Properties

Label 115.3.f.a.47.16
Level $115$
Weight $3$
Character 115.47
Analytic conductor $3.134$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,3,Mod(47,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.47");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 115.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13352304014\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.16
Character \(\chi\) \(=\) 115.47
Dual form 115.3.f.a.93.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03401 + 1.03401i) q^{2} +(2.52164 - 2.52164i) q^{3} -1.86167i q^{4} +(-4.44006 - 2.29910i) q^{5} +5.21478 q^{6} +(1.69314 + 1.69314i) q^{7} +(6.06099 - 6.06099i) q^{8} -3.71736i q^{9} +(-2.21377 - 6.96833i) q^{10} +4.62790 q^{11} +(-4.69446 - 4.69446i) q^{12} +(0.745436 - 0.745436i) q^{13} +3.50143i q^{14} +(-16.9937 + 5.39875i) q^{15} +5.08753 q^{16} +(4.70270 + 4.70270i) q^{17} +(3.84377 - 3.84377i) q^{18} +23.9332i q^{19} +(-4.28015 + 8.26592i) q^{20} +8.53898 q^{21} +(4.78528 + 4.78528i) q^{22} +(-3.39116 + 3.39116i) q^{23} -30.5673i q^{24} +(14.4283 + 20.4163i) q^{25} +1.54157 q^{26} +(13.3209 + 13.3209i) q^{27} +(3.15206 - 3.15206i) q^{28} -4.06450i q^{29} +(-23.1540 - 11.9893i) q^{30} -7.63335 q^{31} +(-18.9834 - 18.9834i) q^{32} +(11.6699 - 11.6699i) q^{33} +9.72524i q^{34} +(-3.62495 - 11.4103i) q^{35} -6.92048 q^{36} +(3.46053 + 3.46053i) q^{37} +(-24.7471 + 24.7471i) q^{38} -3.75945i q^{39} +(-40.8460 + 12.9764i) q^{40} +7.52000 q^{41} +(8.82935 + 8.82935i) q^{42} +(-58.6288 + 58.6288i) q^{43} -8.61561i q^{44} +(-8.54656 + 16.5053i) q^{45} -7.01296 q^{46} +(-28.4763 - 28.4763i) q^{47} +(12.8289 - 12.8289i) q^{48} -43.2666i q^{49} +(-6.19158 + 36.0295i) q^{50} +23.7171 q^{51} +(-1.38775 - 1.38775i) q^{52} +(15.8331 - 15.8331i) q^{53} +27.5478i q^{54} +(-20.5482 - 10.6400i) q^{55} +20.5242 q^{56} +(60.3510 + 60.3510i) q^{57} +(4.20271 - 4.20271i) q^{58} -102.951i q^{59} +(10.0507 + 31.6367i) q^{60} -17.4817 q^{61} +(-7.89292 - 7.89292i) q^{62} +(6.29400 - 6.29400i) q^{63} -59.6081i q^{64} +(-5.02361 + 1.59595i) q^{65} +24.1335 q^{66} +(56.9571 + 56.9571i) q^{67} +(8.75487 - 8.75487i) q^{68} +17.1026i q^{69} +(8.05012 - 15.5466i) q^{70} +100.575 q^{71} +(-22.5309 - 22.5309i) q^{72} +(-78.3607 + 78.3607i) q^{73} +7.15642i q^{74} +(87.8655 + 15.0995i) q^{75} +44.5557 q^{76} +(7.83568 + 7.83568i) q^{77} +(3.88729 - 3.88729i) q^{78} -105.667i q^{79} +(-22.5890 - 11.6967i) q^{80} +100.637 q^{81} +(7.77572 + 7.77572i) q^{82} +(-74.3146 + 74.3146i) q^{83} -15.8967i q^{84} +(-10.0683 - 31.6923i) q^{85} -121.245 q^{86} +(-10.2492 - 10.2492i) q^{87} +(28.0497 - 28.0497i) q^{88} -21.1104i q^{89} +(-25.9038 + 8.22937i) q^{90} +2.52425 q^{91} +(6.31322 + 6.31322i) q^{92} +(-19.2486 + 19.2486i) q^{93} -58.8892i q^{94} +(55.0248 - 106.265i) q^{95} -95.7389 q^{96} +(60.1608 + 60.1608i) q^{97} +(44.7378 - 44.7378i) q^{98} -17.2036i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4 q^{2} - 8 q^{5} - 16 q^{7} + 12 q^{8} - 4 q^{10} - 24 q^{11} + 48 q^{12} + 4 q^{13} + 60 q^{15} - 224 q^{16} + 24 q^{17} - 88 q^{18} - 56 q^{20} + 8 q^{21} - 48 q^{22} + 84 q^{25} + 56 q^{26} - 132 q^{27}+ \cdots + 780 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03401 + 1.03401i 0.517003 + 0.517003i 0.916663 0.399661i \(-0.130872\pi\)
−0.399661 + 0.916663i \(0.630872\pi\)
\(3\) 2.52164 2.52164i 0.840547 0.840547i −0.148383 0.988930i \(-0.547407\pi\)
0.988930 + 0.148383i \(0.0474067\pi\)
\(4\) 1.86167i 0.465417i
\(5\) −4.44006 2.29910i −0.888012 0.459819i
\(6\) 5.21478 0.869130
\(7\) 1.69314 + 1.69314i 0.241877 + 0.241877i 0.817626 0.575749i \(-0.195290\pi\)
−0.575749 + 0.817626i \(0.695290\pi\)
\(8\) 6.06099 6.06099i 0.757624 0.757624i
\(9\) 3.71736i 0.413040i
\(10\) −2.21377 6.96833i −0.221377 0.696833i
\(11\) 4.62790 0.420719 0.210359 0.977624i \(-0.432537\pi\)
0.210359 + 0.977624i \(0.432537\pi\)
\(12\) −4.69446 4.69446i −0.391205 0.391205i
\(13\) 0.745436 0.745436i 0.0573413 0.0573413i −0.677855 0.735196i \(-0.737090\pi\)
0.735196 + 0.677855i \(0.237090\pi\)
\(14\) 3.50143i 0.250102i
\(15\) −16.9937 + 5.39875i −1.13292 + 0.359917i
\(16\) 5.08753 0.317971
\(17\) 4.70270 + 4.70270i 0.276630 + 0.276630i 0.831762 0.555132i \(-0.187332\pi\)
−0.555132 + 0.831762i \(0.687332\pi\)
\(18\) 3.84377 3.84377i 0.213543 0.213543i
\(19\) 23.9332i 1.25964i 0.776740 + 0.629822i \(0.216872\pi\)
−0.776740 + 0.629822i \(0.783128\pi\)
\(20\) −4.28015 + 8.26592i −0.214008 + 0.413296i
\(21\) 8.53898 0.406618
\(22\) 4.78528 + 4.78528i 0.217513 + 0.217513i
\(23\) −3.39116 + 3.39116i −0.147442 + 0.147442i
\(24\) 30.5673i 1.27364i
\(25\) 14.4283 + 20.4163i 0.577132 + 0.816651i
\(26\) 1.54157 0.0592912
\(27\) 13.3209 + 13.3209i 0.493368 + 0.493368i
\(28\) 3.15206 3.15206i 0.112574 0.112574i
\(29\) 4.06450i 0.140155i −0.997542 0.0700775i \(-0.977675\pi\)
0.997542 0.0700775i \(-0.0223247\pi\)
\(30\) −23.1540 11.9893i −0.771799 0.399643i
\(31\) −7.63335 −0.246237 −0.123119 0.992392i \(-0.539290\pi\)
−0.123119 + 0.992392i \(0.539290\pi\)
\(32\) −18.9834 18.9834i −0.593232 0.593232i
\(33\) 11.6699 11.6699i 0.353634 0.353634i
\(34\) 9.72524i 0.286036i
\(35\) −3.62495 11.4103i −0.103570 0.326010i
\(36\) −6.92048 −0.192235
\(37\) 3.46053 + 3.46053i 0.0935280 + 0.0935280i 0.752323 0.658795i \(-0.228933\pi\)
−0.658795 + 0.752323i \(0.728933\pi\)
\(38\) −24.7471 + 24.7471i −0.651239 + 0.651239i
\(39\) 3.75945i 0.0963961i
\(40\) −40.8460 + 12.9764i −1.02115 + 0.324410i
\(41\) 7.52000 0.183415 0.0917073 0.995786i \(-0.470768\pi\)
0.0917073 + 0.995786i \(0.470768\pi\)
\(42\) 8.82935 + 8.82935i 0.210223 + 0.210223i
\(43\) −58.6288 + 58.6288i −1.36346 + 1.36346i −0.493995 + 0.869465i \(0.664464\pi\)
−0.869465 + 0.493995i \(0.835536\pi\)
\(44\) 8.61561i 0.195809i
\(45\) −8.54656 + 16.5053i −0.189924 + 0.366784i
\(46\) −7.01296 −0.152456
\(47\) −28.4763 28.4763i −0.605878 0.605878i 0.335988 0.941866i \(-0.390930\pi\)
−0.941866 + 0.335988i \(0.890930\pi\)
\(48\) 12.8289 12.8289i 0.267269 0.267269i
\(49\) 43.2666i 0.882991i
\(50\) −6.19158 + 36.0295i −0.123832 + 0.720589i
\(51\) 23.7171 0.465041
\(52\) −1.38775 1.38775i −0.0266876 0.0266876i
\(53\) 15.8331 15.8331i 0.298738 0.298738i −0.541781 0.840520i \(-0.682250\pi\)
0.840520 + 0.541781i \(0.182250\pi\)
\(54\) 27.5478i 0.510145i
\(55\) −20.5482 10.6400i −0.373603 0.193455i
\(56\) 20.5242 0.366504
\(57\) 60.3510 + 60.3510i 1.05879 + 1.05879i
\(58\) 4.20271 4.20271i 0.0724606 0.0724606i
\(59\) 102.951i 1.74494i −0.488669 0.872469i \(-0.662518\pi\)
0.488669 0.872469i \(-0.337482\pi\)
\(60\) 10.0507 + 31.6367i 0.167511 + 0.527278i
\(61\) −17.4817 −0.286586 −0.143293 0.989680i \(-0.545769\pi\)
−0.143293 + 0.989680i \(0.545769\pi\)
\(62\) −7.89292 7.89292i −0.127305 0.127305i
\(63\) 6.29400 6.29400i 0.0999048 0.0999048i
\(64\) 59.6081i 0.931376i
\(65\) −5.02361 + 1.59595i −0.0772864 + 0.0245531i
\(66\) 24.1335 0.365659
