Properties

Label 1127.2.a.k.1.5
Level $1127$
Weight $2$
Character 1127.1
Self dual yes
Analytic conductor $8.999$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.99914030780\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 10x^{5} - x^{4} + 29x^{3} + 9x^{2} - 24x - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.17057\) of defining polynomial
Character \(\chi\) \(=\) 1127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17057 q^{2} -3.34828 q^{3} -0.629767 q^{4} +0.135011 q^{5} -3.91940 q^{6} -3.07833 q^{8} +8.21099 q^{9} +0.158040 q^{10} +4.30224 q^{11} +2.10864 q^{12} +1.09269 q^{13} -0.452054 q^{15} -2.34386 q^{16} -4.41415 q^{17} +9.61154 q^{18} +2.11300 q^{19} -0.0850253 q^{20} +5.03607 q^{22} +1.00000 q^{23} +10.3071 q^{24} -4.98177 q^{25} +1.27907 q^{26} -17.4479 q^{27} -2.57118 q^{29} -0.529161 q^{30} +2.12825 q^{31} +3.41300 q^{32} -14.4051 q^{33} -5.16707 q^{34} -5.17101 q^{36} -10.7042 q^{37} +2.47341 q^{38} -3.65863 q^{39} -0.415607 q^{40} -4.16343 q^{41} +0.313612 q^{43} -2.70941 q^{44} +1.10857 q^{45} +1.17057 q^{46} +0.456666 q^{47} +7.84790 q^{48} -5.83151 q^{50} +14.7798 q^{51} -0.688138 q^{52} -1.47165 q^{53} -20.4240 q^{54} +0.580848 q^{55} -7.07490 q^{57} -3.00974 q^{58} -12.3961 q^{59} +0.284689 q^{60} +4.69307 q^{61} +2.49126 q^{62} +8.68287 q^{64} +0.147525 q^{65} -16.8622 q^{66} -8.88599 q^{67} +2.77989 q^{68} -3.34828 q^{69} -5.37228 q^{71} -25.2761 q^{72} -12.6459 q^{73} -12.5300 q^{74} +16.6804 q^{75} -1.33069 q^{76} -4.28268 q^{78} -3.64944 q^{79} -0.316446 q^{80} +33.7874 q^{81} -4.87358 q^{82} +9.83902 q^{83} -0.595958 q^{85} +0.367104 q^{86} +8.60903 q^{87} -13.2437 q^{88} -0.699096 q^{89} +1.29766 q^{90} -0.629767 q^{92} -7.12597 q^{93} +0.534559 q^{94} +0.285277 q^{95} -11.4277 q^{96} +8.12610 q^{97} +35.3256 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 5 q^{3} + 6 q^{4} - 4 q^{5} - 6 q^{6} - 3 q^{8} + 4 q^{9} + 2 q^{10} + 4 q^{11} - 9 q^{12} - 14 q^{13} - 3 q^{15} - 8 q^{16} - 4 q^{17} + 19 q^{18} - 9 q^{19} - 12 q^{20} - 10 q^{22} + 7 q^{23} + 4 q^{24}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17057 0.827718 0.413859 0.910341i \(-0.364181\pi\)
0.413859 + 0.910341i \(0.364181\pi\)
\(3\) −3.34828 −1.93313 −0.966566 0.256419i \(-0.917457\pi\)
−0.966566 + 0.256419i \(0.917457\pi\)
\(4\) −0.629767 −0.314883
\(5\) 0.135011 0.0603787 0.0301893 0.999544i \(-0.490389\pi\)
0.0301893 + 0.999544i \(0.490389\pi\)
\(6\) −3.91940 −1.60009
\(7\) 0 0
\(8\) −3.07833 −1.08835
\(9\) 8.21099 2.73700
\(10\) 0.158040 0.0499765
\(11\) 4.30224 1.29717 0.648586 0.761141i \(-0.275360\pi\)
0.648586 + 0.761141i \(0.275360\pi\)
\(12\) 2.10864 0.608711
\(13\) 1.09269 0.303057 0.151528 0.988453i \(-0.451580\pi\)
0.151528 + 0.988453i \(0.451580\pi\)
\(14\) 0 0
\(15\) −0.452054 −0.116720
\(16\) −2.34386 −0.585965
\(17\) −4.41415 −1.07059 −0.535295 0.844665i \(-0.679799\pi\)
−0.535295 + 0.844665i \(0.679799\pi\)
\(18\) 9.61154 2.26546
\(19\) 2.11300 0.484754 0.242377 0.970182i \(-0.422073\pi\)
0.242377 + 0.970182i \(0.422073\pi\)
\(20\) −0.0850253 −0.0190122
\(21\) 0 0
\(22\) 5.03607 1.07369
\(23\) 1.00000 0.208514
\(24\) 10.3071 2.10393
\(25\) −4.98177 −0.996354
\(26\) 1.27907 0.250846
\(27\) −17.4479 −3.35785
\(28\) 0 0
\(29\) −2.57118 −0.477456 −0.238728 0.971086i \(-0.576730\pi\)
−0.238728 + 0.971086i \(0.576730\pi\)
\(30\) −0.529161 −0.0966111
\(31\) 2.12825 0.382244 0.191122 0.981566i \(-0.438787\pi\)
0.191122 + 0.981566i \(0.438787\pi\)
\(32\) 3.41300 0.603339
\(33\) −14.4051 −2.50761
\(34\) −5.16707 −0.886146
\(35\) 0 0
\(36\) −5.17101 −0.861835
\(37\) −10.7042 −1.75976 −0.879882 0.475192i \(-0.842379\pi\)
−0.879882 + 0.475192i \(0.842379\pi\)
\(38\) 2.47341 0.401240
\(39\) −3.65863 −0.585849
\(40\) −0.415607 −0.0657133
\(41\) −4.16343 −0.650218 −0.325109 0.945677i \(-0.605401\pi\)
−0.325109 + 0.945677i \(0.605401\pi\)
\(42\) 0 0
\(43\) 0.313612 0.0478254 0.0239127 0.999714i \(-0.492388\pi\)
0.0239127 + 0.999714i \(0.492388\pi\)
\(44\) −2.70941 −0.408458
\(45\) 1.10857 0.165256
\(46\) 1.17057 0.172591
\(47\) 0.456666 0.0666115 0.0333058 0.999445i \(-0.489396\pi\)
0.0333058 + 0.999445i \(0.489396\pi\)
\(48\) 7.84790 1.13275
\(49\) 0 0
\(50\) −5.83151 −0.824700
\(51\) 14.7798 2.06959
\(52\) −0.688138 −0.0954276
\(53\) −1.47165 −0.202147 −0.101073 0.994879i \(-0.532228\pi\)
−0.101073 + 0.994879i \(0.532228\pi\)
\(54\) −20.4240 −2.77935
\(55\) 0.580848 0.0783216
\(56\) 0 0
\(57\) −7.07490 −0.937094
\(58\) −3.00974 −0.395199
\(59\) −12.3961 −1.61384 −0.806920 0.590661i \(-0.798867\pi\)
−0.806920 + 0.590661i \(0.798867\pi\)
\(60\) 0.284689 0.0367532
\(61\) 4.69307 0.600886 0.300443 0.953800i \(-0.402866\pi\)
0.300443 + 0.953800i \(0.402866\pi\)
\(62\) 2.49126 0.316390
\(63\) 0 0
\(64\) 8.68287 1.08536
\(65\) 0.147525 0.0182982
\(66\) −16.8622 −2.07559
\(67\) −8.88599 −1.08560 −0.542798 0.839863i \(-0.682635\pi\)
