Properties

Label 115.5.f.a.93.11
Level $115$
Weight $5$
Character 115.93
Analytic conductor $11.888$
Analytic rank $0$
Dimension $88$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,5,Mod(47,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.47");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 115.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8875457546\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 93.11
Character \(\chi\) \(=\) 115.93
Dual form 115.5.f.a.47.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.55253 + 3.55253i) q^{2} +(-5.80472 - 5.80472i) q^{3} -9.24088i q^{4} +(-21.4504 + 12.8406i) q^{5} +41.2428 q^{6} +(2.81474 - 2.81474i) q^{7} +(-24.0119 - 24.0119i) q^{8} -13.6105i q^{9} +(30.5864 - 121.820i) q^{10} -184.488 q^{11} +(-53.6407 + 53.6407i) q^{12} +(-37.0012 - 37.0012i) q^{13} +19.9989i q^{14} +(199.050 + 49.9772i) q^{15} +318.460 q^{16} +(250.449 - 250.449i) q^{17} +(48.3516 + 48.3516i) q^{18} +597.288i q^{19} +(118.659 + 198.220i) q^{20} -32.6775 q^{21} +(655.399 - 655.399i) q^{22} +(77.9968 + 77.9968i) q^{23} +278.765i q^{24} +(295.237 - 550.872i) q^{25} +262.895 q^{26} +(-549.187 + 549.187i) q^{27} +(-26.0107 - 26.0107i) q^{28} +947.586i q^{29} +(-884.674 + 529.584i) q^{30} +1231.51 q^{31} +(-747.147 + 747.147i) q^{32} +(1070.90 + 1070.90i) q^{33} +1779.46i q^{34} +(-24.2342 + 96.5202i) q^{35} -125.773 q^{36} +(636.569 - 636.569i) q^{37} +(-2121.88 - 2121.88i) q^{38} +429.563i q^{39} +(823.393 + 206.737i) q^{40} -1338.23 q^{41} +(116.088 - 116.088i) q^{42} +(1237.70 + 1237.70i) q^{43} +1704.83i q^{44} +(174.767 + 291.950i) q^{45} -554.171 q^{46} +(2390.39 - 2390.39i) q^{47} +(-1848.57 - 1848.57i) q^{48} +2385.15i q^{49} +(908.151 + 3005.82i) q^{50} -2907.58 q^{51} +(-341.924 + 341.924i) q^{52} +(-1149.05 - 1149.05i) q^{53} -3902.00i q^{54} +(3957.34 - 2368.94i) q^{55} -135.175 q^{56} +(3467.09 - 3467.09i) q^{57} +(-3366.32 - 3366.32i) q^{58} -6455.33i q^{59} +(461.833 - 1839.39i) q^{60} -2543.50 q^{61} +(-4374.96 + 4374.96i) q^{62} +(-38.3099 - 38.3099i) q^{63} -213.155i q^{64} +(1268.81 + 318.571i) q^{65} -7608.81 q^{66} +(4108.36 - 4108.36i) q^{67} +(-2314.37 - 2314.37i) q^{68} -905.499i q^{69} +(-256.798 - 428.983i) q^{70} +7900.01 q^{71} +(-326.814 + 326.814i) q^{72} +(-2910.79 - 2910.79i) q^{73} +4522.86i q^{74} +(-4911.43 + 1483.89i) q^{75} +5519.46 q^{76} +(-519.286 + 519.286i) q^{77} +(-1526.03 - 1526.03i) q^{78} +5119.73i q^{79} +(-6831.09 + 4089.23i) q^{80} +5273.31 q^{81} +(4754.09 - 4754.09i) q^{82} +(-1562.28 - 1562.28i) q^{83} +301.969i q^{84} +(-2156.31 + 8588.16i) q^{85} -8793.93 q^{86} +(5500.47 - 5500.47i) q^{87} +(4429.92 + 4429.92i) q^{88} +8134.38i q^{89} +(-1658.02 - 416.295i) q^{90} -208.297 q^{91} +(720.759 - 720.759i) q^{92} +(-7148.55 - 7148.55i) q^{93} +16983.8i q^{94} +(-7669.55 - 12812.0i) q^{95} +8673.96 q^{96} +(4131.07 - 4131.07i) q^{97} +(-8473.32 - 8473.32i) q^{98} +2510.97i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q - 48 q^{5} + 160 q^{7} + 180 q^{8} + 16 q^{10} + 312 q^{11} - 720 q^{12} - 760 q^{13} - 60 q^{15} - 4528 q^{16} + 420 q^{17} + 980 q^{18} + 1344 q^{20} + 1976 q^{21} + 720 q^{22} - 1176 q^{25} + 1872 q^{26}+ \cdots - 22320 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.55253 + 3.55253i −0.888131 + 0.888131i −0.994344 0.106212i \(-0.966128\pi\)
0.106212 + 0.994344i \(0.466128\pi\)
\(3\) −5.80472 5.80472i −0.644969 0.644969i 0.306804 0.951773i \(-0.400740\pi\)
−0.951773 + 0.306804i \(0.900740\pi\)
\(4\) 9.24088i 0.577555i
\(5\) −21.4504 + 12.8406i −0.858015 + 0.513625i
\(6\) 41.2428 1.14563
\(7\) 2.81474 2.81474i 0.0574436 0.0574436i −0.677801 0.735245i \(-0.737067\pi\)
0.735245 + 0.677801i \(0.237067\pi\)
\(8\) −24.0119 24.0119i −0.375187 0.375187i
\(9\) 13.6105i 0.168031i
\(10\) 30.5864 121.820i 0.305864 1.21820i
\(11\) −184.488 −1.52470 −0.762348 0.647168i \(-0.775953\pi\)
−0.762348 + 0.647168i \(0.775953\pi\)
\(12\) −53.6407 + 53.6407i −0.372505 + 0.372505i
\(13\) −37.0012 37.0012i −0.218942 0.218942i 0.589110 0.808053i \(-0.299478\pi\)
−0.808053 + 0.589110i \(0.799478\pi\)
\(14\) 19.9989i 0.102035i
\(15\) 199.050 + 49.9772i 0.884665 + 0.222121i
\(16\) 318.460 1.24399
\(17\) 250.449 250.449i 0.866607 0.866607i −0.125488 0.992095i \(-0.540050\pi\)
0.992095 + 0.125488i \(0.0400496\pi\)
\(18\) 48.3516 + 48.3516i 0.149233 + 0.149233i
\(19\) 597.288i 1.65454i 0.561807 + 0.827268i \(0.310106\pi\)
−0.561807 + 0.827268i \(0.689894\pi\)
\(20\) 118.659 + 198.220i 0.296647 + 0.495551i
\(21\) −32.6775 −0.0740987
\(22\) 655.399 655.399i 1.35413 1.35413i
\(23\) 77.9968 + 77.9968i 0.147442 + 0.147442i
\(24\) 278.765i 0.483967i
\(25\) 295.237 550.872i 0.472379 0.881395i
\(26\) 262.895 0.388899
\(27\) −549.187 + 549.187i −0.753343 + 0.753343i
\(28\) −26.0107 26.0107i −0.0331769 0.0331769i
\(29\) 947.586i 1.12674i 0.826206 + 0.563368i \(0.190495\pi\)
−0.826206 + 0.563368i \(0.809505\pi\)
\(30\) −884.674 + 529.584i −0.982971 + 0.588426i
\(31\) 1231.51 1.28148 0.640742 0.767756i \(-0.278627\pi\)
0.640742 + 0.767756i \(0.278627\pi\)
\(32\) −747.147 + 747.147i −0.729636 + 0.729636i
\(33\) 1070.90 + 1070.90i 0.983381 + 0.983381i
\(34\) 1779.46i 1.53932i
\(35\) −24.2342 + 96.5202i −0.0197830 + 0.0787920i
\(36\) −125.773 −0.0970469
\(37\) 636.569 636.569i 0.464988 0.464988i −0.435298 0.900286i \(-0.643357\pi\)
0.900286 + 0.435298i \(0.143357\pi\)
\(38\) −2121.88 2121.88i −1.46945 1.46945i
\(39\) 429.563i 0.282422i
\(40\) 823.393 + 206.737i 0.514621 + 0.129211i
\(41\) −1338.23 −0.796090 −0.398045 0.917366i \(-0.630311\pi\)
−0.398045 + 0.917366i \(0.630311\pi\)
\(42\) 116.088 116.088i 0.0658094 0.0658094i
\(43\) 1237.70 + 1237.70i 0.669390 + 0.669390i 0.957575 0.288185i \(-0.0930518\pi\)
−0.288185 + 0.957575i \(0.593052\pi\)
\(44\) 1704.83i 0.880596i
\(45\) 174.767 + 291.950i 0.0863047 + 0.144173i
\(46\) −554.171 −0.261896
\(47\) 2390.39 2390.39i 1.08211 1.08211i 0.0858006 0.996312i \(-0.472655\pi\)
0.996312 0.0858006i \(-0.0273448\pi\)
\(48\) −1848.57 1848.57i −0.802332 0.802332i
\(49\) 2385.15i 0.993400i
\(50\) 908.151 + 3005.82i 0.363260 + 1.20233i
\(51\) −2907.58 −1.11787
\(52\) −341.924 + 341.924i −0.126451 + 0.126451i
\(53\) −1149.05 1149.05i −0.409060 0.409060i 0.472351 0.881411i \(-0.343406\pi\)
−0.881411 + 0.472351i \(0.843406\pi\)
\(54\) 3902.00i 1.33814i
\(55\) 3957.34 2368.94i 1.30821 0.783121i
\(56\) −135.175 −0.0431042
\(57\) 3467.09 3467.09i 1.06712 1.06712i
\(58\) −3366.32 3366.32i −1.00069 1.00069i
\(59\) 6455.33i 1.85445i −0.374509 0.927223i \(-0.622189\pi\)
0.374509 0.927223i \(-0.377811\pi\)
\(60\) 461.833 1839.39i 0.128287 0.510943i
\(61\) −2543.50 −0.683553 −0.341777 0.939781i \(-0.611029\pi\)
−0.341777 + 0.939781i \(0.611029\pi\)
\(62\) −4374.96 + 4374.96i −1.13813 + 1.13813i
\(63\) −38.3099 38.3099i −0.00965229 0.00965229i
\(64\) 213.155i 0.0520398i
