Properties

Label 1127.2.a.k.1.4
Level $1127$
Weight $2$
Character 1127.1
Self dual yes
Analytic conductor $8.999$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.99914030780\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 10x^{5} - x^{4} + 29x^{3} + 9x^{2} - 24x - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.509818\) of defining polynomial
Character \(\chi\) \(=\) 1127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.509818 q^{2} -0.958194 q^{3} -1.74009 q^{4} +3.43532 q^{5} -0.488505 q^{6} -1.90676 q^{8} -2.08186 q^{9} +1.75139 q^{10} +1.49322 q^{11} +1.66734 q^{12} -6.52938 q^{13} -3.29171 q^{15} +2.50807 q^{16} +1.20673 q^{17} -1.06137 q^{18} -3.68561 q^{19} -5.97776 q^{20} +0.761272 q^{22} +1.00000 q^{23} +1.82705 q^{24} +6.80146 q^{25} -3.32880 q^{26} +4.86941 q^{27} -9.34953 q^{29} -1.67817 q^{30} -9.45489 q^{31} +5.09218 q^{32} -1.43080 q^{33} +0.615215 q^{34} +3.62262 q^{36} +7.59075 q^{37} -1.87899 q^{38} +6.25642 q^{39} -6.55035 q^{40} -4.57126 q^{41} +2.55057 q^{43} -2.59834 q^{44} -7.15188 q^{45} +0.509818 q^{46} -6.54116 q^{47} -2.40322 q^{48} +3.46750 q^{50} -1.15629 q^{51} +11.3617 q^{52} -5.30196 q^{53} +2.48251 q^{54} +5.12971 q^{55} +3.53153 q^{57} -4.76656 q^{58} -2.48414 q^{59} +5.72786 q^{60} -5.20864 q^{61} -4.82027 q^{62} -2.42005 q^{64} -22.4306 q^{65} -0.729446 q^{66} -3.44270 q^{67} -2.09982 q^{68} -0.958194 q^{69} +2.37214 q^{71} +3.96962 q^{72} -5.31204 q^{73} +3.86990 q^{74} -6.51712 q^{75} +6.41328 q^{76} +3.18963 q^{78} -1.43707 q^{79} +8.61604 q^{80} +1.57975 q^{81} -2.33051 q^{82} -12.6478 q^{83} +4.14552 q^{85} +1.30033 q^{86} +8.95867 q^{87} -2.84722 q^{88} +3.95879 q^{89} -3.64615 q^{90} -1.74009 q^{92} +9.05962 q^{93} -3.33480 q^{94} -12.6613 q^{95} -4.87930 q^{96} -6.18384 q^{97} -3.10869 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 5 q^{3} + 6 q^{4} - 4 q^{5} - 6 q^{6} - 3 q^{8} + 4 q^{9} + 2 q^{10} + 4 q^{11} - 9 q^{12} - 14 q^{13} - 3 q^{15} - 8 q^{16} - 4 q^{17} + 19 q^{18} - 9 q^{19} - 12 q^{20} - 10 q^{22} + 7 q^{23} + 4 q^{24}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.509818 0.360496 0.180248 0.983621i \(-0.442310\pi\)
0.180248 + 0.983621i \(0.442310\pi\)
\(3\) −0.958194 −0.553214 −0.276607 0.960983i \(-0.589210\pi\)
−0.276607 + 0.960983i \(0.589210\pi\)
\(4\) −1.74009 −0.870043
\(5\) 3.43532 1.53632 0.768162 0.640256i \(-0.221172\pi\)
0.768162 + 0.640256i \(0.221172\pi\)
\(6\) −0.488505 −0.199431
\(7\) 0 0
\(8\) −1.90676 −0.674142
\(9\) −2.08186 −0.693954
\(10\) 1.75139 0.553838
\(11\) 1.49322 0.450224 0.225112 0.974333i \(-0.427725\pi\)
0.225112 + 0.974333i \(0.427725\pi\)
\(12\) 1.66734 0.481320
\(13\) −6.52938 −1.81093 −0.905463 0.424426i \(-0.860476\pi\)
−0.905463 + 0.424426i \(0.860476\pi\)
\(14\) 0 0
\(15\) −3.29171 −0.849916
\(16\) 2.50807 0.627018
\(17\) 1.20673 0.292676 0.146338 0.989235i \(-0.453251\pi\)
0.146338 + 0.989235i \(0.453251\pi\)
\(18\) −1.06137 −0.250168
\(19\) −3.68561 −0.845538 −0.422769 0.906238i \(-0.638942\pi\)
−0.422769 + 0.906238i \(0.638942\pi\)
\(20\) −5.97776 −1.33667
\(21\) 0 0
\(22\) 0.761272 0.162304
\(23\) 1.00000 0.208514
\(24\) 1.82705 0.372945
\(25\) 6.80146 1.36029
\(26\) −3.32880 −0.652831
\(27\) 4.86941 0.937119
\(28\) 0 0
\(29\) −9.34953 −1.73616 −0.868082 0.496421i \(-0.834647\pi\)
−0.868082 + 0.496421i \(0.834647\pi\)
\(30\) −1.67817 −0.306391
\(31\) −9.45489 −1.69815 −0.849074 0.528274i \(-0.822840\pi\)
−0.849074 + 0.528274i \(0.822840\pi\)
\(32\) 5.09218 0.900179
\(33\) −1.43080 −0.249070
\(34\) 0.615215 0.105508
\(35\) 0 0
\(36\) 3.62262 0.603770
\(37\) 7.59075 1.24791 0.623956 0.781459i \(-0.285524\pi\)
0.623956 + 0.781459i \(0.285524\pi\)
\(38\) −1.87899 −0.304813
\(39\) 6.25642 1.00183
\(40\) −6.55035 −1.03570
\(41\) −4.57126 −0.713911 −0.356955 0.934121i \(-0.616185\pi\)
−0.356955 + 0.934121i \(0.616185\pi\)
\(42\) 0 0
\(43\) 2.55057 0.388958 0.194479 0.980907i \(-0.437698\pi\)
0.194479 + 0.980907i \(0.437698\pi\)
\(44\) −2.59834 −0.391714
\(45\) −7.15188 −1.06614
\(46\) 0.509818 0.0751685
\(47\) −6.54116 −0.954126 −0.477063 0.878869i \(-0.658299\pi\)
−0.477063 + 0.878869i \(0.658299\pi\)
\(48\) −2.40322 −0.346875
\(49\) 0 0
\(50\) 3.46750 0.490379
\(51\) −1.15629 −0.161912
\(52\) 11.3617 1.57558
\(53\) −5.30196 −0.728280 −0.364140 0.931344i \(-0.618637\pi\)
−0.364140 + 0.931344i \(0.618637\pi\)
\(54\) 2.48251 0.337827
\(55\) 5.12971 0.691690
\(56\) 0 0
\(57\) 3.53153 0.467763
\(58\) −4.76656 −0.625879
\(59\) −2.48414 −0.323407 −0.161704 0.986839i \(-0.551699\pi\)
−0.161704 + 0.986839i \(0.551699\pi\)
\(60\) 5.72786 0.739463
\(61\) −5.20864 −0.666898 −0.333449 0.942768i \(-0.608213\pi\)
−0.333449 + 0.942768i \(0.608213\pi\)
\(62\) −4.82027 −0.612175
\(63\) 0 0
\(64\) −2.42005 −0.302507
\(65\) −22.4306 −2.78217
\(66\) −0.729446 −0.0897887
\(67\) −3.44270 −0.420593 −0.210296 0.977638i \(-0.567443\pi\)