−0.542798 + 0.839863i \(0.682635\pi\)
\(68\) 2.77989 0.337111
\(69\) −3.34828 −0.403086
\(70\) 0 0
\(71\) −5.37228 −0.637572 −0.318786 0.947827i \(-0.603275\pi\)
−0.318786 + 0.947827i \(0.603275\pi\)
\(72\) −25.2761 −2.97882
\(73\) −12.6459 −1.48010 −0.740048 0.672554i \(-0.765197\pi\)
−0.740048 + 0.672554i \(0.765197\pi\)
\(74\) −12.5300 −1.45659
\(75\) 16.6804 1.92608
\(76\) −1.33069 −0.152641
\(77\) 0 0
\(78\) −4.28268 −0.484918
\(79\) −3.64944 −0.410594 −0.205297 0.978700i \(-0.565816\pi\)
−0.205297 + 0.978700i \(0.565816\pi\)
\(80\) −0.316446 −0.0353798
\(81\) 33.7874 3.75416
\(82\) −4.87358 −0.538197
\(83\) 9.83902 1.07997 0.539986 0.841674i \(-0.318429\pi\)
0.539986 + 0.841674i \(0.318429\pi\)
\(84\) 0 0
\(85\) −0.595958 −0.0646408
\(86\) 0.367104 0.0395859
\(87\) 8.60903 0.922985
\(88\) −13.2437 −1.41178
\(89\) −0.699096 −0.0741040 −0.0370520 0.999313i \(-0.511797\pi\)
−0.0370520 + 0.999313i \(0.511797\pi\)
\(90\) 1.29766 0.136786
\(91\) 0 0
\(92\) −0.629767 −0.0656577
\(93\) −7.12597 −0.738928
\(94\) 0.534559 0.0551355
\(95\) 0.285277 0.0292688
\(96\) −11.4277 −1.16633
\(97\) 8.12610 0.825081 0.412540 0.910939i \(-0.364642\pi\)
0.412540 + 0.910939i \(0.364642\pi\)
\(98\) 0 0
\(99\) 35.3256 3.55036
\(100\) 3.13736 0.313736
\(101\) 5.56455 0.553693 0.276847 0.960914i \(-0.410711\pi\)
0.276847 + 0.960914i \(0.410711\pi\)
\(102\) 17.3008 1.71304
\(103\) 0.608326 0.0599402 0.0299701 0.999551i \(-0.490459\pi\)
0.0299701 + 0.999551i \(0.490459\pi\)
\(104\) −3.36365 −0.329833
\(105\) 0 0
\(106\) −1.72267 −0.167321
\(107\) 1.00450 0.0971091 0.0485546 0.998821i \(-0.484539\pi\)
0.0485546 + 0.998821i \(0.484539\pi\)
\(108\) 10.9881 1.05733
\(109\) −12.2530 −1.17363 −0.586813 0.809723i \(-0.699618\pi\)
−0.586813 + 0.809723i \(0.699618\pi\)
\(110\) 0.679923 0.0648282
\(111\) 35.8408 3.40186
\(112\) 0 0
\(113\) −10.4710 −0.985029 −0.492514 0.870304i \(-0.663922\pi\)
−0.492514 + 0.870304i \(0.663922\pi\)
\(114\) −8.28167 −0.775649
\(115\) 0.135011 0.0125898
\(116\) 1.61924 0.150343
\(117\) 8.97205 0.829466
\(118\) −14.5105 −1.33580
\(119\) 0 0
\(120\) 1.39157 0.127032
\(121\) 7.50923 0.682657
\(122\) 5.49356 0.497364
\(123\) 13.9403 1.25696
\(124\) −1.34030 −0.120362
\(125\) −1.34765 −0.120537
\(126\) 0 0
\(127\) −7.02640 −0.623492 −0.311746 0.950165i \(-0.600914\pi\)
−0.311746 + 0.950165i \(0.600914\pi\)
\(128\) 3.33791 0.295032
\(129\) −1.05006 −0.0924527
\(130\) 0.172688 0.0151457
\(131\) 11.5317 1.00753 0.503763 0.863842i \(-0.331948\pi\)
0.503763 + 0.863842i \(0.331948\pi\)
\(132\) 9.07186 0.789604
\(133\) 0 0
\(134\) −10.4017 −0.898568
\(135\) −2.35565 −0.202742
\(136\) 13.5882 1.16518
\(137\) −10.6639 −0.911080 −0.455540 0.890215i \(-0.650554\pi\)
−0.455540 + 0.890215i \(0.650554\pi\)
\(138\) −3.91940 −0.333641
\(139\) 17.4719 1.48195 0.740975 0.671532i \(-0.234364\pi\)
0.740975 + 0.671532i \(0.234364\pi\)
\(140\) 0 0
\(141\) −1.52905 −0.128769
\(142\) −6.28862 −0.527729
\(143\) 4.70100 0.393117
\(144\) −19.2454 −1.60378
\(145\) −0.347137 −0.0288282
\(146\) −14.8030 −1.22510
\(147\) 0 0
\(148\) 6.74117 0.554121
\(149\) −18.0975 −1.48261 −0.741303 0.671171i \(-0.765792\pi\)
−0.741303 + 0.671171i \(0.765792\pi\)
\(150\) 19.5255 1.59425
\(151\) 13.9238 1.13310 0.566550 0.824027i \(-0.308278\pi\)
0.566550 + 0.824027i \(0.308278\pi\)
\(152\) −6.50449 −0.527584
\(153\) −36.2446 −2.93020
\(154\) 0 0
\(155\) 0.287336 0.0230794
\(156\) 2.30408 0.184474
\(157\) −10.6893 −0.853102 −0.426551 0.904464i \(-0.640272\pi\)
−0.426551 + 0.904464i \(0.640272\pi\)
\(158\) −4.27192 −0.339856
\(159\) 4.92750 0.390777
\(160\) 0.460792 0.0364288
\(161\) 0 0
\(162\) 39.5505 3.10738
\(163\) 2.69426 0.211030 0.105515 0.994418i \(-0.466351\pi\)
0.105515 + 0.994418i \(0.466351\pi\)
\(164\) 2.62199 0.204743
\(165\) −1.94484 −0.151406
\(166\) 11.5173 0.893913
\(167\) −23.2708 −1.80075 −0.900373 0.435118i \(-0.856707\pi\)
−0.900373 + 0.435118i \(0.856707\pi\)
\(168\) 0 0
\(169\) −11.8060 −0.908156
\(170\) −0.697611 −0.0535043
\(171\) 17.3498 1.32677
\(172\) −0.197502 −0.0150594
\(173\) −11.5097 −0.875063 −0.437532 0.899203i \(-0.644147\pi\)
−0.437532 + 0.899203i \(0.644147\pi\)
\(174\) 10.0775 0.763971
\(175\) 0 0
\(176\) −10.0838 −0.760098
\(177\) 41.5058 3.11977
\(178\) −0.818340 −0.0613372
\(179\) −6.86421 −0.513055 −0.256528 0.966537i \(-0.582578\pi\)
−0.256528 + 0.966537i \(0.582578\pi\)
\(180\) −0.698143 −0.0520365
\(181\) −15.6248 −1.16138 −0.580690 0.814125i \(-0.697217\pi\)
−0.580690 + 0.814125i \(0.697217\pi\)
\(182\) 0 0
\(183\) −15.7137 −1.16159
\(184\) −3.07833 −0.226937
\(185\) −1.44519 −0.106252
\(186\) −8.34144 −0.611624
\(187\) −18.9907 −1.38874
\(188\) −0.287593 −0.0209749
\(189\) 0 0
\(190\) 0.333937 0.0242263
\(191\) 2.20523 0.159565 0.0797826 0.996812i \(-0.474577\pi\)
0.0797826 + 0.996812i \(0.474577\pi\)
\(192\) −29.0727 −2.09814
