Properties

Label 1127.2.c.b.1126.12
Level $1127$
Weight $2$
Character 1127.1126
Analytic conductor $8.999$
Analytic rank $0$
Dimension $24$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1126,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1127.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99914030780\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1126.12
Character \(\chi\) \(=\) 1127.1126
Dual form 1127.2.c.b.1126.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.213257 q^{2} -3.34535i q^{3} -1.95452 q^{4} +0.713419i q^{6} +0.843330 q^{8} -8.19134 q^{9} +6.53855i q^{12} +7.10425i q^{13} +3.72920 q^{16} +1.74686 q^{18} +4.79583 q^{23} -2.82123i q^{24} -5.00000 q^{25} -1.51503i q^{26} +17.3668i q^{27} -3.94950 q^{29} +6.53053i q^{31} -2.48194 q^{32} +16.0102 q^{36} +23.7662 q^{39} -7.23958i q^{41} -1.02275 q^{46} +12.7941i q^{47} -12.4755i q^{48} +1.06629 q^{50} -13.8854i q^{52} -3.70361i q^{54} +0.842259 q^{58} -14.7571i q^{59} -1.39268i q^{62} -6.92910 q^{64} -16.0437i q^{69} -1.04102 q^{71} -6.90801 q^{72} +9.54442i q^{73} +16.7267i q^{75} -5.06831 q^{78} +33.5241 q^{81} +1.54389i q^{82} +13.2124i q^{87} -9.37356 q^{92} +21.8469 q^{93} -2.72843i q^{94} +8.30294i q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 48 q^{4} - 72 q^{9} + 96 q^{16} - 120 q^{25} - 144 q^{36} + 192 q^{64} + 216 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1127\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.213257 −0.150796 −0.0753978 0.997154i \(-0.524023\pi\)
−0.0753978 + 0.997154i \(0.524023\pi\)
\(3\) − 3.34535i − 1.93144i −0.259592 0.965718i \(-0.583588\pi\)
0.259592 0.965718i \(-0.416412\pi\)
\(4\) −1.95452 −0.977261
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0.713419i 0.291252i
\(7\) 0 0
\(8\) 0.843330 0.298162
\(9\) −8.19134 −2.73045
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 6.53855i 1.88752i
\(13\) 7.10425i 1.97036i 0.171515 + 0.985182i \(0.445134\pi\)
−0.171515 + 0.985182i \(0.554866\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.72920 0.932299
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.74686 0.411740
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.79583 1.00000
\(24\) − 2.82123i − 0.575882i
\(25\) −5.00000 −1.00000
\(26\) − 1.51503i − 0.297122i
\(27\) 17.3668i 3.34225i
\(28\) 0 0
\(29\) −3.94950 −0.733404 −0.366702 0.930339i \(-0.619513\pi\)
−0.366702 + 0.930339i \(0.619513\pi\)
\(30\) 0 0
\(31\) 6.53053i 1.17292i 0.809979 + 0.586459i \(0.199479\pi\)
−0.809979 + 0.586459i \(0.800521\pi\)
\(32\) −2.48194 −0.438749
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 16.0102 2.66836
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 23.7662 3.80563
\(40\) 0 0
\(41\) − 7.23958i − 1.13063i −0.824874 0.565316i \(-0.808754\pi\)
0.824874 0.565316i \(-0.191246\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.02275 −0.150796
\(47\) 12.7941i 1.86621i 0.359608 + 0.933103i \(0.382910\pi\)
−0.359608 + 0.933103i \(0.617090\pi\)
\(48\) − 12.4755i − 1.80068i
\(49\) 0 0
\(50\) 1.06629 0.150796
\(51\) 0 0
\(52\) − 13.8854i − 1.92556i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) − 3.70361i − 0.503997i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.842259 0.110594
\(59\) − 14.7571i − 1.92121i −0.277910 0.960607i \(-0.589642\pi\)
0.277910 0.960607i \(-0.410358\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) − 1.39268i − 0.176871i
\(63\) 0 0
\(64\) −6.92910 −0.866138
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) − 16.0437i − 1.93144i
\(70\) 0 0
\(71\) −1.04102 −0.123546 −0.0617729 0.998090i \(-0.519675\pi\)