−0.210296 + 0.977638i \(0.567443\pi\)
\(68\) −2.09982 −0.254641
\(69\) −0.958194 −0.115353
\(70\) 0 0
\(71\) 2.37214 0.281521 0.140760 0.990044i \(-0.455045\pi\)
0.140760 + 0.990044i \(0.455045\pi\)
\(72\) 3.96962 0.467824
\(73\) −5.31204 −0.621727 −0.310864 0.950455i \(-0.600618\pi\)
−0.310864 + 0.950455i \(0.600618\pi\)
\(74\) 3.86990 0.449867
\(75\) −6.51712 −0.752532
\(76\) 6.41328 0.735654
\(77\) 0 0
\(78\) 3.18963 0.361155
\(79\) −1.43707 −0.161683 −0.0808416 0.996727i \(-0.525761\pi\)
−0.0808416 + 0.996727i \(0.525761\pi\)
\(80\) 8.61604 0.963302
\(81\) 1.57975 0.175527
\(82\) −2.33051 −0.257362
\(83\) −12.6478 −1.38827 −0.694136 0.719844i \(-0.744213\pi\)
−0.694136 + 0.719844i \(0.744213\pi\)
\(84\) 0 0
\(85\) 4.14552 0.449645
\(86\) 1.30033 0.140218
\(87\) 8.95867 0.960470
\(88\) −2.84722 −0.303515
\(89\) 3.95879 0.419631 0.209816 0.977741i \(-0.432714\pi\)
0.209816 + 0.977741i \(0.432714\pi\)
\(90\) −3.64615 −0.384338
\(91\) 0 0
\(92\) −1.74009 −0.181416
\(93\) 9.05962 0.939439
\(94\) −3.33480 −0.343958
\(95\) −12.6613 −1.29902
\(96\) −4.87930 −0.497992
\(97\) −6.18384 −0.627873 −0.313937 0.949444i \(-0.601648\pi\)
−0.313937 + 0.949444i \(0.601648\pi\)
\(98\) 0 0
\(99\) −3.10869 −0.312435
\(100\) −11.8351 −1.18351
\(101\) −0.664901 −0.0661601 −0.0330800 0.999453i \(-0.510532\pi\)
−0.0330800 + 0.999453i \(0.510532\pi\)
\(102\) −0.589495 −0.0583687
\(103\) 17.0569 1.68067 0.840333 0.542071i \(-0.182360\pi\)
0.840333 + 0.542071i \(0.182360\pi\)
\(104\) 12.4500 1.22082
\(105\) 0 0
\(106\) −2.70303 −0.262542
\(107\) 9.08281 0.878068 0.439034 0.898470i \(-0.355321\pi\)
0.439034 + 0.898470i \(0.355321\pi\)
\(108\) −8.47320 −0.815334
\(109\) −7.58949 −0.726942 −0.363471 0.931606i \(-0.618408\pi\)
−0.363471 + 0.931606i \(0.618408\pi\)
\(110\) 2.61522 0.249351
\(111\) −7.27342 −0.690362
\(112\) 0 0
\(113\) −20.0045 −1.88186 −0.940931 0.338599i \(-0.890047\pi\)
−0.940931 + 0.338599i \(0.890047\pi\)
\(114\) 1.80044 0.168627
\(115\) 3.43532 0.320346
\(116\) 16.2690 1.51054
\(117\) 13.5933 1.25670
\(118\) −1.26646 −0.116587
\(119\) 0 0
\(120\) 6.27651 0.572964
\(121\) −8.77028 −0.797299
\(122\) −2.65546 −0.240414
\(123\) 4.38015 0.394945
\(124\) 16.4523 1.47746
\(125\) 6.18859 0.553524
\(126\) 0 0
\(127\) 8.78156 0.779237 0.389619 0.920976i \(-0.372607\pi\)
0.389619 + 0.920976i \(0.372607\pi\)
\(128\) −11.4182 −1.00923
\(129\) −2.44394 −0.215177
\(130\) −11.4355 −1.00296
\(131\) −1.57911 −0.137968 −0.0689838 0.997618i \(-0.521976\pi\)
−0.0689838 + 0.997618i \(0.521976\pi\)
\(132\) 2.48971 0.216702
\(133\) 0 0
\(134\) −1.75515 −0.151622
\(135\) 16.7280 1.43972
\(136\) −2.30096 −0.197305
\(137\) −2.66167 −0.227402 −0.113701 0.993515i \(-0.536271\pi\)
−0.113701 + 0.993515i \(0.536271\pi\)
\(138\) −0.488505 −0.0415843
\(139\) 6.26608 0.531482 0.265741 0.964044i \(-0.414383\pi\)
0.265741 + 0.964044i \(0.414383\pi\)
\(140\) 0 0
\(141\) 6.26770 0.527836
\(142\) 1.20936 0.101487
\(143\) −9.74983 −0.815322
\(144\) −5.22146 −0.435122
\(145\) −32.1187 −2.66731
\(146\) −2.70817 −0.224130
\(147\) 0 0
\(148\) −13.2086 −1.08574
\(149\) 10.0849 0.826184 0.413092 0.910689i \(-0.364449\pi\)
0.413092 + 0.910689i \(0.364449\pi\)
\(150\) −3.32254 −0.271284
\(151\) 10.1979 0.829897 0.414948 0.909845i \(-0.363800\pi\)
0.414948 + 0.909845i \(0.363800\pi\)
\(152\) 7.02759 0.570013
\(153\) −2.51226 −0.203104
\(154\) 0 0
\(155\) −32.4806 −2.60891
\(156\) −10.8867 −0.871634
\(157\) 10.7030 0.854196 0.427098 0.904205i \(-0.359536\pi\)
0.427098 + 0.904205i \(0.359536\pi\)
\(158\) −0.732645 −0.0582861
\(159\) 5.08031 0.402895
\(160\) 17.4933 1.38297
\(161\) 0 0
\(162\) 0.805382 0.0632768
\(163\) 12.5142 0.980190 0.490095 0.871669i \(-0.336962\pi\)
0.490095 + 0.871669i \(0.336962\pi\)
\(164\) 7.95438 0.621133
\(165\) −4.91526 −0.382652
\(166\) −6.44805 −0.500466
\(167\) −6.86257 −0.531042 −0.265521 0.964105i \(-0.585544\pi\)
−0.265521 + 0.964105i \(0.585544\pi\)
\(168\) 0 0
\(169\) 29.6328 2.27945
\(170\) 2.11346 0.162095
\(171\) 7.67294 0.586765
\(172\) −4.43821 −0.338410
\(173\) 10.7000 0.813510 0.406755 0.913537i \(-0.366660\pi\)
0.406755 + 0.913537i \(0.366660\pi\)
\(174\) 4.56729 0.346245
\(175\) 0 0
\(176\) 3.74511 0.282298
\(177\) 2.38029 0.178913
\(178\) 2.01826 0.151275
\(179\) 22.0198 1.64584 0.822919 0.568159i \(-0.192344\pi\)
0.822919 + 0.568159i \(0.192344\pi\)
\(180\) 12.4449 0.927587
\(181\) 5.10153 0.379194 0.189597 0.981862i \(-0.439282\pi\)
0.189597 + 0.981862i \(0.439282\pi\)
\(182\) 0 0
\(183\) 4.99089 0.368937
\(184\) −1.90676 −0.140568
\(185\) 26.0767 1.91720
\(186\) 4.61876 0.338664
\(187\) 1.80192 0.131770
\(188\) 11.3822 0.830131
\(189\) 0 0
\(190\) −6.45494 −0.468291
\(191\) 10.6801 0.772784 0.386392 0.922335i \(-0.373721\pi\)
0.386392 + 0.922335i \(0.373721\pi\)
\(192\) 2.31888 0.167351
\(193\) 2.33695 0.168217 0.0841087 0.996457i \(-0.473196\pi\)
