Properties

Label 1134.2.e.n.865.1
Level $1134$
Weight $2$
Character 1134.865
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(865,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.865");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1134.865
Dual form 1134.2.e.n.919.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +(2.50000 + 0.866025i) q^{7} +1.00000 q^{8} +(2.00000 + 3.46410i) q^{13} +(2.50000 + 0.866025i) q^{14} +1.00000 q^{16} +(-3.00000 + 5.19615i) q^{17} +(-1.00000 - 1.73205i) q^{19} +(1.50000 - 2.59808i) q^{23} +(2.50000 + 4.33013i) q^{25} +(2.00000 + 3.46410i) q^{26} +(2.50000 + 0.866025i) q^{28} +(3.00000 - 5.19615i) q^{29} +5.00000 q^{31} +1.00000 q^{32} +(-3.00000 + 5.19615i) q^{34} +(-4.00000 - 6.92820i) q^{37} +(-1.00000 - 1.73205i) q^{38} +(-1.50000 - 2.59808i) q^{41} +(-1.00000 + 1.73205i) q^{43} +(1.50000 - 2.59808i) q^{46} -3.00000 q^{47} +(5.50000 + 4.33013i) q^{49} +(2.50000 + 4.33013i) q^{50} +(2.00000 + 3.46410i) q^{52} +(-3.00000 + 5.19615i) q^{53} +(2.50000 + 0.866025i) q^{56} +(3.00000 - 5.19615i) q^{58} +12.0000 q^{59} +8.00000 q^{61} +5.00000 q^{62} +1.00000 q^{64} +8.00000 q^{67} +(-3.00000 + 5.19615i) q^{68} -15.0000 q^{71} +(-5.50000 + 9.52628i) q^{73} +(-4.00000 - 6.92820i) q^{74} +(-1.00000 - 1.73205i) q^{76} -1.00000 q^{79} +(-1.50000 - 2.59808i) q^{82} +(-1.00000 + 1.73205i) q^{86} +(-4.50000 - 7.79423i) q^{89} +(2.00000 + 10.3923i) q^{91} +(1.50000 - 2.59808i) q^{92} -3.00000 q^{94} +(-1.00000 + 1.73205i) q^{97} +(5.50000 + 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 5 q^{7} + 2 q^{8} + 4 q^{13} + 5 q^{14} + 2 q^{16} - 6 q^{17} - 2 q^{19} + 3 q^{23} + 5 q^{25} + 4 q^{26} + 5 q^{28} + 6 q^{29} + 10 q^{31} + 2 q^{32} - 6 q^{34} - 8 q^{37} - 2 q^{38}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) 2.50000 + 0.866025i 0.944911 + 0.327327i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.46410i 0.554700 + 0.960769i 0.997927 + 0.0643593i \(0.0205004\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) 2.50000 + 0.866025i 0.668153 + 0.231455i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i \(0.426034\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) 0 0
\(19\) −1.00000 1.73205i −0.229416 0.397360i 0.728219 0.685344i \(-0.240348\pi\)
−0.957635 + 0.287984i \(0.907015\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.50000 2.59808i 0.312772 0.541736i −0.666190 0.745782i \(-0.732076\pi\)
0.978961 + 0.204046i \(0.0654092\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 2.00000 + 3.46410i 0.392232 + 0.679366i
\(27\) 0 0
\(28\) 2.50000 + 0.866025i 0.472456 + 0.163663i
\(29\) 3.00000 5.19615i 0.557086 0.964901i −0.440652 0.897678i \(-0.645253\pi\)
0.997738 0.0672232i \(-0.0214140\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −3.00000 + 5.19615i −0.514496 + 0.891133i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 6.92820i −0.657596 1.13899i −0.981236 0.192809i \(-0.938240\pi\)
0.323640 0.946180i \(-0.395093\pi\)
\(38\) −1.00000 1.73205i −0.162221 0.280976i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) −1.00000 + 1.73205i −0.152499 + 0.264135i −0.932145 0.362084i \(-0.882065\pi\)
0.779647 + 0.626219i \(0.215399\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.50000 2.59808i 0.221163 0.383065i
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 2.50000 + 4.33013i 0.353553 + 0.612372i
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.50000 + 0.866025i 0.334077 + 0.115728i
\(57\) 0 0
\(58\) 3.00000 5.19615i 0.393919 0.682288i
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 5.00000 0.635001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −3.00000 + 5.19615i −0.363803 + 0.630126i
\(69\) 0 0
\(70\) 0 0
\(71\) −15.0000 −1.78017 −0.890086 0.455792i \(-0.849356\pi\)
−0.890086 + 0.455792i \(0.849356\pi\)
\(72\) 0 0
\(73\) −5.50000 + 9.52628i −0.643726 + 1.11497i 0.340868 + 0.940111i \(0.389279\pi\)
−0.984594 + 0.174855i \(0.944054\pi\)
\(74\) −4.00000 6.92820i −0.464991 0.805387i
\(75\) 0 0
\(76\) −1.00000 1.73205i −0.114708 0.198680i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1.50000 2.59808i −0.165647 0.286910i
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.00000 + 1.73205i −0.107833 + 0.186772i
\(87\) 0 0
\(88\) 0 0
\(89\) −4.50000 7.79423i −0.476999 0.826187i 0.522654 0.852545i \(-0.324942\pi\)
−0.999653 + 0.0263586i \(0.991609\pi\)
\(90\) 0 0
\(91\) 2.00000 + 10.3923i 0.209657 + 1.08941i
\(92\) 1.50000 2.59808i 0.156386 0.270868i
\(93\) 0 0
\(94\) −3.00000 −0.309426
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 5.50000 + 4.33013i 0.555584 + 0.437409i
\(99\) 0 0
\(100\) 2.50000 + 4.33013i 0.250000 + 0.433013i
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 0 0
\(103\) 0.500000 0.866025i 0.0492665 0.0853320i −0.840341 0.542059i \(-0.817645\pi\)