−0.0617729 + 0.998090i \(0.519675\pi\)
\(72\) −6.90801 −0.814117
\(73\) 9.54442i 1.11709i 0.829474 + 0.558545i \(0.188640\pi\)
−0.829474 + 0.558545i \(0.811360\pi\)
\(74\) 0 0
\(75\) 16.7267i 1.93144i
\(76\) 0 0
\(77\) 0 0
\(78\) −5.06831 −0.573873
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 33.5241 3.72490
\(82\) 1.54389i 0.170494i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 13.2124i 1.41652i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −9.37356 −0.977261
\(93\) 21.8469 2.26542
\(94\) − 2.72843i − 0.281416i
\(95\) 0 0
\(96\) 8.30294i 0.847416i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 9.77261 0.977261
\(101\) 20.0192i 1.99198i 0.0894471 + 0.995992i \(0.471490\pi\)
−0.0894471 + 0.995992i \(0.528510\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 5.99122i 0.587488i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) − 33.9439i − 3.26625i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 7.71938 0.716727
\(117\) − 58.1933i − 5.37997i
\(118\) 3.14706i 0.289711i
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) −24.2189 −2.18375
\(124\) − 12.7641i − 1.14625i
\(125\) 0 0
\(126\) 0 0
\(127\) −13.5285 −1.20046 −0.600232 0.799826i \(-0.704925\pi\)
−0.600232 + 0.799826i \(0.704925\pi\)
\(128\) 6.44156 0.569359
\(129\) 0 0
\(130\) 0 0
\(131\) 16.3094i 1.42496i 0.701692 + 0.712481i \(0.252428\pi\)
−0.701692 + 0.712481i \(0.747572\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 3.42144i 0.291252i
\(139\) 19.2934i 1.63644i 0.574904 + 0.818221i \(0.305040\pi\)
−0.574904 + 0.818221i \(0.694960\pi\)
\(140\) 0 0
\(141\) 42.8006 3.60446
\(142\) 0.222004 0.0186302
\(143\) 0 0
\(144\) −30.5471 −2.54559
\(145\) 0 0
\(146\) − 2.03542i − 0.168452i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) − 3.56710i − 0.291252i
\(151\) 23.1908 1.88724 0.943618 0.331035i \(-0.107398\pi\)
0.943618 + 0.331035i \(0.107398\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −46.4515 −3.71909
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −7.14925 −0.561698
\(163\) 3.42798 0.268500 0.134250 0.990947i \(-0.457137\pi\)
0.134250 + 0.990947i \(0.457137\pi\)
\(164\) 14.1499i 1.10492i
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0459i 1.39644i 0.715885 + 0.698219i \(0.246024\pi\)
−0.715885 + 0.698219i \(0.753976\pi\)
\(168\) 0 0
\(169\) −37.4703 −2.88233
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.28869i 0.706206i 0.935584 + 0.353103i \(0.114873\pi\)
−0.935584 + 0.353103i \(0.885127\pi\)
\(174\) − 2.81765i − 0.213605i
\(175\) 0 0
\(176\) 0 0
\(177\) −49.3677 −3.71070
\(178\) 0 0
\(179\) −23.9112 −1.78721 −0.893605 0.448855i \(-0.851832\pi\)
−0.893605 + 0.448855i \(0.851832\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.04447 0.298162
\(185\) 0 0
\(186\) −4.65901 −0.341615
\(187\) 0 0
\(188\) − 25.0063i − 1.82377i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 23.1802i 1.67289i
\(193\) −18.7045 −1.34638 −0.673188 0.739471i \(-0.735076\pi\)
−0.673188 + 0.739471i \(0.735076\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.7681 1.76466 0.882329 0.470634i \(-0.155975\pi\)
0.882329 + 0.470634i \(0.155975\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −4.21665 −0.298162
\(201\) 0 0
\(202\) − 4.26924i − 0.300382i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −39.2843 −2.73045
\(208\) 26.4931i 1.83697i
\(209\) 0 0
\(210\) 0 0
\(211\) −17.5186 −1.20603 −0.603014 0.797731i \(-0.706034\pi\)
−0.603014 + 0.797731i \(0.706034\pi\)
\(212\) 0 0
\(213\) 3.48256i 0.238621i
\(214\) 0 0
\(215\) 0 0
\(216\) 14.6460i 0.996533i