0.0841087 + 0.996457i \(0.473196\pi\)
\(194\) −3.15263 −0.226346
\(195\) 21.4928 1.53913
\(196\) 0 0
\(197\) 2.54570 0.181374 0.0906870 0.995879i \(-0.471094\pi\)
0.0906870 + 0.995879i \(0.471094\pi\)
\(198\) −1.58486 −0.112631
\(199\) −0.591206 −0.0419095 −0.0209547 0.999780i \(-0.506671\pi\)
−0.0209547 + 0.999780i \(0.506671\pi\)
\(200\) −12.9688 −0.917030
\(201\) 3.29878 0.232678
\(202\) −0.338978 −0.0238504
\(203\) 0 0
\(204\) 2.01204 0.140871
\(205\) −15.7038 −1.09680
\(206\) 8.69591 0.605873
\(207\) −2.08186 −0.144700
\(208\) −16.3762 −1.13548
\(209\) −5.50344 −0.380681
\(210\) 0 0
\(211\) 19.3953 1.33523 0.667613 0.744508i \(-0.267316\pi\)
0.667613 + 0.744508i \(0.267316\pi\)
\(212\) 9.22586 0.633635
\(213\) −2.27297 −0.155741
\(214\) 4.63058 0.316540
\(215\) 8.76203 0.597566
\(216\) −9.28481 −0.631752
\(217\) 0 0
\(218\) −3.86926 −0.262059
\(219\) 5.08997 0.343948
\(220\) −8.92613 −0.601800
\(221\) −7.87923 −0.530014
\(222\) −3.70812 −0.248873
\(223\) 0.782481 0.0523988 0.0261994 0.999657i \(-0.491660\pi\)
0.0261994 + 0.999657i \(0.491660\pi\)
\(224\) 0 0
\(225\) −14.1597 −0.943980
\(226\) −10.1986 −0.678403
\(227\) −14.9208 −0.990327 −0.495163 0.868800i \(-0.664892\pi\)
−0.495163 + 0.868800i \(0.664892\pi\)
\(228\) −6.14517 −0.406974
\(229\) 13.0261 0.860790 0.430395 0.902641i \(-0.358374\pi\)
0.430395 + 0.902641i \(0.358374\pi\)
\(230\) 1.75139 0.115483
\(231\) 0 0
\(232\) 17.8273 1.17042
\(233\) 9.54841 0.625537 0.312769 0.949829i \(-0.398744\pi\)
0.312769 + 0.949829i \(0.398744\pi\)
\(234\) 6.93010 0.453035
\(235\) −22.4710 −1.46585
\(236\) 4.32262 0.281378
\(237\) 1.37699 0.0894454
\(238\) 0 0
\(239\) 20.2311 1.30864 0.654319 0.756218i \(-0.272955\pi\)
0.654319 + 0.756218i \(0.272955\pi\)
\(240\) −8.25584 −0.532912
\(241\) −9.14283 −0.588941 −0.294471 0.955661i \(-0.595143\pi\)
−0.294471 + 0.955661i \(0.595143\pi\)
\(242\) −4.47125 −0.287423
\(243\) −16.1219 −1.03422
\(244\) 9.06349 0.580230
\(245\) 0 0
\(246\) 2.23308 0.142376
\(247\) 24.0648 1.53121
\(248\) 18.0282 1.14479
\(249\) 12.1190 0.768011
\(250\) 3.15505 0.199543
\(251\) −5.09300 −0.321467 −0.160734 0.986998i \(-0.551386\pi\)
−0.160734 + 0.986998i \(0.551386\pi\)
\(252\) 0 0
\(253\) 1.49322 0.0938781
\(254\) 4.47699 0.280912
\(255\) −3.97222 −0.248750
\(256\) −0.981070 −0.0613169
\(257\) −2.83850 −0.177061 −0.0885303 0.996073i \(-0.528217\pi\)
−0.0885303 + 0.996073i \(0.528217\pi\)
\(258\) −1.24596 −0.0775704
\(259\) 0 0
\(260\) 39.0311 2.42061
\(261\) 19.4644 1.20482
\(262\) −0.805059 −0.0497367
\(263\) −0.581050 −0.0358291 −0.0179145 0.999840i \(-0.505703\pi\)
−0.0179145 + 0.999840i \(0.505703\pi\)
\(264\) 2.72819 0.167909
\(265\) −18.2140 −1.11887
\(266\) 0 0
\(267\) −3.79329 −0.232146
\(268\) 5.99060 0.365934
\(269\) −21.4601 −1.30845 −0.654224 0.756301i \(-0.727005\pi\)
−0.654224 + 0.756301i \(0.727005\pi\)
\(270\) 8.52824 0.519012
\(271\) 15.8910 0.965312 0.482656 0.875810i \(-0.339672\pi\)
0.482656 + 0.875810i \(0.339672\pi\)
\(272\) 3.02657 0.183513
\(273\) 0 0
\(274\) −1.35697 −0.0819773
\(275\) 10.1561 0.612436
\(276\) 1.66734 0.100362
\(277\) −22.4011 −1.34595 −0.672975 0.739665i \(-0.734984\pi\)
−0.672975 + 0.739665i \(0.734984\pi\)
\(278\) 3.19456 0.191597
\(279\) 19.6838 1.17844
\(280\) 0 0
\(281\) −2.27992 −0.136009 −0.0680043 0.997685i \(-0.521663\pi\)
−0.0680043 + 0.997685i \(0.521663\pi\)
\(282\) 3.19539 0.190283
\(283\) −9.94463 −0.591147 −0.295573 0.955320i \(-0.595511\pi\)
−0.295573 + 0.955320i \(0.595511\pi\)
\(284\) −4.12772 −0.244935
\(285\) 12.1320 0.718636
\(286\) −4.97064 −0.293920
\(287\) 0 0
\(288\) −10.6012 −0.624684
\(289\) −15.5438 −0.914341
\(290\) −16.3747 −0.961554
\(291\) 5.92532 0.347348
\(292\) 9.24341 0.540929
\(293\) −3.65723 −0.213657 −0.106829 0.994277i \(-0.534070\pi\)
−0.106829 + 0.994277i \(0.534070\pi\)
\(294\) 0 0
\(295\) −8.53383 −0.496859
\(296\) −14.4738 −0.841271
\(297\) 7.27112 0.421913
\(298\) 5.14144 0.297836
\(299\) −6.52938 −0.377604
\(300\) 11.3403 0.654735
\(301\) 0 0
\(302\) 5.19909 0.299174
\(303\) 0.637104 0.0366007
\(304\) −9.24377 −0.530167
\(305\) −17.8934 −1.02457
\(306\) −1.28079 −0.0732181
\(307\) 4.84852 0.276719 0.138360 0.990382i \(-0.455817\pi\)
0.138360 + 0.990382i \(0.455817\pi\)
\(308\) 0 0
\(309\) −16.3438 −0.929767
\(310\) −16.5592 −0.940499
\(311\) 11.7996 0.669094 0.334547 0.942379i \(-0.391417\pi\)
0.334547 + 0.942379i \(0.391417\pi\)
\(312\) −11.9295 −0.675375
\(313\) −23.7245 −1.34099 −0.670493 0.741916i \(-0.733917\pi\)
−0.670493 + 0.741916i \(0.733917\pi\)
\(314\) 5.45660 0.307934
\(315\) 0 0
\(316\) 2.50063 0.140671
\(317\) −22.0810 −1.24019 −0.620097 0.784525i \(-0.712907\pi\)
−0.620097 + 0.784525i \(0.712907\pi\)
\(318\) 2.59003 0.145242
\(319\) −13.9609 −0.781662
\(320\) −8.31367 −0.464748
\(321\) −8.70310 −0.485759
\(322\) 0 0
\(323\) −4.44756 −0.247469
