 odd 2
6000.2.f.n.1249.4 4 20.19 odd 2