\(65\) 1268.81 + 318.571i 0.300310 + 0.0754015i
\(66\) −7608.81 −1.74674
\(67\) 4108.36 4108.36i 0.915207 0.915207i −0.0814689 0.996676i \(-0.525961\pi\)
0.996676 + 0.0814689i \(0.0259611\pi\)
\(68\) −2314.37 2314.37i −0.500513 0.500513i
\(69\) 905.499i 0.190191i
\(70\) −256.798 428.983i −0.0524077 0.0875475i
\(71\) 7900.01 1.56715 0.783576 0.621296i \(-0.213393\pi\)
0.783576 + 0.621296i \(0.213393\pi\)
\(72\) −326.814 + 326.814i −0.0630428 + 0.0630428i
\(73\) −2910.79 2910.79i −0.546218 0.546218i 0.379127 0.925345i \(-0.376224\pi\)
−0.925345 + 0.379127i \(0.876224\pi\)
\(74\) 4522.86i 0.825942i
\(75\) −4911.43 + 1483.89i −0.873142 + 0.263803i
\(76\) 5519.46 0.955586
\(77\) −519.286 + 519.286i −0.0875840 + 0.0875840i
\(78\) −1526.03 1526.03i −0.250827 0.250827i
\(79\) 5119.73i 0.820338i 0.912010 + 0.410169i \(0.134530\pi\)
−0.912010 + 0.410169i \(0.865470\pi\)
\(80\) −6831.09 + 4089.23i −1.06736 + 0.638942i
\(81\) 5273.31 0.803735
\(82\) 4754.09 4754.09i 0.707033 0.707033i
\(83\) −1562.28 1562.28i −0.226779 0.226779i 0.584566 0.811346i \(-0.301265\pi\)
−0.811346 + 0.584566i \(0.801265\pi\)
\(84\) 301.969i 0.0427961i
\(85\) −2156.31 + 8588.16i −0.298451 + 1.18867i
\(86\) −8793.93 −1.18901
\(87\) 5500.47 5500.47i 0.726710 0.726710i
\(88\) 4429.92 + 4429.92i 0.572045 + 0.572045i
\(89\) 8134.38i 1.02694i 0.858108 + 0.513469i \(0.171640\pi\)
−0.858108 + 0.513469i \(0.828360\pi\)
\(90\) −1658.02 416.295i −0.204694 0.0513944i
\(91\) −208.297 −0.0251536
\(92\) 720.759 720.759i 0.0851558 0.0851558i
\(93\) −7148.55 7148.55i −0.826517 0.826517i
\(94\) 16983.8i 1.92212i
\(95\) −7669.55 12812.0i −0.849811 1.41962i
\(96\) 8673.96 0.941185
\(97\) 4131.07 4131.07i 0.439055 0.439055i −0.452639 0.891694i \(-0.649517\pi\)
0.891694 + 0.452639i \(0.149517\pi\)
\(98\) −8473.32 8473.32i −0.882270 0.882270i
\(99\) 2510.97i 0.256195i
\(100\) −5090.54 2728.25i −0.509054 0.272825i
\(101\) −4631.78 −0.454052 −0.227026 0.973889i \(-0.572900\pi\)
−0.227026 + 0.973889i \(0.572900\pi\)
\(102\) 10329.2 10329.2i 0.992815 0.992815i
\(103\) 3386.02 + 3386.02i 0.319165 + 0.319165i 0.848446 0.529281i \(-0.177538\pi\)
−0.529281 + 0.848446i \(0.677538\pi\)
\(104\) 1776.94i 0.164288i
\(105\) 700.945 419.600i 0.0635778 0.0380589i
\(106\) 8164.06 0.726598
\(107\) −14295.8 + 14295.8i −1.24865 + 1.24865i −0.292332 + 0.956317i \(0.594431\pi\)
−0.956317 + 0.292332i \(0.905569\pi\)
\(108\) 5074.97 + 5074.97i 0.435097 + 0.435097i
\(109\) 11279.1i 0.949335i −0.880165 0.474668i \(-0.842568\pi\)
0.880165 0.474668i \(-0.157432\pi\)
\(110\) −5642.82 + 22474.3i −0.466349 + 1.85738i
\(111\) −7390.21 −0.599806
\(112\) 896.382 896.382i 0.0714590 0.0714590i
\(113\) 4876.21 + 4876.21i 0.381878 + 0.381878i 0.871779 0.489900i \(-0.162967\pi\)
−0.489900 + 0.871779i \(0.662967\pi\)
\(114\) 24633.8i 1.89549i
\(115\) −2674.59 671.533i −0.202237 0.0507775i
\(116\) 8756.53 0.650753
\(117\) −503.604 + 503.604i −0.0367890 + 0.0367890i
\(118\) 22932.7 + 22932.7i 1.64699 + 1.64699i
\(119\) 1409.90i 0.0995621i
\(120\) −3579.52 5979.62i −0.248578 0.415251i
\(121\) 19394.9 1.32470
\(122\) 9035.86 9035.86i 0.607085 0.607085i
\(123\) 7768.04 + 7768.04i 0.513453 + 0.513453i
\(124\) 11380.2i 0.740128i
\(125\) 740.599 + 15607.4i 0.0473983 + 0.998876i
\(126\) 272.194 0.0171450
\(127\) 17482.6 17482.6i 1.08392 1.08392i 0.0877818 0.996140i \(-0.472022\pi\)
0.996140 0.0877818i \(-0.0279778\pi\)
\(128\) −11197.1 11197.1i −0.683418 0.683418i
\(129\) 14369.0i 0.863471i
\(130\) −5639.21 + 3375.74i −0.333681 + 0.199748i
\(131\) 21656.5 1.26196 0.630981 0.775798i \(-0.282653\pi\)
0.630981 + 0.775798i \(0.282653\pi\)
\(132\) 9896.08 9896.08i 0.567957 0.567957i
\(133\) 1681.21 + 1681.21i 0.0950426 + 0.0950426i
\(134\) 29190.1i 1.62565i
\(135\) 4728.37 18832.2i 0.259444 1.03332i
\(136\) −12027.6 −0.650279
\(137\) −11090.1 + 11090.1i −0.590872 + 0.590872i −0.937867 0.346995i \(-0.887202\pi\)
0.346995 + 0.937867i \(0.387202\pi\)
\(138\) 3216.81 + 3216.81i 0.168915 + 0.168915i
\(139\) 9088.05i 0.470371i −0.971950 0.235186i \(-0.924430\pi\)
0.971950 0.235186i \(-0.0755698\pi\)
\(140\) 891.931 + 223.945i 0.0455067 + 0.0114258i
\(141\) −27751.1 −1.39586
\(142\) −28065.0 + 28065.0i −1.39184 + 1.39184i
\(143\) 6826.28 + 6826.28i 0.333820 + 0.333820i
\(144\) 4334.40i 0.209028i
\(145\) −12167.6 20326.1i −0.578720 0.966757i
\(146\) 20681.3 0.970226
\(147\) 13845.2 13845.2i 0.640712 0.640712i
\(148\) −5882.46 5882.46i −0.268556 0.268556i
\(149\) 15283.6i 0.688420i −0.938893 0.344210i \(-0.888147\pi\)
0.938893 0.344210i \(-0.111853\pi\)
\(150\) 12176.4 22719.5i 0.541174 1.00976i
\(151\) 17214.9 0.755006 0.377503 0.926008i \(-0.376783\pi\)
0.377503 + 0.926008i \(0.376783\pi\)
\(152\) 14342.0 14342.0i 0.620760 0.620760i
\(153\) −3408.74 3408.74i −0.145617 0.145617i
\(154\) 3689.55i 0.155572i
\(155\) −26416.3 + 15813.3i −1.09953 + 0.658202i
\(156\) 3969.54 0.163114
\(157\) 2011.48 2011.48i 0.0816051 0.0816051i −0.665126 0.746731i \(-0.731622\pi\)
0.746731 + 0.665126i \(0.231622\pi\)
\(158\) −18188.0 18188.0i −0.728568 0.728568i
\(159\) 13339.8i 0.527662i
\(160\) 6432.75 25620.4i 0.251279 1.00080i
\(161\) 439.081 0.0169392
\(162\) −18733.6 + 18733.6i −0.713822 + 0.713822i
\(163\) 11789.4 + 11789.4i 0.443727 + 0.443727i 0.893263 0.449535i \(-0.148410\pi\)
−0.449535 + 0.893263i \(0.648410\pi\)
\(164\) 12366.4i 0.459786i
\(165\) −36722.3 9220.20i −1.34884 0.338667i
\(166\) 11100.1 0.402820
\(167\) 5270.11 5270.11i 0.188967 0.188967i −0.606282 0.795250i \(-0.707340\pi\)
0.795250 + 0.606282i \(0.207340\pi\)
\(168\) 784.651 + 784.651i 0.0278008 + 0.0278008i
\(169\) 25822.8i 0.904129i
\(170\) −22849.3 38170.0i −0.790634 1.32076i
\(171\) 8129.37 0.278013
\(172\) 11437.5 11437.5i 0.386609 0.386609i
\(173\) 36577.3 + 36577.3i 1.22214 + 1.22214i 0.966871 + 0.255264i \(0.0821624\pi\)
0.255264 + 0.966871i \(0.417838\pi\)
\(174\) 39081.1i 1.29083i
\(175\) −719.546 2381.58i −0.0234954 0.0777657i
\(176\) −58752.1 −1.89670
\(177\) −37471.4 + 37471.4i −1.19606 + 1.19606i
\(178\) −28897.6 28897.6i −0.912056 0.912056i
\(179\) 20451.5i 0.638292i 0.947706 + 0.319146i \(0.103396\pi\)
−0.947706 + 0.319146i \(0.896604\pi\)
\(180\) 2697.87 1615.00i 0.0832677 0.0498457i
\(181\) 1374.32 0.0419497 0.0209749 0.999780i \(-0.493323\pi\)
0.0209749 + 0.999780i \(0.493323\pi\)
\(182\) 739.982 739.982i 0.0223397 0.0223397i
\(183\) 14764.3 + 14764.3i 0.440871 + 0.440871i
\(184\) 3745.71i 0.110637i
\(185\) −5480.70 + 21828.6i −0.160137 + 0.637797i
\(186\) 50790.8 1.46811
\(187\) −46205.0 + 46205.0i −1.32131 + 1.32131i
\(188\) −22089.3 22089.3i −0.624980 0.624980i
\(189\) 3091.64i 0.0865495i
\(190\) 72761.4 + 18268.9i 2.01555 + 0.506063i
\(191\) 24341.8 0.667247 0.333624 0.942706i \(-0.391729\pi\)
0.333624 + 0.942706i \(0.391729\pi\)
\(192\) −1237.30 + 1237.30i −0.0335640 + 0.0335640i
\(193\) −26283.8 26283.8i −0.705624 0.705624i 0.259988 0.965612i \(-0.416282\pi\)