\(193\) −4.51678 −0.325125 −0.162562 0.986698i \(-0.551976\pi\)
−0.162562 + 0.986698i \(0.551976\pi\)
\(194\) 9.51217 0.682934
\(195\) −0.493954 −0.0353728
\(196\) 0 0
\(197\) 21.2845 1.51646 0.758230 0.651987i \(-0.226064\pi\)
0.758230 + 0.651987i \(0.226064\pi\)
\(198\) 41.3511 2.93870
\(199\) −12.4057 −0.879414 −0.439707 0.898141i \(-0.644918\pi\)
−0.439707 + 0.898141i \(0.644918\pi\)
\(200\) 15.3355 1.08438
\(201\) 29.7528 2.09860
\(202\) 6.51369 0.458302
\(203\) 0 0
\(204\) −9.30785 −0.651680
\(205\) −0.562108 −0.0392593
\(206\) 0.712088 0.0496135
\(207\) 8.21099 0.570704
\(208\) −2.56111 −0.177581
\(209\) 9.09060 0.628810
\(210\) 0 0
\(211\) 17.5494 1.20815 0.604076 0.796927i \(-0.293542\pi\)
0.604076 + 0.796927i \(0.293542\pi\)
\(212\) 0.926797 0.0636527
\(213\) 17.9879 1.23251
\(214\) 1.17584 0.0803789
\(215\) 0.0423410 0.00288763
\(216\) 53.7102 3.65452
\(217\) 0 0
\(218\) −14.3430 −0.971431
\(219\) 42.3422 2.86122
\(220\) −0.365799 −0.0246622
\(221\) −4.82329 −0.324450
\(222\) 41.9541 2.81578
\(223\) −5.67894 −0.380290 −0.190145 0.981756i \(-0.560896\pi\)
−0.190145 + 0.981756i \(0.560896\pi\)
\(224\) 0 0
\(225\) −40.9053 −2.72702
\(226\) −12.2570 −0.815326
\(227\) 19.6293 1.30284 0.651422 0.758716i \(-0.274173\pi\)
0.651422 + 0.758716i \(0.274173\pi\)
\(228\) 4.45554 0.295075
\(229\) 16.1934 1.07009 0.535045 0.844824i \(-0.320295\pi\)
0.535045 + 0.844824i \(0.320295\pi\)
\(230\) 0.158040 0.0104208
\(231\) 0 0
\(232\) 7.91493 0.519640
\(233\) −6.95138 −0.455400 −0.227700 0.973731i \(-0.573121\pi\)
−0.227700 + 0.973731i \(0.573121\pi\)
\(234\) 10.5024 0.686564
\(235\) 0.0616548 0.00402192
\(236\) 7.80668 0.508172
\(237\) 12.2194 0.793732
\(238\) 0 0
\(239\) 6.20904 0.401629 0.200815 0.979629i \(-0.435641\pi\)
0.200815 + 0.979629i \(0.435641\pi\)
\(240\) 1.05955 0.0683938
\(241\) −19.2279 −1.23858 −0.619290 0.785162i \(-0.712580\pi\)
−0.619290 + 0.785162i \(0.712580\pi\)
\(242\) 8.79008 0.565048
\(243\) −60.7862 −3.89944
\(244\) −2.95554 −0.189209
\(245\) 0 0
\(246\) 16.3181 1.04041
\(247\) 2.30884 0.146908
\(248\) −6.55143 −0.416016
\(249\) −32.9438 −2.08773
\(250\) −1.57751 −0.0997708
\(251\) −18.9705 −1.19740 −0.598702 0.800972i \(-0.704317\pi\)
−0.598702 + 0.800972i \(0.704317\pi\)
\(252\) 0 0
\(253\) 4.30224 0.270479
\(254\) −8.22489 −0.516076
\(255\) 1.99544 0.124959
\(256\) −13.4585 −0.841156
\(257\) −7.49033 −0.467234 −0.233617 0.972329i \(-0.575056\pi\)
−0.233617 + 0.972329i \(0.575056\pi\)
\(258\) −1.22917 −0.0765247
\(259\) 0 0
\(260\) −0.0929061 −0.00576179
\(261\) −21.1119 −1.30680
\(262\) 13.4986 0.833948
\(263\) 28.5655 1.76142 0.880712 0.473651i \(-0.157064\pi\)
0.880712 + 0.473651i \(0.157064\pi\)
\(264\) 44.3436 2.72916
\(265\) −0.198689 −0.0122054
\(266\) 0 0
\(267\) 2.34077 0.143253
\(268\) 5.59611 0.341837
\(269\) −11.3097 −0.689562 −0.344781 0.938683i \(-0.612047\pi\)
−0.344781 + 0.938683i \(0.612047\pi\)
\(270\) −2.75745 −0.167813
\(271\) −10.7327 −0.651967 −0.325984 0.945375i \(-0.605695\pi\)
−0.325984 + 0.945375i \(0.605695\pi\)
\(272\) 10.3462 0.627328
\(273\) 0 0
\(274\) −12.4829 −0.754117
\(275\) −21.4328 −1.29244
\(276\) 2.10864 0.126925
\(277\) 14.3115 0.859896 0.429948 0.902854i \(-0.358532\pi\)
0.429948 + 0.902854i \(0.358532\pi\)
\(278\) 20.4521 1.22664
\(279\) 17.4750 1.04620
\(280\) 0 0
\(281\) 24.7009 1.47353 0.736766 0.676148i \(-0.236352\pi\)
0.736766 + 0.676148i \(0.236352\pi\)
\(282\) −1.78985 −0.106584
\(283\) 2.68343 0.159513 0.0797567 0.996814i \(-0.474586\pi\)
0.0797567 + 0.996814i \(0.474586\pi\)
\(284\) 3.38328 0.200761
\(285\) −0.955189 −0.0565805
\(286\) 5.50285 0.325390
\(287\) 0 0
\(288\) 28.0241 1.65134
\(289\) 2.48475 0.146162
\(290\) −0.406348 −0.0238616
\(291\) −27.2085 −1.59499
\(292\) 7.96400 0.466058
\(293\) 5.42744 0.317074 0.158537 0.987353i \(-0.449322\pi\)
0.158537 + 0.987353i \(0.449322\pi\)
\(294\) 0 0
\(295\) −1.67361 −0.0974415
\(296\) 32.9511 1.91524
\(297\) −75.0649 −4.35571
\(298\) −21.1844 −1.22718
\(299\) 1.09269 0.0631917
\(300\) −10.5048 −0.606492
\(301\) 0 0
\(302\) 16.2987 0.937887
\(303\) −18.6317 −1.07036
\(304\) −4.95256 −0.284049
\(305\) 0.633615 0.0362807
\(306\) −42.4268 −2.42538
\(307\) 4.16822 0.237893 0.118947 0.992901i \(-0.462048\pi\)
0.118947 + 0.992901i \(0.462048\pi\)
\(308\) 0 0
\(309\) −2.03685 −0.115872
\(310\) 0.336347 0.0191032
\(311\) −3.34567 −0.189716 −0.0948579 0.995491i \(-0.530240\pi\)
−0.0948579 + 0.995491i \(0.530240\pi\)
\(312\) 11.2624 0.637610
\(313\) −20.4088 −1.15358 −0.576788 0.816894i \(-0.695694\pi\)
−0.576788 + 0.816894i \(0.695694\pi\)
\(314\) −12.5126 −0.706127
\(315\) 0 0
\(316\) 2.29830 0.129289
\(317\) 14.1307 0.793660 0.396830 0.917892i \(-0.370110\pi\)
0.396830 + 0.917892i \(0.370110\pi\)
\(318\) 5.76799 0.323453
\(319\) −11.0618 −0.619343
\(320\) 1.17228 0.0655325
\(321\) −3.36336 −0.187725
\(322\) 0 0