\(67\) 56.9571 + 56.9571i 0.850106 + 0.850106i 0.990146 0.140039i \(-0.0447229\pi\)
−0.140039 + 0.990146i \(0.544723\pi\)
\(68\) 8.75487 8.75487i 0.128748 0.128748i
\(69\) 17.1026i 0.247864i
\(70\) 8.05012 15.5466i 0.115002 0.222094i
\(71\) 100.575 1.41656 0.708278 0.705934i \(-0.249472\pi\)
0.708278 + 0.705934i \(0.249472\pi\)
\(72\) −22.5309 22.5309i −0.312929 0.312929i
\(73\) −78.3607 + 78.3607i −1.07343 + 1.07343i −0.0763528 + 0.997081i \(0.524328\pi\)
−0.997081 + 0.0763528i \(0.975672\pi\)
\(74\) 7.15642i 0.0967084i
\(75\) 87.8655 + 15.0995i 1.17154 + 0.201326i
\(76\) 44.5557 0.586259
\(77\) 7.83568 + 7.83568i 0.101762 + 0.101762i
\(78\) 3.88729 3.88729i 0.0498370 0.0498370i
\(79\) 105.667i 1.33755i −0.743463 0.668777i \(-0.766818\pi\)
0.743463 0.668777i \(-0.233182\pi\)
\(80\) −22.5890 11.6967i −0.282362 0.146209i
\(81\) 100.637 1.24244
\(82\) 7.77572 + 7.77572i 0.0948258 + 0.0948258i
\(83\) −74.3146 + 74.3146i −0.895357 + 0.895357i −0.995021 0.0996640i \(-0.968223\pi\)
0.0996640 + 0.995021i \(0.468223\pi\)
\(84\) 15.8967i 0.189247i
\(85\) −10.0683 31.6923i −0.118451 0.372850i
\(86\) −121.245 −1.40982
\(87\) −10.2492 10.2492i −0.117807 0.117807i
\(88\) 28.0497 28.0497i 0.318747 0.318747i
\(89\) 21.1104i 0.237196i −0.992942 0.118598i \(-0.962160\pi\)
0.992942 0.118598i \(-0.0378399\pi\)
\(90\) −25.9038 + 8.22937i −0.287819 + 0.0914375i
\(91\) 2.52425 0.0277391
\(92\) 6.31322 + 6.31322i 0.0686219 + 0.0686219i
\(93\) −19.2486 + 19.2486i −0.206974 + 0.206974i
\(94\) 58.8892i 0.626481i
\(95\) 55.0248 106.265i 0.579208 1.11858i
\(96\) −95.7389 −0.997280
\(97\) 60.1608 + 60.1608i 0.620214 + 0.620214i 0.945586 0.325372i \(-0.105489\pi\)
−0.325372 + 0.945586i \(0.605489\pi\)
\(98\) 44.7378 44.7378i 0.456509 0.456509i
\(99\) 17.2036i 0.173773i
\(100\) 38.0083 26.8607i 0.380083 0.268607i
\(101\) −55.6355 −0.550846 −0.275423 0.961323i \(-0.588818\pi\)
−0.275423 + 0.961323i \(0.588818\pi\)
\(102\) 24.5236 + 24.5236i 0.240427 + 0.240427i
\(103\) 28.9656 28.9656i 0.281219 0.281219i −0.552376 0.833595i \(-0.686279\pi\)
0.833595 + 0.552376i \(0.186279\pi\)
\(104\) 9.03617i 0.0868862i
\(105\) −37.9136 19.6319i −0.361082 0.186971i
\(106\) 32.7431 0.308897
\(107\) −100.699 100.699i −0.941109 0.941109i 0.0572512 0.998360i \(-0.481766\pi\)
−0.998360 + 0.0572512i \(0.981766\pi\)
\(108\) 24.7991 24.7991i 0.229622 0.229622i
\(109\) 87.1751i 0.799772i 0.916565 + 0.399886i \(0.130950\pi\)
−0.916565 + 0.399886i \(0.869050\pi\)
\(110\) −10.2451 32.2487i −0.0931374 0.293170i
\(111\) 17.4525 0.157229
\(112\) 8.61390 + 8.61390i 0.0769098 + 0.0769098i
\(113\) −53.7810 + 53.7810i −0.475938 + 0.475938i −0.903830 0.427892i \(-0.859256\pi\)
0.427892 + 0.903830i \(0.359256\pi\)
\(114\) 124.807i 1.09479i
\(115\) 22.8536 7.26037i 0.198727 0.0631336i
\(116\) −7.56674 −0.0652305
\(117\) −2.77105 2.77105i −0.0236842 0.0236842i
\(118\) 106.452 106.452i 0.902138 0.902138i
\(119\) 15.9247i 0.133821i
\(120\) −70.2772 + 135.721i −0.585643 + 1.13101i
\(121\) −99.5825 −0.822996
\(122\) −18.0762 18.0762i −0.148166 0.148166i
\(123\) 18.9627 18.9627i 0.154169 0.154169i
\(124\) 14.2107i 0.114603i
\(125\) −17.1236 123.822i −0.136989 0.990573i
\(126\) 13.0161 0.103302
\(127\) 94.1613 + 94.1613i 0.741428 + 0.741428i 0.972853 0.231425i \(-0.0743388\pi\)
−0.231425 + 0.972853i \(0.574339\pi\)
\(128\) −14.2987 + 14.2987i −0.111709 + 0.111709i
\(129\) 295.682i 2.29210i
\(130\) −6.84467 3.54422i −0.0526513 0.0272632i
\(131\) −66.9879 −0.511358 −0.255679 0.966762i \(-0.582299\pi\)
−0.255679 + 0.966762i \(0.582299\pi\)
\(132\) −21.7255 21.7255i −0.164587 0.164587i
\(133\) −40.5223 + 40.5223i −0.304679 + 0.304679i
\(134\) 117.788i 0.879015i
\(135\) −28.5197 89.7719i −0.211257 0.664977i
\(136\) 57.0061 0.419163
\(137\) −51.8514 51.8514i −0.378477 0.378477i 0.492075 0.870553i \(-0.336238\pi\)
−0.870553 + 0.492075i \(0.836238\pi\)
\(138\) −17.6842 + 17.6842i −0.128146 + 0.128146i
\(139\) 196.107i 1.41084i 0.708787 + 0.705422i \(0.249243\pi\)
−0.708787 + 0.705422i \(0.750757\pi\)
\(140\) −21.2422 + 6.74845i −0.151730 + 0.0482032i
\(141\) −143.614 −1.01854
\(142\) 103.996 + 103.996i 0.732363 + 0.732363i
\(143\) 3.44981 3.44981i 0.0241245 0.0241245i
\(144\) 18.9122i 0.131335i
\(145\) −9.34467 + 18.0466i −0.0644460 + 0.124459i
\(146\) −162.051 −1.10994
\(147\) −109.103 109.103i −0.742196 0.742196i
\(148\) 6.44236 6.44236i 0.0435295 0.0435295i
\(149\) 153.289i 1.02878i −0.857555 0.514392i \(-0.828018\pi\)
0.857555 0.514392i \(-0.171982\pi\)
\(150\) 75.2405 + 106.466i 0.501603 + 0.709776i
\(151\) 60.5080 0.400715 0.200358 0.979723i \(-0.435790\pi\)
0.200358 + 0.979723i \(0.435790\pi\)
\(152\) 145.059 + 145.059i 0.954336 + 0.954336i
\(153\) 17.4816 17.4816i 0.114259 0.114259i
\(154\) 16.2043i 0.105223i
\(155\) 33.8925 + 17.5498i 0.218662 + 0.113225i
\(156\) −6.99884 −0.0448643
\(157\) −136.999 136.999i −0.872607 0.872607i 0.120149 0.992756i \(-0.461663\pi\)
−0.992756 + 0.120149i \(0.961663\pi\)
\(158\) 109.260 109.260i 0.691519 0.691519i
\(159\) 79.8510i 0.502208i
\(160\) 40.6429 + 127.932i 0.254018 + 0.799578i
\(161\) −11.4834 −0.0713256
\(162\) 104.060 + 104.060i 0.642344 + 0.642344i
\(163\) 121.580 121.580i 0.745889 0.745889i −0.227815 0.973704i \(-0.573158\pi\)
0.973704 + 0.227815i \(0.0731582\pi\)
\(164\) 13.9997i 0.0853642i
\(165\) −78.6454 + 24.9849i −0.476639 + 0.151424i
\(166\) −153.683 −0.925804
\(167\) −139.121 139.121i −0.833058 0.833058i 0.154876 0.987934i \(-0.450502\pi\)
−0.987934 + 0.154876i \(0.950502\pi\)
\(168\) 51.7547 51.7547i 0.308064 0.308064i
\(169\) 167.889i 0.993424i
\(170\) 22.3593 43.1807i 0.131525 0.254004i
\(171\) 88.9683 0.520283
\(172\) 109.147 + 109.147i 0.634577 + 0.634577i
\(173\) −213.651 + 213.651i −1.23498 + 1.23498i −0.272951 + 0.962028i \(0.588000\pi\)
−0.962028 + 0.272951i \(0.912000\pi\)
\(174\) 21.1955i 0.121813i
\(175\) −10.1384 + 58.9967i −0.0579340 + 0.337124i
\(176\) 23.5446 0.133776
\(177\) −259.606 259.606i −1.46670 1.46670i
\(178\) 21.8283 21.8283i 0.122631 0.122631i
\(179\) 151.633i 0.847111i −0.905870 0.423555i \(-0.860782\pi\)
0.905870 0.423555i \(-0.139218\pi\)
\(180\) 30.7274 + 15.9108i 0.170708 + 0.0883936i
\(181\) −188.498 −1.04143 −0.520713 0.853731i \(-0.674334\pi\)
−0.520713 + 0.853731i \(0.674334\pi\)
\(182\) 2.61009 + 2.61009i 0.0143412 + 0.0143412i
\(183\) −44.0827 + 44.0827i −0.240889 + 0.240889i
\(184\) 41.1077i 0.223411i
\(185\) −7.40889 23.3211i −0.0400480 0.126060i
\(186\) −39.8062 −0.214012
\(187\) 21.7637 + 21.7637i 0.116383 + 0.116383i
\(188\) −53.0133 + 53.0133i −0.281986 + 0.281986i
\(189\) 45.1084i 0.238669i
\(190\) 166.775 52.9827i 0.877761 0.278856i
\(191\) 380.375 1.99149 0.995747 0.0921270i \(-0.0293666\pi\)
0.995747 + 0.0921270i \(0.0293666\pi\)
\(192\) −150.310 150.310i −0.782866 0.782866i
\(193\) 201.433 201.433i 1.04369 1.04369i 0.0446920 0.999001i \(-0.485769\pi\)
0.999001 0.0446920i \(-0.0142306\pi\)
