Properties

Label 1152.5.b.f.703.3
Level $1152$
Weight $5$
Character 1152.703
Analytic conductor $119.082$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,5,Mod(703,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.703");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(119.082197473\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.3
Root \(-2.91548 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1152.703
Dual form 1152.5.b.f.703.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+24.7386i q^{5} -50.9117i q^{7} -139.943 q^{11} +98.9545i q^{13} -16.0000 q^{17} +559.771 q^{19} -814.587i q^{23} +13.0000 q^{25} +420.557i q^{29} +661.852i q^{31} +1259.49 q^{35} +2473.86i q^{37} -464.000 q^{41} -559.771 q^{43} -2443.76i q^{47} -191.000 q^{49} -3191.28i q^{53} -3461.99i q^{55} -3638.51 q^{59} +4255.05i q^{61} -2448.00 q^{65} -5597.71 q^{67} +3258.35i q^{71} +898.000 q^{73} +7124.73i q^{77} +8604.08i q^{79} +419.829 q^{83} -395.818i q^{85} -7072.00 q^{89} +5037.94 q^{91} +13848.0i q^{95} -2366.00 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{17} + 52 q^{25} - 1856 q^{41} - 764 q^{49} - 9792 q^{65} + 3592 q^{73} - 28288 q^{89} - 9464 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 24.7386i 0.989545i 0.869022 + 0.494773i \(0.164749\pi\)
−0.869022 + 0.494773i \(0.835251\pi\)
\(6\) 0 0
\(7\) − 50.9117i − 1.03901i −0.854466 0.519507i \(-0.826116\pi\)
0.854466 0.519507i \(-0.173884\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −139.943 −1.15655 −0.578276 0.815841i \(-0.696274\pi\)
−0.578276 + 0.815841i \(0.696274\pi\)
\(12\) 0 0
\(13\) 98.9545i 0.585530i 0.956184 + 0.292765i \(0.0945753\pi\)
−0.956184 + 0.292765i \(0.905425\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −16.0000 −0.0553633 −0.0276817 0.999617i \(-0.508812\pi\)
−0.0276817 + 0.999617i \(0.508812\pi\)
\(18\) 0 0
\(19\) 559.771 1.55061 0.775307 0.631585i \(-0.217595\pi\)
0.775307 + 0.631585i \(0.217595\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 814.587i − 1.53986i −0.638127 0.769931i \(-0.720291\pi\)
0.638127 0.769931i \(-0.279709\pi\)
\(24\) 0 0
\(25\) 13.0000 0.0208000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 420.557i 0.500068i 0.968237 + 0.250034i \(0.0804417\pi\)
−0.968237 + 0.250034i \(0.919558\pi\)
\(30\) 0 0
\(31\) 661.852i 0.688712i 0.938839 + 0.344356i \(0.111903\pi\)
−0.938839 + 0.344356i \(0.888097\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1259.49 1.02815
\(36\) 0 0
\(37\) 2473.86i 1.80706i 0.428526 + 0.903529i \(0.359033\pi\)
−0.428526 + 0.903529i \(0.640967\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −464.000 −0.276026 −0.138013 0.990430i \(-0.544072\pi\)
−0.138013 + 0.990430i \(0.544072\pi\)
\(42\) 0 0
\(43\) −559.771 −0.302743 −0.151371 0.988477i \(-0.548369\pi\)
−0.151371 + 0.988477i \(0.548369\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 2443.76i − 1.10627i −0.833090 0.553137i \(-0.813430\pi\)
0.833090 0.553137i \(-0.186570\pi\)
\(48\) 0 0
\(49\) −191.000 −0.0795502
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 3191.28i − 1.13609i −0.822997 0.568046i \(-0.807699\pi\)
0.822997 0.568046i \(-0.192301\pi\)
\(54\) 0 0
\(55\) − 3461.99i − 1.14446i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3638.51 −1.04525 −0.522625 0.852563i \(-0.675047\pi\)