\(324\) −2.74889 −0.152716
\(325\) −44.4093 −2.46339
\(326\) 6.37997 0.353354
\(327\) 7.27221 0.402154
\(328\) 8.71630 0.481277
\(329\) 0 0
\(330\) −2.50589 −0.137944
\(331\) 6.87069 0.377647 0.188824 0.982011i \(-0.439533\pi\)
0.188824 + 0.982011i \(0.439533\pi\)
\(332\) 22.0082 1.20786
\(333\) −15.8029 −0.865994
\(334\) −3.49866 −0.191438
\(335\) −11.8268 −0.646167
\(336\) 0 0
\(337\) −29.3124 −1.59675 −0.798375 0.602160i \(-0.794307\pi\)
−0.798375 + 0.602160i \(0.794307\pi\)
\(338\) 15.1074 0.821732
\(339\) 19.1682 1.04107
\(340\) −7.21357 −0.391211
\(341\) −14.1183 −0.764547
\(342\) 3.91180 0.211526
\(343\) 0 0
\(344\) −4.86333 −0.262213
\(345\) −3.29171 −0.177220
\(346\) 5.45508 0.293267
\(347\) −1.09029 −0.0585298 −0.0292649 0.999572i \(-0.509317\pi\)
−0.0292649 + 0.999572i \(0.509317\pi\)
\(348\) −15.5888 −0.835650
\(349\) −25.9232 −1.38764 −0.693818 0.720150i \(-0.744073\pi\)
−0.693818 + 0.720150i \(0.744073\pi\)
\(350\) 0 0
\(351\) −31.7943 −1.69705
\(352\) 7.60377 0.405282
\(353\) −24.2429 −1.29032 −0.645159 0.764048i \(-0.723209\pi\)
−0.645159 + 0.764048i \(0.723209\pi\)
\(354\) 1.21351 0.0644975
\(355\) 8.14906 0.432507
\(356\) −6.88864 −0.365097
\(357\) 0 0
\(358\) 11.2261 0.593317
\(359\) −27.1742 −1.43420 −0.717098 0.696972i \(-0.754530\pi\)
−0.717098 + 0.696972i \(0.754530\pi\)
\(360\) 13.6369 0.718729
\(361\) −5.41626 −0.285066
\(362\) 2.60085 0.136698
\(363\) 8.40364 0.441077
\(364\) 0 0
\(365\) −18.2486 −0.955174
\(366\) 2.54445 0.133000
\(367\) 3.53051 0.184291 0.0921456 0.995746i \(-0.470627\pi\)
0.0921456 + 0.995746i \(0.470627\pi\)
\(368\) 2.50807 0.130742
\(369\) 9.51674 0.495422
\(370\) 13.2944 0.691141
\(371\) 0 0
\(372\) −15.7645 −0.817352
\(373\) −9.11684 −0.472052 −0.236026 0.971747i \(-0.575845\pi\)
−0.236026 + 0.971747i \(0.575845\pi\)
\(374\) 0.918653 0.0475024
\(375\) −5.92987 −0.306217
\(376\) 12.4724 0.643217
\(377\) 61.0467 3.14406
\(378\) 0 0
\(379\) 11.6397 0.597889 0.298944 0.954271i \(-0.403365\pi\)
0.298944 + 0.954271i \(0.403365\pi\)
\(380\) 22.0317 1.13020
\(381\) −8.41444 −0.431085
\(382\) 5.44490 0.278585
\(383\) 24.5489 1.25439 0.627195 0.778863i \(-0.284203\pi\)
0.627195 + 0.778863i \(0.284203\pi\)
\(384\) 10.9408 0.558321
\(385\) 0 0
\(386\) 1.19142 0.0606416
\(387\) −5.30994 −0.269919
\(388\) 10.7604 0.546277
\(389\) −16.9701 −0.860421 −0.430210 0.902729i \(-0.641561\pi\)
−0.430210 + 0.902729i \(0.641561\pi\)
\(390\) 10.9574 0.554851
\(391\) 1.20673 0.0610272
\(392\) 0 0
\(393\) 1.51310 0.0763256
\(394\) 1.29785 0.0653845
\(395\) −4.93681 −0.248398
\(396\) 5.40938 0.271832
\(397\) 10.9799 0.551063 0.275532 0.961292i \(-0.411146\pi\)
0.275532 + 0.961292i \(0.411146\pi\)
\(398\) −0.301407 −0.0151082
\(399\) 0 0
\(400\) 17.0585 0.852927
\(401\) 37.7091 1.88310 0.941551 0.336870i \(-0.109368\pi\)
0.941551 + 0.336870i \(0.109368\pi\)
\(402\) 1.68178 0.0838794
\(403\) 61.7346 3.07522
\(404\) 1.15698 0.0575621
\(405\) 5.42694 0.269667
\(406\) 0 0
\(407\) 11.3347 0.561840
\(408\) 2.20476 0.109152
\(409\) 16.8207 0.831732 0.415866 0.909426i \(-0.363479\pi\)
0.415866 + 0.909426i \(0.363479\pi\)
\(410\) −8.00606 −0.395391
\(411\) 2.55039 0.125802
\(412\) −29.6805 −1.46225
\(413\) 0 0
\(414\) −1.06137 −0.0521635
\(415\) −43.4492 −2.13284
\(416\) −33.2488 −1.63016
\(417\) −6.00413 −0.294023
\(418\) −2.80575 −0.137234
\(419\) −2.16120 −0.105582 −0.0527908 0.998606i \(-0.516812\pi\)
−0.0527908 + 0.998606i \(0.516812\pi\)
\(420\) 0 0
\(421\) 4.50556 0.219587 0.109794 0.993954i \(-0.464981\pi\)
0.109794 + 0.993954i \(0.464981\pi\)
\(422\) 9.88806 0.481343
\(423\) 13.6178 0.662120
\(424\) 10.1096 0.490964
\(425\) 8.20755 0.398125
\(426\) −1.15880 −0.0561440
\(427\) 0 0
\(428\) −15.8049 −0.763957
\(429\) 9.34223 0.451047
\(430\) 4.46704 0.215420
\(431\) −11.2210 −0.540496 −0.270248 0.962791i \(-0.587106\pi\)
−0.270248 + 0.962791i \(0.587106\pi\)
\(432\) 12.2128 0.587590
\(433\) 2.63305 0.126536 0.0632682 0.997997i \(-0.479848\pi\)
0.0632682 + 0.997997i \(0.479848\pi\)
\(434\) 0 0
\(435\) 30.7759 1.47559
\(436\) 13.2064 0.632470
\(437\) −3.68561 −0.176307
\(438\) 2.59496 0.123992
\(439\) −25.3713 −1.21091 −0.605454 0.795880i \(-0.707008\pi\)
−0.605454 + 0.795880i \(0.707008\pi\)
\(440\) −9.78113 −0.466297
\(441\) 0 0
\(442\) −4.01697 −0.191068
\(443\) 15.3032 0.727079 0.363539 0.931579i \(-0.381568\pi\)
0.363539 + 0.931579i \(0.381568\pi\)
\(444\) 12.6564 0.600645
\(445\) 13.5997 0.644690
\(446\) 0.398923 0.0188895
\(447\) −9.66326 −0.457057
\(448\) 0 0
\(449\) 14.6532 0.691527 0.345764 0.938322i \(-0.387620\pi\)
0.345764 + 0.938322i \(0.387620\pi\)
\(450\) −7.21887 −0.340301
\(451\) −6.82591 −0.321420
\(452\) 34.8095 1.63730
\(453\) −9.77161 −0.459110
\(454\) −7.60688 −0.357008
\(455\) 0 0
\(456\) −6.73380 −0.315339
\(457\) −5.74711 −0.268839 −0.134419 0.990925i \(-0.542917\pi\)