\(194\) 124.413i 0.641305i
\(195\) −8.64333 + 16.6922i −0.0443248 + 0.0856009i
\(196\) −80.5479 −0.410959
\(197\) −104.279 104.279i −0.529333 0.529333i 0.391040 0.920374i \(-0.372115\pi\)
−0.920374 + 0.391040i \(0.872115\pi\)
\(198\) 17.7886 17.7886i 0.0898413 0.0898413i
\(199\) 387.138i 1.94542i −0.232026 0.972709i \(-0.574536\pi\)
0.232026 0.972709i \(-0.425464\pi\)
\(200\) 211.193 + 36.2930i 1.05596 + 0.181465i
\(201\) 287.251 1.42911
\(202\) −57.5274 57.5274i −0.284789 0.284789i
\(203\) 6.88176 6.88176i 0.0339003 0.0339003i
\(204\) 44.1533i 0.216438i
\(205\) −33.3893 17.2892i −0.162874 0.0843376i
\(206\) 59.9011 0.290782
\(207\) 12.6062 + 12.6062i 0.0608994 + 0.0608994i
\(208\) 3.79243 3.79243i 0.0182328 0.0182328i
\(209\) 110.761i 0.529955i
\(210\) −18.9033 59.5024i −0.0900159 0.283345i
\(211\) 169.957 0.805484 0.402742 0.915314i \(-0.368057\pi\)
0.402742 + 0.915314i \(0.368057\pi\)
\(212\) −29.4760 29.4760i −0.139038 0.139038i
\(213\) 253.615 253.615i 1.19068 1.19068i
\(214\) 208.246i 0.973111i
\(215\) 395.109 125.522i 1.83771 0.583824i
\(216\) 161.476 0.747575
\(217\) −12.9243 12.9243i −0.0595591 0.0595591i
\(218\) −90.1395 + 90.1395i −0.413484 + 0.413484i
\(219\) 395.195i 1.80454i
\(220\) −19.8081 + 38.2539i −0.0900369 + 0.173881i
\(221\) 7.01113 0.0317246
\(222\) 18.0459 + 18.0459i 0.0812880 + 0.0812880i
\(223\) −28.1137 + 28.1137i −0.126071 + 0.126071i −0.767327 0.641256i \(-0.778414\pi\)
0.641256 + 0.767327i \(0.278414\pi\)
\(224\) 64.2832i 0.286979i
\(225\) 75.8945 53.6352i 0.337309 0.238379i
\(226\) −111.220 −0.492122
\(227\) 74.0799 + 74.0799i 0.326343 + 0.326343i 0.851194 0.524851i \(-0.175879\pi\)
−0.524851 + 0.851194i \(0.675879\pi\)
\(228\) 112.353 112.353i 0.492778 0.492778i
\(229\) 269.439i 1.17659i 0.808647 + 0.588294i \(0.200200\pi\)
−0.808647 + 0.588294i \(0.799800\pi\)
\(230\) 31.1380 + 16.1235i 0.135383 + 0.0701021i
\(231\) 39.5176 0.171072
\(232\) −24.6349 24.6349i −0.106185 0.106185i
\(233\) −59.1211 + 59.1211i −0.253739 + 0.253739i −0.822502 0.568763i \(-0.807422\pi\)
0.568763 + 0.822502i \(0.307422\pi\)
\(234\) 5.73057i 0.0244896i
\(235\) 60.9667 + 191.906i 0.259433 + 0.816622i
\(236\) −191.661 −0.812123
\(237\) −266.454 266.454i −1.12428 1.12428i
\(238\) −16.4662 + 16.4662i −0.0691856 + 0.0691856i
\(239\) 224.425i 0.939016i −0.882928 0.469508i \(-0.844431\pi\)
0.882928 0.469508i \(-0.155569\pi\)
\(240\) −86.4562 + 27.4663i −0.360234 + 0.114443i
\(241\) −224.036 −0.929610 −0.464805 0.885413i \(-0.653876\pi\)
−0.464805 + 0.885413i \(0.653876\pi\)
\(242\) −102.969 102.969i −0.425491 0.425491i
\(243\) 133.883 133.883i 0.550960 0.550960i
\(244\) 32.5452i 0.133382i
\(245\) −99.4740 + 192.106i −0.406016 + 0.784107i
\(246\) 39.2152 0.159411
\(247\) 17.8407 + 17.8407i 0.0722295 + 0.0722295i
\(248\) −46.2657 + 46.2657i −0.186555 + 0.186555i
\(249\) 374.790i 1.50518i
\(250\) 110.326 145.738i 0.441305 0.582952i
\(251\) −121.909 −0.485695 −0.242847 0.970065i \(-0.578081\pi\)
−0.242847 + 0.970065i \(0.578081\pi\)
\(252\) −11.7173 11.7173i −0.0464973 0.0464973i
\(253\) −15.6940 + 15.6940i −0.0620316 + 0.0620316i
\(254\) 194.727i 0.766640i
\(255\) −105.305 54.5278i −0.412962 0.213835i
\(256\) −268.002 −1.04688
\(257\) 306.849 + 306.849i 1.19397 + 1.19397i 0.975944 + 0.218023i \(0.0699607\pi\)
0.218023 + 0.975944i \(0.430039\pi\)
\(258\) −305.736 + 305.736i −1.18502 + 1.18502i
\(259\) 11.7183i 0.0452445i
\(260\) 2.97113 + 9.35229i 0.0114274 + 0.0359704i
\(261\) −15.1092 −0.0578896
\(262\) −69.2659 69.2659i −0.264374 0.264374i
\(263\) −277.398 + 277.398i −1.05474 + 1.05474i −0.0563322 + 0.998412i \(0.517941\pi\)
−0.998412 + 0.0563322i \(0.982059\pi\)
\(264\) 141.463i 0.535843i
\(265\) −106.702 + 33.8982i −0.402649 + 0.127918i
\(266\) −83.8005 −0.315039
\(267\) −53.2329 53.2329i −0.199374 0.199374i
\(268\) 106.035 106.035i 0.395654 0.395654i
\(269\) 465.099i 1.72899i 0.502638 + 0.864497i \(0.332363\pi\)
−0.502638 + 0.864497i \(0.667637\pi\)
\(270\) 63.3351 122.314i 0.234575 0.453015i
\(271\) −106.366 −0.392493 −0.196247 0.980555i \(-0.562875\pi\)
−0.196247 + 0.980555i \(0.562875\pi\)
\(272\) 23.9252 + 23.9252i 0.0879601 + 0.0879601i
\(273\) 6.36527 6.36527i 0.0233160 0.0233160i
\(274\) 107.229i 0.391347i
\(275\) 66.7728 + 94.4845i 0.242810 + 0.343580i
\(276\) 31.8394 0.115360
\(277\) 2.81668 + 2.81668i 0.0101685 + 0.0101685i 0.712173 0.702004i \(-0.247711\pi\)
−0.702004 + 0.712173i \(0.747711\pi\)
\(278\) −202.776 + 202.776i −0.729411 + 0.729411i
\(279\) 28.3759i 0.101706i
\(280\) −91.1288 47.1871i −0.325460 0.168526i
\(281\) 335.850 1.19520 0.597598 0.801796i \(-0.296122\pi\)
0.597598 + 0.801796i \(0.296122\pi\)
\(282\) −148.498 148.498i −0.526587 0.526587i
\(283\) −48.7921 + 48.7921i −0.172410 + 0.172410i −0.788037 0.615627i \(-0.788903\pi\)
0.615627 + 0.788037i \(0.288903\pi\)
\(284\) 187.238i 0.659289i
\(285\) −129.209 406.715i −0.453367 1.42707i
\(286\) 7.13424 0.0249449
\(287\) 12.7324 + 12.7324i 0.0443638 + 0.0443638i
\(288\) −70.5682 + 70.5682i −0.245029 + 0.245029i
\(289\) 244.769i 0.846952i
\(290\) −28.3227 + 8.99786i −0.0976646 + 0.0310271i
\(291\) 303.408 1.04264
\(292\) 145.881 + 145.881i 0.499594 + 0.499594i
\(293\) 229.346 229.346i 0.782752 0.782752i −0.197542 0.980294i \(-0.563296\pi\)
0.980294 + 0.197542i \(0.0632960\pi\)
\(294\) 225.626i 0.767434i
\(295\) −236.695 + 457.110i −0.802356 + 1.54953i
\(296\) 41.9486 0.141718
\(297\) 61.6480 + 61.6480i 0.207569 + 0.207569i
\(298\) 158.502 158.502i 0.531884 0.531884i
\(299\) 5.05579i 0.0169090i
\(300\) 28.1102 163.576i 0.0937007 0.545254i
\(301\) −198.533 −0.659579
\(302\) 62.5656 + 62.5656i 0.207171 + 0.207171i
\(303\) −140.293 + 140.293i −0.463012 + 0.463012i
\(304\) 121.761i 0.400530i
\(305\) 77.6200 + 40.1922i 0.254492 + 0.131778i
\(306\) 36.1522 0.118144
\(307\) −75.7009 75.7009i −0.246583 0.246583i 0.572984 0.819567i \(-0.305786\pi\)
−0.819567 + 0.572984i \(0.805786\pi\)
\(308\) 14.5874 14.5874i 0.0473618 0.0473618i
\(309\) 146.082i 0.472756i
\(310\) 16.8985 + 53.1917i 0.0545112 + 0.171586i
\(311\) 58.7187 0.188806 0.0944030 0.995534i \(-0.469906\pi\)
0.0944030 + 0.995534i \(0.469906\pi\)
\(312\) −22.7860 22.7860i −0.0730320 0.0730320i
\(313\) −134.806 + 134.806i −0.430691 + 0.430691i −0.888863 0.458173i \(-0.848504\pi\)
0.458173 + 0.888863i \(0.348504\pi\)
\(314\) 283.316i 0.902280i
\(315\) −42.4163 + 13.4752i −0.134655 + 0.0427785i
\(316\) −196.716 −0.622520
\(317\) 255.375 + 255.375i 0.805598 + 0.805598i 0.983964 0.178366i \(-0.0570810\pi\)
−0.178366 + 0.983964i \(0.557081\pi\)
\(318\) 82.5664 82.5664i 0.259643 0.259643i
\(319\) 18.8101i 0.0589658i
\(320\) −137.045 + 264.664i −0.428265 + 0.827074i
\(321\) −507.852 −1.58209
\(322\) −11.8739 11.8739i −0.0368755 0.0368755i
\(323\) −112.551 + 112.551i −0.348455 + 0.348455i
\(324\) 187.353i 0.578251i
\(325\) 25.9744 + 4.46364i 0.0799213 + 0.0137343i
