Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,3,Mod(47,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.47");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.13352304014\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(22\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | −2.74685 | − | 2.74685i | 3.72491 | − | 3.72491i | 11.0904i | 4.51806 | − | 2.14175i | −20.4635 | −2.87693 | − | 2.87693i | 19.4763 | − | 19.4763i | − | 18.7498i | −18.2935 | − | 6.52737i | |||||
47.2 | −2.67250 | − | 2.67250i | −2.93217 | + | 2.93217i | 10.2845i | −1.24988 | + | 4.84126i | 15.6725 | −7.73999 | − | 7.73999i | 16.7954 | − | 16.7954i | − | 8.19524i | 16.2786 | − | 9.59798i | |||||
47.3 | −2.33506 | − | 2.33506i | 1.23717 | − | 1.23717i | 6.90499i | −4.37439 | + | 2.42172i | −5.77773 | 9.05038 | + | 9.05038i | 6.78332 | − | 6.78332i | 5.93882i | 15.8693 | + | 4.55958i | ||||||
47.4 | −2.11083 | − | 2.11083i | −0.751612 | + | 0.751612i | 4.91121i | −1.47659 | − | 4.77700i | 3.17305 | −3.30771 | − | 3.30771i | 1.92342 | − | 1.92342i | 7.87016i | −6.96661 | + | 13.2003i | ||||||
47.5 | −1.95143 | − | 1.95143i | −0.210269 | + | 0.210269i | 3.61618i | 4.62528 | + | 1.89915i | 0.820651 | 2.37158 | + | 2.37158i | −0.749007 | + | 0.749007i | 8.91157i | −5.31987 | − | 12.7320i | ||||||
47.6 | −1.46415 | − | 1.46415i | 3.27120 | − | 3.27120i | 0.287471i | −4.76493 | + | 1.51507i | −9.57906 | −5.58012 | − | 5.58012i | −5.43570 | + | 5.43570i | − | 12.4015i | 9.19486 | + | 4.75829i | |||||
47.7 | −1.45626 | − | 1.45626i | −3.93198 | + | 3.93198i | 0.241409i | −4.31815 | − | 2.52063i | 11.4520 | 5.37896 | + | 5.37896i | −5.47350 | + | 5.47350i | − | 21.9209i | 2.61766 | + | 9.95907i | |||||
47.8 | −1.06417 | − | 1.06417i | −3.13999 | + | 3.13999i | − | 1.73510i | 4.95922 | + | 0.637278i | 6.68293 | −2.16662 | − | 2.16662i | −6.10310 | + | 6.10310i | − | 10.7190i | −4.59926 | − | 5.95560i | ||||
47.9 | −0.888159 | − | 0.888159i | 1.93967 | − | 1.93967i | − | 2.42235i | 1.78108 | − | 4.67202i | −3.44547 | 0.600352 | + | 0.600352i | −5.70407 | + | 5.70407i | 1.47535i | −5.73138 | + | 2.56762i | |||||
47.10 | −0.616305 | − | 0.616305i | −1.36474 | + | 1.36474i | − | 3.24034i | −1.00227 | + | 4.89852i | 1.68219 | 2.04545 | + | 2.04545i | −4.46226 | + | 4.46226i | 5.27497i | 3.63668 | − | 2.40128i | |||||
47.11 | −0.306853 | − | 0.306853i | 3.69350 | − | 3.69350i | − | 3.81168i | 2.97062 | + | 4.02187i | −2.26672 | 8.01534 | + | 8.01534i | −2.39704 | + | 2.39704i | − | 18.2839i | 0.322578 | − | 2.14567i | ||||
47.12 | −0.275364 | − | 0.275364i | −0.547869 | + | 0.547869i | − | 3.84835i | −4.58859 | + | 1.98617i | 0.301727 | −4.59988 | − | 4.59988i | −2.16115 | + | 2.16115i | 8.39968i | 1.81045 | + | 0.716611i | |||||
47.13 | 0.605975 | + | 0.605975i | 1.58126 | − | 1.58126i | − | 3.26559i | 4.51316 | + | 2.15207i | 1.91641 | −8.09437 | − | 8.09437i | 4.40277 | − | 4.40277i | 3.99921i | 1.43076 | + | 4.03896i | |||||
47.14 | 0.694377 | + | 0.694377i | −1.86203 | + | 1.86203i | − | 3.03568i | 3.90318 | − | 3.12494i | −2.58590 | 7.40287 | + | 7.40287i | 4.88542 | − | 4.88542i | 2.06569i | 4.88016 | + | 0.540392i | |||||
47.15 | 0.701445 | + | 0.701445i | −2.49569 | + | 2.49569i | − | 3.01595i | −1.50802 | − | 4.76717i | −3.50118 | −7.98271 | − | 7.98271i | 4.92130 | − | 4.92130i | − | 3.45692i | 2.28611 | − | 4.40170i | ||||
47.16 | 1.03401 | + | 1.03401i | 2.52164 | − | 2.52164i | − | 1.86167i | −4.44006 | − | 2.29910i | 5.21478 | 1.69314 | + | 1.69314i | 6.06099 | − | 6.06099i | − | 3.71736i | −2.21377 | − | 6.96833i | ||||
47.17 | 1.56641 | + | 1.56641i | 0.265917 | − | 0.265917i | 0.907288i | −0.310831 | + | 4.99033i | 0.833069 | 3.53378 | + | 3.53378i | 4.84446 | − | 4.84446i | 8.85858i | −8.30380 | + | 7.33002i | ||||||
47.18 | 1.71185 | + | 1.71185i | −3.25485 | + | 3.25485i | 1.86083i | −4.79289 | + | 1.42415i | −11.1436 | 2.88120 | + | 2.88120i | 3.66193 | − | 3.66193i | − | 12.1881i | −10.6426 | − | 5.76677i | |||||
47.19 | 2.13032 | + | 2.13032i | 1.62695 | − | 1.62695i | 5.07649i | 2.93890 | − | 4.04510i | 6.93185 | −0.365078 | − | 0.365078i | −2.29326 | + | 2.29326i | 3.70603i | 14.8781 | − | 2.35655i | ||||||
47.20 | 2.29778 | + | 2.29778i | −2.60211 | + | 2.60211i | 6.55958i | 4.64561 | + | 1.84886i | −11.9581 | −4.55541 | − | 4.55541i | −5.88134 | + | 5.88134i | − | 4.54191i | 6.42633 | + | 14.9229i | |||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.3.f.a | ✓ | 44 |
5.c | odd | 4 | 1 | inner | 115.3.f.a | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.3.f.a | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
115.3.f.a | ✓ | 44 | 5.c | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(115, [\chi])\).