0.889607 + 0.456727i \(0.150978\pi\)
\(104\) 2.00000 + 3.46410i 0.196116 + 0.339683i
\(105\) 0 0
\(106\) −3.00000 + 5.19615i −0.291386 + 0.504695i
\(107\) −3.00000 5.19615i −0.290021 0.502331i 0.683793 0.729676i \(-0.260329\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 0 0
\(109\) 8.00000 13.8564i 0.766261 1.32720i −0.173316 0.984866i \(-0.555448\pi\)
0.939577 0.342337i \(-0.111218\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.50000 + 0.866025i 0.236228 + 0.0818317i
\(113\) −9.00000 15.5885i −0.846649 1.46644i −0.884182 0.467143i \(-0.845283\pi\)
0.0375328 0.999295i \(-0.488050\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.00000 5.19615i 0.278543 0.482451i
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) −12.0000 + 10.3923i −1.10004 + 0.952661i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 8.00000 0.724286
\(123\) 0 0
\(124\) 5.00000 0.449013
\(125\) 0 0
\(126\) 0 0
\(127\) −7.00000 −0.621150 −0.310575 0.950549i \(-0.600522\pi\)
−0.310575 + 0.950549i \(0.600522\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) 0 0
\(133\) −1.00000 5.19615i −0.0867110 0.450564i
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) −3.00000 + 5.19615i −0.257248 + 0.445566i
\(137\) −1.50000 2.59808i −0.128154 0.221969i 0.794808 0.606861i \(-0.207572\pi\)
−0.922961 + 0.384893i \(0.874238\pi\)
\(138\) 0 0
\(139\) 8.00000 + 13.8564i 0.678551 + 1.17529i 0.975417 + 0.220366i \(0.0707252\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −15.0000 −1.25877
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −5.50000 + 9.52628i −0.455183 + 0.788400i
\(147\) 0 0
\(148\) −4.00000 6.92820i −0.328798 0.569495i
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 0 0
\(151\) −8.50000 14.7224i −0.691720 1.19809i −0.971274 0.237964i \(-0.923520\pi\)
0.279554 0.960130i \(-0.409814\pi\)
\(152\) −1.00000 1.73205i −0.0811107 0.140488i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) −1.00000 −0.0795557
\(159\) 0 0
\(160\) 0 0
\(161\) 6.00000 5.19615i 0.472866 0.409514i
\(162\) 0 0
\(163\) −4.00000 6.92820i −0.313304 0.542659i 0.665771 0.746156i \(-0.268103\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) −1.50000 2.59808i −0.117130 0.202876i
\(165\) 0 0
\(166\) 0 0
\(167\) −10.5000 18.1865i −0.812514 1.40732i −0.911099 0.412188i \(-0.864765\pi\)
0.0985846 0.995129i \(-0.468568\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 2.50000 + 12.9904i 0.188982 + 0.981981i
\(176\) 0 0
\(177\) 0 0
\(178\) −4.50000 7.79423i −0.337289 0.584202i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 2.00000 + 10.3923i 0.148250 + 0.770329i
\(183\) 0 0
\(184\) 1.50000 2.59808i 0.110581 0.191533i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) −19.0000 −1.36765 −0.683825 0.729646i \(-0.739685\pi\)
−0.683825 + 0.729646i \(0.739685\pi\)
\(194\) −1.00000 + 1.73205i −0.0717958 + 0.124354i
\(195\) 0 0
\(196\) 5.50000 + 4.33013i 0.392857 + 0.309295i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −11.5000 + 19.9186i −0.815213 + 1.41199i 0.0939612 + 0.995576i \(0.470047\pi\)
−0.909175 + 0.416415i \(0.863286\pi\)
\(200\) 2.50000 + 4.33013i 0.176777 + 0.306186i
\(201\) 0 0
\(202\) −3.00000 5.19615i −0.211079 0.365600i
\(203\) 12.0000 10.3923i 0.842235 0.729397i
\(204\) 0 0
\(205\) 0 0
\(206\) 0.500000 0.866025i 0.0348367 0.0603388i
\(207\) 0 0
\(208\) 2.00000 + 3.46410i 0.138675 + 0.240192i
\(209\) 0 0
\(210\) 0 0
\(211\) −13.0000 22.5167i −0.894957 1.55011i −0.833858 0.551979i \(-0.813873\pi\)
−0.0610990 0.998132i \(-0.519461\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 0 0
\(214\) −3.00000 5.19615i −0.205076 0.355202i
\(215\) 0 0
\(216\) 0 0
\(217\) 12.5000 + 4.33013i 0.848555 + 0.293948i
\(218\) 8.00000 13.8564i 0.541828 0.938474i
\(219\) 0 0
\(220\) 0 0
\(221\) −24.0000 −1.61441
\(222\) 0 0
\(223\) 9.50000 16.4545i 0.636167 1.10187i −0.350100 0.936713i \(-0.613852\pi\)
0.986267 0.165161i \(-0.0528144\pi\)
\(224\) 2.50000 + 0.866025i 0.167038 + 0.0578638i
\(225\) 0 0
\(226\) −9.00000 15.5885i −0.598671 1.03693i
\(227\) 9.00000 + 15.5885i 0.597351 + 1.03464i 0.993210 + 0.116331i \(0.0371134\pi\)
−0.395860 + 0.918311i \(0.629553\pi\)
\(228\) 0 0
\(229\) −4.00000 + 6.92820i −0.264327 + 0.457829i −0.967387 0.253302i \(-0.918483\pi\)
0.703060 + 0.711131i \(0.251817\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000 5.19615i 0.196960 0.341144i
\(233\) −9.00000 15.5885i −0.589610 1.02123i −0.994283 0.106773i \(-0.965948\pi\)
0.404674 0.914461i \(-0.367385\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 12.0000 0.781133
\(237\) 0 0
\(238\) −12.0000 + 10.3923i −0.777844 + 0.673633i
\(239\) 10.5000 + 18.1865i 0.679189 + 1.17639i 0.975226 + 0.221213i \(0.0710015\pi\)
−0.296037 + 0.955176i \(0.595665\pi\)
\(240\) 0 0