\(326\) 251.429 0.771253
\(327\) 219.824 + 219.824i 0.672246 + 0.672246i
\(328\) 45.5787 45.5787i 0.138959 0.138959i
\(329\) 96.4286i 0.293096i
\(330\) −107.154 55.4853i −0.324710 0.168137i
\(331\) 486.015 1.46832 0.734162 0.678974i \(-0.237575\pi\)
0.734162 + 0.678974i \(0.237575\pi\)
\(332\) 138.349 + 138.349i 0.416714 + 0.416714i
\(333\) 12.8640 12.8640i 0.0386308 0.0386308i
\(334\) 287.703i 0.861386i
\(335\) −121.943 383.843i −0.364010 1.14580i
\(336\) 43.4423 0.129293
\(337\) 332.154 + 332.154i 0.985620 + 0.985620i 0.999898 0.0142784i \(-0.00454510\pi\)
−0.0142784 + 0.999898i \(0.504545\pi\)
\(338\) −173.598 + 173.598i −0.513603 + 0.513603i
\(339\) 271.233i 0.800096i
\(340\) −59.0004 + 18.7439i −0.173531 + 0.0551290i
\(341\) −35.3264 −0.103596
\(342\) 91.9937 + 91.9937i 0.268988 + 0.268988i
\(343\) 156.220 156.220i 0.455452 0.455452i
\(344\) 710.697i 2.06598i
\(345\) 39.3205 75.9366i 0.113973 0.220106i
\(346\) −441.833 −1.27697
\(347\) 136.762 + 136.762i 0.394128 + 0.394128i 0.876156 0.482028i \(-0.160100\pi\)
−0.482028 + 0.876156i \(0.660100\pi\)
\(348\) −19.0806 + 19.0806i −0.0548293 + 0.0548293i
\(349\) 13.6533i 0.0391211i −0.999809 0.0195606i \(-0.993773\pi\)
0.999809 0.0195606i \(-0.00622672\pi\)
\(350\) −71.4861 + 50.5197i −0.204246 + 0.144342i
\(351\) 19.8598 0.0565807
\(352\) −87.8535 87.8535i −0.249584 0.249584i
\(353\) 297.538 297.538i 0.842885 0.842885i −0.146348 0.989233i \(-0.546752\pi\)
0.989233 + 0.146348i \(0.0467521\pi\)
\(354\) 536.869i 1.51658i
\(355\) −446.561 231.233i −1.25792 0.651360i
\(356\) −39.3005 −0.110395
\(357\) 40.1563 + 40.1563i 0.112483 + 0.112483i
\(358\) 156.789 156.789i 0.437959 0.437959i
\(359\) 396.762i 1.10519i −0.833451 0.552593i \(-0.813638\pi\)
0.833451 0.552593i \(-0.186362\pi\)
\(360\) 48.2378 + 151.839i 0.133994 + 0.421775i
\(361\) −211.799 −0.586702
\(362\) −194.908 194.908i −0.538420 0.538420i
\(363\) −251.111 + 251.111i −0.691767 + 0.691767i
\(364\) 4.69932i 0.0129102i
\(365\) 528.085 167.767i 1.44681 0.459637i
\(366\) −91.1634 −0.249080
\(367\) −15.5067 15.5067i −0.0422526 0.0422526i 0.685665 0.727917i \(-0.259512\pi\)
−0.727917 + 0.685665i \(0.759512\pi\)
\(368\) −17.2527 + 17.2527i −0.0468822 + 0.0468822i
\(369\) 27.9545i 0.0757575i
\(370\) 16.4533 31.7750i 0.0444684 0.0858783i
\(371\) 53.6154 0.144516
\(372\) 35.8344 + 35.8344i 0.0963291 + 0.0963291i
\(373\) −122.795 + 122.795i −0.329210 + 0.329210i −0.852286 0.523076i \(-0.824784\pi\)
0.523076 + 0.852286i \(0.324784\pi\)
\(374\) 45.0075i 0.120341i
\(375\) −355.413 269.054i −0.947769 0.717477i
\(376\) −345.189 −0.918056
\(377\) −3.02982 3.02982i −0.00803667 0.00803667i
\(378\) −46.6423 + 46.6423i −0.123392 + 0.123392i
\(379\) 385.500i 1.01715i −0.861017 0.508576i \(-0.830172\pi\)
0.861017 0.508576i \(-0.169828\pi\)
\(380\) −197.830 102.438i −0.520605 0.269573i
\(381\) 474.882 1.24641
\(382\) 393.310 + 393.310i 1.02961 + 1.02961i
\(383\) 170.561 170.561i 0.445330 0.445330i −0.448469 0.893798i \(-0.648030\pi\)
0.893798 + 0.448469i \(0.148030\pi\)
\(384\) 72.1124i 0.187793i
\(385\) −16.7759 52.8059i −0.0435738 0.137158i
\(386\) 416.565 1.07918
\(387\) 217.944 + 217.944i 0.563163 + 0.563163i
\(388\) 111.999 111.999i 0.288658 0.288658i
\(389\) 5.08436i 0.0130703i 0.999979 + 0.00653517i \(0.00208022\pi\)
−0.999979 + 0.00653517i \(0.997920\pi\)
\(390\) −26.1970 + 8.32255i −0.0671719 + 0.0213399i
\(391\) −31.8953 −0.0815736
\(392\) −262.238 262.238i −0.668975 0.668975i
\(393\) −168.920 + 168.920i −0.429821 + 0.429821i
\(394\) 215.649i 0.547333i
\(395\) −242.938 + 469.167i −0.615033 + 1.18776i
\(396\) −32.0273 −0.0808770
\(397\) −181.841 181.841i −0.458039 0.458039i 0.439973 0.898011i \(-0.354988\pi\)
−0.898011 + 0.439973i \(0.854988\pi\)
\(398\) 400.303 400.303i 1.00579 1.00579i
\(399\) 204.365i 0.512194i
\(400\) 73.4045 + 103.868i 0.183511 + 0.259671i
\(401\) 540.641 1.34823 0.674115 0.738626i \(-0.264525\pi\)
0.674115 + 0.738626i \(0.264525\pi\)
\(402\) 297.019 + 297.019i 0.738853 + 0.738853i
\(403\) −5.69017 + 5.69017i −0.0141195 + 0.0141195i
\(404\) 103.575i 0.256373i
\(405\) −446.837 231.375i −1.10330 0.571297i
\(406\) 14.2316 0.0350531
\(407\) 16.0150 + 16.0150i 0.0393489 + 0.0393489i
\(408\) 143.749 143.749i 0.352326 0.352326i
\(409\) 217.985i 0.532971i 0.963839 + 0.266485i \(0.0858624\pi\)
−0.963839 + 0.266485i \(0.914138\pi\)
\(410\) −16.6475 52.4018i −0.0406038 0.127809i
\(411\) −261.501 −0.636256
\(412\) −53.9242 53.9242i −0.130884 0.130884i
\(413\) 174.311 174.311i 0.422060 0.422060i
\(414\) 26.0697i 0.0629703i
\(415\) 500.818 159.105i 1.20679 0.383386i
\(416\) −28.3019 −0.0680334
\(417\) 494.513 + 494.513i 1.18588 + 1.18588i
\(418\) −114.527 + 114.527i −0.273988 + 0.273988i
\(419\) 338.783i 0.808552i −0.914637 0.404276i \(-0.867524\pi\)
0.914637 0.404276i \(-0.132476\pi\)
\(420\) −36.5481 + 70.5825i −0.0870194 + 0.168054i
\(421\) −289.362 −0.687320 −0.343660 0.939094i \(-0.611667\pi\)
−0.343660 + 0.939094i \(0.611667\pi\)
\(422\) 175.736 + 175.736i 0.416437 + 0.416437i
\(423\) −105.856 + 105.856i −0.250252 + 0.250252i
\(424\) 191.929i 0.452663i
\(425\) −28.1596 + 163.864i −0.0662578 + 0.385562i
\(426\) 524.479 1.23117
\(427\) −29.5990 29.5990i −0.0693185 0.0693185i
\(428\) −187.467 + 187.467i −0.438008 + 0.438008i
\(429\) 17.3984i 0.0405556i
\(430\) 538.335 + 278.754i 1.25194 + 0.648265i
\(431\) 138.445 0.321218 0.160609 0.987018i \(-0.448654\pi\)
0.160609 + 0.987018i \(0.448654\pi\)
\(432\) 67.7707 + 67.7707i 0.156877 + 0.156877i
\(433\) 317.290 317.290i 0.732771 0.732771i −0.238397 0.971168i \(-0.576622\pi\)
0.971168 + 0.238397i \(0.0766219\pi\)
\(434\) 26.7276i 0.0615844i
\(435\) 21.9432 + 69.0710i 0.0504441 + 0.158784i
\(436\) 162.291 0.372227
\(437\) −81.1615 81.1615i −0.185724 0.185724i
\(438\) −408.634 + 408.634i −0.932954 + 0.932954i
\(439\) 848.423i 1.93263i −0.257369 0.966313i \(-0.582856\pi\)
0.257369 0.966313i \(-0.417144\pi\)
\(440\) −189.031 + 60.0534i −0.429617 + 0.136485i
\(441\) −160.837 −0.364710
\(442\) 7.24955 + 7.24955i 0.0164017 + 0.0164017i
\(443\) −108.547 + 108.547i −0.245028 + 0.245028i −0.818926 0.573898i \(-0.805430\pi\)
0.573898 + 0.818926i \(0.305430\pi\)
\(444\) 32.4907i 0.0731772i
\(445\) −48.5349 + 93.7315i −0.109067 + 0.210633i
\(446\) −58.1395 −0.130358
\(447\) −386.540 386.540i −0.864742 0.864742i
\(448\) 100.925 100.925i 0.225278 0.225278i
\(449\) 416.488i 0.927590i 0.885943 + 0.463795i \(0.153513\pi\)
−0.885943 + 0.463795i \(0.846487\pi\)
\(450\) 133.934 + 23.0163i 0.297632 + 0.0511473i
\(451\) 34.8018 0.0771659
\(452\) 100.122 + 100.122i 0.221509 + 0.221509i
\(453\) 152.580 152.580i 0.336820 0.336820i
\(454\) 153.198i 0.337441i
\(455\) −11.2078 5.80350i −0.0246326 0.0127550i
\(456\) 731.574 1.60433
\(457\) −341.097 341.097i −0.746382 0.746382i 0.227416 0.973798i \(-0.426972\pi\)
−0.973798 + 0.227416i \(0.926972\pi\)
\(458\) −278.601 + 278.601i −0.608299 + 0.608299i