−0.965612 + 0.259988i \(0.916282\pi\)
\(194\) 29351.5i 0.779877i
\(195\) −5515.86 9214.29i −0.145059 0.242322i
\(196\) 22040.9 0.573743
\(197\) −19169.8 + 19169.8i −0.493952 + 0.493952i −0.909549 0.415597i \(-0.863573\pi\)
0.415597 + 0.909549i \(0.363573\pi\)
\(198\) −8920.29 8920.29i −0.227535 0.227535i
\(199\) 54177.6i 1.36809i 0.729441 + 0.684043i \(0.239780\pi\)
−0.729441 + 0.684043i \(0.760220\pi\)
\(200\) −20316.7 + 6138.30i −0.507918 + 0.153457i
\(201\) −47695.8 −1.18056
\(202\) 16454.5 16454.5i 0.403258 0.403258i
\(203\) 2667.21 + 2667.21i 0.0647239 + 0.0647239i
\(204\) 26868.6i 0.645631i
\(205\) 28705.5 17183.7i 0.683057 0.408892i
\(206\) −24057.9 −0.566921
\(207\) 1061.57 1061.57i 0.0247748 0.0247748i
\(208\) −11783.4 11783.4i −0.272361 0.272361i
\(209\) 110193.i 2.52266i
\(210\) −999.487 + 3980.76i −0.0226641 + 0.0902668i
\(211\) 73142.2 1.64287 0.821435 0.570302i \(-0.193174\pi\)
0.821435 + 0.570302i \(0.193174\pi\)
\(212\) −10618.2 + 10618.2i −0.236255 + 0.236255i
\(213\) −45857.4 45857.4i −1.01076 1.01076i
\(214\) 101572.i 2.21793i
\(215\) −42442.0 10656.3i −0.918162 0.230531i
\(216\) 26374.1 0.565289
\(217\) 3466.37 3466.37i 0.0736131 0.0736131i
\(218\) 40069.1 + 40069.1i 0.843135 + 0.843135i
\(219\) 33792.7i 0.704586i
\(220\) −21891.1 36569.3i −0.452296 0.755564i
\(221\) −18533.9 −0.379473
\(222\) 26253.9 26253.9i 0.532707 0.532707i
\(223\) −3617.58 3617.58i −0.0727458 0.0727458i 0.669798 0.742544i \(-0.266381\pi\)
−0.742544 + 0.669798i \(0.766381\pi\)
\(224\) 4206.05i 0.0838259i
\(225\) −7497.63 4018.32i −0.148101 0.0793741i
\(226\) −34645.7 −0.678316
\(227\) 20111.1 20111.1i 0.390287 0.390287i −0.484502 0.874790i \(-0.660999\pi\)
0.874790 + 0.484502i \(0.160999\pi\)
\(228\) −32038.9 32038.9i −0.616323 0.616323i
\(229\) 22418.6i 0.427501i −0.976888 0.213751i \(-0.931432\pi\)
0.976888 0.213751i \(-0.0685680\pi\)
\(230\) 11887.2 7115.90i 0.224710 0.134516i
\(231\) 6028.62 0.112978
\(232\) 22753.4 22753.4i 0.422737 0.422737i
\(233\) 31110.1 + 31110.1i 0.573046 + 0.573046i 0.932978 0.359933i \(-0.117200\pi\)
−0.359933 + 0.932978i \(0.617200\pi\)
\(234\) 3578.13i 0.0653469i
\(235\) −20580.6 + 81968.8i −0.372669 + 1.48427i
\(236\) −59652.9 −1.07104
\(237\) 29718.6 29718.6i 0.529092 0.529092i
\(238\) 5008.70 + 5008.70i 0.0884243 + 0.0884243i
\(239\) 18817.0i 0.329423i −0.986342 0.164711i \(-0.947331\pi\)
0.986342 0.164711i \(-0.0526693\pi\)
\(240\) 63389.4 + 15915.7i 1.10051 + 0.276315i
\(241\) 73856.4 1.27161 0.635805 0.771849i \(-0.280668\pi\)
0.635805 + 0.771849i \(0.280668\pi\)
\(242\) −68900.8 + 68900.8i −1.17650 + 1.17650i
\(243\) 13874.1 + 13874.1i 0.234959 + 0.234959i
\(244\) 23504.2i 0.394790i
\(245\) −30626.9 51162.5i −0.510235 0.852352i
\(246\) −55192.3 −0.912028
\(247\) 22100.4 22100.4i 0.362248 0.362248i
\(248\) −29570.9 29570.9i −0.480796 0.480796i
\(249\) 18137.2i 0.292531i
\(250\) −58076.8 52814.8i −0.929229 0.845037i
\(251\) 77295.7 1.22690 0.613448 0.789735i \(-0.289782\pi\)
0.613448 + 0.789735i \(0.289782\pi\)
\(252\) −354.017 + 354.017i −0.00557473 + 0.00557473i
\(253\) −14389.5 14389.5i −0.224804 0.224804i
\(254\) 124215.i 1.92533i
\(255\) 62368.6 37335.1i 0.959148 0.574165i
\(256\) 82966.6 1.26597
\(257\) −46347.9 + 46347.9i −0.701720 + 0.701720i −0.964780 0.263060i \(-0.915268\pi\)
0.263060 + 0.964780i \(0.415268\pi\)
\(258\) 51046.3 + 51046.3i 0.766876 + 0.766876i
\(259\) 3583.55i 0.0534213i
\(260\) 2943.88 11724.9i 0.0435485 0.173445i
\(261\) 12897.1 0.189326
\(262\) −76935.4 + 76935.4i −1.12079 + 1.12079i
\(263\) −25093.0 25093.0i −0.362777 0.362777i 0.502057 0.864835i \(-0.332577\pi\)
−0.864835 + 0.502057i \(0.832577\pi\)
\(264\) 51428.9i 0.737903i
\(265\) 39402.1 + 9893.03i 0.561083 + 0.140876i
\(266\) −11945.1 −0.168821
\(267\) 47217.8 47217.8i 0.662343 0.662343i
\(268\) −37964.9 37964.9i −0.528582 0.528582i
\(269\) 35536.6i 0.491102i 0.969384 + 0.245551i \(0.0789689\pi\)
−0.969384 + 0.245551i \(0.921031\pi\)
\(270\) 50104.1 + 83699.4i 0.687300 + 1.14814i
\(271\) −134131. −1.82638 −0.913189 0.407536i \(-0.866388\pi\)
−0.913189 + 0.407536i \(0.866388\pi\)
\(272\) 79758.2 79758.2i 1.07805 1.07805i
\(273\) 1209.11 + 1209.11i 0.0162233 + 0.0162233i
\(274\) 78795.5i 1.04954i
\(275\) −54467.7 + 101629.i −0.720234 + 1.34386i
\(276\) −8367.61 −0.109846
\(277\) −21251.3 + 21251.3i −0.276966 + 0.276966i −0.831896 0.554931i \(-0.812745\pi\)
0.554931 + 0.831896i \(0.312745\pi\)
\(278\) 32285.5 + 32285.5i 0.417752 + 0.417752i
\(279\) 16761.4i 0.215329i
\(280\) 2899.55 1735.73i 0.0369840 0.0221394i
\(281\) −28206.2 −0.357216 −0.178608 0.983920i \(-0.557159\pi\)
−0.178608 + 0.983920i \(0.557159\pi\)
\(282\) 98586.3 98586.3i 1.23971 1.23971i
\(283\) 7699.00 + 7699.00i 0.0961305 + 0.0961305i 0.753537 0.657406i \(-0.228346\pi\)
−0.657406 + 0.753537i \(0.728346\pi\)
\(284\) 73003.1i 0.905117i
\(285\) −29850.8 + 118890.i −0.367507 + 1.46371i
\(286\) −48501.1 −0.592952
\(287\) −3766.76 + 3766.76i −0.0457303 + 0.0457303i
\(288\) 10169.0 + 10169.0i 0.122601 + 0.122601i
\(289\) 41928.9i 0.502016i
\(290\) 115435. + 28983.2i 1.37259 + 0.344628i
\(291\) −47959.4 −0.566354
\(292\) −26898.3 + 26898.3i −0.315471 + 0.315471i
\(293\) −14289.1 14289.1i −0.166445 0.166445i 0.618970 0.785415i \(-0.287550\pi\)
−0.785415 + 0.618970i \(0.787550\pi\)
\(294\) 98370.5i 1.13807i
\(295\) 82890.4 + 138469.i 0.952490 + 1.59114i
\(296\) −30570.5 −0.348915
\(297\) 101319. 101319.i 1.14862 1.14862i
\(298\) 54295.4 + 54295.4i 0.611408 + 0.611408i
\(299\) 5771.95i 0.0645625i
\(300\) 13712.5 + 45385.9i 0.152361 + 0.504288i
\(301\) 6967.61 0.0769044
\(302\) −61156.3 + 61156.3i −0.670544 + 0.670544i
\(303\) 26886.2 + 26886.2i 0.292849 + 0.292849i
\(304\) 190212.i 2.05822i
\(305\) 54559.1 32660.1i 0.586499 0.351090i
\(306\) 24219.3 0.258653
\(307\) −48387.2 + 48387.2i −0.513397 + 0.513397i −0.915566 0.402169i \(-0.868257\pi\)
0.402169 + 0.915566i \(0.368257\pi\)
\(308\) 4798.66 + 4798.66i 0.0505846 + 0.0505846i
\(309\) 39309.8i 0.411703i
\(310\) 37667.3 150022.i 0.391960 1.56110i
\(311\) −39390.4 −0.407258 −0.203629 0.979048i \(-0.565274\pi\)
−0.203629 + 0.979048i \(0.565274\pi\)
\(312\) 10314.6 10314.6i 0.105961 0.105961i
\(313\) 40352.4 + 40352.4i 0.411889 + 0.411889i 0.882396 0.470507i \(-0.155929\pi\)
−0.470507 + 0.882396i \(0.655929\pi\)
\(314\) 14291.7i 0.144952i
\(315\) 1313.69 + 329.839i 0.0132395 + 0.00332415i
\(316\) 47310.8 0.473790
\(317\) −20437.7 + 20437.7i −0.203383 + 0.203383i −0.801448 0.598065i \(-0.795936\pi\)
0.598065 + 0.801448i \(0.295936\pi\)
\(318\) −47390.1 47390.1i −0.468633 0.468633i
\(319\) 174818.i 1.71793i
\(320\) 2737.04 + 4572.25i 0.0267289 + 0.0446509i
\(321\) 165966. 1.61068
\(322\) −1559.85 + 1559.85i −0.0150442 + 0.0150442i
\(323\) 149590. + 149590.i 1.43383 + 1.43383i
\(324\) 48730.0i 0.464201i
\(325\) −31307.1 + 9458.81i −0.296398 + 0.0895509i