\(323\) −9.32709 −0.518973
\(324\) −21.2782 −1.18212
\(325\) −5.44352 −0.301952
\(326\) 3.15381 0.174674
\(327\) 41.0265 2.26877
\(328\) 12.8164 0.707666
\(329\) 0 0
\(330\) −2.27658 −0.125321
\(331\) 15.8790 0.872790 0.436395 0.899755i \(-0.356255\pi\)
0.436395 + 0.899755i \(0.356255\pi\)
\(332\) −6.19629 −0.340066
\(333\) −87.8923 −4.81647
\(334\) −27.2401 −1.49051
\(335\) −1.19971 −0.0655469
\(336\) 0 0
\(337\) 0.919792 0.0501043 0.0250521 0.999686i \(-0.492025\pi\)
0.0250521 + 0.999686i \(0.492025\pi\)
\(338\) −13.8198 −0.751697
\(339\) 35.0599 1.90419
\(340\) 0.375315 0.0203543
\(341\) 9.15622 0.495837
\(342\) 20.3091 1.09819
\(343\) 0 0
\(344\) −0.965399 −0.0520508
\(345\) −0.452054 −0.0243378
\(346\) −13.4729 −0.724305
\(347\) 19.1019 1.02544 0.512721 0.858555i \(-0.328637\pi\)
0.512721 + 0.858555i \(0.328637\pi\)
\(348\) −5.42169 −0.290633
\(349\) 22.5135 1.20512 0.602559 0.798074i \(-0.294148\pi\)
0.602559 + 0.798074i \(0.294148\pi\)
\(350\) 0 0
\(351\) −19.0651 −1.01762
\(352\) 14.6835 0.782635
\(353\) 9.49999 0.505634 0.252817 0.967514i \(-0.418643\pi\)
0.252817 + 0.967514i \(0.418643\pi\)
\(354\) 48.5854 2.58228
\(355\) −0.725315 −0.0384957
\(356\) 0.440267 0.0233341
\(357\) 0 0
\(358\) −8.03504 −0.424665
\(359\) −20.9436 −1.10536 −0.552681 0.833393i \(-0.686395\pi\)
−0.552681 + 0.833393i \(0.686395\pi\)
\(360\) −3.41255 −0.179857
\(361\) −14.5353 −0.765013
\(362\) −18.2899 −0.961295
\(363\) −25.1430 −1.31967
\(364\) 0 0
\(365\) −1.70734 −0.0893662
\(366\) −18.3940 −0.961470
\(367\) −16.5334 −0.863039 −0.431519 0.902104i \(-0.642022\pi\)
−0.431519 + 0.902104i \(0.642022\pi\)
\(368\) −2.34386 −0.122182
\(369\) −34.1859 −1.77965
\(370\) −1.69169 −0.0879468
\(371\) 0 0
\(372\) 4.48770 0.232676
\(373\) 0.112469 0.00582340 0.00291170 0.999996i \(-0.499073\pi\)
0.00291170 + 0.999996i \(0.499073\pi\)
\(374\) −22.2300 −1.14948
\(375\) 4.51230 0.233014
\(376\) −1.40577 −0.0724968
\(377\) −2.80950 −0.144696
\(378\) 0 0
\(379\) −26.8045 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(380\) −0.179658 −0.00921627
\(381\) 23.5264 1.20529
\(382\) 2.58138 0.132075
\(383\) −9.99417 −0.510678 −0.255339 0.966852i \(-0.582187\pi\)
−0.255339 + 0.966852i \(0.582187\pi\)
\(384\) −11.1763 −0.570336
\(385\) 0 0
\(386\) −5.28720 −0.269111
\(387\) 2.57506 0.130898
\(388\) −5.11755 −0.259804
\(389\) −25.0768 −1.27145 −0.635723 0.771918i \(-0.719298\pi\)
−0.635723 + 0.771918i \(0.719298\pi\)
\(390\) −0.578208 −0.0292787
\(391\) −4.41415 −0.223233
\(392\) 0 0
\(393\) −38.6113 −1.94768
\(394\) 24.9150 1.25520
\(395\) −0.492714 −0.0247911
\(396\) −22.2469 −1.11795
\(397\) 22.0042 1.10436 0.552178 0.833726i \(-0.313797\pi\)
0.552178 + 0.833726i \(0.313797\pi\)
\(398\) −14.5217 −0.727906
\(399\) 0 0
\(400\) 11.6766 0.583829
\(401\) 12.0137 0.599934 0.299967 0.953950i \(-0.403024\pi\)
0.299967 + 0.953950i \(0.403024\pi\)
\(402\) 34.8277 1.73705
\(403\) 2.32551 0.115842
\(404\) −3.50437 −0.174349
\(405\) 4.56167 0.226671
\(406\) 0 0
\(407\) −46.0521 −2.28272
\(408\) −45.4971 −2.25244
\(409\) 24.3764 1.20534 0.602669 0.797991i \(-0.294104\pi\)
0.602669 + 0.797991i \(0.294104\pi\)
\(410\) −0.657986 −0.0324956
\(411\) 35.7058 1.76124
\(412\) −0.383104 −0.0188742
\(413\) 0 0
\(414\) 9.61154 0.472381
\(415\) 1.32837 0.0652073
\(416\) 3.72934 0.182846
\(417\) −58.5010 −2.86480
\(418\) 10.6412 0.520477
\(419\) −4.41927 −0.215896 −0.107948 0.994157i \(-0.534428\pi\)
−0.107948 + 0.994157i \(0.534428\pi\)
\(420\) 0 0
\(421\) 32.4943 1.58368 0.791838 0.610731i \(-0.209124\pi\)
0.791838 + 0.610731i \(0.209124\pi\)
\(422\) 20.5428 1.00001
\(423\) 3.74968 0.182316
\(424\) 4.53022 0.220007
\(425\) 21.9903 1.06669
\(426\) 21.0561 1.02017
\(427\) 0 0
\(428\) −0.632604 −0.0305781
\(429\) −15.7403 −0.759947
\(430\) 0.0495631 0.00239014
\(431\) 2.70686 0.130385 0.0651925 0.997873i \(-0.479234\pi\)
0.0651925 + 0.997873i \(0.479234\pi\)
\(432\) 40.8954 1.96758
\(433\) −29.1434 −1.40054 −0.700271 0.713877i \(-0.746937\pi\)
−0.700271 + 0.713877i \(0.746937\pi\)
\(434\) 0 0
\(435\) 1.16231 0.0557286
\(436\) 7.71654 0.369555
\(437\) 2.11300 0.101078
\(438\) 49.5645 2.36828
\(439\) −32.9158 −1.57099 −0.785494 0.618869i \(-0.787591\pi\)
−0.785494 + 0.618869i \(0.787591\pi\)
\(440\) −1.78804 −0.0852415
\(441\) 0 0
\(442\) −5.64600 −0.268553
\(443\) 4.48315 0.213001 0.106500 0.994313i \(-0.466035\pi\)
0.106500 + 0.994313i \(0.466035\pi\)
\(444\) −22.5713 −1.07119
\(445\) −0.0943855 −0.00447430
\(446\) −6.64759 −0.314773
\(447\) 60.5956 2.86607
\(448\) 0 0
\(449\) 6.66482 0.314532 0.157266 0.987556i \(-0.449732\pi\)
0.157266 + 0.987556i \(0.449732\pi\)
\(450\) −47.8825 −2.25720
\(451\) −17.9120 −0.843445
\(452\) 6.59429 0.310169
\(453\) −46.6207 −2.19043
\(454\) 22.9775 1.07839
\(455\) 0 0
\(456\) 21.7789 1.01989
\(457\) −25.0493 −1.17176 −0.585878 0.810400i \(-0.699250\pi\)
−0.585878 + 0.810400i \(0.699250\pi\)