\(459\) 125.289i 0.272960i
\(460\) −13.5164 42.5458i −0.0293834 0.0924908i
\(461\) 437.249 0.948479 0.474239 0.880396i \(-0.342723\pi\)
0.474239 + 0.880396i \(0.342723\pi\)
\(462\) 40.8614 + 40.8614i 0.0884446 + 0.0884446i
\(463\) −171.391 + 171.391i −0.370175 + 0.370175i −0.867541 0.497366i \(-0.834301\pi\)
0.497366 + 0.867541i \(0.334301\pi\)
\(464\) 20.6783i 0.0445652i
\(465\) 129.719 41.2105i 0.278966 0.0886248i
\(466\) −122.263 −0.262367
\(467\) −484.898 484.898i −1.03833 1.03833i −0.999236 0.0390904i \(-0.987554\pi\)
−0.0390904 0.999236i \(-0.512446\pi\)
\(468\) −5.15878 + 5.15878i −0.0110230 + 0.0110230i
\(469\) 192.873i 0.411242i
\(470\) −135.392 + 261.472i −0.288068 + 0.556323i
\(471\) −690.926 −1.46693
\(472\) −623.987 623.987i −1.32201 1.32201i
\(473\) −271.328 + 271.328i −0.573633 + 0.573633i
\(474\) 551.029i 1.16251i
\(475\) −488.627 + 345.316i −1.02869 + 0.726981i
\(476\) 29.6464 0.0622824
\(477\) −58.8574 58.8574i −0.123391 0.123391i
\(478\) 232.056 232.056i 0.485474 0.485474i
\(479\) 210.909i 0.440312i −0.975465 0.220156i \(-0.929343\pi\)
0.975465 0.220156i \(-0.0706566\pi\)
\(480\) 425.087 + 220.113i 0.885597 + 0.458569i
\(481\) 5.15922 0.0107260
\(482\) −231.654 231.654i −0.480611 0.480611i
\(483\) −28.9571 + 28.9571i −0.0599526 + 0.0599526i
\(484\) 185.389i 0.383036i
\(485\) −128.802 405.433i −0.265572 0.835945i
\(486\) 276.872 0.569695
\(487\) −5.58269 5.58269i −0.0114634 0.0114634i 0.701352 0.712815i \(-0.252580\pi\)
−0.712815 + 0.701352i \(0.752580\pi\)
\(488\) −105.957 + 105.957i −0.217124 + 0.217124i
\(489\) 613.162i 1.25391i
\(490\) −301.495 + 95.7822i −0.615297 + 0.195474i
\(491\) 564.434 1.14956 0.574780 0.818308i \(-0.305088\pi\)
0.574780 + 0.818308i \(0.305088\pi\)
\(492\) −35.3023 35.3023i −0.0717527 0.0717527i
\(493\) 19.1141 19.1141i 0.0387711 0.0387711i
\(494\) 36.8947i 0.0746857i
\(495\) −39.5527 + 76.3849i −0.0799044 + 0.154313i
\(496\) −38.8349 −0.0782962
\(497\) 170.288 + 170.288i 0.342632 + 0.342632i
\(498\) −387.535 + 387.535i −0.778182 + 0.778182i
\(499\) 36.5966i 0.0733398i 0.999327 + 0.0366699i \(0.0116750\pi\)
−0.999327 + 0.0366699i \(0.988325\pi\)
\(500\) −230.514 + 31.8785i −0.461029 + 0.0637570i
\(501\) −701.625 −1.40045
\(502\) −126.055 126.055i −0.251105 0.251105i
\(503\) −426.241 + 426.241i −0.847398 + 0.847398i −0.989808 0.142410i \(-0.954515\pi\)
0.142410 + 0.989808i \(0.454515\pi\)
\(504\) 76.2958i 0.151381i
\(505\) 247.025 + 127.911i 0.489158 + 0.253290i
\(506\) −32.4553 −0.0641410
\(507\) 423.355 + 423.355i 0.835020 + 0.835020i
\(508\) 175.297 175.297i 0.345073 0.345073i
\(509\) 263.396i 0.517478i −0.965947 0.258739i \(-0.916693\pi\)
0.965947 0.258739i \(-0.0833070\pi\)
\(510\) −52.5041 165.268i −0.102949 0.324055i
\(511\) −265.351 −0.519278
\(512\) −219.921 219.921i −0.429533 0.429533i
\(513\) −318.813 + 318.813i −0.621468 + 0.621468i
\(514\) 634.568i 1.23457i
\(515\) −195.203 + 62.0143i −0.379036 + 0.120416i
\(516\) 550.460 1.06678
\(517\) −131.785 131.785i −0.254904 0.254904i
\(518\) −12.1168 + 12.1168i −0.0233915 + 0.0233915i
\(519\) 1077.50i 2.07612i
\(520\) −20.7750 + 40.1212i −0.0399520 + 0.0771561i
\(521\) 89.9544 0.172657 0.0863286 0.996267i \(-0.472486\pi\)
0.0863286 + 0.996267i \(0.472486\pi\)
\(522\) −15.6230 15.6230i −0.0299291 0.0299291i
\(523\) −347.413 + 347.413i −0.664269 + 0.664269i −0.956384 0.292114i \(-0.905641\pi\)
0.292114 + 0.956384i \(0.405641\pi\)
\(524\) 124.709i 0.237995i
\(525\) 123.203 + 174.334i 0.234672 + 0.332065i
\(526\) −573.661 −1.09061
\(527\) −35.8974 35.8974i −0.0681165 0.0681165i
\(528\) 59.3711 59.3711i 0.112445 0.112445i
\(529\) 23.0000i 0.0434783i
\(530\) −145.381 75.2795i −0.274305 0.142037i
\(531\) −382.707 −0.720729
\(532\) 75.4390 + 75.4390i 0.141803 + 0.141803i
\(533\) 5.60568 5.60568i 0.0105172 0.0105172i
\(534\) 110.086i 0.206154i
\(535\) 215.592 + 678.624i 0.402976 + 1.26846i
\(536\) 690.434 1.28812
\(537\) −382.364 382.364i −0.712037 0.712037i
\(538\) −480.915 + 480.915i −0.893894 + 0.893894i
\(539\) 200.233i 0.371491i
\(540\) −167.125 + 53.0941i −0.309491 + 0.0983224i
\(541\) 683.618 1.26362 0.631810 0.775124i \(-0.282312\pi\)
0.631810 + 0.775124i \(0.282312\pi\)
\(542\) −109.983 109.983i −0.202920 0.202920i
\(543\) −475.325 + 475.325i −0.875369 + 0.875369i
\(544\) 178.547i 0.328211i
\(545\) 200.424 387.063i 0.367750 0.710207i
\(546\) 13.1634 0.0241089
\(547\) 204.068 + 204.068i 0.373067 + 0.373067i 0.868593 0.495526i \(-0.165025\pi\)
−0.495526 + 0.868593i \(0.665025\pi\)
\(548\) −96.5300 + 96.5300i −0.176150 + 0.176150i
\(549\) 64.9858i 0.118371i
\(550\) −28.6540 + 166.741i −0.0520982 + 0.303165i
\(551\) 97.2766 0.176545
\(552\) 103.659 + 103.659i 0.187788 + 0.187788i
\(553\) 178.909 178.909i 0.323524 0.323524i
\(554\) 5.82493i 0.0105143i
\(555\) −77.4900 40.1249i −0.139622 0.0722971i
\(556\) 365.087 0.656631
\(557\) 439.695 + 439.695i 0.789399 + 0.789399i 0.981396 0.191997i \(-0.0614963\pi\)
−0.191997 + 0.981396i \(0.561496\pi\)
\(558\) −29.3408 + 29.3408i −0.0525821 + 0.0525821i
\(559\) 87.4080i 0.156365i
\(560\) −18.4421 58.0504i −0.0329323 0.103661i
\(561\) 109.760 0.195651
\(562\) 347.271 + 347.271i 0.617920 + 0.617920i
\(563\) 587.221 587.221i 1.04302 1.04302i 0.0439893 0.999032i \(-0.485993\pi\)
0.999032 0.0439893i \(-0.0140067\pi\)
\(564\) 267.361i 0.474045i
\(565\) 362.438 115.143i 0.641484 0.203793i
\(566\) −100.903 −0.178273
\(567\) 170.393 + 170.393i 0.300517 + 0.300517i
\(568\) 609.587 609.587i 1.07322 1.07322i
\(569\) 693.156i 1.21820i 0.793093 + 0.609100i \(0.208469\pi\)
−0.793093 + 0.609100i \(0.791531\pi\)
\(570\) 286.942 554.149i 0.503408 0.972191i
\(571\) −978.135 −1.71302 −0.856510 0.516130i \(-0.827372\pi\)
−0.856510 + 0.516130i \(0.827372\pi\)
\(572\) −6.42239 6.42239i −0.0112280 0.0112280i
\(573\) 959.171 959.171i 1.67395 1.67395i
\(574\) 26.3307i 0.0458724i
\(575\) −118.164 20.3061i −0.205502 0.0353150i
\(576\) −221.584 −0.384695
\(577\) 491.120 + 491.120i 0.851161 + 0.851161i 0.990276 0.139115i \(-0.0444258\pi\)
−0.139115 + 0.990276i \(0.544426\pi\)
\(578\) 253.093 253.093i 0.437876 0.437876i
\(579\) 1015.88i 1.75455i
\(580\) 33.5968 + 17.3967i 0.0579255 + 0.0299942i
\(581\) −251.650 −0.433133
\(582\) 313.725 + 313.725i 0.539047 + 0.539047i
\(583\) 73.2742 73.2742i 0.125685 0.125685i
\(584\) 949.887i 1.62652i
\(585\) 5.93273 + 18.6746i 0.0101414 + 0.0319223i
\(586\) 474.291 0.809370
\(587\) −377.790 377.790i −0.643595 0.643595i 0.307842 0.951437i \(-0.400393\pi\)
−0.951437 + 0.307842i \(0.900393\pi\)
\(588\) −203.113 + 203.113i −0.345430 + 0.345430i
\(589\) 182.691i 0.310171i
\(590\) −717.398 + 227.911i −1.21593 + 0.386289i
\(591\) −525.907 −0.889859
\(592\) 17.6056 + 17.6056i 0.0297392 + 0.0297392i
\(593\) 380.065 380.065i 0.640919 0.640919i −0.309862 0.950782i \(-0.600283\pi\)
0.950782 + 0.309862i \(0.100283\pi\)
\(594\) 127.489i 0.214627i
