Properties

Label 1134.2.e.d.919.1
Level $1134$
Weight $2$
Character 1134.919
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(865,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.865");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 919.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1134.919
Dual form 1134.2.e.d.865.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(2.00000 - 3.46410i) q^{13} +(-2.50000 + 0.866025i) q^{14} +1.00000 q^{16} +(3.00000 + 5.19615i) q^{17} +(-1.00000 + 1.73205i) q^{19} +(-1.50000 - 2.59808i) q^{23} +(2.50000 - 4.33013i) q^{25} +(-2.00000 + 3.46410i) q^{26} +(2.50000 - 0.866025i) q^{28} +(-3.00000 - 5.19615i) q^{29} +5.00000 q^{31} -1.00000 q^{32} +(-3.00000 - 5.19615i) q^{34} +(-4.00000 + 6.92820i) q^{37} +(1.00000 - 1.73205i) q^{38} +(1.50000 - 2.59808i) q^{41} +(-1.00000 - 1.73205i) q^{43} +(1.50000 + 2.59808i) q^{46} +3.00000 q^{47} +(5.50000 - 4.33013i) q^{49} +(-2.50000 + 4.33013i) q^{50} +(2.00000 - 3.46410i) q^{52} +(3.00000 + 5.19615i) q^{53} +(-2.50000 + 0.866025i) q^{56} +(3.00000 + 5.19615i) q^{58} -12.0000 q^{59} +8.00000 q^{61} -5.00000 q^{62} +1.00000 q^{64} +8.00000 q^{67} +(3.00000 + 5.19615i) q^{68} +15.0000 q^{71} +(-5.50000 - 9.52628i) q^{73} +(4.00000 - 6.92820i) q^{74} +(-1.00000 + 1.73205i) q^{76} -1.00000 q^{79} +(-1.50000 + 2.59808i) q^{82} +(1.00000 + 1.73205i) q^{86} +(4.50000 - 7.79423i) q^{89} +(2.00000 - 10.3923i) q^{91} +(-1.50000 - 2.59808i) q^{92} -3.00000 q^{94} +(-1.00000 - 1.73205i) q^{97} +(-5.50000 + 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 5 q^{7} - 2 q^{8} + 4 q^{13} - 5 q^{14} + 2 q^{16} + 6 q^{17} - 2 q^{19} - 3 q^{23} + 5 q^{25} - 4 q^{26} + 5 q^{28} - 6 q^{29} + 10 q^{31} - 2 q^{32} - 6 q^{34} - 8 q^{37} + 2 q^{38}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 2.50000 0.866025i 0.944911 0.327327i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) −2.50000 + 0.866025i −0.668153 + 0.231455i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 0 0
\(19\) −1.00000 + 1.73205i −0.229416 + 0.397360i −0.957635 0.287984i \(-0.907015\pi\)
0.728219 + 0.685344i \(0.240348\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) −2.00000 + 3.46410i −0.392232 + 0.679366i
\(27\) 0 0
\(28\) 2.50000 0.866025i 0.472456 0.163663i
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −3.00000 5.19615i −0.514496 0.891133i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) 1.00000 1.73205i 0.162221 0.280976i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.50000 2.59808i 0.234261 0.405751i −0.724797 0.688963i \(-0.758066\pi\)
0.959058 + 0.283211i \(0.0913998\pi\)
\(42\) 0 0
\(43\) −1.00000 1.73205i −0.152499 0.264135i 0.779647 0.626219i \(-0.215399\pi\)
−0.932145 + 0.362084i \(0.882065\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.50000 + 2.59808i 0.221163 + 0.383065i
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) −2.50000 + 4.33013i −0.353553 + 0.612372i
\(51\) 0 0
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i \(-0.0314685\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.50000 + 0.866025i −0.334077 + 0.115728i
\(57\) 0 0
\(58\) 3.00000 + 5.19615i 0.393919 + 0.682288i
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) −5.00000 −0.635001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 3.00000 + 5.19615i 0.363803 + 0.630126i
\(69\) 0 0
\(70\) 0 0
\(71\) 15.0000 1.78017 0.890086 0.455792i \(-0.150644\pi\)
0.890086 + 0.455792i \(0.150644\pi\)
\(72\) 0 0
\(73\) −5.50000 9.52628i −0.643726 1.11497i −0.984594 0.174855i \(-0.944054\pi\)
0.340868 0.940111i \(-0.389279\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) 0 0
\(76\) −1.00000 + 1.73205i −0.114708 + 0.198680i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1.50000 + 2.59808i −0.165647 + 0.286910i
\(83\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.00000 + 1.73205i 0.107833 + 0.186772i
\(87\) 0 0
\(88\) 0 0
\(89\) 4.50000 7.79423i 0.476999 0.826187i −0.522654 0.852545i \(-0.675058\pi\)
0.999653 + 0.0263586i \(0.00839118\pi\)
\(90\) 0 0
\(91\) 2.00000 10.3923i 0.209657 1.08941i
\(92\) −1.50000 2.59808i −0.156386 0.270868i
\(93\) 0 0
\(94\) −3.00000 −0.309426
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) −5.50000 + 4.33013i −0.555584 + 0.437409i
\(99\) 0 0
\(100\) 2.50000 4.33013i 0.250000 0.433013i
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) 0 0
\(103\) 0.500000 + 0.866025i 0.0492665 + 0.0853320i 0.889607 0.456727i \(-0.150978\pi\)
−0.840341 + 0.542059i \(0.817645\pi\)
\(104\) −2.00000 + 3.46410i −0.196116 + 0.339683i
\(105\) 0 0
\(106\) −3.00000 5.19615i −0.291386 0.504695i
\(107\) 3.00000 5.19615i 0.290021 0.502331i −0.683793 0.729676i \(-0.739671\pi\)
0.973814 + 0.227345i \(0.0730044\pi\)