\(326\) −83764.2 −0.788176
\(327\) −65471.7 + 65471.7i −0.612292 + 0.612292i
\(328\) 32133.5 + 32133.5i 0.298682 + 0.298682i
\(329\) 13456.6i 0.124321i
\(330\) 163212. 97701.9i 1.49873 0.897171i
\(331\) −106355. −0.970740 −0.485370 0.874309i \(-0.661315\pi\)
−0.485370 + 0.874309i \(0.661315\pi\)
\(332\) −14436.9 + 14436.9i −0.130978 + 0.130978i
\(333\) −8664.01 8664.01i −0.0781323 0.0781323i
\(334\) 37444.4i 0.335655i
\(335\) −35372.0 + 140880.i −0.315188 + 1.25533i
\(336\) −10406.5 −0.0921777
\(337\) −92531.5 + 92531.5i −0.814760 + 0.814760i −0.985343 0.170583i \(-0.945435\pi\)
0.170583 + 0.985343i \(0.445435\pi\)
\(338\) 91736.2 + 91736.2i 0.802985 + 0.802985i
\(339\) 56610.0i 0.492599i
\(340\) 79362.2 + 19926.2i 0.686524 + 0.172372i
\(341\) −227198. −1.95387
\(342\) −28879.8 + 28879.8i −0.246912 + 0.246912i
\(343\) 13471.8 + 13471.8i 0.114508 + 0.114508i
\(344\) 59439.2i 0.502292i
\(345\) 11627.2 + 19423.3i 0.0976868 + 0.163187i
\(346\) −259884. −2.17083
\(347\) 151780. 151780.i 1.26053 1.26053i 0.309698 0.950835i \(-0.399772\pi\)
0.950835 0.309698i \(-0.100228\pi\)
\(348\) −50829.2 50829.2i −0.419715 0.419715i
\(349\) 100880.i 0.828239i 0.910223 + 0.414119i \(0.135910\pi\)
−0.910223 + 0.414119i \(0.864090\pi\)
\(350\) 11016.8 + 5904.40i 0.0899332 + 0.0481992i
\(351\) 40641.2 0.329877
\(352\) 137840. 137840.i 1.11247 1.11247i
\(353\) 44859.7 + 44859.7i 0.360004 + 0.360004i 0.863814 0.503810i \(-0.168069\pi\)
−0.503810 + 0.863814i \(0.668069\pi\)
\(354\) 266236.i 2.12452i
\(355\) −169458. + 101441.i −1.34464 + 0.804928i
\(356\) 75168.8 0.593113
\(357\) −8184.07 + 8184.07i −0.0642145 + 0.0642145i
\(358\) −72654.5 72654.5i −0.566887 0.566887i
\(359\) 72835.5i 0.565138i −0.959247 0.282569i \(-0.908813\pi\)
0.959247 0.282569i \(-0.0911866\pi\)
\(360\) 2813.79 11206.8i 0.0217113 0.0864720i
\(361\) −226432. −1.73749
\(362\) −4882.29 + 4882.29i −0.0372569 + 0.0372569i
\(363\) −112582. 112582.i −0.854388 0.854388i
\(364\) 1924.85i 0.0145276i
\(365\) 99814.0 + 25061.2i 0.749214 + 0.188112i
\(366\) −104901. −0.783102
\(367\) −64183.5 + 64183.5i −0.476531 + 0.476531i −0.904020 0.427489i \(-0.859398\pi\)
0.427489 + 0.904020i \(0.359398\pi\)
\(368\) 24838.9 + 24838.9i 0.183416 + 0.183416i
\(369\) 18213.9i 0.133768i
\(370\) −58076.3 97017.0i −0.424224 0.708670i
\(371\) −6468.55 −0.0469958
\(372\) −66058.9 + 66058.9i −0.477359 + 0.477359i
\(373\) −167651. 167651.i −1.20501 1.20501i −0.972624 0.232383i \(-0.925348\pi\)
−0.232383 0.972624i \(-0.574652\pi\)
\(374\) 328289.i 2.34700i
\(375\) 86297.8 94895.8i 0.613673 0.674814i
\(376\) −114796. −0.811989
\(377\) 35061.8 35061.8i 0.246690 0.246690i
\(378\) −10983.1 10983.1i −0.0768674 0.0768674i
\(379\) 52795.3i 0.367550i −0.982968 0.183775i \(-0.941168\pi\)
0.982968 0.183775i \(-0.0588318\pi\)
\(380\) −118395. + 70873.4i −0.819907 + 0.490813i
\(381\) −202963. −1.39819
\(382\) −86475.1 + 86475.1i −0.592603 + 0.592603i
\(383\) 81271.5 + 81271.5i 0.554040 + 0.554040i 0.927604 0.373565i \(-0.121865\pi\)
−0.373565 + 0.927604i \(0.621865\pi\)
\(384\) 129992.i 0.881566i
\(385\) 4470.92 17806.8i 0.0301631 0.120134i
\(386\) 186748. 1.25337
\(387\) 16845.7 16845.7i 0.112478 0.112478i
\(388\) −38174.7 38174.7i −0.253578 0.253578i
\(389\) 63912.5i 0.422364i 0.977447 + 0.211182i \(0.0677312\pi\)
−0.977447 + 0.211182i \(0.932269\pi\)
\(390\) 52329.2 + 13138.8i 0.344045 + 0.0863825i
\(391\) 39068.5 0.255549
\(392\) 57272.2 57272.2i 0.372711 0.372711i
\(393\) −125710. 125710.i −0.813926 0.813926i
\(394\) 136202.i 0.877388i
\(395\) −65740.5 109820.i −0.421346 0.703862i
\(396\) 23203.6 0.147967
\(397\) 185435. 185435.i 1.17655 1.17655i 0.195936 0.980617i \(-0.437225\pi\)
0.980617 0.195936i \(-0.0627745\pi\)
\(398\) −192467. 192467.i −1.21504 1.21504i
\(399\) 19517.9i 0.122599i
\(400\) 94021.2 175431.i 0.587633 1.09644i
\(401\) 159570. 0.992345 0.496172 0.868224i \(-0.334738\pi\)
0.496172 + 0.868224i \(0.334738\pi\)
\(402\) 169441. 169441.i 1.04849 1.04849i
\(403\) −45567.2 45567.2i −0.280571 0.280571i
\(404\) 42801.7i 0.262240i
\(405\) −113114. + 67712.5i −0.689617 + 0.412818i
\(406\) −18950.6 −0.114967
\(407\) −117439. + 117439.i −0.708966 + 0.708966i
\(408\) 69816.6 + 69816.6i 0.419410 + 0.419410i
\(409\) 15836.9i 0.0946727i 0.998879 + 0.0473363i \(0.0150733\pi\)
−0.998879 + 0.0473363i \(0.984927\pi\)
\(410\) −40931.5 + 163022.i −0.243495 + 0.969794i
\(411\) 128749. 0.762188
\(412\) 31289.8 31289.8i 0.184335 0.184335i
\(413\) −18170.1 18170.1i −0.106526 0.106526i
\(414\) 7542.53i 0.0440065i
\(415\) 53572.3 + 13450.9i 0.311060 + 0.0781006i
\(416\) 55290.7 0.319496
\(417\) −52753.6 + 52753.6i −0.303375 + 0.303375i
\(418\) 391462. + 391462.i 2.24046 + 2.24046i
\(419\) 15156.5i 0.0863318i 0.999068 + 0.0431659i \(0.0137444\pi\)
−0.999068 + 0.0431659i \(0.986256\pi\)
\(420\) −3877.47 6477.35i −0.0219811 0.0367197i
\(421\) 140633. 0.793456 0.396728 0.917936i \(-0.370146\pi\)
0.396728 + 0.917936i \(0.370146\pi\)
\(422\) −259840. + 259840.i −1.45908 + 1.45908i
\(423\) −32534.3 32534.3i −0.181828 0.181828i
\(424\) 55181.9i 0.306948i
\(425\) −64023.7 211908.i −0.354457 1.17319i
\(426\) 325819. 1.79538
\(427\) −7159.29 + 7159.29i −0.0392658 + 0.0392658i
\(428\) 132106. + 132106.i 0.721163 + 0.721163i
\(429\) 79249.3i 0.430607i
\(430\) 188633. 112920.i 1.02019 0.610706i
\(431\) −83775.8 −0.450987 −0.225493 0.974245i \(-0.572399\pi\)
−0.225493 + 0.974245i \(0.572399\pi\)
\(432\) −174894. + 174894.i −0.937148 + 0.937148i
\(433\) 93346.8 + 93346.8i 0.497879 + 0.497879i 0.910777 0.412898i \(-0.135484\pi\)
−0.412898 + 0.910777i \(0.635484\pi\)
\(434\) 24628.7i 0.130756i
\(435\) −47357.7 + 188617.i −0.250272 + 0.996784i
\(436\) −104228. −0.548293
\(437\) −46586.5 + 46586.5i −0.243948 + 0.243948i
\(438\) −120049. 120049.i −0.625765 0.625765i
\(439\) 131771.i 0.683737i 0.939748 + 0.341869i \(0.111060\pi\)
−0.939748 + 0.341869i \(0.888940\pi\)
\(440\) −151906. 38140.5i −0.784640 0.197007i
\(441\) 32463.1 0.166922
\(442\) 65842.0 65842.0i 0.337022 0.337022i
\(443\) −1523.66 1523.66i −0.00776389 0.00776389i 0.703214 0.710978i \(-0.251747\pi\)
−0.710978 + 0.703214i \(0.751747\pi\)
\(444\) 68292.1i 0.346421i
\(445\) −104450. 174485.i −0.527461 0.881128i
\(446\) 25703.1 0.129216
\(447\) −88717.1 + 88717.1i −0.444010 + 0.444010i
\(448\) −599.975 599.975i −0.00298935 0.00298935i
\(449\) 171320.i 0.849795i −0.905241 0.424898i \(-0.860310\pi\)
0.905241 0.424898i \(-0.139690\pi\)
\(450\) 40910.7 12360.4i 0.202028 0.0610388i
\(451\) 246887. 1.21380
\(452\) 45060.4 45060.4i 0.220556 0.220556i
\(453\) −99927.6 99927.6i −0.486955 0.486955i
\(454\) 142891.i 0.693253i
\(455\) 4468.06 2674.67i 0.0215822 0.0129195i
\(456\) −166503. −0.800742
\(457\) −73654.8 + 73654.8i −0.352670 + 0.352670i −0.861102 0.508432i \(-0.830225\pi\)
0.508432 + 0.861102i \(0.330225\pi\)
\(458\) 79642.7 + 79642.7i 0.379677 + 0.379677i