\(241\) −2.50000 4.33013i −0.161039 0.278928i 0.774202 0.632938i \(-0.218151\pi\)
−0.935242 + 0.354010i \(0.884818\pi\)
\(242\) 5.50000 9.52628i 0.353553 0.612372i
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 6.92820i 0.254514 0.440831i
\(248\) 5.00000 0.317500
\(249\) 0 0
\(250\) 0 0
\(251\) 30.0000 1.89358 0.946792 0.321847i \(-0.104304\pi\)
0.946792 + 0.321847i \(0.104304\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −7.00000 −0.439219
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.5000 + 18.1865i −0.654972 + 1.13444i 0.326929 + 0.945049i \(0.393986\pi\)
−0.981901 + 0.189396i \(0.939347\pi\)
\(258\) 0 0
\(259\) −4.00000 20.7846i −0.248548 1.29149i
\(260\) 0 0
\(261\) 0 0
\(262\) −6.00000 + 10.3923i −0.370681 + 0.642039i
\(263\) 12.0000 + 20.7846i 0.739952 + 1.28163i 0.952517 + 0.304487i \(0.0984850\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.00000 5.19615i −0.0613139 0.318597i
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) −9.00000 + 15.5885i −0.548740 + 0.950445i 0.449622 + 0.893219i \(0.351559\pi\)
−0.998361 + 0.0572259i \(0.981774\pi\)
\(270\) 0 0
\(271\) −10.0000 17.3205i −0.607457 1.05215i −0.991658 0.128897i \(-0.958856\pi\)
0.384201 0.923249i \(-0.374477\pi\)
\(272\) −3.00000 + 5.19615i −0.181902 + 0.315063i
\(273\) 0 0
\(274\) −1.50000 2.59808i −0.0906183 0.156956i
\(275\) 0 0
\(276\) 0 0
\(277\) 8.00000 + 13.8564i 0.480673 + 0.832551i 0.999754 0.0221745i \(-0.00705893\pi\)
−0.519081 + 0.854725i \(0.673726\pi\)
\(278\) 8.00000 + 13.8564i 0.479808 + 0.831052i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.50000 2.59808i 0.0894825 0.154988i −0.817810 0.575488i \(-0.804812\pi\)
0.907293 + 0.420500i \(0.138145\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) −15.0000 −0.890086
\(285\) 0 0
\(286\) 0 0
\(287\) −1.50000 7.79423i −0.0885422 0.460079i
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 0 0
\(291\) 0 0
\(292\) −5.50000 + 9.52628i −0.321863 + 0.557483i
\(293\) −9.00000 15.5885i −0.525786 0.910687i −0.999549 0.0300351i \(-0.990438\pi\)
0.473763 0.880652i \(-0.342895\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 6.92820i −0.232495 0.402694i
\(297\) 0 0
\(298\) −3.00000 + 5.19615i −0.173785 + 0.301005i
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) −4.00000 + 3.46410i −0.230556 + 0.199667i
\(302\) −8.50000 14.7224i −0.489120 0.847181i
\(303\) 0 0
\(304\) −1.00000 1.73205i −0.0573539 0.0993399i
\(305\) 0 0
\(306\) 0 0
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) −19.0000 −1.07394 −0.536972 0.843600i \(-0.680432\pi\)
−0.536972 + 0.843600i \(0.680432\pi\)
\(314\) −22.0000 −1.24153
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) 24.0000 1.34797 0.673987 0.738743i \(-0.264580\pi\)
0.673987 + 0.738743i \(0.264580\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 6.00000 5.19615i 0.334367 0.289570i
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) −10.0000 + 17.3205i −0.554700 + 0.960769i
\(326\) −4.00000 6.92820i −0.221540 0.383718i
\(327\) 0 0
\(328\) −1.50000 2.59808i −0.0828236 0.143455i
\(329\) −7.50000 2.59808i −0.413488 0.143237i
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −10.5000 18.1865i −0.574534 0.995123i
\(335\) 0 0
\(336\) 0 0
\(337\) −7.00000 12.1244i −0.381314 0.660456i 0.609936 0.792451i \(-0.291195\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) −1.50000 + 2.59808i −0.0815892 + 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) −1.00000 + 1.73205i −0.0539164 + 0.0933859i
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) 6.00000 0.322097 0.161048 0.986947i \(-0.448512\pi\)
0.161048 + 0.986947i \(0.448512\pi\)
\(348\) 0 0
\(349\) 2.00000 3.46410i 0.107058 0.185429i −0.807519 0.589841i \(-0.799190\pi\)
0.914577 + 0.404412i \(0.132524\pi\)
\(350\) 2.50000 + 12.9904i 0.133631 + 0.694365i
\(351\) 0 0
\(352\) 0 0
\(353\) −16.5000 28.5788i −0.878206 1.52110i −0.853307 0.521408i \(-0.825407\pi\)
−0.0248989 0.999690i \(-0.507926\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.50000 7.79423i −0.238500 0.413093i
\(357\) 0 0
\(358\) 0 0
\(359\) 10.5000 + 18.1865i 0.554169 + 0.959849i 0.997968 + 0.0637221i \(0.0202971\pi\)
−0.443799 + 0.896126i \(0.646370\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) 2.00000 + 10.3923i 0.104828 + 0.544705i
\(365\) 0 0
\(366\) 0 0
\(367\) 0.500000 + 0.866025i 0.0260998 + 0.0452062i 0.878780 0.477227i \(-0.158358\pi\)
−0.852680 + 0.522433i \(0.825025\pi\)
\(368\) 1.50000 2.59808i 0.0781929 0.135434i
\(369\) 0 0
\(370\) 0 0
\(371\) −12.0000 + 10.3923i −0.623009 + 0.539542i
\(372\) 0 0
\(373\) 2.00000 3.46410i 0.103556 0.179364i −0.809591 0.586994i \(-0.800311\pi\)
0.913147 + 0.407630i \(0.133645\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −3.00000 −0.154713
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 24.0000 1.22795