\(108\) 0 0
\(109\) 8.00000 + 13.8564i 0.766261 + 1.32720i 0.939577 + 0.342337i \(0.111218\pi\)
−0.173316 + 0.984866i \(0.555448\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.50000 0.866025i 0.236228 0.0818317i
\(113\) 9.00000 15.5885i 0.846649 1.46644i −0.0375328 0.999295i \(-0.511950\pi\)
0.884182 0.467143i \(-0.154717\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.00000 5.19615i −0.278543 0.482451i
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) 12.0000 + 10.3923i 1.10004 + 0.952661i
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) −8.00000 −0.724286
\(123\) 0 0
\(124\) 5.00000 0.449013
\(125\) 0 0
\(126\) 0 0
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) −1.00000 + 5.19615i −0.0867110 + 0.450564i
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −3.00000 5.19615i −0.257248 0.445566i
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −15.0000 −1.25877
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 5.50000 + 9.52628i 0.455183 + 0.788400i
\(147\) 0 0
\(148\) −4.00000 + 6.92820i −0.328798 + 0.569495i
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0 0
\(151\) −8.50000 + 14.7224i −0.691720 + 1.19809i 0.279554 + 0.960130i \(0.409814\pi\)
−0.971274 + 0.237964i \(0.923520\pi\)
\(152\) 1.00000 1.73205i 0.0811107 0.140488i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 1.00000 0.0795557
\(159\) 0 0
\(160\) 0 0
\(161\) −6.00000 5.19615i −0.472866 0.409514i
\(162\) 0 0
\(163\) −4.00000 + 6.92820i −0.313304 + 0.542659i −0.979076 0.203497i \(-0.934769\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(164\) 1.50000 2.59808i 0.117130 0.202876i
\(165\) 0 0
\(166\) 0 0
\(167\) 10.5000 18.1865i 0.812514 1.40732i −0.0985846 0.995129i \(-0.531432\pi\)
0.911099 0.412188i \(-0.135235\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.00000 1.73205i −0.0762493 0.132068i
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 2.50000 12.9904i 0.188982 0.981981i
\(176\) 0 0
\(177\) 0 0
\(178\) −4.50000 + 7.79423i −0.337289 + 0.584202i
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −2.00000 + 10.3923i −0.148250 + 0.770329i
\(183\) 0 0
\(184\) 1.50000 + 2.59808i 0.110581 + 0.191533i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 3.00000 0.218797
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −19.0000 −1.36765 −0.683825 0.729646i \(-0.739685\pi\)
−0.683825 + 0.729646i \(0.739685\pi\)
\(194\) 1.00000 + 1.73205i 0.0717958 + 0.124354i
\(195\) 0 0
\(196\) 5.50000 4.33013i 0.392857 0.309295i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −11.5000 19.9186i −0.815213 1.41199i −0.909175 0.416415i \(-0.863286\pi\)
0.0939612 0.995576i \(-0.470047\pi\)
\(200\) −2.50000 + 4.33013i −0.176777 + 0.306186i
\(201\) 0 0
\(202\) −3.00000 + 5.19615i −0.211079 + 0.365600i
\(203\) −12.0000 10.3923i −0.842235 0.729397i
\(204\) 0 0
\(205\) 0 0
\(206\) −0.500000 0.866025i −0.0348367 0.0603388i
\(207\) 0 0
\(208\) 2.00000 3.46410i 0.138675 0.240192i
\(209\) 0 0
\(210\) 0 0
\(211\) −13.0000 + 22.5167i −0.894957 + 1.55011i −0.0610990 + 0.998132i \(0.519461\pi\)
−0.833858 + 0.551979i \(0.813873\pi\)
\(212\) 3.00000 + 5.19615i 0.206041 + 0.356873i
\(213\) 0 0
\(214\) −3.00000 + 5.19615i −0.205076 + 0.355202i
\(215\) 0 0
\(216\) 0 0
\(217\) 12.5000 4.33013i 0.848555 0.293948i
\(218\) −8.00000 13.8564i −0.541828 0.938474i
\(219\) 0 0
\(220\) 0 0
\(221\) 24.0000 1.61441
\(222\) 0 0
\(223\) 9.50000 + 16.4545i 0.636167 + 1.10187i 0.986267 + 0.165161i \(0.0528144\pi\)
−0.350100 + 0.936713i \(0.613852\pi\)
\(224\) −2.50000 + 0.866025i −0.167038 + 0.0578638i
\(225\) 0 0
\(226\) −9.00000 + 15.5885i −0.598671 + 1.03693i
\(227\) −9.00000 + 15.5885i −0.597351 + 1.03464i 0.395860 + 0.918311i \(0.370447\pi\)
−0.993210 + 0.116331i \(0.962887\pi\)
\(228\) 0 0
\(229\) −4.00000 6.92820i −0.264327 0.457829i 0.703060 0.711131i \(-0.251817\pi\)
−0.967387 + 0.253302i \(0.918483\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000 + 5.19615i 0.196960 + 0.341144i
\(233\) 9.00000 15.5885i 0.589610 1.02123i −0.404674 0.914461i \(-0.632615\pi\)
0.994283 0.106773i \(-0.0340517\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) −12.0000 10.3923i −0.777844 0.673633i
\(239\) −10.5000 + 18.1865i −0.679189 + 1.17639i 0.296037 + 0.955176i \(0.404335\pi\)
−0.975226 + 0.221213i \(0.928999\pi\)
\(240\) 0 0
\(241\) −2.50000 + 4.33013i −0.161039 + 0.278928i −0.935242 0.354010i \(-0.884818\pi\)
0.774202 + 0.632938i \(0.218151\pi\)
\(242\) −5.50000 9.52628i −0.353553 0.612372i
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 + 6.92820i 0.254514 + 0.440831i
\(248\) −5.00000 −0.317500
\(249\) 0 0
\(250\) 0 0
\(251\) −30.0000 −1.89358 −0.946792 0.321847i \(-0.895696\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 7.00000 0.439219