\(459\) 275087.i 1.30571i
\(460\) −6205.56 + 24715.5i −0.0293268 + 0.116803i
\(461\) 274304. 1.29072 0.645358 0.763881i \(-0.276708\pi\)
0.645358 + 0.763881i \(0.276708\pi\)
\(462\) −21416.8 + 21416.8i −0.100339 + 0.100339i
\(463\) −1734.02 1734.02i −0.00808894 0.00808894i 0.703051 0.711140i \(-0.251821\pi\)
−0.711140 + 0.703051i \(0.751821\pi\)
\(464\) 301768.i 1.40164i
\(465\) 245131. + 61547.2i 1.13368 + 0.284644i
\(466\) −221039. −1.01788
\(467\) 222292. 222292.i 1.01927 1.01927i 0.0194620 0.999811i \(-0.493805\pi\)
0.999811 0.0194620i \(-0.00619532\pi\)
\(468\) 4653.74 + 4653.74i 0.0212476 + 0.0212476i
\(469\) 23127.9i 0.105146i
\(470\) −218083. 364309.i −0.987247 1.64921i
\(471\) −23352.2 −0.105265
\(472\) −155005. + 155005.i −0.695764 + 0.695764i
\(473\) −228341. 228341.i −1.02062 1.02062i
\(474\) 211152.i 0.939807i
\(475\) 329029. + 176341.i 1.45830 + 0.781569i
\(476\) −13028.7 −0.0575026
\(477\) −15639.1 + 15639.1i −0.0687346 + 0.0687346i
\(478\) 66847.8 + 66847.8i 0.292571 + 0.292571i
\(479\) 69849.2i 0.304432i 0.988347 + 0.152216i \(0.0486410\pi\)
−0.988347 + 0.152216i \(0.951359\pi\)
\(480\) −186060. + 111379.i −0.807550 + 0.483416i
\(481\) −47107.7 −0.203611
\(482\) −262377. + 262377.i −1.12936 + 1.12936i
\(483\) −2548.74 2548.74i −0.0109253 0.0109253i
\(484\) 179226.i 0.765085i
\(485\) −35567.5 + 141658.i −0.151206 + 0.602225i
\(486\) −98576.2 −0.417349
\(487\) −3885.73 + 3885.73i −0.0163838 + 0.0163838i −0.715251 0.698867i \(-0.753688\pi\)
0.698867 + 0.715251i \(0.253688\pi\)
\(488\) 61074.4 + 61074.4i 0.256460 + 0.256460i
\(489\) 136868.i 0.572380i
\(490\) 290559. + 72953.2i 1.21016 + 0.303845i
\(491\) 323891. 1.34349 0.671747 0.740781i \(-0.265544\pi\)
0.671747 + 0.740781i \(0.265544\pi\)
\(492\) 71783.5 71783.5i 0.296548 0.296548i
\(493\) 237322. + 237322.i 0.976438 + 0.976438i
\(494\) 157024.i 0.643447i
\(495\) −32242.4 53861.3i −0.131588 0.219820i
\(496\) 392186. 1.59415
\(497\) 22236.5 22236.5i 0.0900229 0.0900229i
\(498\) −64433.0 64433.0i −0.259806 0.259806i
\(499\) 216973.i 0.871373i 0.900099 + 0.435686i \(0.143494\pi\)
−0.900099 + 0.435686i \(0.856506\pi\)
\(500\) 144226. 6843.78i 0.576906 0.0273751i
\(501\) −61183.0 −0.243756
\(502\) −274595. + 274595.i −1.08964 + 1.08964i
\(503\) 308050. + 308050.i 1.21755 + 1.21755i 0.968489 + 0.249056i \(0.0801204\pi\)
0.249056 + 0.968489i \(0.419880\pi\)
\(504\) 1839.79i 0.00724282i
\(505\) 99353.4 59474.9i 0.389583 0.233212i
\(506\) 102238. 0.399311
\(507\) −149894. + 149894.i −0.583135 + 0.583135i
\(508\) −161554. 161554.i −0.626024 0.626024i
\(509\) 480107.i 1.85311i −0.376154 0.926557i \(-0.622754\pi\)
0.376154 0.926557i \(-0.377246\pi\)
\(510\) −88932.2 + 354200.i −0.341916 + 1.36178i
\(511\) −16386.2 −0.0627534
\(512\) −115587. + 115587.i −0.440929 + 0.440929i
\(513\) −328023. 328023.i −1.24643 1.24643i
\(514\) 329304.i 1.24644i
\(515\) −116110. 29152.8i −0.437779 0.109917i
\(516\) −132782. −0.498702
\(517\) −440998. + 440998.i −1.64989 + 1.64989i
\(518\) 12730.7 + 12730.7i 0.0474451 + 0.0474451i
\(519\) 424642.i 1.57648i
\(520\) −22817.0 38116.1i −0.0843825 0.140962i
\(521\) 409811. 1.50976 0.754880 0.655863i \(-0.227695\pi\)
0.754880 + 0.655863i \(0.227695\pi\)
\(522\) −45817.3 + 45817.3i −0.168147 + 0.168147i
\(523\) −24703.1 24703.1i −0.0903125 0.0903125i 0.660507 0.750820i \(-0.270341\pi\)
−0.750820 + 0.660507i \(0.770341\pi\)
\(524\) 200125.i 0.728852i
\(525\) −9647.61 + 18001.1i −0.0350027 + 0.0653103i
\(526\) 178287. 0.644388
\(527\) 308430. 308430.i 1.11054 1.11054i
\(528\) 341040. + 341040.i 1.22331 + 1.22331i
\(529\) 12167.0i 0.0434783i
\(530\) −175122. + 104832.i −0.623432 + 0.373199i
\(531\) −87860.1 −0.311604
\(532\) 15535.8 15535.8i 0.0548923 0.0548923i
\(533\) 49516.0 + 49516.0i 0.174298 + 0.174298i
\(534\) 335485.i 1.17650i
\(535\) 123083. 490216.i 0.430022 1.71270i
\(536\) −197300. −0.686747
\(537\) 118715. 118715.i 0.411678 0.411678i
\(538\) −126245. 126245.i −0.436163 0.436163i
\(539\) 440033.i 1.51463i
\(540\) −174026. 43694.3i −0.596797 0.149843i
\(541\) 300988. 1.02838 0.514191 0.857675i \(-0.328092\pi\)
0.514191 + 0.857675i \(0.328092\pi\)
\(542\) 476504. 476504.i 1.62206 1.62206i
\(543\) −7977.51 7977.51i −0.0270563 0.0270563i
\(544\) 374245.i 1.26462i
\(545\) 144830. + 241940.i 0.487602 + 0.814544i
\(546\) −8590.77 −0.0288169
\(547\) 26389.6 26389.6i 0.0881978 0.0881978i −0.661631 0.749829i \(-0.730136\pi\)
0.749829 + 0.661631i \(0.230136\pi\)
\(548\) 102482. + 102482.i 0.341261 + 0.341261i
\(549\) 34618.3i 0.114858i
\(550\) −167543. 554539.i −0.553861 1.83319i
\(551\) −565981. −1.86423
\(552\) −21742.8 + 21742.8i −0.0713571 + 0.0713571i
\(553\) 14410.7 + 14410.7i 0.0471232 + 0.0471232i
\(554\) 150992.i 0.491964i
\(555\) 158523. 94894.9i 0.514643 0.308075i
\(556\) −83981.6 −0.271665
\(557\) −142081. + 142081.i −0.457959 + 0.457959i −0.897985 0.440026i \(-0.854969\pi\)
0.440026 + 0.897985i \(0.354969\pi\)
\(558\) 59545.3 + 59545.3i 0.191240 + 0.191240i
\(559\) 91592.9i 0.293115i
\(560\) −7717.63 + 30737.8i −0.0246098 + 0.0980160i
\(561\) 536414. 1.70441
\(562\) 100203. 100203.i 0.317255 0.317255i
\(563\) 115383. + 115383.i 0.364021 + 0.364021i 0.865291 0.501270i \(-0.167134\pi\)
−0.501270 + 0.865291i \(0.667134\pi\)
\(564\) 256444.i 0.806185i
\(565\) −167210. 41982.9i −0.523800 0.131515i
\(566\) −54701.8 −0.170753
\(567\) 14843.0 14843.0i 0.0461695 0.0461695i
\(568\) −189695. 189695.i −0.587975 0.587975i
\(569\) 25415.5i 0.0785008i 0.999229 + 0.0392504i \(0.0124970\pi\)
−0.999229 + 0.0392504i \(0.987503\pi\)
\(570\) −316314. 528405.i −0.973573 1.62636i
\(571\) 196811. 0.603639 0.301820 0.953365i \(-0.402406\pi\)
0.301820 + 0.953365i \(0.402406\pi\)
\(572\) 63080.9 63080.9i 0.192799 0.192799i
\(573\) −141298. 141298.i −0.430354 0.430354i
\(574\) 26763.0i 0.0812291i
\(575\) 65993.8 19938.7i 0.199603 0.0603062i
\(576\) −2901.14 −0.00874427
\(577\) 167061. 167061.i 0.501793 0.501793i −0.410202 0.911995i \(-0.634542\pi\)
0.911995 + 0.410202i \(0.134542\pi\)
\(578\) 148953. + 148953.i 0.445856 + 0.445856i
\(579\) 305140.i 0.910211i
\(580\) −187831. + 112439.i −0.558355 + 0.334243i
\(581\) −8794.84 −0.0260541
\(582\) 170377. 170377.i 0.502996 0.502996i
\(583\) 211986. + 211986.i 0.623692 + 0.623692i
\(584\) 139788.i 0.409867i
\(585\) 4335.91 17269.1i 0.0126697 0.0504612i
\(586\) 101525. 0.295650
\(587\) −115256. + 115256.i −0.334494 + 0.334494i −0.854290 0.519796i \(-0.826008\pi\)
0.519796 + 0.854290i \(0.326008\pi\)
\(588\) −127941. 127941.i −0.370047 0.370047i
\(589\) 735564.i 2.12026i
\(590\) −786386. 197445.i −2.25908 0.567208i
\(591\) 222550. 0.637167
\(592\) 202722. 202722.i 0.578439 0.578439i
\(593\) −100599. 100599.i −0.286077 0.286077i 0.549449 0.835527i \(-0.314837\pi\)
−0.835527 + 0.549449i \(0.814837\pi\)
\(594\) 719873.i 2.04025i
\(595\) 18104.0 + 30242.9i 0.0511376 + 0.0854258i
\(596\) −141234. −0.397601