\(383\) 7.50000 12.9904i 0.383232 0.663777i −0.608290 0.793715i \(-0.708144\pi\)
0.991522 + 0.129937i \(0.0414776\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −19.0000 −0.967075
\(387\) 0 0
\(388\) −1.00000 + 1.73205i −0.0507673 + 0.0879316i
\(389\) 12.0000 + 20.7846i 0.608424 + 1.05382i 0.991500 + 0.130105i \(0.0415314\pi\)
−0.383076 + 0.923717i \(0.625135\pi\)
\(390\) 0 0
\(391\) 9.00000 + 15.5885i 0.455150 + 0.788342i
\(392\) 5.50000 + 4.33013i 0.277792 + 0.218704i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.00000 1.73205i −0.0501886 0.0869291i 0.839840 0.542834i \(-0.182649\pi\)
−0.890028 + 0.455905i \(0.849316\pi\)
\(398\) −11.5000 + 19.9186i −0.576443 + 0.998428i
\(399\) 0 0
\(400\) 2.50000 + 4.33013i 0.125000 + 0.216506i
\(401\) −7.50000 + 12.9904i −0.374532 + 0.648709i −0.990257 0.139253i \(-0.955530\pi\)
0.615725 + 0.787961i \(0.288863\pi\)
\(402\) 0 0
\(403\) 10.0000 + 17.3205i 0.498135 + 0.862796i
\(404\) −3.00000 5.19615i −0.149256 0.258518i
\(405\) 0 0
\(406\) 12.0000 10.3923i 0.595550 0.515761i
\(407\) 0 0
\(408\) 0 0
\(409\) −7.00000 −0.346128 −0.173064 0.984911i \(-0.555367\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.500000 0.866025i 0.0246332 0.0426660i
\(413\) 30.0000 + 10.3923i 1.47620 + 0.511372i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 + 3.46410i 0.0980581 + 0.169842i
\(417\) 0 0
\(418\) 0 0
\(419\) 18.0000 + 31.1769i 0.879358 + 1.52309i 0.852047 + 0.523465i \(0.175361\pi\)
0.0273103 + 0.999627i \(0.491306\pi\)
\(420\) 0 0
\(421\) −4.00000 + 6.92820i −0.194948 + 0.337660i −0.946883 0.321577i \(-0.895787\pi\)
0.751935 + 0.659237i \(0.229121\pi\)
\(422\) −13.0000 22.5167i −0.632830 1.09609i
\(423\) 0 0
\(424\) −3.00000 + 5.19615i −0.145693 + 0.252347i
\(425\) −30.0000 −1.45521
\(426\) 0 0
\(427\) 20.0000 + 6.92820i 0.967868 + 0.335279i
\(428\) −3.00000 5.19615i −0.145010 0.251166i
\(429\) 0 0
\(430\) 0 0
\(431\) 7.50000 12.9904i 0.361262 0.625725i −0.626907 0.779094i \(-0.715679\pi\)
0.988169 + 0.153370i \(0.0490126\pi\)
\(432\) 0 0
\(433\) 41.0000 1.97033 0.985167 0.171598i \(-0.0548929\pi\)
0.985167 + 0.171598i \(0.0548929\pi\)
\(434\) 12.5000 + 4.33013i 0.600019 + 0.207853i
\(435\) 0 0
\(436\) 8.00000 13.8564i 0.383131 0.663602i
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −24.0000 −1.14156
\(443\) 6.00000 0.285069 0.142534 0.989790i \(-0.454475\pi\)
0.142534 + 0.989790i \(0.454475\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 9.50000 16.4545i 0.449838 0.779142i
\(447\) 0 0
\(448\) 2.50000 + 0.866025i 0.118114 + 0.0409159i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −9.00000 15.5885i −0.423324 0.733219i
\(453\) 0 0
\(454\) 9.00000 + 15.5885i 0.422391 + 0.731603i
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) −4.00000 + 6.92820i −0.186908 + 0.323734i
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000 31.1769i 0.838344 1.45205i −0.0529352 0.998598i \(-0.516858\pi\)
0.891279 0.453456i \(-0.149809\pi\)
\(462\) 0 0
\(463\) 6.50000 + 11.2583i 0.302081 + 0.523219i 0.976607 0.215032i \(-0.0689855\pi\)
−0.674526 + 0.738251i \(0.735652\pi\)
\(464\) 3.00000 5.19615i 0.139272 0.241225i
\(465\) 0 0
\(466\) −9.00000 15.5885i −0.416917 0.722121i
\(467\) −6.00000 10.3923i −0.277647 0.480899i 0.693153 0.720791i \(-0.256221\pi\)
−0.970799 + 0.239892i \(0.922888\pi\)
\(468\) 0 0
\(469\) 20.0000 + 6.92820i 0.923514 + 0.319915i
\(470\) 0 0
\(471\) 0 0
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 0 0
\(475\) 5.00000 8.66025i 0.229416 0.397360i
\(476\) −12.0000 + 10.3923i −0.550019 + 0.476331i
\(477\) 0 0
\(478\) 10.5000 + 18.1865i 0.480259 + 0.831833i
\(479\) −4.50000 7.79423i −0.205610 0.356127i 0.744717 0.667381i \(-0.232585\pi\)
−0.950327 + 0.311253i \(0.899251\pi\)
\(480\) 0 0
\(481\) 16.0000 27.7128i 0.729537 1.26360i
\(482\) −2.50000 4.33013i −0.113872 0.197232i
\(483\) 0 0
\(484\) 5.50000 9.52628i 0.250000 0.433013i
\(485\) 0 0
\(486\) 0 0
\(487\) 3.50000 6.06218i 0.158600 0.274703i −0.775764 0.631023i \(-0.782635\pi\)
0.934364 + 0.356320i \(0.115969\pi\)
\(488\) 8.00000 0.362143
\(489\) 0 0
\(490\) 0 0
\(491\) 3.00000 + 5.19615i 0.135388 + 0.234499i 0.925746 0.378147i \(-0.123439\pi\)
−0.790358 + 0.612646i \(0.790105\pi\)
\(492\) 0 0
\(493\) 18.0000 + 31.1769i 0.810679 + 1.40414i
\(494\) 4.00000 6.92820i 0.179969 0.311715i
\(495\) 0 0
\(496\) 5.00000 0.224507
\(497\) −37.5000 12.9904i −1.68210 0.582698i
\(498\) 0 0
\(499\) 17.0000 29.4449i 0.761025 1.31813i −0.181298 0.983428i \(-0.558030\pi\)
0.942323 0.334705i \(-0.108637\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 30.0000 1.33897
\(503\) −15.0000 −0.668817 −0.334408 0.942428i \(-0.608537\pi\)
−0.334408 + 0.942428i \(0.608537\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −7.00000 −0.310575