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 10.5000 + 18.1865i 0.654972 + 1.13444i 0.981901 + 0.189396i \(0.0606529\pi\)
−0.326929 + 0.945049i \(0.606014\pi\)
\(258\) 0 0
\(259\) −4.00000 + 20.7846i −0.248548 + 1.29149i
\(260\) 0 0
\(261\) 0 0
\(262\) −6.00000 10.3923i −0.370681 0.642039i
\(263\) −12.0000 + 20.7846i −0.739952 + 1.28163i 0.212565 + 0.977147i \(0.431818\pi\)
−0.952517 + 0.304487i \(0.901515\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.00000 5.19615i 0.0613139 0.318597i
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) 9.00000 + 15.5885i 0.548740 + 0.950445i 0.998361 + 0.0572259i \(0.0182255\pi\)
−0.449622 + 0.893219i \(0.648441\pi\)
\(270\) 0 0
\(271\) −10.0000 + 17.3205i −0.607457 + 1.05215i 0.384201 + 0.923249i \(0.374477\pi\)
−0.991658 + 0.128897i \(0.958856\pi\)
\(272\) 3.00000 + 5.19615i 0.181902 + 0.315063i
\(273\) 0 0
\(274\) −1.50000 + 2.59808i −0.0906183 + 0.156956i
\(275\) 0 0
\(276\) 0 0
\(277\) 8.00000 13.8564i 0.480673 0.832551i −0.519081 0.854725i \(-0.673726\pi\)
0.999754 + 0.0221745i \(0.00705893\pi\)
\(278\) −8.00000 + 13.8564i −0.479808 + 0.831052i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.50000 2.59808i −0.0894825 0.154988i 0.817810 0.575488i \(-0.195188\pi\)
−0.907293 + 0.420500i \(0.861855\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) 15.0000 0.890086
\(285\) 0 0
\(286\) 0 0
\(287\) 1.50000 7.79423i 0.0885422 0.460079i
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) 0 0
\(292\) −5.50000 9.52628i −0.321863 0.557483i
\(293\) 9.00000 15.5885i 0.525786 0.910687i −0.473763 0.880652i \(-0.657105\pi\)
0.999549 0.0300351i \(-0.00956192\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.00000 6.92820i 0.232495 0.402694i
\(297\) 0 0
\(298\) −3.00000 5.19615i −0.173785 0.301005i
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) −4.00000 3.46410i −0.230556 0.199667i
\(302\) 8.50000 14.7224i 0.489120 0.847181i
\(303\) 0 0
\(304\) −1.00000 + 1.73205i −0.0573539 + 0.0993399i
\(305\) 0 0
\(306\) 0 0
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) −19.0000 −1.07394 −0.536972 0.843600i \(-0.680432\pi\)
−0.536972 + 0.843600i \(0.680432\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) −24.0000 −1.34797 −0.673987 0.738743i \(-0.735420\pi\)
−0.673987 + 0.738743i \(0.735420\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 6.00000 + 5.19615i 0.334367 + 0.289570i
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −10.0000 17.3205i −0.554700 0.960769i
\(326\) 4.00000 6.92820i 0.221540 0.383718i
\(327\) 0 0
\(328\) −1.50000 + 2.59808i −0.0828236 + 0.143455i
\(329\) 7.50000 2.59808i 0.413488 0.143237i
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −10.5000 + 18.1865i −0.574534 + 0.995123i
\(335\) 0 0
\(336\) 0 0
\(337\) −7.00000 + 12.1244i −0.381314 + 0.660456i −0.991250 0.131995i \(-0.957862\pi\)
0.609936 + 0.792451i \(0.291195\pi\)
\(338\) 1.50000 + 2.59808i 0.0815892 + 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) 1.00000 + 1.73205i 0.0539164 + 0.0933859i
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) −6.00000 −0.322097 −0.161048 0.986947i \(-0.551488\pi\)
−0.161048 + 0.986947i \(0.551488\pi\)
\(348\) 0 0
\(349\) 2.00000 + 3.46410i 0.107058 + 0.185429i 0.914577 0.404412i \(-0.132524\pi\)
−0.807519 + 0.589841i \(0.799190\pi\)
\(350\) −2.50000 + 12.9904i −0.133631 + 0.694365i
\(351\) 0 0
\(352\) 0 0
\(353\) 16.5000 28.5788i 0.878206 1.52110i 0.0248989 0.999690i \(-0.492074\pi\)
0.853307 0.521408i \(-0.174593\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.50000 7.79423i 0.238500 0.413093i
\(357\) 0 0
\(358\) 0 0
\(359\) −10.5000 + 18.1865i −0.554169 + 0.959849i 0.443799 + 0.896126i \(0.353630\pi\)
−0.997968 + 0.0637221i \(0.979703\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) −2.00000 −0.105118
\(363\) 0 0
\(364\) 2.00000 10.3923i 0.104828 0.544705i
\(365\) 0 0
\(366\) 0 0
\(367\) 0.500000 0.866025i 0.0260998 0.0452062i −0.852680 0.522433i \(-0.825025\pi\)
0.878780 + 0.477227i \(0.158358\pi\)
\(368\) −1.50000 2.59808i −0.0781929 0.135434i
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000 + 10.3923i 0.623009 + 0.539542i
\(372\) 0 0
\(373\) 2.00000 + 3.46410i 0.103556 + 0.179364i 0.913147 0.407630i \(-0.133645\pi\)
−0.809591 + 0.586994i \(0.800311\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −3.00000 −0.154713
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 24.0000 1.22795
\(383\) −7.50000 12.9904i −0.383232 0.663777i 0.608290 0.793715i \(-0.291856\pi\)
−0.991522 + 0.129937i \(0.958522\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 19.0000 0.967075
\(387\) 0 0
\(388\) −1.00000 1.73205i −0.0507673 0.0879316i