\(597\) 314486. 314486.i 0.882373 0.882373i
\(598\) 20505.0 + 20505.0i 0.0573400 + 0.0573400i
\(599\) 505775.i 1.40962i −0.709394 0.704812i \(-0.751031\pi\)
0.709394 0.704812i \(-0.248969\pi\)
\(600\) 153564. + 82301.8i 0.426567 + 0.228616i
\(601\) −420577. −1.16439 −0.582193 0.813051i \(-0.697805\pi\)
−0.582193 + 0.813051i \(0.697805\pi\)
\(602\) −24752.6 + 24752.6i −0.0683012 + 0.0683012i
\(603\) −55916.8 55916.8i −0.153783 0.153783i
\(604\) 159081.i 0.436057i
\(605\) −416027. + 249042.i −1.13661 + 0.680397i
\(606\) −191028. −0.520177
\(607\) 466115. 466115.i 1.26507 1.26507i 0.316470 0.948602i \(-0.397502\pi\)
0.948602 0.316470i \(-0.102498\pi\)
\(608\) −446262. 446262.i −1.20721 1.20721i
\(609\) 30964.8i 0.0834897i
\(610\) −77796.5 + 309849.i −0.209074 + 0.832702i
\(611\) −176894. −0.473840
\(612\) −31499.7 + 31499.7i −0.0841015 + 0.0841015i
\(613\) −425779. 425779.i −1.13309 1.13309i −0.989661 0.143426i \(-0.954188\pi\)
−0.143426 0.989661i \(-0.545812\pi\)
\(614\) 343793.i 0.911928i
\(615\) −266374. 66880.9i −0.704273 0.176828i
\(616\) 24938.1 0.0657207
\(617\) 371023. 371023.i 0.974609 0.974609i −0.0250764 0.999686i \(-0.507983\pi\)
0.999686 + 0.0250764i \(0.00798290\pi\)
\(618\) 139649. + 139649.i 0.365646 + 0.365646i
\(619\) 735915.i 1.92064i 0.278895 + 0.960322i \(0.410032\pi\)
−0.278895 + 0.960322i \(0.589968\pi\)
\(620\) 146129. + 244110.i 0.380148 + 0.635041i
\(621\) −85669.7 −0.222149
\(622\) 139935. 139935.i 0.361699 0.361699i
\(623\) 22896.1 + 22896.1i 0.0589911 + 0.0589911i
\(624\) 136799.i 0.351328i
\(625\) −216295. 325276.i −0.553716 0.832706i
\(626\) −286706. −0.731624
\(627\) −639637. + 639637.i −1.62704 + 1.62704i
\(628\) −18587.9 18587.9i −0.0471314 0.0471314i
\(629\) 318857.i 0.805925i
\(630\) −5838.66 + 3495.14i −0.0147107 + 0.00880610i
\(631\) 610188. 1.53252 0.766258 0.642533i \(-0.222117\pi\)
0.766258 + 0.642533i \(0.222117\pi\)
\(632\) 122935. 122935.i 0.307780 0.307780i
\(633\) −424570. 424570.i −1.05960 1.05960i
\(634\) 145211.i 0.361261i
\(635\) −150521. + 599495.i −0.373292 + 1.48675i
\(636\) 123272. 0.304754
\(637\) 88253.6 88253.6i 0.217497 0.217497i
\(638\) 621047. + 621047.i 1.52575 + 1.52575i
\(639\) 107523.i 0.263329i
\(640\) 383960. + 96404.4i 0.937403 + 0.235362i
\(641\) −251941. −0.613172 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(642\) −589598. + 589598.i −1.43049 + 1.43049i
\(643\) 43628.3 + 43628.3i 0.105523 + 0.105523i 0.757897 0.652374i \(-0.226227\pi\)
−0.652374 + 0.757897i \(0.726227\pi\)
\(644\) 4057.50i 0.00978332i
\(645\) 184507. + 308221.i 0.443500 + 0.740871i
\(646\) −1.06285e6 −2.54687
\(647\) 440782. 440782.i 1.05297 1.05297i 0.0544523 0.998516i \(-0.482659\pi\)
0.998516 0.0544523i \(-0.0173413\pi\)
\(648\) −126622. 126622.i −0.301551 0.301551i
\(649\) 1.19093e6i 2.82747i
\(650\) 77616.4 144822.i 0.183708 0.342773i
\(651\) −40242.6 −0.0949563
\(652\) 108944. 108944.i 0.256277 0.256277i
\(653\) −265254. 265254.i −0.622064 0.622064i 0.323995 0.946059i \(-0.394974\pi\)
−0.946059 + 0.323995i \(0.894974\pi\)
\(654\) 465180.i 1.08759i
\(655\) −464540. + 278083.i −1.08278 + 0.648175i
\(656\) −426172. −0.990325
\(657\) −39617.3 + 39617.3i −0.0917812 + 0.0917812i
\(658\) 47805.0 + 47805.0i 0.110413 + 0.110413i
\(659\) 456316.i 1.05074i 0.850874 + 0.525369i \(0.176073\pi\)
−0.850874 + 0.525369i \(0.823927\pi\)
\(660\) −85202.8 + 339346.i −0.195599 + 0.779032i
\(661\) 350242. 0.801614 0.400807 0.916162i \(-0.368730\pi\)
0.400807 + 0.916162i \(0.368730\pi\)
\(662\) 377830. 377830.i 0.862145 0.862145i
\(663\) 107584. + 107584.i 0.244749 + 0.244749i
\(664\) 75026.9i 0.170169i
\(665\) −57650.3 14474.8i −0.130364 0.0327317i
\(666\) 61558.2 0.138783
\(667\) −73908.6 + 73908.6i −0.166128 + 0.166128i
\(668\) −48700.4 48700.4i −0.109139 0.109139i
\(669\) 41998.0i 0.0938375i
\(670\) −374820. 626139.i −0.834973 1.39483i
\(671\) 469246. 1.04221
\(672\) 24414.9 24414.9i 0.0540651 0.0540651i
\(673\) −522535. 522535.i −1.15368 1.15368i −0.985809 0.167871i \(-0.946311\pi\)
−0.167871 0.985809i \(-0.553689\pi\)
\(674\) 657441.i 1.44723i
\(675\) 140392. + 464672.i 0.308130 + 1.01986i
\(676\) −238626. −0.522184
\(677\) −220817. + 220817.i −0.481788 + 0.481788i −0.905702 0.423914i \(-0.860656\pi\)
0.423914 + 0.905702i \(0.360656\pi\)
\(678\) 201109. + 201109.i 0.437493 + 0.437493i
\(679\) 23255.7i 0.0504418i
\(680\) 257996. 154441.i 0.557949 0.333999i
\(681\) −233479. −0.503446
\(682\) 807128. 807128.i 1.73530 1.73530i
\(683\) 17459.2 + 17459.2i 0.0374268 + 0.0374268i 0.725572 0.688146i \(-0.241575\pi\)
−0.688146 + 0.725572i \(0.741575\pi\)
\(684\) 75122.5i 0.160568i
\(685\) 95482.7 380290.i 0.203490 0.810463i
\(686\) −95717.6 −0.203397
\(687\) −130134. + 130134.i −0.275725 + 0.275725i
\(688\) 394159. + 394159.i 0.832711 + 0.832711i
\(689\) 85032.5i 0.179121i
\(690\) −110308. 27695.9i −0.231690 0.0581725i
\(691\) 637693. 1.33553 0.667767 0.744370i \(-0.267250\pi\)
0.667767 + 0.744370i \(0.267250\pi\)
\(692\) 338006. 338006.i 0.705851 0.705851i
\(693\) 7067.73 + 7067.73i 0.0147168 + 0.0147168i
\(694\) 1.07840e6i 2.23904i
\(695\) 116696. + 194942.i 0.241594 + 0.403586i
\(696\) −264154. −0.545304
\(697\) −335158. + 335158.i −0.689898 + 0.689898i
\(698\) −358380. 358380.i −0.735585 0.735585i
\(699\) 361171.i 0.739193i
\(700\) −22007.9 + 6649.24i −0.0449140 + 0.0135699i
\(701\) −125311. −0.255008 −0.127504 0.991838i \(-0.540697\pi\)
−0.127504 + 0.991838i \(0.540697\pi\)
\(702\) −144379. + 144379.i −0.292974 + 0.292974i
\(703\) 380215. + 380215.i 0.769340 + 0.769340i
\(704\) 39324.6i 0.0793448i
\(705\) 595270. 356341.i 1.19767 0.716947i
\(706\) −318731. −0.639462
\(707\) −13037.2 + 13037.2i −0.0260824 + 0.0260824i
\(708\) 346268. + 346268.i 0.690791 + 0.690791i
\(709\) 719014.i 1.43036i −0.698942 0.715179i \(-0.746345\pi\)
0.698942 0.715179i \(-0.253655\pi\)
\(710\) 241633. 962377.i 0.479335 1.90910i
\(711\) 69682.0 0.137842
\(712\) 195322. 195322.i 0.385294 0.385294i
\(713\) 96053.6 + 96053.6i 0.188945 + 0.188945i
\(714\) 58148.2i 0.114062i
\(715\) −234080. 58772.6i −0.457881 0.114964i
\(716\) 188990. 0.368649
\(717\) −109227. + 109227.i −0.212467 + 0.212467i
\(718\) 258750. + 258750.i 0.501917 + 0.501917i
\(719\) 784081.i 1.51671i 0.651841 + 0.758356i \(0.273997\pi\)
−0.651841 + 0.758356i \(0.726003\pi\)
\(720\) 55656.3 + 92974.4i 0.107362 + 0.179349i
\(721\) 19061.5 0.0366680
\(722\) 804404. 804404.i 1.54312 1.54312i
\(723\) −428716. 428716.i −0.820149 0.820149i
\(724\) 12699.9i 0.0242283i
\(725\) 521999. + 279762.i 0.993101 + 0.532247i
\(726\) 799900. 1.51762
\(727\) −288195. + 288195.i −0.545277 + 0.545277i −0.925071 0.379794i \(-0.875995\pi\)
0.379794 + 0.925071i \(0.375995\pi\)
\(728\) 5001.63 + 5001.63i 0.00943731 + 0.00943731i
\(729\) 588208.i 1.10682i
\(730\) −443622. + 265561.i −0.832468 + 0.498332i
\(731\) 619963. 1.16020