\(509\) −3.00000 + 5.19615i −0.132973 + 0.230315i −0.924821 0.380402i \(-0.875786\pi\)
0.791849 + 0.610718i \(0.209119\pi\)
\(510\) 0 0
\(511\) −22.0000 + 19.0526i −0.973223 + 0.842836i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −10.5000 + 18.1865i −0.463135 + 0.802174i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −4.00000 20.7846i −0.175750 0.913223i
\(519\) 0 0
\(520\) 0 0
\(521\) −7.50000 + 12.9904i −0.328581 + 0.569119i −0.982231 0.187678i \(-0.939904\pi\)
0.653650 + 0.756797i \(0.273237\pi\)
\(522\) 0 0
\(523\) 20.0000 + 34.6410i 0.874539 + 1.51475i 0.857253 + 0.514895i \(0.172169\pi\)
0.0172859 + 0.999851i \(0.494497\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) 0 0
\(526\) 12.0000 + 20.7846i 0.523225 + 0.906252i
\(527\) −15.0000 + 25.9808i −0.653410 + 1.13174i
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) −1.00000 5.19615i −0.0433555 0.225282i
\(533\) 6.00000 10.3923i 0.259889 0.450141i
\(534\) 0 0
\(535\) 0 0
\(536\) 8.00000 0.345547
\(537\) 0 0
\(538\) −9.00000 + 15.5885i −0.388018 + 0.672066i
\(539\) 0 0
\(540\) 0 0
\(541\) −19.0000 32.9090i −0.816874 1.41487i −0.907975 0.419025i \(-0.862372\pi\)
0.0911008 0.995842i \(-0.470961\pi\)
\(542\) −10.0000 17.3205i −0.429537 0.743980i
\(543\) 0 0
\(544\) −3.00000 + 5.19615i −0.128624 + 0.222783i
\(545\) 0 0
\(546\) 0 0
\(547\) −13.0000 + 22.5167i −0.555840 + 0.962743i 0.441998 + 0.897016i \(0.354270\pi\)
−0.997838 + 0.0657267i \(0.979063\pi\)
\(548\) −1.50000 2.59808i −0.0640768 0.110984i
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) −2.50000 0.866025i −0.106311 0.0368271i
\(554\) 8.00000 + 13.8564i 0.339887 + 0.588702i
\(555\) 0 0
\(556\) 8.00000 + 13.8564i 0.339276 + 0.587643i
\(557\) −6.00000 + 10.3923i −0.254228 + 0.440336i −0.964686 0.263404i \(-0.915155\pi\)
0.710457 + 0.703740i \(0.248488\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 1.50000 2.59808i 0.0632737 0.109593i
\(563\) 42.0000 1.77009 0.885044 0.465506i \(-0.154128\pi\)
0.885044 + 0.465506i \(0.154128\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −28.0000 −1.17693
\(567\) 0 0
\(568\) −15.0000 −0.629386
\(569\) −21.0000 −0.880366 −0.440183 0.897908i \(-0.645086\pi\)
−0.440183 + 0.897908i \(0.645086\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.50000 7.79423i −0.0626088 0.325325i
\(575\) 15.0000 0.625543
\(576\) 0 0
\(577\) −7.00000 + 12.1244i −0.291414 + 0.504744i −0.974144 0.225927i \(-0.927459\pi\)
0.682730 + 0.730670i \(0.260792\pi\)
\(578\) −9.50000 16.4545i −0.395148 0.684416i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −5.50000 + 9.52628i −0.227592 + 0.394200i
\(585\) 0 0
\(586\) −9.00000 15.5885i −0.371787 0.643953i
\(587\) 3.00000 5.19615i 0.123823 0.214468i −0.797449 0.603386i \(-0.793818\pi\)
0.921272 + 0.388918i \(0.127151\pi\)
\(588\) 0 0
\(589\) −5.00000 8.66025i −0.206021 0.356840i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 6.92820i −0.164399 0.284747i
\(593\) −4.50000 7.79423i −0.184793 0.320071i 0.758714 0.651424i \(-0.225828\pi\)
−0.943507 + 0.331353i \(0.892495\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 + 5.19615i −0.122885 + 0.212843i
\(597\) 0 0
\(598\) 12.0000 0.490716
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 0.500000 0.866025i 0.0203954 0.0353259i −0.855648 0.517559i \(-0.826841\pi\)
0.876043 + 0.482233i \(0.160174\pi\)
\(602\) −4.00000 + 3.46410i −0.163028 + 0.141186i
\(603\) 0 0
\(604\) −8.50000 14.7224i −0.345860 0.599047i
\(605\) 0 0
\(606\) 0 0
\(607\) 20.0000 34.6410i 0.811775 1.40604i −0.0998457 0.995003i \(-0.531835\pi\)
0.911621 0.411033i \(-0.134832\pi\)
\(608\) −1.00000 1.73205i −0.0405554 0.0702439i
\(609\) 0 0
\(610\) 0 0
\(611\) −6.00000 10.3923i −0.242734 0.420428i
\(612\) 0 0
\(613\) 8.00000 13.8564i 0.323117 0.559655i −0.658012 0.753007i \(-0.728603\pi\)
0.981129 + 0.193352i \(0.0619359\pi\)
\(614\) 8.00000 0.322854
\(615\) 0 0
\(616\) 0 0
\(617\) 13.5000 + 23.3827i 0.543490 + 0.941351i 0.998700 + 0.0509678i \(0.0162306\pi\)
−0.455211 + 0.890384i \(0.650436\pi\)
\(618\) 0 0
\(619\) −1.00000 1.73205i −0.0401934 0.0696170i 0.845229 0.534404i \(-0.179464\pi\)
−0.885422 + 0.464787i \(0.846131\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) −4.50000 23.3827i −0.180289 0.936808i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) −19.0000 −0.759393
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) 48.0000 1.91389
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −1.00000 −0.0397779
\(633\) 0 0
\(634\) 24.0000 0.953162
\(635\) 0 0
\(636\) 0 0
\(637\) −4.00000 + 27.7128i −0.158486 + 1.09802i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.50000 12.9904i −0.296232 0.513089i 0.679039 0.734103i \(-0.262397\pi\)
−0.975271 + 0.221013i \(0.929064\pi\)
\(642\) 0 0
\(643\) 17.0000 + 29.4449i 0.670415 + 1.16119i 0.977787 + 0.209603i \(0.0672170\pi\)