−0.134419 + 0.990925i \(0.542917\pi\)
\(458\) 6.64094 0.310311
\(459\) 5.87609 0.274272
\(460\) −5.97776 −0.278714
\(461\) 15.0938 0.702988 0.351494 0.936190i \(-0.385674\pi\)
0.351494 + 0.936190i \(0.385674\pi\)
\(462\) 0 0
\(463\) 9.45814 0.439557 0.219779 0.975550i \(-0.429466\pi\)
0.219779 + 0.975550i \(0.429466\pi\)
\(464\) −23.4493 −1.08861
\(465\) 31.1227 1.44328
\(466\) 4.86795 0.225503
\(467\) 6.65100 0.307772 0.153886 0.988089i \(-0.450821\pi\)
0.153886 + 0.988089i \(0.450821\pi\)
\(468\) −23.6535 −1.09338
\(469\) 0 0
\(470\) −11.4561 −0.528431
\(471\) −10.2556 −0.472553
\(472\) 4.73666 0.218023
\(473\) 3.80857 0.175118
\(474\) 0.702017 0.0322447
\(475\) −25.0675 −1.15018
\(476\) 0 0
\(477\) 11.0380 0.505393
\(478\) 10.3142 0.471759
\(479\) 34.4642 1.57471 0.787356 0.616499i \(-0.211450\pi\)
0.787356 + 0.616499i \(0.211450\pi\)
\(480\) −16.7620 −0.765077
\(481\) −49.5629 −2.25988
\(482\) −4.66118 −0.212311
\(483\) 0 0
\(484\) 15.2610 0.693684
\(485\) −21.2435 −0.964617
\(486\) −8.21925 −0.372833
\(487\) −18.0310 −0.817063 −0.408532 0.912744i \(-0.633959\pi\)
−0.408532 + 0.912744i \(0.633959\pi\)
\(488\) 9.93165 0.449584
\(489\) −11.9911 −0.542255
\(490\) 0 0
\(491\) −17.8672 −0.806337 −0.403169 0.915126i \(-0.632091\pi\)
−0.403169 + 0.915126i \(0.632091\pi\)
\(492\) −7.62185 −0.343619
\(493\) −11.2824 −0.508134
\(494\) 12.2687 0.551993
\(495\) −10.6793 −0.480001
\(496\) −23.7135 −1.06477
\(497\) 0 0
\(498\) 6.17849 0.276865
\(499\) −6.87725 −0.307868 −0.153934 0.988081i \(-0.549194\pi\)
−0.153934 + 0.988081i \(0.549194\pi\)
\(500\) −10.7687 −0.481590
\(501\) 6.57568 0.293780
\(502\) −2.59650 −0.115888
\(503\) 7.33863 0.327213 0.163607 0.986526i \(-0.447687\pi\)
0.163607 + 0.986526i \(0.447687\pi\)
\(504\) 0 0
\(505\) −2.28415 −0.101643
\(506\) 0.761272 0.0338427
\(507\) −28.3940 −1.26102
\(508\) −15.2807 −0.677970
\(509\) −27.9520 −1.23895 −0.619475 0.785017i \(-0.712654\pi\)
−0.619475 + 0.785017i \(0.712654\pi\)
\(510\) −2.02511 −0.0896733
\(511\) 0 0
\(512\) 22.3361 0.987127
\(513\) −17.9468 −0.792369
\(514\) −1.44712 −0.0638296
\(515\) 58.5960 2.58205
\(516\) 4.25267 0.187213
\(517\) −9.76741 −0.429570
\(518\) 0 0
\(519\) −10.2527 −0.450045
\(520\) 42.7697 1.87558
\(521\) −18.8305 −0.824981 −0.412491 0.910962i \(-0.635341\pi\)
−0.412491 + 0.910962i \(0.635341\pi\)
\(522\) 9.92332 0.434332
\(523\) 17.5606 0.767872 0.383936 0.923360i \(-0.374568\pi\)
0.383936 + 0.923360i \(0.374568\pi\)
\(524\) 2.74779 0.120038
\(525\) 0 0
\(526\) −0.296230 −0.0129162
\(527\) −11.4095 −0.497007
\(528\) −3.58854 −0.156171
\(529\) 1.00000 0.0434783
\(530\) −9.28580 −0.403349
\(531\) 5.17164 0.224430
\(532\) 0 0
\(533\) 29.8475 1.29284
\(534\) −1.93389 −0.0836876
\(535\) 31.2024 1.34900
\(536\) 6.56441 0.283540
\(537\) −21.0993 −0.910500
\(538\) −10.9408 −0.471690
\(539\) 0 0
\(540\) −29.1082 −1.25262
\(541\) 18.2254 0.783570 0.391785 0.920057i \(-0.371858\pi\)
0.391785 + 0.920057i \(0.371858\pi\)
\(542\) 8.10154 0.347991
\(543\) −4.88826 −0.209775
\(544\) 6.14491 0.263461
\(545\) −26.0724 −1.11682
\(546\) 0 0
\(547\) −44.1231 −1.88657 −0.943284 0.331987i \(-0.892281\pi\)
−0.943284 + 0.331987i \(0.892281\pi\)
\(548\) 4.63153 0.197849
\(549\) 10.8437 0.462797
\(550\) 5.17776 0.220780
\(551\) 34.4587 1.46799
\(552\) 1.82705 0.0777644
\(553\) 0 0
\(554\) −11.4205 −0.485209
\(555\) −24.9866 −1.06062
\(556\) −10.9035 −0.462412
\(557\) 1.24160 0.0526082 0.0263041 0.999654i \(-0.491626\pi\)
0.0263041 + 0.999654i \(0.491626\pi\)
\(558\) 10.0351 0.424822
\(559\) −16.6536 −0.704374
\(560\) 0 0
\(561\) −1.72659 −0.0728968
\(562\) −1.16234 −0.0490305
\(563\) 23.6164 0.995314 0.497657 0.867374i \(-0.334194\pi\)
0.497657 + 0.867374i \(0.334194\pi\)
\(564\) −10.9063 −0.459240
\(565\) −68.7218 −2.89115
\(566\) −5.06995 −0.213106
\(567\) 0 0
\(568\) −4.52310 −0.189785
\(569\) −22.2390 −0.932307 −0.466153 0.884704i \(-0.654361\pi\)
−0.466153 + 0.884704i \(0.654361\pi\)
\(570\) 6.18509 0.259065
\(571\) −36.8065 −1.54030 −0.770152 0.637861i \(-0.779820\pi\)
−0.770152 + 0.637861i \(0.779820\pi\)
\(572\) 16.9655 0.709365
\(573\) −10.2336 −0.427515
\(574\) 0 0
\(575\) 6.80146 0.283640
\(576\) 5.03822 0.209926
\(577\) −3.26446 −0.135901 −0.0679505 0.997689i \(-0.521646\pi\)
−0.0679505 + 0.997689i \(0.521646\pi\)
\(578\) −7.92450 −0.329616
\(579\) −2.23925 −0.0930602
\(580\) 55.8892 2.32067
\(581\) 0 0
\(582\) 3.02083 0.125218
\(583\) −7.91701 −0.327889
\(584\) 10.1288 0.419133
\(585\) 46.6973 1.93070
\(586\) −1.86452 −0.0770226
\(587\) 14.8229 0.611809 0.305904 0.952062i \(-0.401041\pi\)
0.305904 + 0.952062i \(0.401041\pi\)
\(588\) 0 0
\(589\) 34.8471 1.43585
\(590\) −4.35070 −0.179115
\(591\) −2.43928 −0.100339
\(592\) 19.0381 0.782463
\(593\) −29.7501 −1.22169 −0.610845 0.791750i \(-0.709170\pi\)
−0.610845 + 0.791750i \(0.709170\pi\)
\(594\) 3.70695 0.152098
\(595\) 0 0