−0.522625 + 0.852563i \(0.675047\pi\)
\(60\) 0 0
\(61\) 4255.05i 1.14352i 0.820420 + 0.571761i \(0.193740\pi\)
−0.820420 + 0.571761i \(0.806260\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2448.00 −0.579408
\(66\) 0 0
\(67\) −5597.71 −1.24698 −0.623492 0.781829i \(-0.714287\pi\)
−0.623492 + 0.781829i \(0.714287\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3258.35i 0.646369i 0.946336 + 0.323185i \(0.104754\pi\)
−0.946336 + 0.323185i \(0.895246\pi\)
\(72\) 0 0
\(73\) 898.000 0.168512 0.0842560 0.996444i \(-0.473149\pi\)
0.0842560 + 0.996444i \(0.473149\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7124.73i 1.20167i
\(78\) 0 0
\(79\) 8604.08i 1.37864i 0.724458 + 0.689319i \(0.242090\pi\)
−0.724458 + 0.689319i \(0.757910\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 419.829 0.0609419 0.0304709 0.999536i \(-0.490299\pi\)
0.0304709 + 0.999536i \(0.490299\pi\)
\(84\) 0 0
\(85\) − 395.818i − 0.0547845i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7072.00 −0.892817 −0.446408 0.894829i \(-0.647297\pi\)
−0.446408 + 0.894829i \(0.647297\pi\)
\(90\) 0 0
\(91\) 5037.94 0.608374
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 13848.0i 1.53440i
\(96\) 0 0
\(97\) −2366.00 −0.251461 −0.125731 0.992064i \(-0.540128\pi\)
−0.125731 + 0.992064i \(0.540128\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 7941.10i − 0.778463i −0.921140 0.389232i \(-0.872741\pi\)
0.921140 0.389232i \(-0.127259\pi\)
\(102\) 0 0
\(103\) − 7076.72i − 0.667049i −0.942741 0.333525i \(-0.891762\pi\)
0.942741 0.333525i \(-0.108238\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16513.3 1.44233 0.721166 0.692762i \(-0.243607\pi\)
0.721166 + 0.692762i \(0.243607\pi\)
\(108\) 0 0
\(109\) − 9004.86i − 0.757921i −0.925413 0.378961i \(-0.876282\pi\)
0.925413 0.378961i \(-0.123718\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15584.0 −1.22046 −0.610228 0.792226i \(-0.708922\pi\)
−0.610228 + 0.792226i \(0.708922\pi\)
\(114\) 0 0
\(115\) 20151.8 1.52376
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 814.587i 0.0575233i
\(120\) 0 0
\(121\) 4943.00 0.337614
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 15783.2i 1.01013i
\(126\) 0 0
\(127\) − 11251.5i − 0.697593i −0.937198 0.348797i \(-0.886590\pi\)
0.937198 0.348797i \(-0.113410\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −21831.1 −1.27213 −0.636067 0.771634i \(-0.719440\pi\)
−0.636067 + 0.771634i \(0.719440\pi\)
\(132\) 0 0
\(133\) − 28498.9i − 1.61111i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −27440.0 −1.46199 −0.730993 0.682385i \(-0.760943\pi\)
−0.730993 + 0.682385i \(0.760943\pi\)
\(138\) 0 0
\(139\) −14554.1 −0.753277 −0.376638 0.926360i \(-0.622920\pi\)
−0.376638 + 0.926360i \(0.622920\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 13848.0i − 0.677196i
\(144\) 0 0
\(145\) −10404.0 −0.494839
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 24516.0i − 1.10427i −0.833753 0.552137i \(-0.813813\pi\)
0.833753 0.552137i \(-0.186187\pi\)
\(150\) 0 0
\(151\) 23368.5i 1.02489i 0.858721 + 0.512444i \(0.171260\pi\)
−0.858721 + 0.512444i \(0.828740\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16373.3 −0.681511
\(156\) 0 0
\(157\) − 13161.0i − 0.533935i −0.963706 0.266967i \(-0.913978\pi\)