\(389\) −12.0000 + 20.7846i −0.608424 + 1.05382i 0.383076 + 0.923717i \(0.374865\pi\)
−0.991500 + 0.130105i \(0.958469\pi\)
\(390\) 0 0
\(391\) 9.00000 15.5885i 0.455150 0.788342i
\(392\) −5.50000 + 4.33013i −0.277792 + 0.218704i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.00000 + 1.73205i −0.0501886 + 0.0869291i −0.890028 0.455905i \(-0.849316\pi\)
0.839840 + 0.542834i \(0.182649\pi\)
\(398\) 11.5000 + 19.9186i 0.576443 + 0.998428i
\(399\) 0 0
\(400\) 2.50000 4.33013i 0.125000 0.216506i
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 0 0
\(403\) 10.0000 17.3205i 0.498135 0.862796i
\(404\) 3.00000 5.19615i 0.149256 0.258518i
\(405\) 0 0
\(406\) 12.0000 + 10.3923i 0.595550 + 0.515761i
\(407\) 0 0
\(408\) 0 0
\(409\) −7.00000 −0.346128 −0.173064 0.984911i \(-0.555367\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.500000 + 0.866025i 0.0246332 + 0.0426660i
\(413\) −30.0000 + 10.3923i −1.47620 + 0.511372i
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 + 3.46410i −0.0980581 + 0.169842i
\(417\) 0 0
\(418\) 0 0
\(419\) −18.0000 + 31.1769i −0.879358 + 1.52309i −0.0273103 + 0.999627i \(0.508694\pi\)
−0.852047 + 0.523465i \(0.824639\pi\)
\(420\) 0 0
\(421\) −4.00000 6.92820i −0.194948 0.337660i 0.751935 0.659237i \(-0.229121\pi\)
−0.946883 + 0.321577i \(0.895787\pi\)
\(422\) 13.0000 22.5167i 0.632830 1.09609i
\(423\) 0 0
\(424\) −3.00000 5.19615i −0.145693 0.252347i
\(425\) 30.0000 1.45521
\(426\) 0 0
\(427\) 20.0000 6.92820i 0.967868 0.335279i
\(428\) 3.00000 5.19615i 0.145010 0.251166i
\(429\) 0 0
\(430\) 0 0
\(431\) −7.50000 12.9904i −0.361262 0.625725i 0.626907 0.779094i \(-0.284321\pi\)
−0.988169 + 0.153370i \(0.950987\pi\)
\(432\) 0 0
\(433\) 41.0000 1.97033 0.985167 0.171598i \(-0.0548929\pi\)
0.985167 + 0.171598i \(0.0548929\pi\)
\(434\) −12.5000 + 4.33013i −0.600019 + 0.207853i
\(435\) 0 0
\(436\) 8.00000 + 13.8564i 0.383131 + 0.663602i
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −24.0000 −1.14156
\(443\) −6.00000 −0.285069 −0.142534 0.989790i \(-0.545525\pi\)
−0.142534 + 0.989790i \(0.545525\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −9.50000 16.4545i −0.449838 0.779142i
\(447\) 0 0
\(448\) 2.50000 0.866025i 0.118114 0.0409159i
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 9.00000 15.5885i 0.423324 0.733219i
\(453\) 0 0
\(454\) 9.00000 15.5885i 0.422391 0.731603i
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 4.00000 + 6.92820i 0.186908 + 0.323734i
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 31.1769i −0.838344 1.45205i −0.891279 0.453456i \(-0.850191\pi\)
0.0529352 0.998598i \(-0.483142\pi\)
\(462\) 0 0
\(463\) 6.50000 11.2583i 0.302081 0.523219i −0.674526 0.738251i \(-0.735652\pi\)
0.976607 + 0.215032i \(0.0689855\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 0 0
\(466\) −9.00000 + 15.5885i −0.416917 + 0.722121i
\(467\) 6.00000 10.3923i 0.277647 0.480899i −0.693153 0.720791i \(-0.743779\pi\)
0.970799 + 0.239892i \(0.0771121\pi\)
\(468\) 0 0
\(469\) 20.0000 6.92820i 0.923514 0.319915i
\(470\) 0 0
\(471\) 0 0
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 0 0
\(475\) 5.00000 + 8.66025i 0.229416 + 0.397360i
\(476\) 12.0000 + 10.3923i 0.550019 + 0.476331i
\(477\) 0 0
\(478\) 10.5000 18.1865i 0.480259 0.831833i
\(479\) 4.50000 7.79423i 0.205610 0.356127i −0.744717 0.667381i \(-0.767415\pi\)
0.950327 + 0.311253i \(0.100749\pi\)
\(480\) 0 0
\(481\) 16.0000 + 27.7128i 0.729537 + 1.26360i
\(482\) 2.50000 4.33013i 0.113872 0.197232i
\(483\) 0 0
\(484\) 5.50000 + 9.52628i 0.250000 + 0.433013i
\(485\) 0 0
\(486\) 0 0
\(487\) 3.50000 + 6.06218i 0.158600 + 0.274703i 0.934364 0.356320i \(-0.115969\pi\)
−0.775764 + 0.631023i \(0.782635\pi\)
\(488\) −8.00000 −0.362143
\(489\) 0 0
\(490\) 0 0
\(491\) −3.00000 + 5.19615i −0.135388 + 0.234499i −0.925746 0.378147i \(-0.876561\pi\)
0.790358 + 0.612646i \(0.209895\pi\)
\(492\) 0 0
\(493\) 18.0000 31.1769i 0.810679 1.40414i
\(494\) −4.00000 6.92820i −0.179969 0.311715i
\(495\) 0 0
\(496\) 5.00000 0.224507
\(497\) 37.5000 12.9904i 1.68210 0.582698i
\(498\) 0 0
\(499\) 17.0000 + 29.4449i 0.761025 + 1.31813i 0.942323 + 0.334705i \(0.108637\pi\)
−0.181298 + 0.983428i \(0.558030\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 30.0000 1.33897
\(503\) 15.0000 0.668817 0.334408 0.942428i \(-0.391463\pi\)
0.334408 + 0.942428i \(0.391463\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −7.00000 −0.310575
\(509\) 3.00000 + 5.19615i 0.132973 + 0.230315i 0.924821 0.380402i \(-0.124214\pi\)
−0.791849 + 0.610718i \(0.790881\pi\)
\(510\) 0 0
\(511\) −22.0000 19.0526i −0.973223 0.842836i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −10.5000 18.1865i −0.463135 0.802174i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 4.00000 20.7846i 0.175750 0.913223i