−0.307372 + 0.951589i \(0.599450\pi\)
\(644\) 6.00000 5.19615i 0.236433 0.204757i
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) −4.50000 + 7.79423i −0.176913 + 0.306423i −0.940822 0.338902i \(-0.889945\pi\)
0.763908 + 0.645325i \(0.223278\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −10.0000 + 17.3205i −0.392232 + 0.679366i
\(651\) 0 0
\(652\) −4.00000 6.92820i −0.156652 0.271329i
\(653\) 12.0000 20.7846i 0.469596 0.813365i −0.529799 0.848123i \(-0.677733\pi\)
0.999396 + 0.0347583i \(0.0110661\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.50000 2.59808i −0.0585652 0.101438i
\(657\) 0 0
\(658\) −7.50000 2.59808i −0.292380 0.101284i
\(659\) −15.0000 + 25.9808i −0.584317 + 1.01207i 0.410643 + 0.911796i \(0.365304\pi\)
−0.994960 + 0.100271i \(0.968029\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) −10.0000 −0.388661
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −9.00000 15.5885i −0.348481 0.603587i
\(668\) −10.5000 18.1865i −0.406257 0.703658i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −8.50000 + 14.7224i −0.327651 + 0.567508i −0.982045 0.188645i \(-0.939590\pi\)
0.654394 + 0.756153i \(0.272924\pi\)
\(674\) −7.00000 12.1244i −0.269630 0.467013i
\(675\) 0 0
\(676\) −1.50000 + 2.59808i −0.0576923 + 0.0999260i
\(677\) 48.0000 1.84479 0.922395 0.386248i \(-0.126229\pi\)
0.922395 + 0.386248i \(0.126229\pi\)
\(678\) 0 0
\(679\) −4.00000 + 3.46410i −0.153506 + 0.132940i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 + 41.5692i −0.918334 + 1.59060i −0.116390 + 0.993204i \(0.537132\pi\)
−0.801945 + 0.597398i \(0.796201\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 10.0000 + 15.5885i 0.381802 + 0.595170i
\(687\) 0 0
\(688\) −1.00000 + 1.73205i −0.0381246 + 0.0660338i
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) −34.0000 −1.29342 −0.646710 0.762736i \(-0.723856\pi\)
−0.646710 + 0.762736i \(0.723856\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) 6.00000 0.227757
\(695\) 0 0
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 2.00000 3.46410i 0.0757011 0.131118i
\(699\) 0 0
\(700\) 2.50000 + 12.9904i 0.0944911 + 0.490990i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −8.00000 + 13.8564i −0.301726 + 0.522604i
\(704\) 0 0
\(705\) 0 0
\(706\) −16.5000 28.5788i −0.620986 1.07558i
\(707\) −3.00000 15.5885i −0.112827 0.586264i
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −4.50000 7.79423i −0.168645 0.292101i
\(713\) 7.50000 12.9904i 0.280877 0.486494i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 10.5000 + 18.1865i 0.391857 + 0.678715i
\(719\) 4.50000 + 7.79423i 0.167822 + 0.290676i 0.937654 0.347571i \(-0.112993\pi\)
−0.769832 + 0.638247i \(0.779660\pi\)
\(720\) 0 0
\(721\) 2.00000 1.73205i 0.0744839 0.0645049i
\(722\) 7.50000 12.9904i 0.279121 0.483452i
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) 30.0000 1.11417
\(726\) 0 0
\(727\) 6.50000 11.2583i 0.241072 0.417548i −0.719948 0.694028i \(-0.755834\pi\)
0.961020 + 0.276479i \(0.0891678\pi\)
\(728\) 2.00000 + 10.3923i 0.0741249 + 0.385164i
\(729\) 0 0
\(730\) 0 0
\(731\) −6.00000 10.3923i −0.221918 0.384373i
\(732\) 0 0
\(733\) −7.00000 + 12.1244i −0.258551 + 0.447823i −0.965854 0.259087i \(-0.916578\pi\)
0.707303 + 0.706910i \(0.249912\pi\)
\(734\) 0.500000 + 0.866025i 0.0184553 + 0.0319656i
\(735\) 0 0
\(736\) 1.50000 2.59808i 0.0552907 0.0957664i
\(737\) 0 0
\(738\) 0 0
\(739\) −1.00000 + 1.73205i −0.0367856 + 0.0637145i −0.883832 0.467804i \(-0.845045\pi\)
0.847046 + 0.531519i \(0.178379\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12.0000 + 10.3923i −0.440534 + 0.381514i
\(743\) 7.50000 + 12.9904i 0.275148 + 0.476571i 0.970173 0.242415i \(-0.0779397\pi\)
−0.695024 + 0.718986i \(0.744606\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.00000 3.46410i 0.0732252 0.126830i
\(747\) 0 0
\(748\) 0 0
\(749\) −3.00000 15.5885i −0.109618 0.569590i
\(750\) 0 0
\(751\) 15.5000 26.8468i 0.565603 0.979653i −0.431390 0.902165i \(-0.641977\pi\)
0.996993 0.0774878i \(-0.0246899\pi\)
\(752\) −3.00000 −0.109399
\(753\) 0 0
\(754\) 24.0000 0.874028
\(755\) 0 0
\(756\) 0 0
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) −10.0000 −0.363216
\(759\) 0 0
\(760\) 0 0
\(761\) 10.5000 18.1865i 0.380625 0.659261i −0.610527 0.791995i \(-0.709042\pi\)
0.991152 + 0.132734i \(0.0423756\pi\)
\(762\) 0 0
\(763\) 32.0000 27.7128i 1.15848 1.00327i
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) 7.50000 12.9904i 0.270986 0.469362i
\(767\) 24.0000 + 41.5692i 0.866590 + 1.50098i
\(768\) 0 0
\(769\) 11.0000 + 19.0526i 0.396670 + 0.687053i 0.993313 0.115454i \(-0.0368323\pi\)
−0.596643 + 0.802507i \(0.703499\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −19.0000 −0.683825
\(773\) −15.0000 + 25.9808i −0.539513 + 0.934463i 0.459418 + 0.888220i \(0.348058\pi\)