0.963706 0.266967i \(-0.0860216\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −41472.0 −1.59994
\(162\) 0 0
\(163\) −21831.1 −0.821675 −0.410838 0.911709i \(-0.634764\pi\)
−0.410838 + 0.911709i \(0.634764\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 10589.6i − 0.379706i −0.981812 0.189853i \(-0.939199\pi\)
0.981812 0.189853i \(-0.0608012\pi\)
\(168\) 0 0
\(169\) 18769.0 0.657155
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 17044.9i − 0.569512i −0.958600 0.284756i \(-0.908087\pi\)
0.958600 0.284756i \(-0.0919125\pi\)
\(174\) 0 0
\(175\) − 661.852i − 0.0216115i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 31067.3 0.969611 0.484806 0.874622i \(-0.338890\pi\)
0.484806 + 0.874622i \(0.338890\pi\)
\(180\) 0 0
\(181\) 22858.5i 0.697735i 0.937172 + 0.348868i \(0.113434\pi\)
−0.937172 + 0.348868i \(0.886566\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −61200.0 −1.78817
\(186\) 0 0
\(187\) 2239.09 0.0640306
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 52948.2i − 1.45139i −0.688017 0.725695i \(-0.741518\pi\)
0.688017 0.725695i \(-0.258482\pi\)
\(192\) 0 0
\(193\) −25250.0 −0.677871 −0.338935 0.940810i \(-0.610067\pi\)
−0.338935 + 0.940810i \(0.610067\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 57764.7i 1.48844i 0.667937 + 0.744218i \(0.267178\pi\)
−0.667937 + 0.744218i \(0.732822\pi\)
\(198\) 0 0
\(199\) 7993.14i 0.201842i 0.994894 + 0.100921i \(0.0321789\pi\)
−0.994894 + 0.100921i \(0.967821\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 21411.3 0.519577
\(204\) 0 0
\(205\) − 11478.7i − 0.273140i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −78336.0 −1.79337
\(210\) 0 0
\(211\) −43662.2 −0.980710 −0.490355 0.871523i \(-0.663133\pi\)
−0.490355 + 0.871523i \(0.663133\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 13848.0i − 0.299578i
\(216\) 0 0
\(217\) 33696.0 0.715581
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 1583.27i − 0.0324169i
\(222\) 0 0
\(223\) − 88026.3i − 1.77012i −0.465477 0.885060i \(-0.654117\pi\)
0.465477 0.885060i \(-0.345883\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16933.1 0.328613 0.164306 0.986409i \(-0.447461\pi\)
0.164306 + 0.986409i \(0.447461\pi\)
\(228\) 0 0
\(229\) 63627.8i 1.21332i 0.794961 + 0.606660i \(0.207491\pi\)
−0.794961 + 0.606660i \(0.792509\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −89440.0 −1.64748 −0.823740 0.566968i \(-0.808116\pi\)
−0.823740 + 0.566968i \(0.808116\pi\)
\(234\) 0 0
\(235\) 60455.3 1.09471
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 108340.i 1.89668i 0.317261 + 0.948338i \(0.397237\pi\)
−0.317261 + 0.948338i \(0.602763\pi\)
\(240\) 0 0
\(241\) −56222.0 −0.967993 −0.483996 0.875070i \(-0.660815\pi\)
−0.483996 + 0.875070i \(0.660815\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 4725.08i − 0.0787185i
\(246\) 0 0
\(247\) 55391.9i 0.907930i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −110975. −1.76147 −0.880737 0.473605i \(-0.842952\pi\)
−0.880737 + 0.473605i \(0.842952\pi\)
\(252\) 0 0
\(253\) 113996.i 1.78093i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −112064. −1.69668 −0.848340 0.529452i \(-0.822398\pi\)
−0.848340 + 0.529452i \(0.822398\pi\)
\(258\) 0 0
\(259\) 125949. 1.87756
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9775.04i 0.141321i 0.997500 + 0.0706606i \(0.0225107\pi\)