\(458\) 18.9555 0.885732
\(459\) 77.0176 3.59487
\(460\) −0.0850253 −0.00396433
\(461\) 4.90547 0.228471 0.114235 0.993454i \(-0.463558\pi\)
0.114235 + 0.993454i \(0.463558\pi\)
\(462\) 0 0
\(463\) 7.60392 0.353384 0.176692 0.984266i \(-0.443460\pi\)
0.176692 + 0.984266i \(0.443460\pi\)
\(464\) 6.02648 0.279772
\(465\) −0.962083 −0.0446155
\(466\) −8.13708 −0.376943
\(467\) −9.87500 −0.456961 −0.228480 0.973549i \(-0.573376\pi\)
−0.228480 + 0.973549i \(0.573376\pi\)
\(468\) −5.65030 −0.261185
\(469\) 0 0
\(470\) 0.0721712 0.00332901
\(471\) 35.7909 1.64916
\(472\) 38.1594 1.75643
\(473\) 1.34923 0.0620378
\(474\) 14.3036 0.656986
\(475\) −10.5265 −0.482987
\(476\) 0 0
\(477\) −12.0837 −0.553276
\(478\) 7.26811 0.332436
\(479\) −10.8277 −0.494731 −0.247365 0.968922i \(-0.579565\pi\)
−0.247365 + 0.968922i \(0.579565\pi\)
\(480\) −1.54286 −0.0704217
\(481\) −11.6964 −0.533309
\(482\) −22.5076 −1.02520
\(483\) 0 0
\(484\) −4.72907 −0.214958
\(485\) 1.09711 0.0498173
\(486\) −71.1545 −3.22763
\(487\) 5.33842 0.241907 0.120953 0.992658i \(-0.461405\pi\)
0.120953 + 0.992658i \(0.461405\pi\)
\(488\) −14.4468 −0.653975
\(489\) −9.02113 −0.407950
\(490\) 0 0
\(491\) 12.2646 0.553492 0.276746 0.960943i \(-0.410744\pi\)
0.276746 + 0.960943i \(0.410744\pi\)
\(492\) −8.77916 −0.395795
\(493\) 11.3496 0.511159
\(494\) 2.70266 0.121598
\(495\) 4.76934 0.214366
\(496\) −4.98831 −0.223982
\(497\) 0 0
\(498\) −38.5630 −1.72805
\(499\) −42.4267 −1.89928 −0.949641 0.313341i \(-0.898552\pi\)
−0.949641 + 0.313341i \(0.898552\pi\)
\(500\) 0.848704 0.0379552
\(501\) 77.9171 3.48108
\(502\) −22.2062 −0.991113
\(503\) 24.5776 1.09586 0.547931 0.836523i \(-0.315416\pi\)
0.547931 + 0.836523i \(0.315416\pi\)
\(504\) 0 0
\(505\) 0.751274 0.0334313
\(506\) 5.03607 0.223880
\(507\) 39.5299 1.75559
\(508\) 4.42500 0.196327
\(509\) 31.1040 1.37866 0.689330 0.724447i \(-0.257905\pi\)
0.689330 + 0.724447i \(0.257905\pi\)
\(510\) 2.33580 0.103431
\(511\) 0 0
\(512\) −22.4299 −0.991272
\(513\) −36.8673 −1.62773
\(514\) −8.76796 −0.386738
\(515\) 0.0821306 0.00361911
\(516\) 0.661294 0.0291118
\(517\) 1.96468 0.0864067
\(518\) 0 0
\(519\) 38.5376 1.69161
\(520\) −0.454129 −0.0199149
\(521\) 31.6355 1.38598 0.692989 0.720949i \(-0.256294\pi\)
0.692989 + 0.720949i \(0.256294\pi\)
\(522\) −24.7130 −1.08166
\(523\) 6.34825 0.277590 0.138795 0.990321i \(-0.455677\pi\)
0.138795 + 0.990321i \(0.455677\pi\)
\(524\) −7.26227 −0.317254
\(525\) 0 0
\(526\) 33.4379 1.45796
\(527\) −9.39440 −0.409227
\(528\) 33.7635 1.46937
\(529\) 1.00000 0.0434783
\(530\) −0.232579 −0.0101026
\(531\) −101.785 −4.41708
\(532\) 0 0
\(533\) −4.54932 −0.197053
\(534\) 2.74003 0.118573
\(535\) 0.135619 0.00586332
\(536\) 27.3540 1.18151
\(537\) 22.9833 0.991803
\(538\) −13.2387 −0.570762
\(539\) 0 0
\(540\) 1.48351 0.0638402
\(541\) −8.87187 −0.381431 −0.190716 0.981645i \(-0.561081\pi\)
−0.190716 + 0.981645i \(0.561081\pi\)
\(542\) −12.5634 −0.539645
\(543\) 52.3162 2.24510
\(544\) −15.0655 −0.645928
\(545\) −1.65429 −0.0708620
\(546\) 0 0
\(547\) 15.0130 0.641909 0.320955 0.947095i \(-0.395996\pi\)
0.320955 + 0.947095i \(0.395996\pi\)
\(548\) 6.71578 0.286884
\(549\) 38.5348 1.64462
\(550\) −25.0885 −1.06978
\(551\) −5.43289 −0.231449
\(552\) 10.3071 0.438699
\(553\) 0 0
\(554\) 16.7526 0.711751
\(555\) 4.83889 0.205400
\(556\) −11.0032 −0.466642
\(557\) 5.28320 0.223856 0.111928 0.993716i \(-0.464297\pi\)
0.111928 + 0.993716i \(0.464297\pi\)
\(558\) 20.4557 0.865960
\(559\) 0.342680 0.0144938
\(560\) 0 0
\(561\) 63.5863 2.68462
\(562\) 28.9141 1.21967
\(563\) −17.2543 −0.727183 −0.363592 0.931558i \(-0.618450\pi\)
−0.363592 + 0.931558i \(0.618450\pi\)
\(564\) 0.962942 0.0405472
\(565\) −1.41370 −0.0594747
\(566\) 3.14114 0.132032
\(567\) 0 0
\(568\) 16.5376 0.693903
\(569\) 39.9893 1.67644 0.838220 0.545332i \(-0.183597\pi\)
0.838220 + 0.545332i \(0.183597\pi\)
\(570\) −1.11811 −0.0468327
\(571\) 25.3546 1.06106 0.530528 0.847667i \(-0.321994\pi\)
0.530528 + 0.847667i \(0.321994\pi\)
\(572\) −2.96053 −0.123786
\(573\) −7.38375 −0.308461
\(574\) 0 0
\(575\) −4.98177 −0.207754
\(576\) 71.2950 2.97063
\(577\) −22.4174 −0.933250 −0.466625 0.884455i \(-0.654530\pi\)
−0.466625 + 0.884455i \(0.654530\pi\)
\(578\) 2.90857 0.120981
\(579\) 15.1234 0.628509
\(580\) 0.218615 0.00907751
\(581\) 0 0
\(582\) −31.8494 −1.32020
\(583\) −6.33139 −0.262219
\(584\) 38.9283 1.61087
\(585\) 1.21132 0.0500821
\(586\) 6.35319 0.262448
\(587\) 0.831262 0.0343098 0.0171549 0.999853i \(-0.494539\pi\)
0.0171549 + 0.999853i \(0.494539\pi\)
\(588\) 0 0
\(589\) 4.49697 0.185295
\(590\) −1.95908 −0.0806541
\(591\) −71.2666 −2.93152
\(592\) 25.0892 1.03116
\(593\) 11.7503 0.482525 0.241263 0.970460i \(-0.422438\pi\)
0.241263 + 0.970460i \(0.422438\pi\)
\(594\) −87.8687 −3.60529
\(595\) 0 0
\(596\) 11.3972 0.466848