\(595\) 36.6123 70.7065i 0.0615333 0.118834i
\(596\) −285.373 −0.478813
\(597\) −976.224 976.224i −1.63522 1.63522i
\(598\) −5.22772 + 5.22772i −0.00874200 + 0.00874200i
\(599\) 453.590i 0.757246i 0.925551 + 0.378623i \(0.123602\pi\)
−0.925551 + 0.378623i \(0.876398\pi\)
\(600\) 624.070 441.035i 1.04012 0.735058i
\(601\) 151.861 0.252680 0.126340 0.991987i \(-0.459677\pi\)
0.126340 + 0.991987i \(0.459677\pi\)
\(602\) −205.284 205.284i −0.341004 0.341004i
\(603\) 211.730 211.730i 0.351128 0.351128i
\(604\) 112.646i 0.186500i
\(605\) 442.153 + 228.950i 0.730831 + 0.378429i
\(606\) −290.127 −0.478757
\(607\) 461.935 + 461.935i 0.761013 + 0.761013i 0.976505 0.215493i \(-0.0691357\pi\)
−0.215493 + 0.976505i \(0.569136\pi\)
\(608\) 454.335 454.335i 0.747261 0.747261i
\(609\) 34.7067i 0.0569896i
\(610\) 38.7005 + 121.818i 0.0634435 + 0.199702i
\(611\) −42.4545 −0.0694836
\(612\) −32.5450 32.5450i −0.0531780 0.0531780i
\(613\) −42.7083 + 42.7083i −0.0696710 + 0.0696710i −0.741084 0.671413i \(-0.765688\pi\)
0.671413 + 0.741084i \(0.265688\pi\)
\(614\) 156.550i 0.254968i
\(615\) −127.793 + 40.5986i −0.207793 + 0.0660140i
\(616\) 94.9841 0.154195
\(617\) −348.039 348.039i −0.564083 0.564083i 0.366382 0.930465i \(-0.380596\pi\)
−0.930465 + 0.366382i \(0.880596\pi\)
\(618\) 151.049 151.049i 0.244416 0.244416i
\(619\) 121.712i 0.196628i 0.995155 + 0.0983138i \(0.0313449\pi\)
−0.995155 + 0.0983138i \(0.968655\pi\)
\(620\) 32.6719 63.0966i 0.0526966 0.101769i
\(621\) −90.3470 −0.145486
\(622\) 60.7154 + 60.7154i 0.0976132 + 0.0976132i
\(623\) 35.7429 35.7429i 0.0573722 0.0573722i
\(624\) 19.1263i 0.0306511i
\(625\) −208.648 + 589.144i −0.333836 + 0.942631i
\(626\) −278.781 −0.445336
\(627\) 279.299 + 279.299i 0.445453 + 0.445453i
\(628\) −255.047 + 255.047i −0.406126 + 0.406126i
\(629\) 32.5477i 0.0517452i
\(630\) −57.7921 29.9252i −0.0917335 0.0475003i
\(631\) 881.578 1.39711 0.698556 0.715555i \(-0.253826\pi\)
0.698556 + 0.715555i \(0.253826\pi\)
\(632\) −640.446 640.446i −1.01336 1.01336i
\(633\) 428.571 428.571i 0.677047 0.677047i
\(634\) 528.118i 0.832993i
\(635\) −201.596 634.568i −0.317474 0.999320i
\(636\) −148.656 −0.233736
\(637\) −32.2525 32.2525i −0.0506318 0.0506318i
\(638\) 19.4497 19.4497i 0.0304855 0.0304855i
\(639\) 373.875i 0.585094i
\(640\) 96.3612 30.6130i 0.150564 0.0478328i
\(641\) −1173.20 −1.83026 −0.915130 0.403159i \(-0.867912\pi\)
−0.915130 + 0.403159i \(0.867912\pi\)
\(642\) −525.121 525.121i −0.817946 0.817946i
\(643\) 780.859 780.859i 1.21440 1.21440i 0.244836 0.969565i \(-0.421266\pi\)
0.969565 0.244836i \(-0.0787341\pi\)
\(644\) 21.3783i 0.0331961i
\(645\) 679.800 1312.84i 1.05395 2.03542i
\(646\) −232.756 −0.360304
\(647\) −118.588 118.588i −0.183289 0.183289i 0.609499 0.792787i \(-0.291371\pi\)
−0.792787 + 0.609499i \(0.791371\pi\)
\(648\) 609.963 609.963i 0.941301 0.941301i
\(649\) 476.449i 0.734128i
\(650\) 22.2422 + 31.4731i 0.0342188 + 0.0484202i
\(651\) −65.1810 −0.100124
\(652\) −226.341 226.341i −0.347149 0.347149i
\(653\) −482.761 + 482.761i −0.739297 + 0.739297i −0.972442 0.233145i \(-0.925098\pi\)
0.233145 + 0.972442i \(0.425098\pi\)
\(654\) 454.599i 0.695106i
\(655\) 297.431 + 154.012i 0.454092 + 0.235132i
\(656\) 38.2582 0.0583205
\(657\) 291.295 + 291.295i 0.443371 + 0.443371i
\(658\) 99.7076 99.7076i 0.151531 0.151531i
\(659\) 322.308i 0.489087i −0.969638 0.244543i \(-0.921362\pi\)
0.969638 0.244543i \(-0.0786380\pi\)
\(660\) 46.5135 + 146.412i 0.0704751 + 0.221836i
\(661\) −856.871 −1.29632 −0.648162 0.761502i \(-0.724462\pi\)
−0.648162 + 0.761502i \(0.724462\pi\)
\(662\) 502.542 + 502.542i 0.759127 + 0.759127i
\(663\) 17.6796 17.6796i 0.0266660 0.0266660i
\(664\) 900.841i 1.35669i
\(665\) 273.086 86.7568i 0.410656 0.130461i
\(666\) 26.6030 0.0399444
\(667\) 13.7834 + 13.7834i 0.0206647 + 0.0206647i
\(668\) −258.996 + 258.996i −0.387719 + 0.387719i
\(669\) 141.786i 0.211937i
\(670\) 270.806 522.986i 0.404188 0.780576i
\(671\) −80.9038 −0.120572
\(672\) −162.099 162.099i −0.241219 0.241219i
\(673\) 710.155 710.155i 1.05521 1.05521i 0.0568242 0.998384i \(-0.481903\pi\)
0.998384 0.0568242i \(-0.0180975\pi\)
\(674\) 686.898i 1.01914i
\(675\) −79.7652 + 464.162i −0.118171 + 0.687648i
\(676\) 312.553 0.462356
\(677\) −341.603 341.603i −0.504584 0.504584i 0.408275 0.912859i \(-0.366130\pi\)
−0.912859 + 0.408275i \(0.866130\pi\)
\(678\) −280.456 + 280.456i −0.413652 + 0.413652i
\(679\) 203.721i 0.300031i
\(680\) −253.111 131.063i −0.372222 0.192739i
\(681\) 373.606 0.548614
\(682\) −36.5277 36.5277i −0.0535597 0.0535597i
\(683\) −181.805 + 181.805i −0.266185 + 0.266185i −0.827561 0.561376i \(-0.810272\pi\)
0.561376 + 0.827561i \(0.310272\pi\)
\(684\) 165.629i 0.242148i
\(685\) 111.012 + 349.435i 0.162061 + 0.510124i
\(686\) 323.065 0.470940
\(687\) 679.428 + 679.428i 0.988978 + 0.988978i
\(688\) −298.276 + 298.276i −0.433540 + 0.433540i
\(689\) 23.6052i 0.0342601i
\(690\) 119.177 37.8612i 0.172720 0.0548714i
\(691\) 85.3541 0.123523 0.0617613 0.998091i \(-0.480328\pi\)
0.0617613 + 0.998091i \(0.480328\pi\)
\(692\) 397.748 + 397.748i 0.574780 + 0.574780i
\(693\) 29.1280 29.1280i 0.0420318 0.0420318i
\(694\) 282.826i 0.407531i
\(695\) 450.870 870.729i 0.648734 1.25285i
\(696\) −124.241 −0.178507
\(697\) 35.3643 + 35.3643i 0.0507379 + 0.0507379i
\(698\) 14.1176 14.1176i 0.0202257 0.0202257i
\(699\) 298.165i 0.426559i
\(700\) 109.832 + 18.8744i 0.156903 + 0.0269634i
\(701\) −418.790 −0.597418 −0.298709 0.954344i \(-0.596556\pi\)
−0.298709 + 0.954344i \(0.596556\pi\)
\(702\) 20.5352 + 20.5352i 0.0292524 + 0.0292524i
\(703\) −82.8218 + 82.8218i −0.117812 + 0.117812i
\(704\) 275.860i 0.391847i
\(705\) 637.655 + 330.182i 0.904475 + 0.468344i
\(706\) 615.312 0.871547
\(707\) −94.1986 94.1986i −0.133237 0.133237i
\(708\) −483.301 + 483.301i −0.682628 + 0.682628i
\(709\) 1100.84i 1.55266i −0.630327 0.776330i \(-0.717079\pi\)
0.630327 0.776330i \(-0.282921\pi\)
\(710\) −222.651 700.843i −0.313593 0.987102i
\(711\) −392.801 −0.552463
\(712\) −127.950 127.950i −0.179705 0.179705i
\(713\) 25.8859 25.8859i 0.0363057 0.0363057i
\(714\) 83.0436i 0.116308i
\(715\) −23.2488 + 7.38592i −0.0325158 + 0.0103300i
\(716\) −282.290 −0.394259
\(717\) −565.919 565.919i −0.789288 0.789288i
\(718\) 410.254 410.254i 0.571384 0.571384i
\(719\) 961.181i 1.33683i 0.743788 + 0.668415i \(0.233027\pi\)
−0.743788 + 0.668415i \(0.766973\pi\)
\(720\) −43.4809 + 83.9712i −0.0603902 + 0.116627i
\(721\) 98.0854 0.136041
\(722\) −219.002 219.002i −0.303326 0.303326i
\(723\) −564.939 + 564.939i −0.781381 + 0.781381i
\(724\) 350.921i 0.484697i
\(725\) 82.9819 58.6438i 0.114458 0.0808880i
\(726\) −519.301 −0.715291
\(727\) 401.879 + 401.879i 0.552791 + 0.552791i 0.927245 0.374454i \(-0.122170\pi\)
−0.374454 + 0.927245i \(0.622170\pi\)
\(728\) 15.2995 15.2995i 0.0210158 0.0210158i
\(729\) 230.526i 0.316222i
\(730\) 719.515 + 372.570i 0.985637 + 0.510370i