\(596\) −17.5485 −0.718816
\(597\) 0.566490 0.0231849
\(598\) −3.32880 −0.136125
\(599\) 13.6928 0.559473 0.279736 0.960077i \(-0.409753\pi\)
0.279736 + 0.960077i \(0.409753\pi\)
\(600\) 12.4266 0.507314
\(601\) −27.5265 −1.12283 −0.561414 0.827535i \(-0.689742\pi\)
−0.561414 + 0.827535i \(0.689742\pi\)
\(602\) 0 0
\(603\) 7.16724 0.291872
\(604\) −17.7453 −0.722046
\(605\) −30.1288 −1.22491
\(606\) 0.324807 0.0131944
\(607\) −27.3800 −1.11132 −0.555660 0.831410i \(-0.687534\pi\)
−0.555660 + 0.831410i \(0.687534\pi\)
\(608\) −18.7678 −0.761135
\(609\) 0 0
\(610\) −9.12237 −0.369354
\(611\) 42.7097 1.72785
\(612\) 4.37154 0.176709
\(613\) −20.9862 −0.847624 −0.423812 0.905750i \(-0.639308\pi\)
−0.423812 + 0.905750i \(0.639308\pi\)
\(614\) 2.47186 0.0997561
\(615\) 15.0473 0.606764
\(616\) 0 0
\(617\) 43.5925 1.75497 0.877483 0.479607i \(-0.159221\pi\)
0.877483 + 0.479607i \(0.159221\pi\)
\(618\) −8.33237 −0.335177
\(619\) −35.8937 −1.44269 −0.721345 0.692575i \(-0.756476\pi\)
−0.721345 + 0.692575i \(0.756476\pi\)
\(620\) 56.5191 2.26986
\(621\) 4.86941 0.195403
\(622\) 6.01565 0.241206
\(623\) 0 0
\(624\) 15.6915 0.628164
\(625\) −12.7475 −0.509899
\(626\) −12.0952 −0.483420
\(627\) 5.27337 0.210598
\(628\) −18.6242 −0.743187
\(629\) 9.16002 0.365234
\(630\) 0 0
\(631\) −5.68711 −0.226400 −0.113200 0.993572i \(-0.536110\pi\)
−0.113200 + 0.993572i \(0.536110\pi\)
\(632\) 2.74016 0.108998
\(633\) −18.5845 −0.738666
\(634\) −11.2573 −0.447085
\(635\) 30.1675 1.19716
\(636\) −8.84017 −0.350536
\(637\) 0 0
\(638\) −7.11753 −0.281786
\(639\) −4.93846 −0.195363
\(640\) −39.2251 −1.55051
\(641\) 36.2495 1.43177 0.715885 0.698218i \(-0.246024\pi\)
0.715885 + 0.698218i \(0.246024\pi\)
\(642\) −4.43699 −0.175114
\(643\) −19.0700 −0.752047 −0.376024 0.926610i \(-0.622709\pi\)
−0.376024 + 0.926610i \(0.622709\pi\)
\(644\) 0 0
\(645\) −8.39573 −0.330582
\(646\) −2.26744 −0.0892114
\(647\) −0.338385 −0.0133033 −0.00665164 0.999978i \(-0.502117\pi\)
−0.00665164 + 0.999978i \(0.502117\pi\)
\(648\) −3.01220 −0.118330
\(649\) −3.70938 −0.145606
\(650\) −22.6407 −0.888040
\(651\) 0 0
\(652\) −21.7758 −0.852807
\(653\) 3.32508 0.130120 0.0650602 0.997881i \(-0.479276\pi\)
0.0650602 + 0.997881i \(0.479276\pi\)
\(654\) 3.70750 0.144975
\(655\) −5.42476 −0.211963
\(656\) −11.4650 −0.447635
\(657\) 11.0589 0.431450
\(658\) 0 0
\(659\) −19.7596 −0.769725 −0.384862 0.922974i \(-0.625751\pi\)
−0.384862 + 0.922974i \(0.625751\pi\)
\(660\) 8.55297 0.332924
\(661\) 12.6166 0.490731 0.245365 0.969431i \(-0.421092\pi\)
0.245365 + 0.969431i \(0.421092\pi\)
\(662\) 3.50280 0.136140
\(663\) 7.54984 0.293211
\(664\) 24.1163 0.935893
\(665\) 0 0
\(666\) −8.05661 −0.312187
\(667\) −9.34953 −0.362015
\(668\) 11.9415 0.462029
\(669\) −0.749769 −0.0289877
\(670\) −6.02951 −0.232940
\(671\) −7.77767 −0.300254
\(672\) 0 0
\(673\) 7.12771 0.274753 0.137376 0.990519i \(-0.456133\pi\)
0.137376 + 0.990519i \(0.456133\pi\)
\(674\) −14.9440 −0.575621
\(675\) 33.1191 1.27475
\(676\) −51.5637 −1.98322
\(677\) 43.8383 1.68484 0.842421 0.538820i \(-0.181130\pi\)
0.842421 + 0.538820i \(0.181130\pi\)
\(678\) 9.77227 0.375302
\(679\) 0 0
\(680\) −7.90453 −0.303125
\(681\) 14.2970 0.547862
\(682\) −7.19774 −0.275616
\(683\) −32.7059 −1.25146 −0.625728 0.780041i \(-0.715198\pi\)
−0.625728 + 0.780041i \(0.715198\pi\)
\(684\) −13.3516 −0.510510
\(685\) −9.14369 −0.349363
\(686\) 0 0
\(687\) −12.4815 −0.476201
\(688\) 6.39701 0.243884
\(689\) 34.6185 1.31886
\(690\) −1.67817 −0.0638869
\(691\) 38.2634 1.45561 0.727805 0.685784i \(-0.240541\pi\)
0.727805 + 0.685784i \(0.240541\pi\)
\(692\) −18.6190 −0.707788
\(693\) 0 0
\(694\) −0.555849 −0.0210997
\(695\) 21.5260 0.816529
\(696\) −17.0820 −0.647493
\(697\) −5.51630 −0.208945
\(698\) −13.2161 −0.500237
\(699\) −9.14923 −0.346056
\(700\) 0 0
\(701\) −26.5559 −1.00300 −0.501501 0.865157i \(-0.667219\pi\)
−0.501501 + 0.865157i \(0.667219\pi\)
\(702\) −16.2093 −0.611780
\(703\) −27.9766 −1.05516
\(704\) −3.61368 −0.136196
\(705\) 21.5316 0.810927
\(706\) −12.3595 −0.465154
\(707\) 0 0
\(708\) −4.14191 −0.155662
\(709\) 44.5580 1.67341 0.836706 0.547652i \(-0.184478\pi\)
0.836706 + 0.547652i \(0.184478\pi\)
\(710\) 4.15453 0.155917
\(711\) 2.99179 0.112201
\(712\) −7.54848 −0.282891
\(713\) −9.45489 −0.354088
\(714\) 0 0
\(715\) −33.4938 −1.25260
\(716\) −38.3164 −1.43195
\(717\) −19.3853 −0.723957
\(718\) −13.8539 −0.517022
\(719\) 23.0725 0.860460 0.430230 0.902719i \(-0.358433\pi\)
0.430230 + 0.902719i \(0.358433\pi\)
\(720\) −17.9374 −0.668488
\(721\) 0 0
\(722\) −2.76131 −0.102765
\(723\) 8.76061 0.325811
\(724\) −8.87710 −0.329915
\(725\) −63.5904 −2.36169
\(726\) 4.28432 0.159006
\(727\) −19.2060 −0.712311 −0.356155 0.934427i \(-0.615913\pi\)
−0.356155 + 0.934427i \(0.615913\pi\)
\(728\) 0 0
\(729\) 10.7087 0.396619
\(730\) −9.30345 −0.344336