\(217\) 0 0
\(218\) 0 0
\(219\) 31.9294 2.15759
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 18.4027i 1.23234i 0.787614 + 0.616170i \(0.211316\pi\)
−0.787614 + 0.616170i \(0.788684\pi\)
\(224\) 0 0
\(225\) 40.9567 2.73045
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.33073 −0.218673
\(233\) −22.6861 −1.48622 −0.743108 0.669171i \(-0.766649\pi\)
−0.743108 + 0.669171i \(0.766649\pi\)
\(234\) 12.4101i 0.811277i
\(235\) 0 0
\(236\) 28.8431i 1.87753i
\(237\) 0 0
\(238\) 0 0
\(239\) −7.23684 −0.468112 −0.234056 0.972223i \(-0.575200\pi\)
−0.234056 + 0.972223i \(0.575200\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −2.34583 −0.150796
\(243\) − 60.0492i − 3.85216i
\(244\) 0 0
\(245\) 0 0
\(246\) 5.16486 0.329299
\(247\) 0 0
\(248\) 5.50740i 0.349720i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 2.88506 0.181025
\(255\) 0 0
\(256\) 12.4845 0.780281
\(257\) − 22.5430i − 1.40619i −0.711093 0.703097i \(-0.751800\pi\)
0.711093 0.703097i \(-0.248200\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 32.3517 2.00252
\(262\) − 3.47810i − 0.214878i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 3.04512i − 0.185664i −0.995682 0.0928321i \(-0.970408\pi\)
0.995682 0.0928321i \(-0.0295920\pi\)
\(270\) 0 0
\(271\) − 32.7076i − 1.98684i −0.114517 0.993421i \(-0.536532\pi\)
0.114517 0.993421i \(-0.463468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 31.3578i 1.88752i
\(277\) −21.9112 −1.31652 −0.658259 0.752792i \(-0.728707\pi\)
−0.658259 + 0.752792i \(0.728707\pi\)
\(278\) − 4.11445i − 0.246768i
\(279\) − 53.4939i − 3.20259i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −9.12754 −0.543537
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 2.03469 0.120737
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 20.3304 1.19798
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) − 18.6548i − 1.09169i
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 34.0708i 1.97036i
\(300\) − 32.6928i − 1.88752i
\(301\) 0 0
\(302\) −4.94560 −0.284587
\(303\) 66.9711 3.84739
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 7.46588i − 0.426100i −0.977041 0.213050i \(-0.931660\pi\)
0.977041 0.213050i \(-0.0683398\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 26.3160i 1.49225i 0.665808 + 0.746123i \(0.268087\pi\)
−0.665808 + 0.746123i \(0.731913\pi\)
\(312\) 20.0427 1.13470
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 34.7779 1.95332 0.976660 0.214792i \(-0.0689075\pi\)
0.976660 + 0.214792i \(0.0689075\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −65.5236 −3.64020
\(325\) − 35.5212i − 1.97036i
\(326\) −0.731042 −0.0404886
\(327\) 0 0
\(328\) − 6.10536i − 0.337112i
\(329\) 0 0
\(330\) 0 0
\(331\) −25.7498 −1.41534 −0.707670 0.706543i \(-0.750253\pi\)
−0.707670 + 0.706543i \(0.750253\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) − 3.84843i − 0.210577i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 7.99081 0.434643
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) − 1.98088i − 0.106493i
\(347\) 32.2382 1.73064 0.865318 0.501223i \(-0.167117\pi\)
0.865318 + 0.501223i \(0.167117\pi\)
\(348\) − 25.8240i − 1.38431i
\(349\) 34.7798i 1.86172i 0.365375 + 0.930860i \(0.380941\pi\)
−0.365375 + 0.930860i \(0.619059\pi\)
\(350\) 0 0
\(351\) −123.378 −6.58545
\(352\) 0 0
\(353\) − 11.3061i − 0.601765i −0.953661 0.300882i \(-0.902719\pi\)
0.953661 0.300882i \(-0.0972811\pi\)
\(354\) 10.5280 0.559558
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 5.09924 0.269503