−0.997500 + 0.0706606i \(0.977489\pi\)
\(264\) 0 0
\(265\) 78948.0 1.12422
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 96159.1i − 1.32888i −0.747342 0.664440i \(-0.768670\pi\)
0.747342 0.664440i \(-0.231330\pi\)
\(270\) 0 0
\(271\) 123766.i 1.68525i 0.538502 + 0.842624i \(0.318990\pi\)
−0.538502 + 0.842624i \(0.681010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1819.26 −0.0240563
\(276\) 0 0
\(277\) − 37701.7i − 0.491362i −0.969351 0.245681i \(-0.920989\pi\)
0.969351 0.245681i \(-0.0790115\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −116416. −1.47435 −0.737174 0.675703i \(-0.763840\pi\)
−0.737174 + 0.675703i \(0.763840\pi\)
\(282\) 0 0
\(283\) −67172.6 −0.838724 −0.419362 0.907819i \(-0.637746\pi\)
−0.419362 + 0.907819i \(0.637746\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 23623.0i 0.286795i
\(288\) 0 0
\(289\) −83265.0 −0.996935
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 116346.i 1.35524i 0.735413 + 0.677619i \(0.236988\pi\)
−0.735413 + 0.677619i \(0.763012\pi\)
\(294\) 0 0
\(295\) − 90011.9i − 1.03432i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 80607.1 0.901635
\(300\) 0 0
\(301\) 28498.9i 0.314554i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −105264. −1.13157
\(306\) 0 0
\(307\) −45901.3 −0.487021 −0.243511 0.969898i \(-0.578299\pi\)
−0.243511 + 0.969898i \(0.578299\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 135221.i 1.39806i 0.715094 + 0.699028i \(0.246384\pi\)
−0.715094 + 0.699028i \(0.753616\pi\)
\(312\) 0 0
\(313\) 98306.0 1.00344 0.501720 0.865030i \(-0.332701\pi\)
0.501720 + 0.865030i \(0.332701\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 46286.0i − 0.460607i −0.973119 0.230304i \(-0.926028\pi\)
0.973119 0.230304i \(-0.0739720\pi\)
\(318\) 0 0
\(319\) − 58853.9i − 0.578354i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8956.34 −0.0858471
\(324\) 0 0
\(325\) 1286.41i 0.0121790i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −124416. −1.14944
\(330\) 0 0
\(331\) −87324.3 −0.797039 −0.398519 0.917160i \(-0.630476\pi\)
−0.398519 + 0.917160i \(0.630476\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 138480.i − 1.23395i
\(336\) 0 0
\(337\) −144418. −1.27163 −0.635816 0.771841i \(-0.719336\pi\)
−0.635816 + 0.771841i \(0.719336\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 92621.4i − 0.796531i
\(342\) 0 0
\(343\) − 112515.i − 0.956360i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 198859. 1.65153 0.825764 0.564016i \(-0.190744\pi\)
0.825764 + 0.564016i \(0.190744\pi\)
\(348\) 0 0
\(349\) − 212257.i − 1.74266i −0.490699 0.871329i \(-0.663259\pi\)
0.490699 0.871329i \(-0.336741\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −94688.0 −0.759881 −0.379940 0.925011i \(-0.624056\pi\)
−0.379940 + 0.925011i \(0.624056\pi\)
\(354\) 0 0
\(355\) −80607.1 −0.639612
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 55391.9i − 0.429791i −0.976637 0.214896i \(-0.931059\pi\)
0.976637 0.214896i \(-0.0689411\pi\)
\(360\) 0 0
\(361\) 183023. 1.40440
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 22215.3i 0.166750i
\(366\) 0 0
\(367\) 197385.i 1.46548i 0.680506 + 0.732742i \(0.261760\pi\)
−0.680506 + 0.732742i \(0.738240\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −162474. −1.18042
\(372\) 0 0