\(731\) −551.427 −0.754347
\(732\) 82.0672 + 82.0672i 0.112114 + 0.112114i
\(733\) −282.482 + 282.482i −0.385378 + 0.385378i −0.873035 0.487657i \(-0.837852\pi\)
0.487657 + 0.873035i \(0.337852\pi\)
\(734\) 32.0680i 0.0436894i
\(735\) 233.585 + 735.261i 0.317803 + 1.00036i
\(736\) 128.752 0.174935
\(737\) 263.592 + 263.592i 0.357656 + 0.357656i
\(738\) 28.9051 28.9051i 0.0391668 0.0391668i
\(739\) 267.647i 0.362174i −0.983467 0.181087i \(-0.942038\pi\)
0.983467 0.181087i \(-0.0579616\pi\)
\(740\) −43.4161 + 13.7929i −0.0586704 + 0.0186390i
\(741\) 89.9757 0.121425
\(742\) 55.4386 + 55.4386i 0.0747151 + 0.0747151i
\(743\) −156.612 + 156.612i −0.210784 + 0.210784i −0.804600 0.593817i \(-0.797620\pi\)
0.593817 + 0.804600i \(0.297620\pi\)
\(744\) 233.331i 0.313617i
\(745\) −352.426 + 680.612i −0.473055 + 0.913573i
\(746\) −253.942 −0.340405
\(747\) 276.254 + 276.254i 0.369818 + 0.369818i
\(748\) 40.5167 40.5167i 0.0541667 0.0541667i
\(749\) 340.994i 0.455265i
\(750\) −89.2960 645.702i −0.119061 0.860937i
\(751\) −764.900 −1.01851 −0.509254 0.860616i \(-0.670079\pi\)
−0.509254 + 0.860616i \(0.670079\pi\)
\(752\) −144.874 144.874i −0.192651 0.192651i
\(753\) −307.412 + 307.412i −0.408249 + 0.408249i
\(754\) 6.26571i 0.00830996i
\(755\) −268.659 139.114i −0.355840 0.184257i
\(756\) 83.9768 0.111080
\(757\) 253.598 + 253.598i 0.335004 + 0.335004i 0.854483 0.519479i \(-0.173874\pi\)
−0.519479 + 0.854483i \(0.673874\pi\)
\(758\) 398.609 398.609i 0.525870 0.525870i
\(759\) 79.1492i 0.104281i
\(760\) −310.567 977.577i −0.408640 1.28629i
\(761\) −1366.32 −1.79543 −0.897716 0.440574i \(-0.854775\pi\)
−0.897716 + 0.440574i \(0.854775\pi\)
\(762\) 491.031 + 491.031i 0.644397 + 0.644397i
\(763\) −147.600 + 147.600i −0.193446 + 0.193446i
\(764\) 708.132i 0.926875i
\(765\) −117.811 + 37.4276i −0.154002 + 0.0489249i
\(766\) 352.723 0.460473
\(767\) −76.7437 76.7437i −0.100057 0.100057i
\(768\) −675.806 + 675.806i −0.879955 + 0.879955i
\(769\) 774.842i 1.00760i 0.863821 + 0.503798i \(0.168064\pi\)
−0.863821 + 0.503798i \(0.831936\pi\)
\(770\) 37.2552 71.9480i 0.0483834 0.0934390i
\(771\) 1547.53 2.00717
\(772\) −375.001 375.001i −0.485752 0.485752i
\(773\) −119.304 + 119.304i −0.154339 + 0.154339i −0.780053 0.625714i \(-0.784808\pi\)
0.625714 + 0.780053i \(0.284808\pi\)
\(774\) 450.711i 0.582313i
\(775\) −110.136 155.844i −0.142111 0.201090i
\(776\) 729.269 0.939779
\(777\) 29.5494 + 29.5494i 0.0380302 + 0.0380302i
\(778\) −5.25725 + 5.25725i −0.00675740 + 0.00675740i
\(779\) 179.978i 0.231037i
\(780\) 31.0753 + 16.0910i 0.0398401 + 0.0206295i
\(781\) 465.454 0.595971
\(782\) −32.9799 32.9799i −0.0421738 0.0421738i
\(783\) 54.1429 54.1429i 0.0691480 0.0691480i
\(784\) 220.120i 0.280765i
\(785\) 293.311 + 923.260i 0.373644 + 1.17613i
\(786\) −349.327 −0.444437
\(787\) −74.0164 74.0164i −0.0940488 0.0940488i 0.658517 0.752566i \(-0.271184\pi\)
−0.752566 + 0.658517i \(0.771184\pi\)
\(788\) −194.132 + 194.132i −0.246360 + 0.246360i
\(789\) 1399.00i 1.77313i
\(790\) −736.321 + 233.922i −0.932051 + 0.296104i
\(791\) −182.117 −0.230237
\(792\) −104.271 104.271i −0.131655 0.131655i
\(793\) −13.0315 + 13.0315i −0.0164332 + 0.0164332i
\(794\) 376.050i 0.473614i
\(795\) −183.585 + 354.544i −0.230925 + 0.445967i
\(796\) −720.723 −0.905430
\(797\) −600.344 600.344i −0.753255 0.753255i 0.221831 0.975085i \(-0.428797\pi\)
−0.975085 + 0.221831i \(0.928797\pi\)
\(798\) −211.315 + 211.315i −0.264806 + 0.264806i
\(799\) 267.831i 0.335208i
\(800\) 113.672 661.470i 0.142090 0.826837i
\(801\) −78.4749 −0.0979712
\(802\) 559.025 + 559.025i 0.697039 + 0.697039i
\(803\) −362.646 + 362.646i −0.451613 + 0.451613i
\(804\) 534.766i 0.665131i
\(805\) 50.9871 + 26.4015i 0.0633381 + 0.0327969i
\(806\) −11.7673 −0.0145997
\(807\) 1172.81 + 1172.81i 1.45330 + 1.45330i
\(808\) −337.206 + 337.206i −0.417335 + 0.417335i
\(809\) 14.5439i 0.0179777i 0.999960 + 0.00898883i \(0.00286127\pi\)
−0.999960 + 0.00898883i \(0.997139\pi\)
\(810\) −222.788 701.275i −0.275047 0.865771i
\(811\) 23.7253 0.0292544 0.0146272 0.999893i \(-0.495344\pi\)
0.0146272 + 0.999893i \(0.495344\pi\)
\(812\) −12.8115 12.8115i −0.0157778 0.0157778i
\(813\) −268.216 + 268.216i −0.329909 + 0.329909i
\(814\) 33.1192i 0.0406870i
\(815\) −819.347 + 260.299i −1.00533 + 0.319385i
\(816\) 120.661 0.147869
\(817\) −1403.18 1403.18i −1.71747 1.71747i
\(818\) −225.398 + 225.398i −0.275547 + 0.275547i
\(819\) 9.38355i 0.0114573i
\(820\) −32.1867 + 62.1597i −0.0392521 + 0.0758045i
\(821\) −1005.57 −1.22481 −0.612407 0.790543i \(-0.709798\pi\)
−0.612407 + 0.790543i \(0.709798\pi\)
\(822\) −270.394 270.394i −0.328946 0.328946i
\(823\) −1134.97 + 1134.97i −1.37907 + 1.37907i −0.532876 + 0.846193i \(0.678889\pi\)
−0.846193 + 0.532876i \(0.821111\pi\)
\(824\) 351.120i 0.426117i
\(825\) 406.633 + 69.8789i 0.492889 + 0.0847018i
\(826\) 360.477 0.436413
\(827\) −197.108 197.108i −0.238341 0.238341i 0.577822 0.816163i \(-0.303903\pi\)
−0.816163 + 0.577822i \(0.803903\pi\)
\(828\) 23.4685 23.4685i 0.0283436 0.0283436i
\(829\) 1078.11i 1.30050i −0.759722 0.650248i \(-0.774665\pi\)
0.759722 0.650248i \(-0.225335\pi\)
\(830\) 682.364 + 353.333i 0.822125 + 0.425703i
\(831\) 14.2053 0.0170943
\(832\) −44.4340 44.4340i −0.0534063 0.0534063i
\(833\) 203.470 203.470i 0.244261 0.244261i
\(834\) 1022.66i 1.22621i
\(835\) 297.853 + 937.557i 0.356710 + 1.12282i
\(836\) 206.199 0.246650
\(837\) −101.683 101.683i −0.121485 0.121485i
\(838\) 350.304 350.304i 0.418023 0.418023i
\(839\) 538.218i 0.641499i −0.947164 0.320750i \(-0.896065\pi\)
0.947164 0.320750i \(-0.103935\pi\)
\(840\) −348.783 + 110.805i −0.415218 + 0.131911i
\(841\) 824.480 0.980357
\(842\) −299.202 299.202i −0.355346 0.355346i
\(843\) 846.894 846.894i 1.00462 1.00462i
\(844\) 316.403i 0.374885i
\(845\) 385.992 745.436i 0.456796 0.882173i
\(846\) −218.912 −0.258761
\(847\) −168.607 168.607i −0.199064 0.199064i
\(848\) 80.5516 80.5516i 0.0949901 0.0949901i
\(849\) 246.072i 0.289838i
\(850\) −198.553 + 140.319i −0.233592 + 0.165081i
\(851\) −23.4705 −0.0275799
\(852\) −472.147 472.147i −0.554163 0.554163i
\(853\) −964.718 + 964.718i −1.13097 + 1.13097i −0.140955 + 0.990016i \(0.545017\pi\)
−0.990016 + 0.140955i \(0.954983\pi\)
\(854\) 61.2110i 0.0716757i
\(855\) −395.025 204.547i −0.462018 0.239236i
\(856\) −1220.67 −1.42601
\(857\) 1063.23 + 1063.23i 1.24065 + 1.24065i 0.959733 + 0.280915i \(0.0906377\pi\)
0.280915 + 0.959733i \(0.409362\pi\)
\(858\) 17.9900 17.9900i 0.0209674 0.0209674i
\(859\) 155.199i 0.180674i −0.995911 0.0903368i \(-0.971206\pi\)
0.995911 0.0903368i \(-0.0287944\pi\)
\(860\) −233.680 735.560i −0.271721 0.855303i
\(861\) 64.2131 0.0745797
\(862\) 143.153 + 143.153i 0.166070 + 0.166070i
\(863\) 727.461 727.461i 0.842944 0.842944i −0.146296 0.989241i \(-0.546735\pi\)
0.989241 + 0.146296i \(0.0467354\pi\)
\(864\) 505.754i 0.585364i