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) − 36.7988i − 1.93144i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 17.8846 0.932299
\(369\) 59.3019i 3.08713i
\(370\) 0 0
\(371\) 0 0
\(372\) −42.7002 −2.21390
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 10.7896i 0.556432i
\(377\) − 28.0582i − 1.44507i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 45.2577i 2.31862i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) − 21.5492i − 1.09968i
\(385\) 0 0
\(386\) 3.98886 0.203028
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 54.5607 2.75222
\(394\) −5.28199 −0.266103
\(395\) 0 0
\(396\) 0 0
\(397\) − 1.14196i − 0.0573133i −0.999589 0.0286566i \(-0.990877\pi\)
0.999589 0.0286566i \(-0.00912294\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −18.6460 −0.932299
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −46.3945 −2.31108
\(404\) − 39.1279i − 1.94669i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) − 21.2140i − 1.04897i −0.851421 0.524483i \(-0.824258\pi\)
0.851421 0.524483i \(-0.175742\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 8.37766 0.411740
\(415\) 0 0
\(416\) − 17.6323i − 0.864495i
\(417\) 64.5430 3.16068
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 3.73596 0.181864
\(423\) − 104.801i − 5.09558i
\(424\) 0 0
\(425\) 0 0
\(426\) − 0.742681i − 0.0359830i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 64.7644i 3.11598i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −6.80917 −0.325355
\(439\) 0.204531i 0.00976175i 0.999988 + 0.00488088i \(0.00155364\pi\)
−0.999988 + 0.00488088i \(0.998446\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 41.8799 1.98978 0.994888 0.100985i \(-0.0321996\pi\)
0.994888 + 0.100985i \(0.0321996\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 3.92452i − 0.185831i
\(447\) 0 0
\(448\) 0 0
\(449\) 39.8572 1.88098 0.940490 0.339822i \(-0.110367\pi\)
0.940490 + 0.339822i \(0.110367\pi\)
\(450\) −8.73432 −0.411740
\(451\) 0 0
\(452\) 0 0
\(453\) − 77.5811i − 3.64508i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 27.9047i 1.29965i 0.760083 + 0.649826i \(0.225158\pi\)
−0.760083 + 0.649826i \(0.774842\pi\)
\(462\) 0 0
\(463\) 2.28043 0.105980 0.0529902 0.998595i \(-0.483125\pi\)
0.0529902 + 0.998595i \(0.483125\pi\)
\(464\) −14.7285 −0.683752
\(465\) 0 0
\(466\) 4.83798 0.224115
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 113.740i 5.25764i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) − 12.4451i − 0.572834i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 1.54331 0.0705892
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −21.4997 −0.977261
\(485\) 0 0
\(486\) 12.8059i 0.580888i
\(487\) −27.1250 −1.22915 −0.614575 0.788858i \(-0.710672\pi\)
−0.614575 + 0.788858i \(0.710672\pi\)
\(488\) 0 0
\(489\) − 11.4678i − 0.518591i
\(490\) 0 0
\(491\) 26.0819 1.17706 0.588531 0.808475i \(-0.299707\pi\)
0.588531 + 0.808475i \(0.299707\pi\)
\(492\) 47.3364 2.13409
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 24.3536i 1.09351i
\(497\) 0 0
\(498\) 0 0
\(499\) −44.6766 −2.00000 −1.00000 0.000508342i \(-0.999838\pi\)
−1.00000 0.000508342i \(0.999838\pi\)
\(500\) 0 0
\(501\) 60.3699 2.69713
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 125.351i 5.56704i
\(508\) 26.4418 1.17317
\(509\) − 12.2394i − 0.542503i −0.962508 0.271252i \(-0.912562\pi\)
0.962508 0.271252i \(-0.0874375\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −15.5455 −0.687022
\(513\) 0 0
\(514\) 4.80746i 0.212048i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 31.0739 1.36399
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −6.89924 −0.301971