\(373\) − 76293.9i − 0.548368i −0.961677 0.274184i \(-0.911592\pi\)
0.961677 0.274184i \(-0.0884078\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −41616.0 −0.292804
\(378\) 0 0
\(379\) 80047.3 0.557273 0.278637 0.960397i \(-0.410117\pi\)
0.278637 + 0.960397i \(0.410117\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 31768.9i 0.216573i 0.994120 + 0.108287i \(0.0345364\pi\)
−0.994120 + 0.108287i \(0.965464\pi\)
\(384\) 0 0
\(385\) −176256. −1.18911
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 219308.i 1.44929i 0.689122 + 0.724645i \(0.257996\pi\)
−0.689122 + 0.724645i \(0.742004\pi\)
\(390\) 0 0
\(391\) 13033.4i 0.0852519i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −212853. −1.36422
\(396\) 0 0
\(397\) 39878.7i 0.253023i 0.991965 + 0.126511i \(0.0403780\pi\)
−0.991965 + 0.126511i \(0.959622\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −58288.0 −0.362485 −0.181243 0.983438i \(-0.558012\pi\)
−0.181243 + 0.983438i \(0.558012\pi\)
\(402\) 0 0
\(403\) −65493.3 −0.403261
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 346199.i − 2.08996i
\(408\) 0 0
\(409\) 163166. 0.975401 0.487700 0.873011i \(-0.337836\pi\)
0.487700 + 0.873011i \(0.337836\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 185243.i 1.08603i
\(414\) 0 0
\(415\) 10386.0i 0.0603047i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −27288.9 −0.155438 −0.0777190 0.996975i \(-0.524764\pi\)
−0.0777190 + 0.996975i \(0.524764\pi\)
\(420\) 0 0
\(421\) − 236402.i − 1.33379i −0.745151 0.666895i \(-0.767623\pi\)
0.745151 0.666895i \(-0.232377\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −208.000 −0.00115156
\(426\) 0 0
\(427\) 216632. 1.18814
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 83902.5i − 0.451669i −0.974166 0.225834i \(-0.927489\pi\)
0.974166 0.225834i \(-0.0725108\pi\)
\(432\) 0 0
\(433\) −245378. −1.30876 −0.654380 0.756166i \(-0.727070\pi\)
−0.654380 + 0.756166i \(0.727070\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 455982.i − 2.38773i
\(438\) 0 0
\(439\) 70309.0i 0.364823i 0.983222 + 0.182411i \(0.0583903\pi\)
−0.983222 + 0.182411i \(0.941610\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 89143.6 0.454237 0.227119 0.973867i \(-0.427069\pi\)
0.227119 + 0.973867i \(0.427069\pi\)
\(444\) 0 0
\(445\) − 174952.i − 0.883482i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 99632.0 0.494204 0.247102 0.968989i \(-0.420522\pi\)
0.247102 + 0.968989i \(0.420522\pi\)
\(450\) 0 0
\(451\) 64933.5 0.319239
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 124632.i 0.602013i
\(456\) 0 0
\(457\) 336158. 1.60957 0.804787 0.593563i \(-0.202279\pi\)
0.804787 + 0.593563i \(0.202279\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 42377.3i − 0.199403i −0.995017 0.0997014i \(-0.968211\pi\)
0.995017 0.0997014i \(-0.0317888\pi\)
\(462\) 0 0
\(463\) − 188831.i − 0.880871i −0.897784 0.440436i \(-0.854824\pi\)
0.897784 0.440436i \(-0.145176\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 334323. 1.53297 0.766484 0.642263i \(-0.222004\pi\)
0.766484 + 0.642263i \(0.222004\pi\)
\(468\) 0 0
\(469\) 284989.i 1.29563i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 78336.0 0.350138
\(474\) 0 0
\(475\) 7277.03 0.0322528
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 169434.i 0.738465i 0.929337 + 0.369232i \(0.120379\pi\)