\(519\) 0 0
\(520\) 0 0
\(521\) 7.50000 + 12.9904i 0.328581 + 0.569119i 0.982231 0.187678i \(-0.0600963\pi\)
−0.653650 + 0.756797i \(0.726763\pi\)
\(522\) 0 0
\(523\) 20.0000 34.6410i 0.874539 1.51475i 0.0172859 0.999851i \(-0.494497\pi\)
0.857253 0.514895i \(-0.172169\pi\)
\(524\) 6.00000 + 10.3923i 0.262111 + 0.453990i
\(525\) 0 0
\(526\) 12.0000 20.7846i 0.523225 0.906252i
\(527\) 15.0000 + 25.9808i 0.653410 + 1.13174i
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) −1.00000 + 5.19615i −0.0433555 + 0.225282i
\(533\) −6.00000 10.3923i −0.259889 0.450141i
\(534\) 0 0
\(535\) 0 0
\(536\) −8.00000 −0.345547
\(537\) 0 0
\(538\) −9.00000 15.5885i −0.388018 0.672066i
\(539\) 0 0
\(540\) 0 0
\(541\) −19.0000 + 32.9090i −0.816874 + 1.41487i 0.0911008 + 0.995842i \(0.470961\pi\)
−0.907975 + 0.419025i \(0.862372\pi\)
\(542\) 10.0000 17.3205i 0.429537 0.743980i
\(543\) 0 0
\(544\) −3.00000 5.19615i −0.128624 0.222783i
\(545\) 0 0
\(546\) 0 0
\(547\) −13.0000 22.5167i −0.555840 0.962743i −0.997838 0.0657267i \(-0.979063\pi\)
0.441998 0.897016i \(-0.354270\pi\)
\(548\) 1.50000 2.59808i 0.0640768 0.110984i
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) −2.50000 + 0.866025i −0.106311 + 0.0368271i
\(554\) −8.00000 + 13.8564i −0.339887 + 0.588702i
\(555\) 0 0
\(556\) 8.00000 13.8564i 0.339276 0.587643i
\(557\) 6.00000 + 10.3923i 0.254228 + 0.440336i 0.964686 0.263404i \(-0.0848453\pi\)
−0.710457 + 0.703740i \(0.751512\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 1.50000 + 2.59808i 0.0632737 + 0.109593i
\(563\) −42.0000 −1.77009 −0.885044 0.465506i \(-0.845872\pi\)
−0.885044 + 0.465506i \(0.845872\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 28.0000 1.17693
\(567\) 0 0
\(568\) −15.0000 −0.629386
\(569\) 21.0000 0.880366 0.440183 0.897908i \(-0.354914\pi\)
0.440183 + 0.897908i \(0.354914\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.50000 + 7.79423i −0.0626088 + 0.325325i
\(575\) −15.0000 −0.625543
\(576\) 0 0
\(577\) −7.00000 12.1244i −0.291414 0.504744i 0.682730 0.730670i \(-0.260792\pi\)
−0.974144 + 0.225927i \(0.927459\pi\)
\(578\) 9.50000 16.4545i 0.395148 0.684416i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 5.50000 + 9.52628i 0.227592 + 0.394200i
\(585\) 0 0
\(586\) −9.00000 + 15.5885i −0.371787 + 0.643953i
\(587\) −3.00000 5.19615i −0.123823 0.214468i 0.797449 0.603386i \(-0.206182\pi\)
−0.921272 + 0.388918i \(0.872849\pi\)
\(588\) 0 0
\(589\) −5.00000 + 8.66025i −0.206021 + 0.356840i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 + 6.92820i −0.164399 + 0.284747i
\(593\) 4.50000 7.79423i 0.184793 0.320071i −0.758714 0.651424i \(-0.774172\pi\)
0.943507 + 0.331353i \(0.107505\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) 0 0
\(598\) 12.0000 0.490716
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 0.500000 + 0.866025i 0.0203954 + 0.0353259i 0.876043 0.482233i \(-0.160174\pi\)
−0.855648 + 0.517559i \(0.826841\pi\)
\(602\) 4.00000 + 3.46410i 0.163028 + 0.141186i
\(603\) 0 0
\(604\) −8.50000 + 14.7224i −0.345860 + 0.599047i
\(605\) 0 0
\(606\) 0 0
\(607\) 20.0000 + 34.6410i 0.811775 + 1.40604i 0.911621 + 0.411033i \(0.134832\pi\)
−0.0998457 + 0.995003i \(0.531835\pi\)
\(608\) 1.00000 1.73205i 0.0405554 0.0702439i
\(609\) 0 0
\(610\) 0 0
\(611\) 6.00000 10.3923i 0.242734 0.420428i
\(612\) 0 0
\(613\) 8.00000 + 13.8564i 0.323117 + 0.559655i 0.981129 0.193352i \(-0.0619359\pi\)
−0.658012 + 0.753007i \(0.728603\pi\)
\(614\) −8.00000 −0.322854
\(615\) 0 0
\(616\) 0 0
\(617\) −13.5000 + 23.3827i −0.543490 + 0.941351i 0.455211 + 0.890384i \(0.349564\pi\)
−0.998700 + 0.0509678i \(0.983769\pi\)
\(618\) 0 0
\(619\) −1.00000 + 1.73205i −0.0401934 + 0.0696170i −0.885422 0.464787i \(-0.846131\pi\)
0.845229 + 0.534404i \(0.179464\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 4.50000 23.3827i 0.180289 0.936808i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 19.0000 0.759393
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) −48.0000 −1.91389
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 1.00000 0.0397779
\(633\) 0 0
\(634\) 24.0000 0.953162
\(635\) 0 0
\(636\) 0 0
\(637\) −4.00000 27.7128i −0.158486 1.09802i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.50000 12.9904i 0.296232 0.513089i −0.679039 0.734103i \(-0.737603\pi\)
0.975271 + 0.221013i \(0.0709364\pi\)
\(642\) 0 0
\(643\) 17.0000 29.4449i 0.670415 1.16119i −0.307372 0.951589i \(-0.599450\pi\)
0.977787 0.209603i \(-0.0672170\pi\)
\(644\) −6.00000 5.19615i −0.236433 0.204757i
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 4.50000 + 7.79423i 0.176913 + 0.306423i 0.940822 0.338902i \(-0.110055\pi\)