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) − 31.8771i − 1.39256i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 120.881i 5.24578i
\(532\) 0 0
\(533\) 51.4318 2.22776
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 79.9914i 3.45188i
\(538\) 0.649394i 0.0279973i
\(539\) 0 0
\(540\) 0 0
\(541\) −11.4831 −0.493695 −0.246847 0.969054i \(-0.579395\pi\)
−0.246847 + 0.969054i \(0.579395\pi\)
\(542\) 6.97512i 0.299607i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 20.6317 0.882146 0.441073 0.897471i \(-0.354598\pi\)
0.441073 + 0.897471i \(0.354598\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) − 13.5302i − 0.575882i
\(553\) 0 0
\(554\) 4.67272 0.198525
\(555\) 0 0
\(556\) − 37.7093i − 1.59923i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 11.4080i 0.482937i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) −83.6547 −3.52250
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −0.877920 −0.0368367
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −23.9792 −1.00000
\(576\) 56.7587 2.36494
\(577\) − 47.8409i − 1.99164i −0.0913277 0.995821i \(-0.529111\pi\)
0.0913277 0.995821i \(-0.470889\pi\)
\(578\) 3.62537 0.150796
\(579\) 62.5729i 2.60044i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 8.04910i 0.333074i
\(585\) 0 0
\(586\) 0 0
\(587\) 5.11244i 0.211013i 0.994419 + 0.105507i \(0.0336464\pi\)
−0.994419 + 0.105507i \(0.966354\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) − 82.8580i − 3.40832i
\(592\) 0 0
\(593\) 23.9657i 0.984152i 0.870552 + 0.492076i \(0.163762\pi\)
−0.870552 + 0.492076i \(0.836238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) − 7.26584i − 0.297122i
\(599\) −27.1588 −1.10968 −0.554839 0.831958i \(-0.687220\pi\)
−0.554839 + 0.831958i \(0.687220\pi\)
\(600\) 14.1062i 0.575882i
\(601\) − 18.9301i − 0.772176i −0.922462 0.386088i \(-0.873826\pi\)
0.922462 0.386088i \(-0.126174\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −45.3268 −1.84432
\(605\) 0 0
\(606\) −14.2821 −0.580170
\(607\) − 11.2773i − 0.457731i −0.973458 0.228865i \(-0.926498\pi\)
0.973458 0.228865i \(-0.0735016\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −90.8922 −3.67710
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 1.59215i 0.0642540i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 83.2885i 3.34225i
\(622\) − 5.61209i − 0.225024i
\(623\) 0 0
\(624\) 88.6287 3.54799
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 58.6057i 2.32937i
\(634\) −7.41663 −0.294552
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.52732 0.337336
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 48.5499i 1.90869i 0.298699 + 0.954347i \(0.403447\pi\)
−0.298699 + 0.954347i \(0.596553\pi\)
\(648\) 28.2719 1.11062
\(649\) 0 0
\(650\) 7.57516i 0.297122i
\(651\) 0 0
\(652\) −6.70006 −0.262395
\(653\) 1.10036 0.0430605 0.0215302 0.999768i \(-0.493146\pi\)
0.0215302 + 0.999768i \(0.493146\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 26.9978i − 1.05409i
\(657\) − 78.1816i − 3.05016i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 5.49134 0.213427
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.9411 −0.733404
\(668\) − 35.2712i − 1.36468i
\(669\) 61.5636 2.38019
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −4.78599 −0.184487 −0.0922433 0.995737i \(-0.529404\pi\)
−0.0922433 + 0.995737i \(0.529404\pi\)
\(674\) 0 0
\(675\) − 86.8342i − 3.34225i
\(676\) 73.2365 2.81679
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −46.4132 −1.77595 −0.887977 0.459889i \(-0.847889\pi\)