−0.929337 + 0.369232i \(0.879621\pi\)
\(480\) 0 0
\(481\) −244800. −1.05809
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 58531.6i − 0.248832i
\(486\) 0 0
\(487\) − 174780.i − 0.736942i −0.929639 0.368471i \(-0.879881\pi\)
0.929639 0.368471i \(-0.120119\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −158415. −0.657104 −0.328552 0.944486i \(-0.606561\pi\)
−0.328552 + 0.944486i \(0.606561\pi\)
\(492\) 0 0
\(493\) − 6728.91i − 0.0276854i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 165888. 0.671587
\(498\) 0 0
\(499\) 465730. 1.87039 0.935197 0.354129i \(-0.115223\pi\)
0.935197 + 0.354129i \(0.115223\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 236230.i 0.933683i 0.884341 + 0.466842i \(0.154608\pi\)
−0.884341 + 0.466842i \(0.845392\pi\)
\(504\) 0 0
\(505\) 196452. 0.770324
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 301242.i 1.16273i 0.813641 + 0.581367i \(0.197482\pi\)
−0.813641 + 0.581367i \(0.802518\pi\)
\(510\) 0 0
\(511\) − 45718.7i − 0.175086i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 175068. 0.660075
\(516\) 0 0
\(517\) 341987.i 1.27946i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 329200. 1.21279 0.606393 0.795165i \(-0.292616\pi\)
0.606393 + 0.795165i \(0.292616\pi\)
\(522\) 0 0
\(523\) −522267. −1.90937 −0.954683 0.297626i \(-0.903805\pi\)
−0.954683 + 0.297626i \(0.903805\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 10589.6i − 0.0381294i
\(528\) 0 0
\(529\) −383711. −1.37118
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 45914.9i − 0.161622i
\(534\) 0 0
\(535\) 408515.i 1.42725i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 26729.1 0.0920040
\(540\) 0 0
\(541\) 476268.i 1.62726i 0.581383 + 0.813630i \(0.302512\pi\)
−0.581383 + 0.813630i \(0.697488\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 222768. 0.749997
\(546\) 0 0
\(547\) −533462. −1.78291 −0.891454 0.453111i \(-0.850314\pi\)
−0.891454 + 0.453111i \(0.850314\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 235416.i 0.775411i
\(552\) 0 0
\(553\) 438048. 1.43242
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 33669.3i − 0.108523i −0.998527 0.0542617i \(-0.982719\pi\)
0.998527 0.0542617i \(-0.0172805\pi\)
\(558\) 0 0
\(559\) − 55391.9i − 0.177265i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −456634. −1.44063 −0.720313 0.693650i \(-0.756002\pi\)
−0.720313 + 0.693650i \(0.756002\pi\)
\(564\) 0 0
\(565\) − 385527.i − 1.20770i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 317296. 0.980032 0.490016 0.871714i \(-0.336991\pi\)
0.490016 + 0.871714i \(0.336991\pi\)
\(570\) 0 0
\(571\) −12315.0 −0.0377712 −0.0188856 0.999822i \(-0.506012\pi\)
−0.0188856 + 0.999822i \(0.506012\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 10589.6i − 0.0320291i
\(576\) 0 0
\(577\) −249118. −0.748262 −0.374131 0.927376i \(-0.622059\pi\)
−0.374131 + 0.927376i \(0.622059\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 21374.2i − 0.0633195i
\(582\) 0 0
\(583\) 446597.i 1.31395i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −363851. −1.05596 −0.527980 0.849257i \(-0.677051\pi\)
−0.527980 + 0.849257i \(0.677051\pi\)
\(588\) 0 0
\(589\) 370486.i 1.06793i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 562912. 1.60078 0.800389 0.599481i \(-0.204626\pi\)