\(865\) 1439.83 457.420i 1.66454 0.528810i
\(866\) 656.159 0.757689
\(867\) −617.220 617.220i −0.711903 0.711903i
\(868\) −24.0608 + 24.0608i −0.0277198 + 0.0277198i
\(869\) 489.016i 0.562734i
\(870\) −48.7304 + 94.1092i −0.0560120 + 0.108172i
\(871\) 84.9158 0.0974923
\(872\) 528.368 + 528.368i 0.605926 + 0.605926i
\(873\) 223.639 223.639i 0.256173 0.256173i
\(874\) 167.843i 0.192040i
\(875\) 180.654 238.640i 0.206462 0.272731i
\(876\) 735.721 0.839865
\(877\) −561.300 561.300i −0.640023 0.640023i 0.310538 0.950561i \(-0.399491\pi\)
−0.950561 + 0.310538i \(0.899491\pi\)
\(878\) 877.274 877.274i 0.999173 0.999173i
\(879\) 1156.66i 1.31588i
\(880\) −104.540 54.1313i −0.118795 0.0615129i
\(881\) 1090.88 1.23823 0.619113 0.785302i \(-0.287492\pi\)
0.619113 + 0.785302i \(0.287492\pi\)
\(882\) −166.307 166.307i −0.188556 0.188556i
\(883\) 1006.75 1006.75i 1.14015 1.14015i 0.151723 0.988423i \(-0.451518\pi\)
0.988423 0.151723i \(-0.0484823\pi\)
\(884\) 13.0524i 0.0147651i
\(885\) 555.808 + 1749.53i 0.628032 + 1.97687i
\(886\) −224.477 −0.253360
\(887\) 422.708 + 422.708i 0.476559 + 0.476559i 0.904029 0.427471i \(-0.140595\pi\)
−0.427471 + 0.904029i \(0.640595\pi\)
\(888\) 105.779 105.779i 0.119121 0.119121i
\(889\) 318.856i 0.358669i
\(890\) −147.104 + 46.7336i −0.165286 + 0.0525096i
\(891\) 465.741 0.522717
\(892\) 52.3384 + 52.3384i 0.0586754 + 0.0586754i
\(893\) 681.529 681.529i 0.763190 0.763190i
\(894\) 799.368i 0.894148i
\(895\) −348.619 + 673.259i −0.389518 + 0.752245i
\(896\) −48.4193 −0.0540395
\(897\) 12.7489 + 12.7489i 0.0142128 + 0.0142128i
\(898\) −430.650 + 430.650i −0.479566 + 0.479566i
\(899\) 31.0257i 0.0345114i
\(900\) −99.8508 141.290i −0.110945 0.156989i
\(901\) 148.917 0.165280
\(902\) 35.9853 + 35.9853i 0.0398950 + 0.0398950i
\(903\) −500.630 + 500.630i −0.554407 + 0.554407i
\(904\) 651.932i 0.721164i
\(905\) 836.944 + 433.376i 0.924800 + 0.478868i
\(906\) 315.536 0.348274
\(907\) −377.666 377.666i −0.416390 0.416390i 0.467567 0.883958i \(-0.345131\pi\)
−0.883958 + 0.467567i \(0.845131\pi\)
\(908\) 137.912 137.912i 0.151886 0.151886i
\(909\) 206.817i 0.227521i
\(910\) −5.58812 17.5898i −0.00614079 0.0193295i
\(911\) 589.108 0.646661 0.323331 0.946286i \(-0.395197\pi\)
0.323331 + 0.946286i \(0.395197\pi\)
\(912\) 307.038 + 307.038i 0.336664 + 0.336664i
\(913\) −343.921 + 343.921i −0.376693 + 0.376693i
\(914\) 705.391i 0.771763i
\(915\) 297.080 94.3795i 0.324678 0.103147i
\(916\) 501.605 0.547603
\(917\) −113.420 113.420i −0.123686 0.123686i
\(918\) −129.549 + 129.549i −0.141121 + 0.141121i
\(919\) 360.212i 0.391960i −0.980608 0.195980i \(-0.937211\pi\)
0.980608 0.195980i \(-0.0627888\pi\)
\(920\) 94.5105 182.521i 0.102729 0.198392i
\(921\) −381.781 −0.414529
\(922\) 452.117 + 452.117i 0.490366 + 0.490366i
\(923\) 74.9726 74.9726i 0.0812271 0.0812271i
\(924\) 73.5686i 0.0796196i
\(925\) −20.7215 + 120.581i −0.0224017 + 0.130358i
\(926\) −354.439 −0.382763
\(927\) −107.675 107.675i −0.116155 0.116155i
\(928\) −77.1582 + 77.1582i −0.0831446 + 0.0831446i
\(929\) 1244.48i 1.33959i 0.742544 + 0.669797i \(0.233619\pi\)
−0.742544 + 0.669797i \(0.766381\pi\)
\(930\) 176.742 + 91.5184i 0.190045 + 0.0984069i
\(931\) 1035.51 1.11225
\(932\) 110.064 + 110.064i 0.118094 + 0.118094i
\(933\) 148.068 148.068i 0.158700 0.158700i
\(934\) 1002.77i 1.07363i
\(935\) −46.5953 146.669i −0.0498345 0.156865i
\(936\) −33.5907 −0.0358875
\(937\) −13.9938 13.9938i −0.0149347 0.0149347i 0.699600 0.714535i \(-0.253362\pi\)
−0.714535 + 0.699600i \(0.753362\pi\)
\(938\) −199.431 + 199.431i −0.212613 + 0.212613i
\(939\) 679.866i 0.724032i
\(940\) 357.265 113.500i 0.380069 0.120744i
\(941\) 1159.02 1.23169 0.615846 0.787867i \(-0.288814\pi\)
0.615846 + 0.787867i \(0.288814\pi\)
\(942\) −714.421 714.421i −0.758409 0.758409i
\(943\) −25.5016 + 25.5016i −0.0270430 + 0.0270430i
\(944\) 523.768i 0.554839i
\(945\) 103.709 200.284i 0.109744 0.211941i
\(946\) −561.110 −0.593139
\(947\) −692.669 692.669i −0.731435 0.731435i 0.239469 0.970904i \(-0.423027\pi\)
−0.970904 + 0.239469i \(0.923027\pi\)
\(948\) −496.048 + 496.048i −0.523258 + 0.523258i
\(949\) 116.826i 0.123104i
\(950\) −862.302 148.184i −0.907686 0.155984i
\(951\) 1287.93 1.35429
\(952\) 96.5193 + 96.5193i 0.101386 + 0.101386i
\(953\) −326.337 + 326.337i −0.342431 + 0.342431i −0.857281 0.514850i \(-0.827848\pi\)
0.514850 + 0.857281i \(0.327848\pi\)
\(954\) 121.718i 0.127587i
\(955\) −1688.89 874.520i −1.76847 0.915728i
\(956\) −417.804 −0.437034
\(957\) −47.4323 47.4323i −0.0495636 0.0495636i
\(958\) 218.081 218.081i 0.227642 0.227642i
\(959\) 175.583i 0.183090i
\(960\) 321.809 + 1012.96i 0.335218 + 1.05517i
\(961\) −902.732 −0.939367
\(962\) 5.33466 + 5.33466i 0.00554538 + 0.00554538i
\(963\) −374.333 + 374.333i −0.388715 + 0.388715i
\(964\) 417.080i 0.432656i
\(965\) −1357.49 + 431.261i −1.40672 + 0.446902i
\(966\) −59.8836 −0.0619913
\(967\) 786.670 + 786.670i 0.813517 + 0.813517i 0.985159 0.171643i \(-0.0549075\pi\)
−0.171643 + 0.985159i \(0.554907\pi\)
\(968\) −603.569 + 603.569i −0.623522 + 0.623522i
\(969\) 567.626i 0.585785i
\(970\) 286.038 552.402i 0.294884 0.569487i
\(971\) 547.200 0.563543 0.281771 0.959482i \(-0.409078\pi\)
0.281771 + 0.959482i \(0.409078\pi\)
\(972\) −249.246 249.246i −0.256426 0.256426i
\(973\) −332.037 + 332.037i −0.341251 + 0.341251i
\(974\) 11.5451i 0.0118533i
\(975\) 76.7539 54.2425i 0.0787219 0.0556333i
\(976\) −88.9389 −0.0911259
\(977\) 1187.60 + 1187.60i 1.21556 + 1.21556i 0.969172 + 0.246386i \(0.0792430\pi\)
0.246386 + 0.969172i \(0.420757\pi\)
\(978\) 634.013 634.013i 0.648275 0.648275i
\(979\) 97.6969i 0.0997926i
\(980\) 357.638 + 185.187i 0.364936 + 0.188967i
\(981\) 324.061 0.330337
\(982\) 583.628 + 583.628i 0.594325 + 0.594325i
\(983\) 793.359 793.359i 0.807079 0.807079i −0.177111 0.984191i \(-0.556675\pi\)
0.984191 + 0.177111i \(0.0566753\pi\)
\(984\) 229.866i 0.233604i
\(985\) 223.257 + 702.750i 0.226657 + 0.713452i
\(986\) 39.5282 0.0400895
\(987\) −243.158 243.158i −0.246361 0.246361i
\(988\) 33.2134 33.2134i 0.0336168 0.0336168i
\(989\) 397.640i 0.402062i
\(990\) −119.880 + 38.0847i −0.121091 + 0.0384694i
\(991\) −961.596 −0.970329 −0.485164 0.874423i \(-0.661240\pi\)
−0.485164 + 0.874423i \(0.661240\pi\)
\(992\) 144.907 + 144.907i 0.146076 + 0.146076i
\(993\) 1225.56 1225.56i 1.23420 1.23420i
\(994\) 352.158i 0.354284i
\(995\) −890.069 + 1718.92i −0.894541 + 1.72756i
\(996\) 697.734 0.700536
\(997\) −808.883 808.883i −0.811317 0.811317i 0.173514 0.984831i \(-0.444488\pi\)
−0.984831 + 0.173514i \(0.944488\pi\)
\(998\) −37.8410 + 37.8410i −0.0379169 + 0.0379169i
\(999\) 92.1951i 0.0922874i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 115.3.f.a.47.16 44
5.3 odd 4 inner 115.3.f.a.93.16 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.3.f.a.47.16 44 1.1 even 1 trivial
115.3.f.a.93.16 yes 44 5.3 odd 4 inner