−0.763908 + 0.645325i \(0.776722\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 10.0000 + 17.3205i 0.392232 + 0.679366i
\(651\) 0 0
\(652\) −4.00000 + 6.92820i −0.156652 + 0.271329i
\(653\) −12.0000 20.7846i −0.469596 0.813365i 0.529799 0.848123i \(-0.322267\pi\)
−0.999396 + 0.0347583i \(0.988934\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.50000 2.59808i 0.0585652 0.101438i
\(657\) 0 0
\(658\) −7.50000 + 2.59808i −0.292380 + 0.101284i
\(659\) 15.0000 + 25.9808i 0.584317 + 1.01207i 0.994960 + 0.100271i \(0.0319709\pi\)
−0.410643 + 0.911796i \(0.634696\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 10.0000 0.388661
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −9.00000 + 15.5885i −0.348481 + 0.603587i
\(668\) 10.5000 18.1865i 0.406257 0.703658i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −8.50000 14.7224i −0.327651 0.567508i 0.654394 0.756153i \(-0.272924\pi\)
−0.982045 + 0.188645i \(0.939590\pi\)
\(674\) 7.00000 12.1244i 0.269630 0.467013i
\(675\) 0 0
\(676\) −1.50000 2.59808i −0.0576923 0.0999260i
\(677\) −48.0000 −1.84479 −0.922395 0.386248i \(-0.873771\pi\)
−0.922395 + 0.386248i \(0.873771\pi\)
\(678\) 0 0
\(679\) −4.00000 3.46410i −0.153506 0.132940i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.0000 + 41.5692i 0.918334 + 1.59060i 0.801945 + 0.597398i \(0.203799\pi\)
0.116390 + 0.993204i \(0.462868\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −10.0000 + 15.5885i −0.381802 + 0.595170i
\(687\) 0 0
\(688\) −1.00000 1.73205i −0.0381246 0.0660338i
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) −34.0000 −1.29342 −0.646710 0.762736i \(-0.723856\pi\)
−0.646710 + 0.762736i \(0.723856\pi\)
\(692\) 18.0000 0.684257
\(693\) 0 0
\(694\) 6.00000 0.227757
\(695\) 0 0
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) −2.00000 3.46410i −0.0757011 0.131118i
\(699\) 0 0
\(700\) 2.50000 12.9904i 0.0944911 0.490990i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −8.00000 13.8564i −0.301726 0.522604i
\(704\) 0 0
\(705\) 0 0
\(706\) −16.5000 + 28.5788i −0.620986 + 1.07558i
\(707\) 3.00000 15.5885i 0.112827 0.586264i
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −4.50000 + 7.79423i −0.168645 + 0.292101i
\(713\) −7.50000 12.9904i −0.280877 0.486494i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 10.5000 18.1865i 0.391857 0.678715i
\(719\) −4.50000 + 7.79423i −0.167822 + 0.290676i −0.937654 0.347571i \(-0.887007\pi\)
0.769832 + 0.638247i \(0.220340\pi\)
\(720\) 0 0
\(721\) 2.00000 + 1.73205i 0.0744839 + 0.0645049i
\(722\) −7.50000 12.9904i −0.279121 0.483452i
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) −30.0000 −1.11417
\(726\) 0 0
\(727\) 6.50000 + 11.2583i 0.241072 + 0.417548i 0.961020 0.276479i \(-0.0891678\pi\)
−0.719948 + 0.694028i \(0.755834\pi\)
\(728\) −2.00000 + 10.3923i −0.0741249 + 0.385164i
\(729\) 0 0
\(730\) 0 0
\(731\) 6.00000 10.3923i 0.221918 0.384373i
\(732\) 0 0
\(733\) −7.00000 12.1244i −0.258551 0.447823i 0.707303 0.706910i \(-0.249912\pi\)
−0.965854 + 0.259087i \(0.916578\pi\)
\(734\) −0.500000 + 0.866025i −0.0184553 + 0.0319656i
\(735\) 0 0
\(736\) 1.50000 + 2.59808i 0.0552907 + 0.0957664i
\(737\) 0 0
\(738\) 0 0
\(739\) −1.00000 1.73205i −0.0367856 0.0637145i 0.847046 0.531519i \(-0.178379\pi\)
−0.883832 + 0.467804i \(0.845045\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12.0000 10.3923i −0.440534 0.381514i
\(743\) −7.50000 + 12.9904i −0.275148 + 0.476571i −0.970173 0.242415i \(-0.922060\pi\)
0.695024 + 0.718986i \(0.255394\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.00000 3.46410i −0.0732252 0.126830i
\(747\) 0 0
\(748\) 0 0
\(749\) 3.00000 15.5885i 0.109618 0.569590i
\(750\) 0 0
\(751\) 15.5000 + 26.8468i 0.565603 + 0.979653i 0.996993 + 0.0774878i \(0.0246899\pi\)
−0.431390 + 0.902165i \(0.641977\pi\)
\(752\) 3.00000 0.109399
\(753\) 0 0
\(754\) 24.0000 0.874028
\(755\) 0 0
\(756\) 0 0
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) 10.0000 0.363216
\(759\) 0 0
\(760\) 0 0
\(761\) −10.5000 18.1865i −0.380625 0.659261i 0.610527 0.791995i \(-0.290958\pi\)
−0.991152 + 0.132734i \(0.957624\pi\)
\(762\) 0 0
\(763\) 32.0000 + 27.7128i 1.15848 + 1.00327i
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) 7.50000 + 12.9904i 0.270986 + 0.469362i
\(767\) −24.0000 + 41.5692i −0.866590 + 1.50098i
\(768\) 0 0
\(769\) 11.0000 19.0526i 0.396670 0.687053i −0.596643 0.802507i \(-0.703499\pi\)
0.993313 + 0.115454i \(0.0368323\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −19.0000 −0.683825
\(773\) 15.0000 + 25.9808i 0.539513 + 0.934463i 0.998930 + 0.0462427i \(0.0147248\pi\)
−0.459418 + 0.888220i \(0.651942\pi\)
\(774\) 0 0
\(775\) 12.5000 21.6506i 0.449013 0.777714i