\(597\) 41.5376 1.70002
\(598\) 1.27907 0.0523049
\(599\) 6.03510 0.246588 0.123294 0.992370i \(-0.460654\pi\)
0.123294 + 0.992370i \(0.460654\pi\)
\(600\) −51.3476 −2.09626
\(601\) −9.15850 −0.373583 −0.186792 0.982400i \(-0.559809\pi\)
−0.186792 + 0.982400i \(0.559809\pi\)
\(602\) 0 0
\(603\) −72.9628 −2.97128
\(604\) −8.76873 −0.356794
\(605\) 1.01383 0.0412180
\(606\) −21.8097 −0.885958
\(607\) −14.2443 −0.578157 −0.289079 0.957305i \(-0.593349\pi\)
−0.289079 + 0.957305i \(0.593349\pi\)
\(608\) 7.21165 0.292471
\(609\) 0 0
\(610\) 0.741690 0.0300302
\(611\) 0.498993 0.0201871
\(612\) 22.8256 0.922672
\(613\) 27.0567 1.09281 0.546406 0.837520i \(-0.315996\pi\)
0.546406 + 0.837520i \(0.315996\pi\)
\(614\) 4.87919 0.196908
\(615\) 1.88209 0.0758934
\(616\) 0 0
\(617\) −1.73182 −0.0697206 −0.0348603 0.999392i \(-0.511099\pi\)
−0.0348603 + 0.999392i \(0.511099\pi\)
\(618\) −2.38427 −0.0959095
\(619\) 8.78839 0.353235 0.176618 0.984280i \(-0.443484\pi\)
0.176618 + 0.984280i \(0.443484\pi\)
\(620\) −0.180955 −0.00726732
\(621\) −17.4479 −0.700159
\(622\) −3.91635 −0.157031
\(623\) 0 0
\(624\) 8.57530 0.343287
\(625\) 24.7269 0.989077
\(626\) −23.8900 −0.954835
\(627\) −30.4379 −1.21557
\(628\) 6.73179 0.268628
\(629\) 47.2501 1.88398
\(630\) 0 0
\(631\) 41.9660 1.67064 0.835320 0.549763i \(-0.185282\pi\)
0.835320 + 0.549763i \(0.185282\pi\)
\(632\) 11.2342 0.446871
\(633\) −58.7604 −2.33552
\(634\) 16.5410 0.656926
\(635\) −0.948640 −0.0376456
\(636\) −3.10318 −0.123049
\(637\) 0 0
\(638\) −12.9486 −0.512641
\(639\) −44.1117 −1.74503
\(640\) 0.450654 0.0178136
\(641\) −32.3613 −1.27819 −0.639097 0.769126i \(-0.720692\pi\)
−0.639097 + 0.769126i \(0.720692\pi\)
\(642\) −3.93705 −0.155383
\(643\) 5.60532 0.221052 0.110526 0.993873i \(-0.464746\pi\)
0.110526 + 0.993873i \(0.464746\pi\)
\(644\) 0 0
\(645\) −0.141770 −0.00558217
\(646\) −10.9180 −0.429563
\(647\) 34.9767 1.37507 0.687537 0.726149i \(-0.258692\pi\)
0.687537 + 0.726149i \(0.258692\pi\)
\(648\) −104.009 −4.08585
\(649\) −53.3311 −2.09343
\(650\) −6.37202 −0.249931
\(651\) 0 0
\(652\) −1.69675 −0.0664500
\(653\) 20.9953 0.821608 0.410804 0.911724i \(-0.365248\pi\)
0.410804 + 0.911724i \(0.365248\pi\)
\(654\) 48.0244 1.87790
\(655\) 1.55690 0.0608331
\(656\) 9.75849 0.381005
\(657\) −103.836 −4.05102
\(658\) 0 0
\(659\) −12.8839 −0.501884 −0.250942 0.968002i \(-0.580740\pi\)
−0.250942 + 0.968002i \(0.580740\pi\)
\(660\) 1.22480 0.0476752
\(661\) −49.1551 −1.91191 −0.955957 0.293507i \(-0.905177\pi\)
−0.955957 + 0.293507i \(0.905177\pi\)
\(662\) 18.5875 0.722423
\(663\) 16.1497 0.627204
\(664\) −30.2877 −1.17539
\(665\) 0 0
\(666\) −102.884 −3.98668
\(667\) −2.57118 −0.0995565
\(668\) 14.6552 0.567025
\(669\) 19.0147 0.735151
\(670\) −1.40434 −0.0542543
\(671\) 20.1907 0.779453
\(672\) 0 0
\(673\) 22.4105 0.863862 0.431931 0.901907i \(-0.357832\pi\)
0.431931 + 0.901907i \(0.357832\pi\)
\(674\) 1.07668 0.0414722
\(675\) 86.9213 3.34560
\(676\) 7.43505 0.285963
\(677\) −5.02556 −0.193148 −0.0965740 0.995326i \(-0.530788\pi\)
−0.0965740 + 0.995326i \(0.530788\pi\)
\(678\) 41.0400 1.57613
\(679\) 0 0
\(680\) 1.83455 0.0703519
\(681\) −65.7245 −2.51857
\(682\) 10.7180 0.410413
\(683\) −12.6505 −0.484059 −0.242030 0.970269i \(-0.577813\pi\)
−0.242030 + 0.970269i \(0.577813\pi\)
\(684\) −10.9263 −0.417778
\(685\) −1.43974 −0.0550098
\(686\) 0 0
\(687\) −54.2201 −2.06862
\(688\) −0.735062 −0.0280240
\(689\) −1.60805 −0.0612620
\(690\) −0.529161 −0.0201448
\(691\) −38.4578 −1.46300 −0.731502 0.681839i \(-0.761180\pi\)
−0.731502 + 0.681839i \(0.761180\pi\)
\(692\) 7.24840 0.275543
\(693\) 0 0
\(694\) 22.3601 0.848777
\(695\) 2.35890 0.0894782
\(696\) −26.5014 −1.00453
\(697\) 18.3780 0.696116
\(698\) 26.3536 0.997497
\(699\) 23.2752 0.880349
\(700\) 0 0
\(701\) 38.2430 1.44442 0.722210 0.691674i \(-0.243127\pi\)
0.722210 + 0.691674i \(0.243127\pi\)
\(702\) −22.3170 −0.842301
\(703\) −22.6180 −0.853053
\(704\) 37.3558 1.40790
\(705\) −0.206438 −0.00777489
\(706\) 11.1204 0.418522
\(707\) 0 0
\(708\) −26.1390 −0.982363
\(709\) −38.7483 −1.45522 −0.727612 0.685989i \(-0.759370\pi\)
−0.727612 + 0.685989i \(0.759370\pi\)
\(710\) −0.849032 −0.0318636
\(711\) −29.9655 −1.12380
\(712\) 2.15204 0.0806512
\(713\) 2.12825 0.0797034
\(714\) 0 0
\(715\) 0.634686 0.0237359
\(716\) 4.32285 0.161553
\(717\) −20.7896 −0.776402
\(718\) −24.5160 −0.914928
\(719\) 24.1328 0.900001 0.450001 0.893028i \(-0.351424\pi\)
0.450001 + 0.893028i \(0.351424\pi\)
\(720\) −2.59834 −0.0968344
\(721\) 0 0
\(722\) −17.0145 −0.633215
\(723\) 64.3806 2.39434
\(724\) 9.83997 0.365700
\(725\) 12.8090 0.475715
\(726\) −29.4317 −1.09231
\(727\) 6.95322 0.257881 0.128940 0.991652i \(-0.458842\pi\)
0.128940 + 0.991652i \(0.458842\pi\)
\(728\) 0 0
\(729\) 102.167 3.78397
\(730\) −1.99856 −0.0739700
\(731\) −1.38433 −0.0512013
\(732\) 9.89598 0.365766