\(732\) 136435. 136435.i 0.254627 0.254627i
\(733\) −369280. 369280.i −0.687302 0.687302i 0.274333 0.961635i \(-0.411543\pi\)
−0.961635 + 0.274333i \(0.911543\pi\)
\(734\) 456027.i 0.846444i
\(735\) −119203. + 474764.i −0.220655 + 0.878826i
\(736\) −116550. −0.215158
\(737\) −757945. + 757945.i −1.39541 + 1.39541i
\(738\) −64705.4 64705.4i −0.118803 0.118803i
\(739\) 123689.i 0.226486i 0.993567 + 0.113243i \(0.0361239\pi\)
−0.993567 + 0.113243i \(0.963876\pi\)
\(740\) 201715. + 50646.5i 0.368363 + 0.0924882i
\(741\) −256573. −0.467277
\(742\) 22979.7 22979.7i 0.0417384 0.0417384i
\(743\) −702418. 702418.i −1.27238 1.27238i −0.944834 0.327549i \(-0.893777\pi\)
−0.327549 0.944834i \(-0.606223\pi\)
\(744\) 343301.i 0.620197i
\(745\) 196251. + 327839.i 0.353590 + 0.590675i
\(746\) 1.19117e6 2.14041
\(747\) −21263.4 + 21263.4i −0.0381059 + 0.0381059i
\(748\) 426975. + 426975.i 0.763130 + 0.763130i
\(749\) 80477.7i 0.143454i
\(750\) 30544.4 + 643695.i 0.0543011 + 1.14435i
\(751\) −453211. −0.803565 −0.401783 0.915735i \(-0.631609\pi\)
−0.401783 + 0.915735i \(0.631609\pi\)
\(752\) 761243. 761243.i 1.34613 1.34613i
\(753\) −448680. 448680.i −0.791309 0.791309i
\(754\) 249116.i 0.438186i
\(755\) −369266. + 221050.i −0.647806 + 0.387790i
\(756\) 28569.4 0.0499871
\(757\) −169459. + 169459.i −0.295715 + 0.295715i −0.839333 0.543618i \(-0.817054\pi\)
0.543618 + 0.839333i \(0.317054\pi\)
\(758\) 187557. + 187557.i 0.326433 + 0.326433i
\(759\) 167054.i 0.289983i
\(760\) −123481. + 491803.i −0.213784 + 0.851459i
\(761\) −163848. −0.282925 −0.141462 0.989944i \(-0.545180\pi\)
−0.141462 + 0.989944i \(0.545180\pi\)
\(762\) 721031. 721031.i 1.24178 1.24178i
\(763\) −31747.6 31747.6i −0.0545333 0.0545333i
\(764\) 224940.i 0.385372i
\(765\) 116889. + 29348.4i 0.199733 + 0.0501489i
\(766\) −577438. −0.984120
\(767\) −238855. + 238855.i −0.406016 + 0.406016i
\(768\) −481598. 481598.i −0.816511 0.816511i
\(769\) 574664.i 0.971765i 0.874024 + 0.485883i \(0.161502\pi\)
−0.874024 + 0.485883i \(0.838498\pi\)
\(770\) 47376.1 + 79142.3i 0.0799058 + 0.133483i
\(771\) 538073. 0.905175
\(772\) −242885. + 242885.i −0.407537 + 0.407537i
\(773\) 250860. + 250860.i 0.419828 + 0.419828i 0.885144 0.465316i \(-0.154059\pi\)
−0.465316 + 0.885144i \(0.654059\pi\)
\(774\) 119690.i 0.199790i
\(775\) 363586. 678403.i 0.605346 1.12949i
\(776\) −198390. −0.329455
\(777\) −20801.5 + 20801.5i −0.0344550 + 0.0344550i
\(778\) −227051. 227051.i −0.375115 0.375115i
\(779\) 799307.i 1.31716i
\(780\) −85148.2 + 50971.4i −0.139954 + 0.0837794i
\(781\) −1.45746e6 −2.38943
\(782\) −138792. + 138792.i −0.226961 + 0.226961i
\(783\) −520402. 520402.i −0.848820 0.848820i
\(784\) 759577.i 1.23578i
\(785\) −17318.4 + 68975.8i −0.0281040 + 0.111933i
\(786\) 893176. 1.44575
\(787\) 565274. 565274.i 0.912661 0.912661i −0.0838197 0.996481i \(-0.526712\pi\)
0.996481 + 0.0838197i \(0.0267120\pi\)
\(788\) 177146. + 177146.i 0.285284 + 0.285284i
\(789\) 291315.i 0.467960i
\(790\) 623684. + 156594.i 0.999333 + 0.250912i
\(791\) 27450.5 0.0438730
\(792\) 60293.3 60293.3i 0.0961211 0.0961211i
\(793\) 94112.6 + 94112.6i 0.149659 + 0.149659i
\(794\) 1.31753e6i 2.08987i
\(795\) −171292. 286144.i −0.271020 0.452742i
\(796\) 500649. 0.790146
\(797\) 242456. 242456.i 0.381695 0.381695i −0.490017 0.871713i \(-0.663010\pi\)
0.871713 + 0.490017i \(0.163010\pi\)
\(798\) 69337.8 + 69337.8i 0.108884 + 0.108884i
\(799\) 1.19734e6i 1.87553i
\(800\) 190997. + 632168.i 0.298433 + 0.987762i
\(801\) 110713. 0.172557
\(802\) −566877. + 566877.i −0.881333 + 0.881333i
\(803\) 537007. + 537007.i 0.832815 + 0.832815i
\(804\) 440751.i 0.681838i
\(805\) −9418.45 + 5638.07i −0.0145341 + 0.00870039i
\(806\) 323757. 0.498368
\(807\) 206280. 206280.i 0.316745 0.316745i
\(808\) 111218. + 111218.i 0.170354 + 0.170354i
\(809\) 293367.i 0.448243i −0.974561 0.224122i \(-0.928049\pi\)
0.974561 0.224122i \(-0.0719513\pi\)
\(810\) 161291. 642392.i 0.245833 0.979107i
\(811\) −484540. −0.736696 −0.368348 0.929688i \(-0.620076\pi\)
−0.368348 + 0.929688i \(0.620076\pi\)
\(812\) 24647.3 24647.3i 0.0373816 0.0373816i
\(813\) 778593. + 778593.i 1.17796 + 1.17796i
\(814\) 834414.i 1.25931i
\(815\) −404270. 101504.i −0.608634 0.152815i
\(816\) −925948. −1.39061
\(817\) −739264. + 739264.i −1.10753 + 1.10753i
\(818\) −56261.1 56261.1i −0.0840818 0.0840818i
\(819\) 2835.03i 0.00422658i
\(820\) −158792. 265264.i −0.236158 0.394503i
\(821\) 972880. 1.44335 0.721677 0.692229i \(-0.243371\pi\)
0.721677 + 0.692229i \(0.243371\pi\)
\(822\) −457386. + 457386.i −0.676923 + 0.676923i
\(823\) −244515. 244515.i −0.361000 0.361000i 0.503181 0.864181i \(-0.332163\pi\)
−0.864181 + 0.503181i \(0.832163\pi\)
\(824\) 162610.i 0.239493i
\(825\) 906100. 273760.i 1.33128 0.402219i
\(826\) 129099. 0.189218
\(827\) −301109. + 301109.i −0.440263 + 0.440263i −0.892100 0.451837i \(-0.850769\pi\)
0.451837 + 0.892100i \(0.350769\pi\)
\(828\) −9809.87 9809.87i −0.0143088 0.0143088i
\(829\) 954722.i 1.38921i 0.719391 + 0.694605i \(0.244421\pi\)
−0.719391 + 0.694605i \(0.755579\pi\)
\(830\) −238101. + 142532.i −0.345625 + 0.206898i
\(831\) 246716. 0.357268
\(832\) −7886.99 + 7886.99i −0.0113937 + 0.0113937i
\(833\) 597361. + 597361.i 0.860888 + 0.860888i
\(834\) 374817.i 0.538874i
\(835\) −45374.3 + 180717.i −0.0650784 + 0.259195i
\(836\) −1.01828e6 −1.45698
\(837\) −676328. + 676328.i −0.965398 + 0.965398i
\(838\) −53843.8 53843.8i −0.0766740 0.0766740i
\(839\) 1.09935e6i 1.56175i 0.624685 + 0.780877i \(0.285227\pi\)
−0.624685 + 0.780877i \(0.714773\pi\)
\(840\) −26906.5 6755.65i −0.0381327 0.00957433i
\(841\) −190638. −0.269536
\(842\) −499602. + 499602.i −0.704693 + 0.704693i
\(843\) 163729. + 163729.i 0.230393 + 0.230393i
\(844\) 675898.i 0.948848i
\(845\) 331581. + 553909.i 0.464383 + 0.775756i
\(846\) 231158. 0.322974
\(847\) 54591.5 54591.5i 0.0760954 0.0760954i
\(848\) −365927. 365927.i −0.508865 0.508865i
\(849\) 89381.0i 0.124002i
\(850\) 980253. + 525361.i 1.35675 + 0.727144i
\(851\) 99300.7 0.137118
\(852\) −423762. + 423762.i −0.583772 + 0.583772i
\(853\) 207155. + 207155.i 0.284706 + 0.284706i 0.834982 0.550277i \(-0.185478\pi\)
−0.550277 + 0.834982i \(0.685478\pi\)
\(854\) 50867.1i 0.0697464i
\(855\) −174378. + 104386.i −0.238539 + 0.142794i
\(856\) 686539. 0.936953
\(857\) 285095. 285095.i 0.388176 0.388176i −0.485860 0.874036i \(-0.661494\pi\)
0.874036 + 0.485860i \(0.161494\pi\)
\(858\) 281535. + 281535.i 0.382435 + 0.382435i
\(859\) 868658.i 1.17723i −0.808412 0.588617i \(-0.799673\pi\)
0.808412 0.588617i \(-0.200327\pi\)
\(860\) −98473.6 + 392202.i −0.133144 + 0.530289i
\(861\) 43730.0 0.0589893
\(862\) 297616. 297616.i 0.400536 0.400536i
\(863\) −572841. 572841.i −0.769152 0.769152i 0.208805 0.977957i \(-0.433043\pi\)
−0.977957 + 0.208805i \(0.933043\pi\)
\(864\) 820647.i 1.09933i
\(865\) −1.25427e6 314921.i −1.67633 0.420891i
