Properties

Label 1134.2.g.f
Level 11341134
Weight 22
Character orbit 1134.g
Analytic conductor 9.0559.055
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,2,Mod(163,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1134=2347 1134 = 2 \cdot 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1134.g (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,-3,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.055035589219.05503558921
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ6q2+(ζ61)q43ζ6q5+(ζ6+2)q7q8+(3ζ6+3)q10+(3ζ63)q11+5q13+(3ζ61)q14ζ6q16++(8ζ65)q98+O(q100) q + \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} - 3 \zeta_{6} q^{5} + (\zeta_{6} + 2) q^{7} - q^{8} + ( - 3 \zeta_{6} + 3) q^{10} + (3 \zeta_{6} - 3) q^{11} + 5 q^{13} + (3 \zeta_{6} - 1) q^{14} - \zeta_{6} q^{16} + \cdots + (8 \zeta_{6} - 5) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q43q5+5q72q8+3q103q11+10q13+q14q16+3q175q19+6q206q223q234q25+5q264q28+6q29+2q98+O(q100) 2 q + q^{2} - q^{4} - 3 q^{5} + 5 q^{7} - 2 q^{8} + 3 q^{10} - 3 q^{11} + 10 q^{13} + q^{14} - q^{16} + 3 q^{17} - 5 q^{19} + 6 q^{20} - 6 q^{22} - 3 q^{23} - 4 q^{25} + 5 q^{26} - 4 q^{28} + 6 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1134Z)×\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times.

nn 325325 407407
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
163.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i −1.50000 + 2.59808i 0 2.50000 0.866025i −1.00000 0 1.50000 + 2.59808i
487.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.50000 2.59808i 0 2.50000 + 0.866025i −1.00000 0 1.50000 2.59808i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.g.f 2
3.b odd 2 1 1134.2.g.d 2
7.c even 3 1 inner 1134.2.g.f 2
7.c even 3 1 7938.2.a.o 1
7.d odd 6 1 7938.2.a.c 1
9.c even 3 1 378.2.e.a 2
9.c even 3 1 378.2.h.b 2
9.d odd 6 1 126.2.e.b 2
9.d odd 6 1 126.2.h.a yes 2
21.g even 6 1 7938.2.a.bd 1
21.h odd 6 1 1134.2.g.d 2
21.h odd 6 1 7938.2.a.r 1
36.f odd 6 1 3024.2.q.a 2
36.f odd 6 1 3024.2.t.f 2
36.h even 6 1 1008.2.q.e 2
36.h even 6 1 1008.2.t.c 2
63.g even 3 1 378.2.e.a 2
63.g even 3 1 2646.2.f.e 2
63.h even 3 1 378.2.h.b 2
63.h even 3 1 2646.2.f.e 2
63.i even 6 1 882.2.f.a 2
63.i even 6 1 882.2.h.e 2
63.j odd 6 1 126.2.h.a yes 2
63.j odd 6 1 882.2.f.e 2
63.k odd 6 1 2646.2.e.e 2
63.k odd 6 1 2646.2.f.i 2
63.l odd 6 1 2646.2.e.e 2
63.l odd 6 1 2646.2.h.f 2
63.n odd 6 1 126.2.e.b 2
63.n odd 6 1 882.2.f.e 2
63.o even 6 1 882.2.e.h 2
63.o even 6 1 882.2.h.e 2
63.s even 6 1 882.2.e.h 2
63.s even 6 1 882.2.f.a 2
63.t odd 6 1 2646.2.f.i 2
63.t odd 6 1 2646.2.h.f 2
252.o even 6 1 1008.2.q.e 2
252.u odd 6 1 3024.2.t.f 2
252.bb even 6 1 1008.2.t.c 2
252.bl odd 6 1 3024.2.q.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.b 2 9.d odd 6 1
126.2.e.b 2 63.n odd 6 1
126.2.h.a yes 2 9.d odd 6 1
126.2.h.a yes 2 63.j odd 6 1
378.2.e.a 2 9.c even 3 1
378.2.e.a 2 63.g even 3 1
378.2.h.b 2 9.c even 3 1
378.2.h.b 2 63.h even 3 1
882.2.e.h 2 63.o even 6 1
882.2.e.h 2 63.s even 6 1
882.2.f.a 2 63.i even 6 1
882.2.f.a 2 63.s even 6 1
882.2.f.e 2 63.j odd 6 1
882.2.f.e 2 63.n odd 6 1
882.2.h.e 2 63.i even 6 1
882.2.h.e 2 63.o even 6 1
1008.2.q.e 2 36.h even 6 1
1008.2.q.e 2 252.o even 6 1
1008.2.t.c 2 36.h even 6 1
1008.2.t.c 2 252.bb even 6 1
1134.2.g.d 2 3.b odd 2 1
1134.2.g.d 2 21.h odd 6 1
1134.2.g.f 2 1.a even 1 1 trivial
1134.2.g.f 2 7.c even 3 1 inner
2646.2.e.e 2 63.k odd 6 1
2646.2.e.e 2 63.l odd 6 1
2646.2.f.e 2 63.g even 3 1
2646.2.f.e 2 63.h even 3 1
2646.2.f.i 2 63.k odd 6 1
2646.2.f.i 2 63.t odd 6 1
2646.2.h.f 2 63.l odd 6 1
2646.2.h.f 2 63.t odd 6 1
3024.2.q.a 2 36.f odd 6 1
3024.2.q.a 2 252.bl odd 6 1
3024.2.t.f 2 36.f odd 6 1
3024.2.t.f 2 252.u odd 6 1
7938.2.a.c 1 7.d odd 6 1
7938.2.a.o 1 7.c even 3 1
7938.2.a.r 1 21.h odd 6 1
7938.2.a.bd 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1134,[χ])S_{2}^{\mathrm{new}}(1134, [\chi]):

T52+3T5+9 T_{5}^{2} + 3T_{5} + 9 Copy content Toggle raw display
T112+3T11+9 T_{11}^{2} + 3T_{11} + 9 Copy content Toggle raw display
T1723T17+9 T_{17}^{2} - 3T_{17} + 9 Copy content Toggle raw display
T232+3T23+9 T_{23}^{2} + 3T_{23} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
77 T25T+7 T^{2} - 5T + 7 Copy content Toggle raw display
1111 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
1313 (T5)2 (T - 5)^{2} Copy content Toggle raw display
1717 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1919 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
2323 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
2929 (T3)2 (T - 3)^{2} Copy content Toggle raw display
3131 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
3737 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
4141 (T9)2 (T - 9)^{2} Copy content Toggle raw display
4343 (T11)2 (T - 11)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
5959 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
6161 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
6767 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
7979 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
8383 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
8989 T215T+225 T^{2} - 15T + 225 Copy content Toggle raw display
9797 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
show more
show less