Properties

Label 1127.2.c.b
Level $1127$
Weight $2$
Character orbit 1127.c
Analytic conductor $8.999$
Analytic rank $0$
Dimension $24$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1126,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1127.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99914030780\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 48 q^{4} - 72 q^{9} + 96 q^{16} - 120 q^{25} - 144 q^{36} + 192 q^{64} + 216 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1126.1 −2.82038 1.72965i 5.95452 0 4.87826i 0 −11.1532 0.00831203 0
1126.2 −2.82038 1.72965i 5.95452 0 4.87826i 0 −11.1532 0.00831203 0
1126.3 −2.54915 3.34678i 4.49815 0 8.53143i 0 −6.36814 −8.20095 0
1126.4 −2.54915 3.34678i 4.49815 0 8.53143i 0 −6.36814 −8.20095 0
1126.5 −2.33589 2.45145i 3.45638 0 5.72631i 0 −3.40193 −3.00960 0
1126.6 −2.33589 2.45145i 3.45638 0 5.72631i 0 −3.40193 −3.00960 0
1126.7 −1.59487 0.00277196i 0.543624 0 0.00442092i 0 2.32274 2.99999 0
1126.8 −1.59487 0.00277196i 0.543624 0 0.00442092i 0 2.32274 2.99999 0
1126.9 −1.22550 2.99861i −0.498145 0 3.67481i 0 3.06148 −5.99168 0
1126.10 −1.22550 2.99861i −0.498145 0 3.67481i 0 3.06148 −5.99168 0
1126.11 −0.213257 3.34535i −1.95452 0 0.713419i 0 0.843330 −8.19134 0
1126.12 −0.213257 3.34535i −1.95452 0 0.713419i 0 0.843330 −8.19134 0
1126.13 0.213257 0.899253i −1.95452 0 0.191772i 0 −0.843330 2.19134 0
1126.14 0.213257 0.899253i −1.95452 0 0.191772i 0 −0.843330 2.19134 0
1126.15 1.22550 1.73445i −0.498145 0 2.12557i 0 −3.06148 −0.00831971 0
1126.16 1.22550 1.73445i −0.498145 0 2.12557i 0 −3.06148 −0.00831971 0
1126.17 1.59487 3.46410i 0.543624 0 5.52480i 0 −2.32274 −8.99999 0
1126.18 1.59487 3.46410i 0.543624 0 5.52480i 0 −2.32274 −8.99999 0
1126.19 2.33589 2.44753i 3.45638 0 5.71716i 0 3.40193 −2.99040 0
1126.20 2.33589 2.44753i 3.45638 0 5.71716i 0 3.40193 −2.99040 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1126.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
7.b odd 2 1 inner
161.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1127.2.c.b 24
7.b odd 2 1 inner 1127.2.c.b 24
23.b odd 2 1 CM 1127.2.c.b 24
161.c even 2 1 inner 1127.2.c.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1127.2.c.b 24 1.a even 1 1 trivial
1127.2.c.b 24 7.b odd 2 1 inner
1127.2.c.b 24 23.b odd 2 1 CM
1127.2.c.b 24 161.c even 2 1 inner