\(776\) 1.00000 + 1.73205i 0.0358979 + 0.0621770i
\(777\) 0 0
\(778\) 12.0000 20.7846i 0.430221 0.745164i
\(779\) 3.00000 + 5.19615i 0.107486 + 0.186171i
\(780\) 0 0
\(781\) 0 0
\(782\) −9.00000 + 15.5885i −0.321839 + 0.557442i
\(783\) 0 0
\(784\) 5.50000 4.33013i 0.196429 0.154647i
\(785\) 0 0
\(786\) 0 0
\(787\) −22.0000 −0.784215 −0.392108 0.919919i \(-0.628254\pi\)
−0.392108 + 0.919919i \(0.628254\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.00000 46.7654i 0.320003 1.66279i
\(792\) 0 0
\(793\) 16.0000 27.7128i 0.568177 0.984111i
\(794\) 1.00000 1.73205i 0.0354887 0.0614682i
\(795\) 0 0
\(796\) −11.5000 19.9186i −0.407607 0.705996i
\(797\) −6.00000 + 10.3923i −0.212531 + 0.368114i −0.952506 0.304520i \(-0.901504\pi\)
0.739975 + 0.672634i \(0.234837\pi\)
\(798\) 0 0
\(799\) 9.00000 + 15.5885i 0.318397 + 0.551480i
\(800\) −2.50000 + 4.33013i −0.0883883 + 0.153093i
\(801\) 0 0
\(802\) −7.50000 12.9904i −0.264834 0.458706i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −10.0000 + 17.3205i −0.352235 + 0.610089i
\(807\) 0 0
\(808\) −3.00000 + 5.19615i −0.105540 + 0.182800i
\(809\) −10.5000 18.1865i −0.369160 0.639404i 0.620274 0.784385i \(-0.287021\pi\)
−0.989434 + 0.144981i \(0.953688\pi\)
\(810\) 0 0
\(811\) −34.0000 −1.19390 −0.596951 0.802278i \(-0.703621\pi\)
−0.596951 + 0.802278i \(0.703621\pi\)
\(812\) −12.0000 10.3923i −0.421117 0.364698i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 7.00000 0.244749
\(819\) 0 0
\(820\) 0 0
\(821\) −36.0000 −1.25641 −0.628204 0.778048i \(-0.716210\pi\)
−0.628204 + 0.778048i \(0.716210\pi\)
\(822\) 0 0
\(823\) −37.0000 −1.28974 −0.644869 0.764293i \(-0.723088\pi\)
−0.644869 + 0.764293i \(0.723088\pi\)
\(824\) −0.500000 0.866025i −0.0174183 0.0301694i
\(825\) 0 0
\(826\) 30.0000 10.3923i 1.04383 0.361595i
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 26.0000 + 45.0333i 0.903017 + 1.56407i 0.823557 + 0.567234i \(0.191986\pi\)
0.0794606 + 0.996838i \(0.474680\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.00000 3.46410i 0.0693375 0.120096i
\(833\) 39.0000 + 15.5885i 1.35127 + 0.540108i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 18.0000 31.1769i 0.621800 1.07699i
\(839\) 12.0000 + 20.7846i 0.414286 + 0.717564i 0.995353 0.0962912i \(-0.0306980\pi\)
−0.581067 + 0.813856i \(0.697365\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 4.00000 + 6.92820i 0.137849 + 0.238762i
\(843\) 0 0
\(844\) −13.0000 + 22.5167i −0.447478 + 0.775055i
\(845\) 0 0
\(846\) 0 0
\(847\) 22.0000 + 19.0526i 0.755929 + 0.654654i
\(848\) 3.00000 + 5.19615i 0.103020 + 0.178437i
\(849\) 0 0
\(850\) −30.0000 −1.02899
\(851\) 24.0000 0.822709
\(852\) 0 0
\(853\) −4.00000 6.92820i −0.136957 0.237217i 0.789386 0.613897i \(-0.210399\pi\)
−0.926343 + 0.376680i \(0.877066\pi\)
\(854\) −20.0000 + 6.92820i −0.684386 + 0.237078i
\(855\) 0 0
\(856\) −3.00000 + 5.19615i −0.102538 + 0.177601i
\(857\) −10.5000 + 18.1865i −0.358673 + 0.621240i −0.987739 0.156112i \(-0.950104\pi\)
0.629066 + 0.777352i \(0.283437\pi\)
\(858\) 0 0
\(859\) −1.00000 1.73205i −0.0341196 0.0590968i 0.848461 0.529257i \(-0.177529\pi\)
−0.882581 + 0.470160i \(0.844196\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 7.50000 + 12.9904i 0.255451 + 0.442454i
\(863\) −22.5000 + 38.9711i −0.765909 + 1.32659i 0.173856 + 0.984771i \(0.444377\pi\)
−0.939765 + 0.341822i \(0.888956\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −41.0000 −1.39324
\(867\) 0 0
\(868\) 12.5000 4.33013i 0.424278 0.146974i
\(869\) 0 0
\(870\) 0 0
\(871\) 16.0000 27.7128i 0.542139 0.939013i
\(872\) −8.00000 13.8564i −0.270914 0.469237i
\(873\) 0 0
\(874\) −6.00000 −0.202953
\(875\) 0 0
\(876\) 0 0
\(877\) −19.0000 32.9090i −0.641584 1.11126i −0.985079 0.172102i \(-0.944944\pi\)
0.343495 0.939155i \(-0.388389\pi\)
\(878\) 1.00000 0.0337484
\(879\) 0 0
\(880\) 0 0
\(881\) −9.00000 −0.303218 −0.151609 0.988441i \(-0.548445\pi\)
−0.151609 + 0.988441i \(0.548445\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 24.0000 0.807207
\(885\) 0 0
\(886\) 6.00000 0.201574
\(887\) −13.5000 23.3827i −0.453286 0.785114i 0.545302 0.838240i \(-0.316415\pi\)
−0.998588 + 0.0531258i \(0.983082\pi\)
\(888\) 0 0
\(889\) −17.5000 + 6.06218i −0.586931 + 0.203319i
\(890\) 0 0
\(891\) 0 0
\(892\) 9.50000 + 16.4545i 0.318084 + 0.550937i
\(893\) −3.00000 + 5.19615i −0.100391 + 0.173883i
\(894\) 0 0
\(895\) 0 0
\(896\) −2.50000 + 0.866025i −0.0835191 + 0.0289319i
\(897\) 0 0
\(898\) −30.0000 −1.00111
\(899\) −15.0000 25.9808i −0.500278 0.866507i
\(900\) 0 0
\(901\) −18.0000 + 31.1769i −0.599667 + 1.03865i
\(902\) 0 0
\(903\) 0 0
\(904\) −9.00000 + 15.5885i −0.299336 + 0.518464i
\(905\) 0 0
\(906\) 0 0