\(733\) 16.5243 0.610340 0.305170 0.952298i \(-0.401287\pi\)
0.305170 + 0.952298i \(0.401287\pi\)
\(734\) −19.3536 −0.714353
\(735\) 0 0
\(736\) 3.41300 0.125805
\(737\) −38.2296 −1.40821
\(738\) −40.0169 −1.47304
\(739\) −8.51415 −0.313198 −0.156599 0.987662i \(-0.550053\pi\)
−0.156599 + 0.987662i \(0.550053\pi\)
\(740\) 0.910131 0.0334571
\(741\) −7.73066 −0.283993
\(742\) 0 0
\(743\) −2.89579 −0.106236 −0.0531181 0.998588i \(-0.516916\pi\)
−0.0531181 + 0.998588i \(0.516916\pi\)
\(744\) 21.9360 0.804214
\(745\) −2.44336 −0.0895178
\(746\) 0.131652 0.00482013
\(747\) 80.7881 2.95588
\(748\) 11.9597 0.437291
\(749\) 0 0
\(750\) 5.28196 0.192870
\(751\) −46.1759 −1.68498 −0.842490 0.538711i \(-0.818911\pi\)
−0.842490 + 0.538711i \(0.818911\pi\)
\(752\) −1.07036 −0.0390320
\(753\) 63.5185 2.31474
\(754\) −3.28871 −0.119768
\(755\) 1.87986 0.0684151
\(756\) 0 0
\(757\) −0.314284 −0.0114228 −0.00571142 0.999984i \(-0.501818\pi\)
−0.00571142 + 0.999984i \(0.501818\pi\)
\(758\) −31.3766 −1.13965
\(759\) −14.4051 −0.522872
\(760\) −0.878176 −0.0318548
\(761\) 12.4125 0.449954 0.224977 0.974364i \(-0.427769\pi\)
0.224977 + 0.974364i \(0.427769\pi\)
\(762\) 27.5393 0.997642
\(763\) 0 0
\(764\) −1.38878 −0.0502444
\(765\) −4.89341 −0.176922
\(766\) −11.6989 −0.422698
\(767\) −13.5451 −0.489085
\(768\) 45.0628 1.62606
\(769\) −17.8921 −0.645206 −0.322603 0.946534i \(-0.604558\pi\)
−0.322603 + 0.946534i \(0.604558\pi\)
\(770\) 0 0
\(771\) 25.0798 0.903225
\(772\) 2.84452 0.102376
\(773\) 43.4194 1.56169 0.780844 0.624726i \(-0.214789\pi\)
0.780844 + 0.624726i \(0.214789\pi\)
\(774\) 3.01429 0.108347
\(775\) −10.6024 −0.380851
\(776\) −25.0148 −0.897978
\(777\) 0 0
\(778\) −29.3542 −1.05240
\(779\) −8.79730 −0.315196
\(780\) 0.311076 0.0111383
\(781\) −23.1128 −0.827041
\(782\) −5.16707 −0.184774
\(783\) 44.8616 1.60322
\(784\) 0 0
\(785\) −1.44318 −0.0515092
\(786\) −45.1972 −1.61213
\(787\) 32.1022 1.14432 0.572160 0.820142i \(-0.306105\pi\)
0.572160 + 0.820142i \(0.306105\pi\)
\(788\) −13.4043 −0.477508
\(789\) −95.6454 −3.40507
\(790\) −0.576756 −0.0205201
\(791\) 0 0
\(792\) −108.744 −3.86404
\(793\) 5.12806 0.182103
\(794\) 25.7574 0.914096
\(795\) 0.665266 0.0235946
\(796\) 7.81267 0.276913
\(797\) 49.8013 1.76405 0.882027 0.471199i \(-0.156179\pi\)
0.882027 + 0.471199i \(0.156179\pi\)
\(798\) 0 0
\(799\) −2.01579 −0.0713136
\(800\) −17.0028 −0.601139
\(801\) −5.74027 −0.202822
\(802\) 14.0628 0.496576
\(803\) −54.4058 −1.91994
\(804\) −18.7373 −0.660815
\(805\) 0 0
\(806\) 2.72217 0.0958843
\(807\) 37.8679 1.33301
\(808\) −17.1295 −0.602613
\(809\) 18.6808 0.656781 0.328391 0.944542i \(-0.393494\pi\)
0.328391 + 0.944542i \(0.393494\pi\)
\(810\) 5.33975 0.187620
\(811\) 30.9877 1.08813 0.544063 0.839045i \(-0.316885\pi\)
0.544063 + 0.839045i \(0.316885\pi\)
\(812\) 0 0
\(813\) 35.9362 1.26034
\(814\) −53.9072 −1.88945
\(815\) 0.363754 0.0127417
\(816\) −34.6418 −1.21271
\(817\) 0.662660 0.0231836
\(818\) 28.5343 0.997679
\(819\) 0 0
\(820\) 0.353997 0.0123621
\(821\) −15.4959 −0.540810 −0.270405 0.962747i \(-0.587158\pi\)
−0.270405 + 0.962747i \(0.587158\pi\)
\(822\) 41.7961 1.45781
\(823\) −43.2149 −1.50638 −0.753189 0.657805i \(-0.771485\pi\)
−0.753189 + 0.657805i \(0.771485\pi\)
\(824\) −1.87263 −0.0652360
\(825\) 71.7629 2.49846
\(826\) 0 0
\(827\) 9.36433 0.325630 0.162815 0.986657i \(-0.447943\pi\)
0.162815 + 0.986657i \(0.447943\pi\)
\(828\) −5.17101 −0.179705
\(829\) −39.7104 −1.37920 −0.689600 0.724190i \(-0.742214\pi\)
−0.689600 + 0.724190i \(0.742214\pi\)
\(830\) 1.55495 0.0539733
\(831\) −47.9190 −1.66229
\(832\) 9.48766 0.328926
\(833\) 0 0
\(834\) −68.4795 −2.37125
\(835\) −3.14181 −0.108727
\(836\) −5.72496 −0.198002
\(837\) −37.1334 −1.28352
\(838\) −5.17306 −0.178701
\(839\) 34.8783 1.20413 0.602066 0.798446i \(-0.294344\pi\)
0.602066 + 0.798446i \(0.294344\pi\)
\(840\) 0 0
\(841\) −22.3890 −0.772036
\(842\) 38.0369 1.31084
\(843\) −82.7055 −2.84853
\(844\) −11.0520 −0.380427
\(845\) −1.59394 −0.0548333
\(846\) 4.38926 0.150906
\(847\) 0 0
\(848\) 3.44934 0.118451
\(849\) −8.98488 −0.308360
\(850\) 25.7412 0.882915
\(851\) −10.7042 −0.366936
\(852\) −11.3282 −0.388097
\(853\) −54.4858 −1.86556 −0.932779 0.360449i \(-0.882624\pi\)
−0.932779 + 0.360449i \(0.882624\pi\)
\(854\) 0 0
\(855\) 2.34241 0.0801087
\(856\) −3.09219 −0.105689
\(857\) −38.2357 −1.30611 −0.653053 0.757313i \(-0.726512\pi\)
−0.653053 + 0.757313i \(0.726512\pi\)
\(858\) −18.4251 −0.629022
\(859\) 11.5889 0.395407 0.197704 0.980262i \(-0.436652\pi\)
0.197704 + 0.980262i \(0.436652\pi\)
\(860\) −0.0266650 −0.000909268 0
\(861\) 0 0
\(862\) 3.16857 0.107922
\(863\) −39.5284 −1.34556 −0.672781 0.739841i \(-0.734901\pi\)
−0.672781 + 0.739841i \(0.734901\pi\)
\(864\) −59.5496 −2.02592
\(865\) −1.55393 −0.0528351
\(866\) −34.1144 −1.15925
\(867\) −8.31964 −0.282550