\(731\) 3.07786 0.113839
\(732\) −8.68458 −0.320991
\(733\) −20.2070 −0.746364 −0.373182 0.927758i \(-0.621733\pi\)
−0.373182 + 0.927758i \(0.621733\pi\)
\(734\) 1.79992 0.0664362
\(735\) 0 0
\(736\) 5.09218 0.187700
\(737\) −5.14072 −0.189361
\(738\) 4.85180 0.178597
\(739\) 0.592441 0.0217933 0.0108966 0.999941i \(-0.496531\pi\)
0.0108966 + 0.999941i \(0.496531\pi\)
\(740\) −45.3757 −1.66804
\(741\) −23.0587 −0.847084
\(742\) 0 0
\(743\) 6.43191 0.235964 0.117982 0.993016i \(-0.462358\pi\)
0.117982 + 0.993016i \(0.462358\pi\)
\(744\) −17.2745 −0.633316
\(745\) 34.6448 1.26929
\(746\) −4.64793 −0.170173
\(747\) 26.3309 0.963398
\(748\) −3.13550 −0.114645
\(749\) 0 0
\(750\) −3.02315 −0.110390
\(751\) −51.4557 −1.87765 −0.938823 0.344400i \(-0.888082\pi\)
−0.938823 + 0.344400i \(0.888082\pi\)
\(752\) −16.4057 −0.598254
\(753\) 4.88008 0.177840
\(754\) 31.1227 1.13342
\(755\) 35.0333 1.27499
\(756\) 0 0
\(757\) 19.3207 0.702224 0.351112 0.936333i \(-0.385804\pi\)
0.351112 + 0.936333i \(0.385804\pi\)
\(758\) 5.93410 0.215536
\(759\) −1.43080 −0.0519347
\(760\) 24.1420 0.875724
\(761\) −10.2602 −0.371931 −0.185965 0.982556i \(-0.559541\pi\)
−0.185965 + 0.982556i \(0.559541\pi\)
\(762\) −4.28983 −0.155404
\(763\) 0 0
\(764\) −18.5843 −0.672355
\(765\) −8.63042 −0.312033
\(766\) 12.5155 0.452202
\(767\) 16.2199 0.585667
\(768\) 0.940056 0.0339213
\(769\) 51.8423 1.86948 0.934741 0.355329i \(-0.115631\pi\)
0.934741 + 0.355329i \(0.115631\pi\)
\(770\) 0 0
\(771\) 2.71983 0.0979523
\(772\) −4.06649 −0.146356
\(773\) 45.9169 1.65152 0.825759 0.564023i \(-0.190747\pi\)
0.825759 + 0.564023i \(0.190747\pi\)
\(774\) −2.70710 −0.0973047
\(775\) −64.3070 −2.30998
\(776\) 11.7911 0.423276
\(777\) 0 0
\(778\) −8.65168 −0.310178
\(779\) 16.8479 0.603638
\(780\) −37.3994 −1.33911
\(781\) 3.54213 0.126747
\(782\) 0.615215 0.0220000
\(783\) −45.5267 −1.62699
\(784\) 0 0
\(785\) 36.7684 1.31232
\(786\) 0.771403 0.0275150
\(787\) −29.2964 −1.04430 −0.522152 0.852852i \(-0.674871\pi\)
−0.522152 + 0.852852i \(0.674871\pi\)
\(788\) −4.42974 −0.157803
\(789\) 0.556759 0.0198211
\(790\) −2.51687 −0.0895464
\(791\) 0 0
\(792\) 5.92753 0.210626
\(793\) 34.0092 1.20770
\(794\) 5.59773 0.198656
\(795\) 17.4525 0.618977
\(796\) 1.02875 0.0364630
\(797\) −7.17039 −0.253988 −0.126994 0.991903i \(-0.540533\pi\)
−0.126994 + 0.991903i \(0.540533\pi\)
\(798\) 0 0
\(799\) −7.89344 −0.279250
\(800\) 34.6343 1.22451
\(801\) −8.24167 −0.291205
\(802\) 19.2248 0.678850
\(803\) −7.93206 −0.279916
\(804\) −5.74016 −0.202440
\(805\) 0 0
\(806\) 31.4734 1.10860
\(807\) 20.5630 0.723851
\(808\) 1.26781 0.0446013
\(809\) 19.0325 0.669146 0.334573 0.942370i \(-0.391408\pi\)
0.334573 + 0.942370i \(0.391408\pi\)
\(810\) 2.76675 0.0972137
\(811\) 22.8493 0.802347 0.401173 0.916002i \(-0.368603\pi\)
0.401173 + 0.916002i \(0.368603\pi\)
\(812\) 0 0
\(813\) −15.2267 −0.534024
\(814\) 5.77863 0.202541
\(815\) 42.9904 1.50589
\(816\) −2.90005 −0.101522
\(817\) −9.40041 −0.328879
\(818\) 8.57551 0.299836
\(819\) 0 0
\(820\) 27.3259 0.954261
\(821\) −32.2479 −1.12546 −0.562730 0.826640i \(-0.690249\pi\)
−0.562730 + 0.826640i \(0.690249\pi\)
\(822\) 1.30024 0.0453510
\(823\) 26.5759 0.926378 0.463189 0.886260i \(-0.346705\pi\)
0.463189 + 0.886260i \(0.346705\pi\)
\(824\) −32.5234 −1.13301
\(825\) −9.73151 −0.338808
\(826\) 0 0
\(827\) −40.0017 −1.39099 −0.695497 0.718529i \(-0.744816\pi\)
−0.695497 + 0.718529i \(0.744816\pi\)
\(828\) 3.62262 0.125895
\(829\) −34.0508 −1.18263 −0.591317 0.806439i \(-0.701392\pi\)
−0.591317 + 0.806439i \(0.701392\pi\)
\(830\) −22.1512 −0.768878
\(831\) 21.4646 0.744598
\(832\) 15.8015 0.547817
\(833\) 0 0
\(834\) −3.06101 −0.105994
\(835\) −23.5752 −0.815852
\(836\) 9.57646 0.331209
\(837\) −46.0398 −1.59137
\(838\) −1.10182 −0.0380617
\(839\) −15.8357 −0.546707 −0.273354 0.961914i \(-0.588133\pi\)
−0.273354 + 0.961914i \(0.588133\pi\)
\(840\) 0 0
\(841\) 58.4137 2.01426
\(842\) 2.29701 0.0791603
\(843\) 2.18461 0.0752419
\(844\) −33.7495 −1.16170
\(845\) 101.798 3.50197
\(846\) 6.94260 0.238691
\(847\) 0 0
\(848\) −13.2977 −0.456644
\(849\) 9.52889 0.327031
\(850\) 4.18436 0.143522
\(851\) 7.59075 0.260208
\(852\) 3.95516 0.135501
\(853\) 5.63858 0.193061 0.0965306 0.995330i \(-0.469225\pi\)
0.0965306 + 0.995330i \(0.469225\pi\)
\(854\) 0 0
\(855\) 26.3590 0.901460
\(856\) −17.3188 −0.591943
\(857\) −46.0120 −1.57174 −0.785870 0.618391i \(-0.787785\pi\)
−0.785870 + 0.618391i \(0.787785\pi\)
\(858\) 4.76284 0.162601
\(859\) −29.9515 −1.02193 −0.510965 0.859601i \(-0.670712\pi\)
−0.510965 + 0.859601i \(0.670712\pi\)
\(860\) −15.2467 −0.519908
\(861\) 0 0
\(862\) −5.72065 −0.194846
\(863\) −50.0745 −1.70456 −0.852278 0.523090i \(-0.824779\pi\)
−0.852278 + 0.523090i \(0.824779\pi\)
\(864\) 24.7959 0.843575
\(865\) 36.7581 1.24981
\(866\) 1.34238 0.0456158