−0.887977 + 0.459889i \(0.847889\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 43.4227i − 1.65188i −0.563760 0.825939i \(-0.690646\pi\)
0.563760 0.825939i \(-0.309354\pi\)
\(692\) − 18.1549i − 0.690147i
\(693\) 0 0
\(694\) −6.87502 −0.260972
\(695\) 0 0
\(696\) 11.1425i 0.422354i
\(697\) 0 0
\(698\) − 7.41705i − 0.280739i
\(699\) 75.8929i 2.87053i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 26.3113 0.993057
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 2.41111i 0.0907435i
\(707\) 0 0
\(708\) 96.4902 3.62632
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 31.3193i 1.17292i
\(714\) 0 0
\(715\) 0 0
\(716\) 46.7350 1.74657
\(717\) 24.2097i 0.904129i
\(718\) 0 0
\(719\) − 3.82026i − 0.142472i −0.997460 0.0712358i \(-0.977306\pi\)
0.997460 0.0712358i \(-0.0226943\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.05189 0.150796
\(723\) 0 0
\(724\) 0 0
\(725\) 19.7475 0.733404
\(726\) 7.84761i 0.291252i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −100.313 −3.71530
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −11.9030 −0.438749
\(737\) 0 0
\(738\) − 12.6466i − 0.465526i
\(739\) 12.6950 0.466994 0.233497 0.972357i \(-0.424983\pi\)
0.233497 + 0.972357i \(0.424983\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 18.4242 0.675462
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 47.7116i 1.73986i
\(753\) 0 0
\(754\) 5.98362i 0.217910i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 47.9768i − 1.73916i −0.493794 0.869579i \(-0.664390\pi\)
0.493794 0.869579i \(-0.335610\pi\)
\(762\) − 9.65152i − 0.349638i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 104.838 3.78549
\(768\) − 41.7650i − 1.50706i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −75.4142 −2.71598
\(772\) 36.5583 1.31576
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) − 32.6527i − 1.17292i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 68.5904i − 2.45122i
\(784\) 0 0
\(785\) 0 0
\(786\) −11.6355 −0.415023
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −48.4099 −1.72453
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0.243531i 0.00864259i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 12.4097 0.438749
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 9.89396 0.348500
\(807\) −10.1870 −0.358599
\(808\) 16.8828i 0.593934i
\(809\) 38.3667 1.34890 0.674450 0.738321i \(-0.264381\pi\)
0.674450 + 0.738321i \(0.264381\pi\)
\(810\) 0 0
\(811\) 20.5113i 0.720250i 0.932904 + 0.360125i \(0.117266\pi\)
−0.932904 + 0.360125i \(0.882734\pi\)
\(812\) 0 0
\(813\) −109.418 −3.83746
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 4.52405i 0.158180i
\(819\) 0 0
\(820\) 0 0
\(821\) −24.6191 −0.859213 −0.429606 0.903016i \(-0.641348\pi\)
−0.429606 + 0.903016i \(0.641348\pi\)
\(822\) 0 0
\(823\) 34.7592 1.21163 0.605815 0.795605i \(-0.292847\pi\)
0.605815 + 0.795605i \(0.292847\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 76.7820 2.66836
\(829\) 23.8712i 0.829080i 0.910031 + 0.414540i \(0.136058\pi\)
−0.910031 + 0.414540i \(0.863942\pi\)
\(830\) 0 0
\(831\) 73.3006i 2.54277i
\(832\) − 49.2260i − 1.70661i
\(833\) 0 0
\(834\) −13.7643 −0.476617
\(835\) 0 0
\(836\) 0 0
\(837\) −113.415 −3.92019
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −13.4015 −0.462119
\(842\) 0 0
\(843\) 0 0
\(844\) 34.2404 1.17860
\(845\) 0 0
\(846\) 22.3495i 0.768391i
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) − 6.80674i − 0.233195i
\(853\) − 49.3424i − 1.68945i −0.535199 0.844726i \(-0.679763\pi\)
0.535199 0.844726i \(-0.320237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 32.3115i − 1.10374i −0.833930 0.551870i \(-0.813914\pi\)