−0.998930 + 0.0462427i \(0.985275\pi\)
\(774\) 0 0
\(775\) 12.5000 + 21.6506i 0.449013 + 0.777714i
\(776\) −1.00000 + 1.73205i −0.0358979 + 0.0621770i
\(777\) 0 0
\(778\) 12.0000 + 20.7846i 0.430221 + 0.745164i
\(779\) −3.00000 + 5.19615i −0.107486 + 0.186171i
\(780\) 0 0
\(781\) 0 0
\(782\) 9.00000 + 15.5885i 0.321839 + 0.557442i
\(783\) 0 0
\(784\) 5.50000 + 4.33013i 0.196429 + 0.154647i
\(785\) 0 0
\(786\) 0 0
\(787\) −22.0000 −0.784215 −0.392108 0.919919i \(-0.628254\pi\)
−0.392108 + 0.919919i \(0.628254\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.00000 46.7654i −0.320003 1.66279i
\(792\) 0 0
\(793\) 16.0000 + 27.7128i 0.568177 + 0.984111i
\(794\) −1.00000 1.73205i −0.0354887 0.0614682i
\(795\) 0 0
\(796\) −11.5000 + 19.9186i −0.407607 + 0.705996i
\(797\) 6.00000 + 10.3923i 0.212531 + 0.368114i 0.952506 0.304520i \(-0.0984960\pi\)
−0.739975 + 0.672634i \(0.765163\pi\)
\(798\) 0 0
\(799\) 9.00000 15.5885i 0.318397 0.551480i
\(800\) 2.50000 + 4.33013i 0.0883883 + 0.153093i
\(801\) 0 0
\(802\) −7.50000 + 12.9904i −0.264834 + 0.458706i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 10.0000 + 17.3205i 0.352235 + 0.610089i
\(807\) 0 0
\(808\) −3.00000 5.19615i −0.105540 0.182800i
\(809\) 10.5000 18.1865i 0.369160 0.639404i −0.620274 0.784385i \(-0.712979\pi\)
0.989434 + 0.144981i \(0.0463120\pi\)
\(810\) 0 0
\(811\) −34.0000 −1.19390 −0.596951 0.802278i \(-0.703621\pi\)
−0.596951 + 0.802278i \(0.703621\pi\)
\(812\) 12.0000 10.3923i 0.421117 0.364698i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) −7.00000 −0.244749
\(819\) 0 0
\(820\) 0 0
\(821\) 36.0000 1.25641 0.628204 0.778048i \(-0.283790\pi\)
0.628204 + 0.778048i \(0.283790\pi\)
\(822\) 0 0
\(823\) −37.0000 −1.28974 −0.644869 0.764293i \(-0.723088\pi\)
−0.644869 + 0.764293i \(0.723088\pi\)
\(824\) 0.500000 0.866025i 0.0174183 0.0301694i
\(825\) 0 0
\(826\) 30.0000 + 10.3923i 1.04383 + 0.361595i
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 26.0000 45.0333i 0.903017 1.56407i 0.0794606 0.996838i \(-0.474680\pi\)
0.823557 0.567234i \(-0.191986\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.00000 + 3.46410i 0.0693375 + 0.120096i
\(833\) −39.0000 + 15.5885i −1.35127 + 0.540108i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 18.0000 + 31.1769i 0.621800 + 1.07699i
\(839\) −12.0000 + 20.7846i −0.414286 + 0.717564i −0.995353 0.0962912i \(-0.969302\pi\)
0.581067 + 0.813856i \(0.302635\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) −4.00000 + 6.92820i −0.137849 + 0.238762i
\(843\) 0 0
\(844\) −13.0000 22.5167i −0.447478 0.775055i
\(845\) 0 0
\(846\) 0 0
\(847\) 22.0000 19.0526i 0.755929 0.654654i
\(848\) −3.00000 + 5.19615i −0.103020 + 0.178437i
\(849\) 0 0
\(850\) −30.0000 −1.02899
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) −4.00000 + 6.92820i −0.136957 + 0.237217i −0.926343 0.376680i \(-0.877066\pi\)
0.789386 + 0.613897i \(0.210399\pi\)
\(854\) 20.0000 + 6.92820i 0.684386 + 0.237078i
\(855\) 0 0
\(856\) −3.00000 5.19615i −0.102538 0.177601i
\(857\) 10.5000 + 18.1865i 0.358673 + 0.621240i 0.987739 0.156112i \(-0.0498959\pi\)
−0.629066 + 0.777352i \(0.716563\pi\)
\(858\) 0 0
\(859\) −1.00000 + 1.73205i −0.0341196 + 0.0590968i −0.882581 0.470160i \(-0.844196\pi\)
0.848461 + 0.529257i \(0.177529\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 7.50000 12.9904i 0.255451 0.442454i
\(863\) 22.5000 + 38.9711i 0.765909 + 1.32659i 0.939765 + 0.341822i \(0.111044\pi\)
−0.173856 + 0.984771i \(0.555623\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 41.0000 1.39324
\(867\) 0 0
\(868\) 12.5000 + 4.33013i 0.424278 + 0.146974i
\(869\) 0 0
\(870\) 0 0
\(871\) 16.0000 + 27.7128i 0.542139 + 0.939013i
\(872\) 8.00000 13.8564i 0.270914 0.469237i
\(873\) 0 0
\(874\) −6.00000 −0.202953
\(875\) 0 0
\(876\) 0 0
\(877\) −19.0000 + 32.9090i −0.641584 + 1.11126i 0.343495 + 0.939155i \(0.388389\pi\)
−0.985079 + 0.172102i \(0.944944\pi\)
\(878\) −1.00000 −0.0337484
\(879\) 0 0
\(880\) 0 0
\(881\) 9.00000 0.303218 0.151609 0.988441i \(-0.451555\pi\)
0.151609 + 0.988441i \(0.451555\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) −24.0000 −0.807207
\(885\) 0 0
\(886\) 6.00000 0.201574
\(887\) 13.5000 23.3827i 0.453286 0.785114i −0.545302 0.838240i \(-0.683585\pi\)
0.998588 + 0.0531258i \(0.0169184\pi\)
\(888\) 0 0
\(889\) −17.5000 6.06218i −0.586931 0.203319i
\(890\) 0 0
\(891\) 0 0
\(892\) 9.50000 16.4545i 0.318084 0.550937i
\(893\) 3.00000 + 5.19615i 0.100391 + 0.173883i
\(894\) 0 0
\(895\) 0 0
\(896\) 2.50000 + 0.866025i 0.0835191 + 0.0289319i
\(897\) 0 0
\(898\) −30.0000 −1.00111
\(899\) 15.0000 25.9808i 0.500278 0.866507i
\(900\) 0 0
\(901\) −18.0000 31.1769i −0.599667 1.03865i
\(902\) 0 0
\(903\) 0 0
\(904\) −9.00000 15.5885i −0.299336 0.518464i