\(868\) 0 0
\(869\) −15.7008 −0.532612
\(870\) 1.36057 0.0461276
\(871\) −9.70961 −0.328998
\(872\) 37.7188 1.27732
\(873\) 66.7234 2.25824
\(874\) 2.47341 0.0836643
\(875\) 0 0
\(876\) −26.6657 −0.900951
\(877\) 18.1114 0.611578 0.305789 0.952099i \(-0.401080\pi\)
0.305789 + 0.952099i \(0.401080\pi\)
\(878\) −38.5303 −1.30033
\(879\) −18.1726 −0.612946
\(880\) −1.36143 −0.0458937
\(881\) 49.0582 1.65281 0.826407 0.563073i \(-0.190381\pi\)
0.826407 + 0.563073i \(0.190381\pi\)
\(882\) 0 0
\(883\) −26.9501 −0.906945 −0.453472 0.891270i \(-0.649815\pi\)
−0.453472 + 0.891270i \(0.649815\pi\)
\(884\) 3.03755 0.102164
\(885\) 5.60373 0.188367
\(886\) 5.24783 0.176304
\(887\) 0.766912 0.0257504 0.0128752 0.999917i \(-0.495902\pi\)
0.0128752 + 0.999917i \(0.495902\pi\)
\(888\) −110.330 −3.70242
\(889\) 0 0
\(890\) −0.110485 −0.00370346
\(891\) 145.362 4.86979
\(892\) 3.57641 0.119747
\(893\) 0.964932 0.0322902
\(894\) 70.9313 2.37230
\(895\) −0.926743 −0.0309776
\(896\) 0 0
\(897\) −3.65863 −0.122158
\(898\) 7.80164 0.260344
\(899\) −5.47210 −0.182505
\(900\) 25.7608 0.858694
\(901\) 6.49609 0.216416
\(902\) −20.9673 −0.698134
\(903\) 0 0
\(904\) 32.2331 1.07206
\(905\) −2.10951 −0.0701226
\(906\) −54.5728 −1.81306
\(907\) 17.1978 0.571042 0.285521 0.958372i \(-0.407833\pi\)
0.285521 + 0.958372i \(0.407833\pi\)
\(908\) −12.3619 −0.410244
\(909\) 45.6905 1.51546
\(910\) 0 0
\(911\) −9.40906 −0.311736 −0.155868 0.987778i \(-0.549817\pi\)
−0.155868 + 0.987778i \(0.549817\pi\)
\(912\) 16.5826 0.549104
\(913\) 42.3298 1.40091
\(914\) −29.3219 −0.969883
\(915\) −2.12152 −0.0701353
\(916\) −10.1981 −0.336954
\(917\) 0 0
\(918\) 90.1545 2.97554
\(919\) 41.0878 1.35536 0.677681 0.735356i \(-0.262985\pi\)
0.677681 + 0.735356i \(0.262985\pi\)
\(920\) −0.415607 −0.0137022
\(921\) −13.9564 −0.459878
\(922\) 5.74220 0.189109
\(923\) −5.87022 −0.193221
\(924\) 0 0
\(925\) 53.3260 1.75335
\(926\) 8.90091 0.292502
\(927\) 4.99496 0.164056
\(928\) −8.77543 −0.288068
\(929\) −46.9779 −1.54129 −0.770647 0.637262i \(-0.780067\pi\)
−0.770647 + 0.637262i \(0.780067\pi\)
\(930\) −1.12618 −0.0369291
\(931\) 0 0
\(932\) 4.37775 0.143398
\(933\) 11.2023 0.366746
\(934\) −11.5594 −0.378234
\(935\) −2.56395 −0.0838502
\(936\) −27.6189 −0.902751
\(937\) −40.9884 −1.33903 −0.669517 0.742797i \(-0.733499\pi\)
−0.669517 + 0.742797i \(0.733499\pi\)
\(938\) 0 0
\(939\) 68.3346 2.23001
\(940\) −0.0388282 −0.00126643
\(941\) 26.7987 0.873612 0.436806 0.899556i \(-0.356110\pi\)
0.436806 + 0.899556i \(0.356110\pi\)
\(942\) 41.8958 1.36504
\(943\) −4.16343 −0.135580
\(944\) 29.0548 0.945654
\(945\) 0 0
\(946\) 1.57937 0.0513497
\(947\) 44.9744 1.46147 0.730735 0.682661i \(-0.239177\pi\)
0.730735 + 0.682661i \(0.239177\pi\)
\(948\) −7.69535 −0.249933
\(949\) −13.8181 −0.448553
\(950\) −12.3220 −0.399777
\(951\) −47.3136 −1.53425
\(952\) 0 0
\(953\) 32.3616 1.04829 0.524147 0.851628i \(-0.324384\pi\)
0.524147 + 0.851628i \(0.324384\pi\)
\(954\) −14.1448 −0.457956
\(955\) 0.297731 0.00963433
\(956\) −3.91025 −0.126466
\(957\) 37.0381 1.19727
\(958\) −12.6746 −0.409497
\(959\) 0 0
\(960\) −3.92513 −0.126683
\(961\) −26.4706 −0.853889
\(962\) −13.6914 −0.441429
\(963\) 8.24798 0.265787
\(964\) 12.1091 0.390009
\(965\) −0.609814 −0.0196306
\(966\) 0 0
\(967\) −33.1219 −1.06513 −0.532564 0.846390i \(-0.678771\pi\)
−0.532564 + 0.846390i \(0.678771\pi\)
\(968\) −23.1159 −0.742972
\(969\) 31.2297 1.00324
\(970\) 1.28425 0.0412346
\(971\) 47.7581 1.53263 0.766316 0.642464i \(-0.222088\pi\)
0.766316 + 0.642464i \(0.222088\pi\)
\(972\) 38.2812 1.22787
\(973\) 0 0
\(974\) 6.24899 0.200230
\(975\) 18.2264 0.583713
\(976\) −10.9999 −0.352098
\(977\) 3.51776 0.112543 0.0562716 0.998416i \(-0.482079\pi\)
0.0562716 + 0.998416i \(0.482079\pi\)
\(978\) −10.5599 −0.337667
\(979\) −3.00767 −0.0961257
\(980\) 0 0
\(981\) −100.609 −3.21221
\(982\) 14.3565 0.458135
\(983\) 44.3828 1.41559 0.707796 0.706417i \(-0.249690\pi\)
0.707796 + 0.706417i \(0.249690\pi\)
\(984\) −42.9129 −1.36801
\(985\) 2.87364 0.0915618
\(986\) 13.2855 0.423096
\(987\) 0 0
\(988\) −1.45403 −0.0462590
\(989\) 0.313612 0.00997228
\(990\) 5.58285 0.177435
\(991\) −2.95536 −0.0938800 −0.0469400 0.998898i \(-0.514947\pi\)
−0.0469400 + 0.998898i \(0.514947\pi\)
\(992\) 7.26370 0.230623
\(993\) −53.1674 −1.68722
\(994\) 0 0
\(995\) −1.67490 −0.0530978
\(996\) 20.7469 0.657392
\(997\) −48.4248 −1.53363 −0.766815 0.641869i \(-0.778159\pi\)
−0.766815 + 0.641869i \(0.778159\pi\)
\(998\) −49.6634 −1.57207
\(999\) 186.766 5.90902
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.2.a.k.1.5 7
7.3 odd 6 161.2.e.a.93.3 14
7.5 odd 6 161.2.e.a.116.3 yes 14
7.6 odd 2 1127.2.a.n.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.e.a.93.3 14 7.3 odd 6
161.2.e.a.116.3 yes 14 7.5 odd 6
1127.2.a.k.1.5 7 1.1 even 1 trivial
1127.2.a.n.1.5 7 7.6 odd 2