0.833930 0.551870i \(-0.186086\pi\)
\(858\) 0 0
\(859\) − 7.90566i − 0.269738i −0.990863 0.134869i \(-0.956939\pi\)
0.990863 0.134869i \(-0.0430613\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −18.1829 −0.618954 −0.309477 0.950907i \(-0.600154\pi\)
−0.309477 + 0.950907i \(0.600154\pi\)
\(864\) − 43.1034i − 1.46641i
\(865\) 0 0
\(866\) 0 0
\(867\) 56.8709i 1.93144i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −62.4067 −2.10853
\(877\) −57.5500 −1.94332 −0.971662 0.236373i \(-0.924041\pi\)
−0.971662 + 0.236373i \(0.924041\pi\)
\(878\) − 0.0436178i − 0.00147203i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −57.1165 −1.92212 −0.961062 0.276332i \(-0.910881\pi\)
−0.961062 + 0.276332i \(0.910881\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −8.93120 −0.300049
\(887\) − 58.9349i − 1.97884i −0.145078 0.989420i \(-0.546343\pi\)
0.145078 0.989420i \(-0.453657\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) − 35.9686i − 1.20432i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 113.979 3.80563
\(898\) −8.49984 −0.283643
\(899\) − 25.7923i − 0.860223i
\(900\) −80.0508 −2.66836
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 16.5447i 0.549662i
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) − 163.984i − 5.43901i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −24.9760 −0.822986
\(922\) − 5.95089i − 0.195982i
\(923\) − 7.39563i − 0.243430i
\(924\) 0 0
\(925\) 0 0
\(926\) −0.486318 −0.0159814
\(927\) 0 0
\(928\) 9.80241 0.321780
\(929\) 53.9316i 1.76944i 0.466124 + 0.884719i \(0.345650\pi\)
−0.466124 + 0.884719i \(0.654350\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 44.3405 1.45242
\(933\) 88.0363 2.88218
\(934\) 0 0
\(935\) 0 0
\(936\) − 49.0762i − 1.60411i
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) − 34.7198i − 1.13063i
\(944\) − 55.0322i − 1.79115i
\(945\) 0 0
\(946\) 0 0
\(947\) −38.3849 −1.24734 −0.623671 0.781687i \(-0.714359\pi\)
−0.623671 + 0.781687i \(0.714359\pi\)
\(948\) 0 0
\(949\) −67.8059 −2.20107
\(950\) 0 0
\(951\) − 116.344i − 3.77271i
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 14.1446 0.457467
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −11.6479 −0.375738
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 28.5131 0.916920 0.458460 0.888715i \(-0.348401\pi\)
0.458460 + 0.888715i \(0.348401\pi\)
\(968\) 9.27663 0.298162
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 117.367i 3.76456i
\(973\) 0 0
\(974\) 5.78460 0.185350
\(975\) −118.831 −3.80563
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 2.44559i 0.0782013i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −5.56216 −0.177496
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) −20.4245 −0.651110
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −28.7750 −0.914068 −0.457034 0.889449i \(-0.651088\pi\)
−0.457034 + 0.889449i \(0.651088\pi\)
\(992\) − 16.2084i − 0.514617i
\(993\) 86.1422i 2.73364i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1.99744i − 0.0632597i −0.999500 0.0316299i \(-0.989930\pi\)
0.999500 0.0316299i \(-0.0100698\pi\)
\(998\) 9.52761 0.301591
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.2.c.b.1126.12 yes 24
7.6 odd 2 inner 1127.2.c.b.1126.11 24
23.22 odd 2 CM 1127.2.c.b.1126.12 yes 24
161.160 even 2 inner 1127.2.c.b.1126.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1127.2.c.b.1126.11 24 7.6 odd 2 inner
1127.2.c.b.1126.11 24 161.160 even 2 inner
1127.2.c.b.1126.12 yes 24 1.1 even 1 trivial
1127.2.c.b.1126.12 yes 24 23.22 odd 2 CM