\(866\) −663234. −0.884363
\(867\) −243385. + 243385.i −0.323785 + 0.323785i
\(868\) −32032.3 32032.3i −0.0425156 0.0425156i
\(869\) 944529.i 1.25077i
\(870\) −501826. 838304.i −0.663001 1.10755i
\(871\) −304029. −0.400755
\(872\) −270832. + 270832.i −0.356178 + 0.356178i
\(873\) −56225.8 56225.8i −0.0737747 0.0737747i
\(874\) 331000.i 0.433316i
\(875\) 46015.4 + 41846.3i 0.0601018 + 0.0546563i
\(876\) 312274. 0.406937
\(877\) −253892. + 253892.i −0.330104 + 0.330104i −0.852626 0.522522i \(-0.824991\pi\)
0.522522 + 0.852626i \(0.324991\pi\)
\(878\) −468118. 468118.i −0.607249 0.607249i
\(879\) 165889.i 0.214704i
\(880\) 1.26026e6 754414.i 1.62740 0.974191i
\(881\) 826450. 1.06479 0.532396 0.846496i \(-0.321292\pi\)
0.532396 + 0.846496i \(0.321292\pi\)
\(882\) −115326. + 115326.i −0.148248 + 0.148248i
\(883\) −575862. 575862.i −0.738578 0.738578i 0.233724 0.972303i \(-0.424909\pi\)
−0.972303 + 0.233724i \(0.924909\pi\)
\(884\) 171269.i 0.219167i
\(885\) 322619. 1.28493e6i 0.411911 1.64056i
\(886\) 10825.6 0.0137907
\(887\) −461037. + 461037.i −0.585988 + 0.585988i −0.936542 0.350555i \(-0.885993\pi\)
0.350555 + 0.936542i \(0.385993\pi\)
\(888\) 177453. + 177453.i 0.225039 + 0.225039i
\(889\) 98417.7i 0.124529i
\(890\) 990927. + 248801.i 1.25101 + 0.314103i
\(891\) −972863. −1.22545
\(892\) −33429.6 + 33429.6i −0.0420147 + 0.0420147i
\(893\) 1.42775e6 + 1.42775e6i 1.79040 + 1.79040i
\(894\) 630340.i 0.788678i
\(895\) −262610. 438692.i −0.327842 0.547664i
\(896\) −63033.9 −0.0785160
\(897\) −33504.5 + 33504.5i −0.0416408 + 0.0416408i
\(898\) 608617. + 608617.i 0.754730 + 0.754730i
\(899\) 1.16696e6i 1.44390i
\(900\) −37132.8 + 69284.7i −0.0458429 + 0.0855367i
\(901\) −575558. −0.708989
\(902\) −877073. + 877073.i −1.07801 + 1.07801i
\(903\) −40445.0 40445.0i −0.0496009 0.0496009i
\(904\) 234174.i 0.286551i
\(905\) −29479.6 + 17647.1i −0.0359935 + 0.0215464i
\(906\) 709991. 0.864960
\(907\) 663568. 663568.i 0.806624 0.806624i −0.177498 0.984121i \(-0.556800\pi\)
0.984121 + 0.177498i \(0.0568002\pi\)
\(908\) −185844. 185844.i −0.225412 0.225412i
\(909\) 63040.7i 0.0762946i
\(910\) −6371.06 + 25374.7i −0.00769359 + 0.0306421i
\(911\) −746557. −0.899552 −0.449776 0.893141i \(-0.648496\pi\)
−0.449776 + 0.893141i \(0.648496\pi\)
\(912\) 1.10413e6 1.10413e6i 1.32749 1.32749i
\(913\) 288223. + 288223.i 0.345770 + 0.345770i
\(914\) 523321.i 0.626435i
\(915\) −506283. 127117.i −0.604716 0.151831i
\(916\) −207168. −0.246906
\(917\) 60957.4 60957.4i 0.0724917 0.0724917i
\(918\) −977255. 977255.i −1.15964 1.15964i
\(919\) 431660.i 0.511106i 0.966795 + 0.255553i \(0.0822575\pi\)
−0.966795 + 0.255553i \(0.917743\pi\)
\(920\) 48097.2 + 80346.9i 0.0568257 + 0.0949278i
\(921\) 561748. 0.662250
\(922\) −974473. + 974473.i −1.14633 + 1.14633i
\(923\) −292310. 292310.i −0.343115 0.343115i
\(924\) 55709.7i 0.0652510i
\(925\) −162730. 538607.i −0.190188 0.629490i
\(926\) 12320.3 0.0143681
\(927\) 46085.4 46085.4i 0.0536295 0.0536295i
\(928\) −707986. 707986.i −0.822107 0.822107i
\(929\) 338533.i 0.392256i 0.980578 + 0.196128i \(0.0628369\pi\)
−0.980578 + 0.196128i \(0.937163\pi\)
\(930\) −1.08948e6 + 652186.i −1.25966 + 0.754059i
\(931\) −1.42462e6 −1.64362
\(932\) 287485. 287485.i 0.330965 0.330965i
\(933\) 228650. + 228650.i 0.262669 + 0.262669i
\(934\) 1.57940e6i 1.81050i
\(935\) 397813. 1.58441e6i 0.455047 1.81236i
\(936\) 24185.0 0.0276054
\(937\) 374415. 374415.i 0.426456 0.426456i −0.460963 0.887419i \(-0.652496\pi\)
0.887419 + 0.460963i \(0.152496\pi\)
\(938\) 82162.6 + 82162.6i 0.0933831 + 0.0933831i
\(939\) 468468.i 0.531311i
\(940\) 757464. + 190183.i 0.857247 + 0.215237i
\(941\) 419785. 0.474075 0.237038 0.971500i \(-0.423824\pi\)
0.237038 + 0.971500i \(0.423824\pi\)
\(942\) 82959.3 82959.3i 0.0934896 0.0934896i
\(943\) −104377. 104377.i −0.117377 0.117377i
\(944\) 2.05577e6i 2.30690i
\(945\) −39698.5 66316.7i −0.0444540 0.0742608i
\(946\) 1.62238e6 1.81288
\(947\) −114973. + 114973.i −0.128202 + 0.128202i −0.768296 0.640094i \(-0.778895\pi\)
0.640094 + 0.768296i \(0.278895\pi\)
\(948\) −274626. 274626.i −0.305580 0.305580i
\(949\) 215406.i 0.239180i
\(950\) −1.79534e6 + 542427.i −1.98930 + 0.601028i
\(951\) 237270. 0.262351
\(952\) −33854.4 + 33854.4i −0.0373544 + 0.0373544i
\(953\) 447662. + 447662.i 0.492906 + 0.492906i 0.909221 0.416315i \(-0.136679\pi\)
−0.416315 + 0.909221i \(0.636679\pi\)
\(954\) 111117.i 0.122091i
\(955\) −522142. + 312564.i −0.572508 + 0.342715i
\(956\) −173885. −0.190260
\(957\) −1.01477e6 + 1.01477e6i −1.10801 + 1.10801i
\(958\) −248141. 248141.i −0.270376 0.270376i
\(959\) 62431.3i 0.0678836i
\(960\) 10652.9 42428.4i 0.0115591 0.0460378i
\(961\) 593087. 0.642202
\(962\) 167351. 167351.i 0.180833 0.180833i
\(963\) 194572. + 194572.i 0.209811 + 0.209811i
\(964\) 682499.i 0.734425i
\(965\) 901298. + 226297.i 0.967862 + 0.243010i
\(966\) 18108.9 0.0194061
\(967\) 372268. 372268.i 0.398110 0.398110i −0.479456 0.877566i \(-0.659166\pi\)
0.877566 + 0.479456i \(0.159166\pi\)
\(968\) −465709. 465709.i −0.497008 0.497008i
\(969\) 1.73666e6i 1.84956i
\(970\) −376891. 629600.i −0.400564 0.669146i
\(971\) 563807. 0.597987 0.298993 0.954255i \(-0.403349\pi\)
0.298993 + 0.954255i \(0.403349\pi\)
\(972\) 128209. 128209.i 0.135702 0.135702i
\(973\) −25580.5 25580.5i −0.0270198 0.0270198i
\(974\) 27608.3i 0.0291020i
\(975\) 236634. + 126823.i 0.248925 + 0.133410i
\(976\) −810004. −0.850330
\(977\) 455228. 455228.i 0.476914 0.476914i −0.427230 0.904143i \(-0.640510\pi\)
0.904143 + 0.427230i \(0.140510\pi\)
\(978\) 486228. + 486228.i 0.508349 + 0.508349i
\(979\) 1.50070e6i 1.56577i
\(980\) −472786. + 283019.i −0.492280 + 0.294689i
\(981\) −153513. −0.159517
\(982\) −1.15063e6 + 1.15063e6i −1.19320 + 1.19320i
\(983\) 608097. + 608097.i 0.629312 + 0.629312i 0.947895 0.318583i \(-0.103207\pi\)
−0.318583 + 0.947895i \(0.603207\pi\)
\(984\) 373051.i 0.385282i
\(985\) 165047. 657350.i 0.170112 0.677524i
\(986\) −1.68619e6 −1.73441
\(987\) −78111.9 + 78111.9i −0.0801832 + 0.0801832i
\(988\) −204227. 204227.i −0.209218 0.209218i
\(989\) 193074.i 0.197392i
\(990\) 305886. + 76801.5i 0.312096 + 0.0783609i
\(991\) 1.03618e6 1.05508 0.527541 0.849529i \(-0.323114\pi\)
0.527541 + 0.849529i \(0.323114\pi\)
\(992\) −920116. + 920116.i −0.935017 + 0.935017i
\(993\) 617362. + 617362.i 0.626097 + 0.626097i
\(994\) 157991.i 0.159904i
\(995\) −695674. 1.16213e6i −0.702683 1.17384i
\(996\) 167604. 0.168953
\(997\) 524380. 524380.i 0.527541 0.527541i −0.392298 0.919838i \(-0.628320\pi\)
0.919838 + 0.392298i \(0.128320\pi\)
\(998\) −770801. 770801.i −0.773894 0.773894i
\(999\) 699191.i 0.700592i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 115.5.f.a.93.11 yes 88
5.2 odd 4 inner 115.5.f.a.47.11 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.5.f.a.47.11 88 5.2 odd 4 inner
115.5.f.a.93.11 yes 88 1.1 even 1 trivial