\(907\) −4.00000 + 6.92820i −0.132818 + 0.230047i −0.924762 0.380547i \(-0.875736\pi\)
0.791944 + 0.610594i \(0.209069\pi\)
\(908\) −9.00000 + 15.5885i −0.298675 + 0.517321i
\(909\) 0 0
\(910\) 0 0
\(911\) 1.50000 + 2.59808i 0.0496972 + 0.0860781i 0.889804 0.456343i \(-0.150841\pi\)
−0.840107 + 0.542421i \(0.817508\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −2.00000 −0.0661541
\(915\) 0 0
\(916\) −4.00000 6.92820i −0.132164 0.228914i
\(917\) 24.0000 + 20.7846i 0.792550 + 0.686368i
\(918\) 0 0
\(919\) −4.00000 + 6.92820i −0.131948 + 0.228540i −0.924427 0.381358i \(-0.875456\pi\)
0.792480 + 0.609898i \(0.208790\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.0000 + 31.1769i 0.592798 + 1.02676i
\(923\) 30.0000 51.9615i 0.987462 1.71033i
\(924\) 0 0
\(925\) 20.0000 + 34.6410i 0.657596 + 1.13899i
\(926\) −6.50000 + 11.2583i −0.213603 + 0.369972i
\(927\) 0 0
\(928\) 3.00000 + 5.19615i 0.0984798 + 0.170572i
\(929\) 21.0000 0.688988 0.344494 0.938789i \(-0.388051\pi\)
0.344494 + 0.938789i \(0.388051\pi\)
\(930\) 0 0
\(931\) 2.00000 + 13.8564i 0.0655474 + 0.454125i
\(932\) 9.00000 15.5885i 0.294805 0.510617i
\(933\) 0 0
\(934\) −6.00000 + 10.3923i −0.196326 + 0.340047i
\(935\) 0 0
\(936\) 0 0
\(937\) −37.0000 −1.20874 −0.604369 0.796705i \(-0.706575\pi\)
−0.604369 + 0.796705i \(0.706575\pi\)
\(938\) −20.0000 + 6.92820i −0.653023 + 0.226214i
\(939\) 0 0
\(940\) 0 0
\(941\) 48.0000 1.56476 0.782378 0.622804i \(-0.214007\pi\)
0.782378 + 0.622804i \(0.214007\pi\)
\(942\) 0 0
\(943\) −9.00000 −0.293080
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 0 0
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) 0 0
\(949\) −44.0000 −1.42830
\(950\) −5.00000 8.66025i −0.162221 0.280976i
\(951\) 0 0
\(952\) −12.0000 10.3923i −0.388922 0.336817i
\(953\) 21.0000 0.680257 0.340128 0.940379i \(-0.389529\pi\)
0.340128 + 0.940379i \(0.389529\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −10.5000 + 18.1865i −0.339594 + 0.588195i
\(957\) 0 0
\(958\) −4.50000 + 7.79423i −0.145388 + 0.251820i
\(959\) 1.50000 7.79423i 0.0484375 0.251689i
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) −16.0000 27.7128i −0.515861 0.893497i
\(963\) 0 0
\(964\) −2.50000 + 4.33013i −0.0805196 + 0.139464i
\(965\) 0 0
\(966\) 0 0
\(967\) 9.50000 16.4545i 0.305499 0.529140i −0.671873 0.740666i \(-0.734510\pi\)
0.977372 + 0.211526i \(0.0678433\pi\)
\(968\) −5.50000 9.52628i −0.176777 0.306186i
\(969\) 0 0
\(970\) 0 0
\(971\) 15.0000 25.9808i 0.481373 0.833762i −0.518399 0.855139i \(-0.673472\pi\)
0.999771 + 0.0213768i \(0.00680496\pi\)
\(972\) 0 0
\(973\) 8.00000 41.5692i 0.256468 1.33265i
\(974\) −3.50000 6.06218i −0.112147 0.194245i
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) 9.00000 0.287936 0.143968 0.989582i \(-0.454014\pi\)
0.143968 + 0.989582i \(0.454014\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 3.00000 5.19615i 0.0957338 0.165816i
\(983\) 12.0000 20.7846i 0.382741 0.662926i −0.608712 0.793391i \(-0.708314\pi\)
0.991453 + 0.130465i \(0.0416470\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −18.0000 + 31.1769i −0.573237 + 0.992875i
\(987\) 0 0
\(988\) 4.00000 + 6.92820i 0.127257 + 0.220416i
\(989\) −3.00000 + 5.19615i −0.0953945 + 0.165228i
\(990\) 0 0
\(991\) −2.50000 4.33013i −0.0794151 0.137551i 0.823583 0.567196i \(-0.191972\pi\)
−0.902998 + 0.429645i \(0.858639\pi\)
\(992\) −5.00000 −0.158750
\(993\) 0 0
\(994\) −37.5000 + 12.9904i −1.18943 + 0.412030i
\(995\) 0 0
\(996\) 0 0
\(997\) −25.0000 + 43.3013i −0.791758 + 1.37136i 0.133120 + 0.991100i \(0.457501\pi\)
−0.924878 + 0.380265i \(0.875833\pi\)
\(998\) −17.0000 29.4449i −0.538126 0.932061i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.e.d.919.1 2
3.2 odd 2 1134.2.e.n.919.1 2
7.4 even 3 1134.2.h.m.109.1 2
9.2 odd 6 1134.2.h.c.541.1 2
9.4 even 3 1134.2.g.g.163.1 yes 2
9.5 odd 6 1134.2.g.b.163.1 2
9.7 even 3 1134.2.h.m.541.1 2
21.11 odd 6 1134.2.h.c.109.1 2
63.4 even 3 1134.2.g.g.487.1 yes 2
63.5 even 6 7938.2.a.z.1.1 1
63.11 odd 6 1134.2.e.n.865.1 2
63.23 odd 6 7938.2.a.y.1.1 1
63.25 even 3 inner 1134.2.e.d.865.1 2
63.32 odd 6 1134.2.g.b.487.1 yes 2
63.40 odd 6 7938.2.a.h.1.1 1
63.58 even 3 7938.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1134.2.e.d.865.1 2 63.25 even 3 inner
1134.2.e.d.919.1 2 1.1 even 1 trivial
1134.2.e.n.865.1 2 63.11 odd 6
1134.2.e.n.919.1 2 3.2 odd 2
1134.2.g.b.163.1 2 9.5 odd 6
1134.2.g.b.487.1 yes 2 63.32 odd 6
1134.2.g.g.163.1 yes 2 9.4 even 3
1134.2.g.g.487.1 yes 2 63.4 even 3
1134.2.h.c.109.1 2 21.11 odd 6
1134.2.h.c.541.1 2 9.2 odd 6
1134.2.h.m.109.1 2 7.4 even 3
1134.2.h.m.541.1 2 9.7 even 3
7938.2.a.g.1.1 1 63.58 even 3
7938.2.a.h.1.1 1 63.40 odd 6
7938.2.a.y.1.1 1 63.23 odd 6
7938.2.a.z.1.1 1 63.5 even 6