\(905\) 0 0
\(906\) 0 0
\(907\) −4.00000 6.92820i −0.132818 0.230047i 0.791944 0.610594i \(-0.209069\pi\)
−0.924762 + 0.380547i \(0.875736\pi\)
\(908\) 9.00000 + 15.5885i 0.298675 + 0.517321i
\(909\) 0 0
\(910\) 0 0
\(911\) −1.50000 + 2.59808i −0.0496972 + 0.0860781i −0.889804 0.456343i \(-0.849159\pi\)
0.840107 + 0.542421i \(0.182492\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 2.00000 0.0661541
\(915\) 0 0
\(916\) −4.00000 + 6.92820i −0.132164 + 0.228914i
\(917\) −24.0000 + 20.7846i −0.792550 + 0.686368i
\(918\) 0 0
\(919\) −4.00000 6.92820i −0.131948 0.228540i 0.792480 0.609898i \(-0.208790\pi\)
−0.924427 + 0.381358i \(0.875456\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.0000 31.1769i 0.592798 1.02676i
\(923\) −30.0000 51.9615i −0.987462 1.71033i
\(924\) 0 0
\(925\) 20.0000 34.6410i 0.657596 1.13899i
\(926\) 6.50000 + 11.2583i 0.213603 + 0.369972i
\(927\) 0 0
\(928\) 3.00000 5.19615i 0.0984798 0.170572i
\(929\) −21.0000 −0.688988 −0.344494 0.938789i \(-0.611949\pi\)
−0.344494 + 0.938789i \(0.611949\pi\)
\(930\) 0 0
\(931\) 2.00000 13.8564i 0.0655474 0.454125i
\(932\) −9.00000 15.5885i −0.294805 0.510617i
\(933\) 0 0
\(934\) −6.00000 10.3923i −0.196326 0.340047i
\(935\) 0 0
\(936\) 0 0
\(937\) −37.0000 −1.20874 −0.604369 0.796705i \(-0.706575\pi\)
−0.604369 + 0.796705i \(0.706575\pi\)
\(938\) 20.0000 + 6.92820i 0.653023 + 0.226214i
\(939\) 0 0
\(940\) 0 0
\(941\) −48.0000 −1.56476 −0.782378 0.622804i \(-0.785993\pi\)
−0.782378 + 0.622804i \(0.785993\pi\)
\(942\) 0 0
\(943\) −9.00000 −0.293080
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) 0 0
\(947\) 18.0000 0.584921 0.292461 0.956278i \(-0.405526\pi\)
0.292461 + 0.956278i \(0.405526\pi\)
\(948\) 0 0
\(949\) −44.0000 −1.42830
\(950\) 5.00000 8.66025i 0.162221 0.280976i
\(951\) 0 0
\(952\) −12.0000 + 10.3923i −0.388922 + 0.336817i
\(953\) −21.0000 −0.680257 −0.340128 0.940379i \(-0.610471\pi\)
−0.340128 + 0.940379i \(0.610471\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 10.5000 + 18.1865i 0.339594 + 0.588195i
\(957\) 0 0
\(958\) −4.50000 7.79423i −0.145388 0.251820i
\(959\) −1.50000 7.79423i −0.0484375 0.251689i
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 16.0000 27.7128i 0.515861 0.893497i
\(963\) 0 0
\(964\) −2.50000 4.33013i −0.0805196 0.139464i
\(965\) 0 0
\(966\) 0 0
\(967\) 9.50000 + 16.4545i 0.305499 + 0.529140i 0.977372 0.211526i \(-0.0678433\pi\)
−0.671873 + 0.740666i \(0.734510\pi\)
\(968\) 5.50000 9.52628i 0.176777 0.306186i
\(969\) 0 0
\(970\) 0 0
\(971\) −15.0000 25.9808i −0.481373 0.833762i 0.518399 0.855139i \(-0.326528\pi\)
−0.999771 + 0.0213768i \(0.993195\pi\)
\(972\) 0 0
\(973\) 8.00000 + 41.5692i 0.256468 + 1.33265i
\(974\) 3.50000 6.06218i 0.112147 0.194245i
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) −9.00000 −0.287936 −0.143968 0.989582i \(-0.545986\pi\)
−0.143968 + 0.989582i \(0.545986\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 3.00000 + 5.19615i 0.0957338 + 0.165816i
\(983\) −12.0000 20.7846i −0.382741 0.662926i 0.608712 0.793391i \(-0.291686\pi\)
−0.991453 + 0.130465i \(0.958353\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 18.0000 + 31.1769i 0.573237 + 0.992875i
\(987\) 0 0
\(988\) 4.00000 6.92820i 0.127257 0.220416i
\(989\) 3.00000 + 5.19615i 0.0953945 + 0.165228i
\(990\) 0 0
\(991\) −2.50000 + 4.33013i −0.0794151 + 0.137551i −0.902998 0.429645i \(-0.858639\pi\)
0.823583 + 0.567196i \(0.191972\pi\)
\(992\) 5.00000 0.158750
\(993\) 0 0
\(994\) −37.5000 12.9904i −1.18943 0.412030i
\(995\) 0 0
\(996\) 0 0
\(997\) −25.0000 43.3013i −0.791758 1.37136i −0.924878 0.380265i \(-0.875833\pi\)
0.133120 0.991100i \(-0.457501\pi\)
\(998\) 17.0000 29.4449i 0.538126 0.932061i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.e.n.865.1 2
3.2 odd 2 1134.2.e.d.865.1 2
7.2 even 3 1134.2.h.c.541.1 2
9.2 odd 6 1134.2.g.g.487.1 yes 2
9.4 even 3 1134.2.h.c.109.1 2
9.5 odd 6 1134.2.h.m.109.1 2
9.7 even 3 1134.2.g.b.487.1 yes 2
21.2 odd 6 1134.2.h.m.541.1 2
63.2 odd 6 1134.2.g.g.163.1 yes 2
63.11 odd 6 7938.2.a.g.1.1 1
63.16 even 3 1134.2.g.b.163.1 2
63.23 odd 6 1134.2.e.d.919.1 2
63.25 even 3 7938.2.a.y.1.1 1
63.38 even 6 7938.2.a.h.1.1 1
63.52 odd 6 7938.2.a.z.1.1 1
63.58 even 3 inner 1134.2.e.n.919.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1134.2.e.d.865.1 2 3.2 odd 2
1134.2.e.d.919.1 2 63.23 odd 6
1134.2.e.n.865.1 2 1.1 even 1 trivial
1134.2.e.n.919.1 2 63.58 even 3 inner
1134.2.g.b.163.1 2 63.16 even 3
1134.2.g.b.487.1 yes 2 9.7 even 3
1134.2.g.g.163.1 yes 2 63.2 odd 6
1134.2.g.g.487.1 yes 2 9.2 odd 6
1134.2.h.c.109.1 2 9.4 even 3
1134.2.h.c.541.1 2 7.2 even 3
1134.2.h.m.109.1 2 9.5 odd 6
1134.2.h.m.541.1 2 21.2 odd 6
7938.2.a.g.1.1 1 63.11 odd 6
7938.2.a.h.1.1 1 63.38 even 6
7938.2.a.y.1.1 1 63.25 even 3
7938.2.a.z.1.1 1 63.52 odd 6