\(867\) 14.8940 0.505826
\(868\) 0 0
\(869\) −2.14587 −0.0727937
\(870\) 15.6901 0.531945
\(871\) 22.4787 0.761662
\(872\) 14.4714 0.490062
\(873\) 12.8739 0.435716
\(874\) −1.87899 −0.0635578
\(875\) 0 0
\(876\) −8.85698 −0.299250
\(877\) 11.0626 0.373558 0.186779 0.982402i \(-0.440195\pi\)
0.186779 + 0.982402i \(0.440195\pi\)
\(878\) −12.9348 −0.436527
\(879\) 3.50433 0.118198
\(880\) 12.8657 0.433701
\(881\) 45.8121 1.54345 0.771725 0.635956i \(-0.219394\pi\)
0.771725 + 0.635956i \(0.219394\pi\)
\(882\) 0 0
\(883\) −52.9427 −1.78167 −0.890833 0.454332i \(-0.849878\pi\)
−0.890833 + 0.454332i \(0.849878\pi\)
\(884\) 13.7105 0.461135
\(885\) 8.17706 0.274869
\(886\) 7.80187 0.262109
\(887\) −25.7034 −0.863036 −0.431518 0.902104i \(-0.642022\pi\)
−0.431518 + 0.902104i \(0.642022\pi\)
\(888\) 13.8687 0.465402
\(889\) 0 0
\(890\) 6.93339 0.232408
\(891\) 2.35891 0.0790266
\(892\) −1.36158 −0.0455892
\(893\) 24.1082 0.806750
\(894\) −4.92650 −0.164767
\(895\) 75.6452 2.52854
\(896\) 0 0
\(897\) 6.25642 0.208896
\(898\) 7.47046 0.249293
\(899\) 88.3988 2.94826
\(900\) 24.6391 0.821303
\(901\) −6.39806 −0.213150
\(902\) −3.47997 −0.115870
\(903\) 0 0
\(904\) 38.1438 1.26864
\(905\) 17.5254 0.582564
\(906\) −4.98174 −0.165507
\(907\) 11.0112 0.365620 0.182810 0.983148i \(-0.441481\pi\)
0.182810 + 0.983148i \(0.441481\pi\)
\(908\) 25.9634 0.861627
\(909\) 1.38423 0.0459121
\(910\) 0 0
\(911\) −47.1465 −1.56203 −0.781017 0.624510i \(-0.785299\pi\)
−0.781017 + 0.624510i \(0.785299\pi\)
\(912\) 8.85733 0.293296
\(913\) −18.8859 −0.625033
\(914\) −2.92998 −0.0969151
\(915\) 17.1453 0.566807
\(916\) −22.6666 −0.748924
\(917\) 0 0
\(918\) 2.99573 0.0988740
\(919\) −38.5881 −1.27291 −0.636453 0.771316i \(-0.719599\pi\)
−0.636453 + 0.771316i \(0.719599\pi\)
\(920\) −6.55035 −0.215959
\(921\) −4.64582 −0.153085
\(922\) 7.69508 0.253424
\(923\) −15.4886 −0.509813
\(924\) 0 0
\(925\) 51.6282 1.69752
\(926\) 4.82193 0.158458
\(927\) −35.5101 −1.16631
\(928\) −47.6095 −1.56286
\(929\) −6.32784 −0.207610 −0.103805 0.994598i \(-0.533102\pi\)
−0.103805 + 0.994598i \(0.533102\pi\)
\(930\) 15.8669 0.520297
\(931\) 0 0
\(932\) −16.6151 −0.544244
\(933\) −11.3063 −0.370152
\(934\) 3.39080 0.110950
\(935\) 6.19019 0.202441
\(936\) −25.9192 −0.847194
\(937\) −13.5040 −0.441155 −0.220578 0.975369i \(-0.570794\pi\)
−0.220578 + 0.975369i \(0.570794\pi\)
\(938\) 0 0
\(939\) 22.7326 0.741852
\(940\) 39.1015 1.27535
\(941\) −19.8342 −0.646576 −0.323288 0.946301i \(-0.604788\pi\)
−0.323288 + 0.946301i \(0.604788\pi\)
\(942\) −5.22849 −0.170353
\(943\) −4.57126 −0.148861
\(944\) −6.23040 −0.202782
\(945\) 0 0
\(946\) 1.94168 0.0631294
\(947\) −11.5510 −0.375356 −0.187678 0.982231i \(-0.560096\pi\)
−0.187678 + 0.982231i \(0.560096\pi\)
\(948\) −2.39609 −0.0778214
\(949\) 34.6843 1.12590
\(950\) −12.7799 −0.414634
\(951\) 21.1579 0.686093
\(952\) 0 0
\(953\) −16.8320 −0.545243 −0.272622 0.962121i \(-0.587891\pi\)
−0.272622 + 0.962121i \(0.587891\pi\)
\(954\) 5.62735 0.182192
\(955\) 36.6896 1.18725
\(956\) −35.2038 −1.13857
\(957\) 13.3773 0.432426
\(958\) 17.5705 0.567677
\(959\) 0 0
\(960\) 7.96611 0.257105
\(961\) 58.3950 1.88371
\(962\) −25.2681 −0.814675
\(963\) −18.9092 −0.609339
\(964\) 15.9093 0.512404
\(965\) 8.02818 0.258436
\(966\) 0 0
\(967\) −14.2153 −0.457133 −0.228567 0.973528i \(-0.573404\pi\)
−0.228567 + 0.973528i \(0.573404\pi\)
\(968\) 16.7228 0.537493
\(969\) 4.26162 0.136903
\(970\) −10.8303 −0.347740
\(971\) −34.1487 −1.09588 −0.547941 0.836517i \(-0.684588\pi\)
−0.547941 + 0.836517i \(0.684588\pi\)
\(972\) 28.0536 0.899818
\(973\) 0 0
\(974\) −9.19253 −0.294548
\(975\) 42.5528 1.36278
\(976\) −13.0636 −0.418157
\(977\) 9.63902 0.308380 0.154190 0.988041i \(-0.450723\pi\)
0.154190 + 0.988041i \(0.450723\pi\)
\(978\) −6.11326 −0.195480
\(979\) 5.91136 0.188928
\(980\) 0 0
\(981\) 15.8003 0.504464
\(982\) −9.10904 −0.290681
\(983\) −51.6806 −1.64836 −0.824178 0.566332i \(-0.808362\pi\)
−0.824178 + 0.566332i \(0.808362\pi\)
\(984\) −8.35191 −0.266249
\(985\) 8.74532 0.278649
\(986\) −5.75197 −0.183180
\(987\) 0 0
\(988\) −41.8748 −1.33221
\(989\) 2.55057 0.0811034
\(990\) −5.44452 −0.173038
\(991\) 37.1602 1.18043 0.590216 0.807245i \(-0.299043\pi\)
0.590216 + 0.807245i \(0.299043\pi\)
\(992\) −48.1460 −1.52864
\(993\) −6.58346 −0.208920
\(994\) 0 0
\(995\) −2.03098 −0.0643865
\(996\) −21.0881 −0.668203
\(997\) 41.9411 1.32829 0.664144 0.747605i \(-0.268796\pi\)
0.664144 + 0.747605i \(0.268796\pi\)
\(998\) −3.50615 −0.110985
\(999\) 36.9625 1.16944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.2.a.k.1.4 7
7.3 odd 6 161.2.e.a.93.4 14
7.5 odd 6 161.2.e.a.116.4 yes 14
7.6 odd 2 1127.2.a.n.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.e.a.93.4 14 7.3 odd 6
161.2.e.a.116.4 yes 14 7.5 odd 6
1127.2.a.k.1.4 7 1.1 even 1 trivial
1127.2.a.n.1.4 7 7.6 odd 2