0.800389 + 0.599481i \(0.204626\pi\)
\(594\) 0 0
\(595\) −20151.8 −0.0569219
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 180024.i 0.501737i 0.968021 + 0.250868i \(0.0807162\pi\)
−0.968021 + 0.250868i \(0.919284\pi\)
\(600\) 0 0
\(601\) 185662. 0.514013 0.257006 0.966410i \(-0.417264\pi\)
0.257006 + 0.966410i \(0.417264\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 122283.i 0.334084i
\(606\) 0 0
\(607\) − 291877.i − 0.792177i −0.918212 0.396088i \(-0.870367\pi\)
0.918212 0.396088i \(-0.129633\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 241821. 0.647757
\(612\) 0 0
\(613\) 244319.i 0.650183i 0.945683 + 0.325092i \(0.105395\pi\)
−0.945683 + 0.325092i \(0.894605\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 341312. 0.896564 0.448282 0.893892i \(-0.352036\pi\)
0.448282 + 0.893892i \(0.352036\pi\)
\(618\) 0 0
\(619\) 320189. 0.835652 0.417826 0.908527i \(-0.362792\pi\)
0.417826 + 0.908527i \(0.362792\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 360047.i 0.927649i
\(624\) 0 0
\(625\) −382331. −0.978767
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 39581.8i − 0.100045i
\(630\) 0 0
\(631\) − 474548.i − 1.19185i −0.803040 0.595925i \(-0.796786\pi\)
0.803040 0.595925i \(-0.203214\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 278346. 0.690300
\(636\) 0 0
\(637\) − 18900.3i − 0.0465790i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 484208. 1.17846 0.589231 0.807964i \(-0.299431\pi\)
0.589231 + 0.807964i \(0.299431\pi\)
\(642\) 0 0
\(643\) 50939.2 0.123206 0.0616028 0.998101i \(-0.480379\pi\)
0.0616028 + 0.998101i \(0.480379\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 667147.i − 1.59372i −0.604162 0.796861i \(-0.706492\pi\)
0.604162 0.796861i \(-0.293508\pi\)
\(648\) 0 0
\(649\) 509184. 1.20889
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 209363.i 0.490991i 0.969398 + 0.245496i \(0.0789507\pi\)
−0.969398 + 0.245496i \(0.921049\pi\)
\(654\) 0 0
\(655\) − 540071.i − 1.25883i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 43662.2 0.100539 0.0502695 0.998736i \(-0.483992\pi\)
0.0502695 + 0.998736i \(0.483992\pi\)
\(660\) 0 0
\(661\) 95095.3i 0.217649i 0.994061 + 0.108824i \(0.0347086\pi\)
−0.994061 + 0.108824i \(0.965291\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 705024. 1.59427
\(666\) 0 0
\(667\) 342580. 0.770035
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 595463.i − 1.32254i
\(672\) 0 0
\(673\) −232514. −0.513356 −0.256678 0.966497i \(-0.582628\pi\)
−0.256678 + 0.966497i \(0.582628\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 269181.i 0.587310i 0.955912 + 0.293655i \(0.0948716\pi\)
−0.955912 + 0.293655i \(0.905128\pi\)
\(678\) 0 0
\(679\) 120457.i 0.261272i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 776823. 1.66525 0.832627 0.553834i \(-0.186836\pi\)
0.832627 + 0.553834i \(0.186836\pi\)
\(684\) 0 0
\(685\) − 678828.i − 1.44670i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 315792. 0.665216
\(690\) 0 0
\(691\) −263652. −0.552173 −0.276087 0.961133i \(-0.589038\pi\)
−0.276087 + 0.961133i \(0.589038\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 360047.i − 0.745401i
\(696\) 0 0
\(697\) 7424.00 0.0152817
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 806257.i − 1.64073i −0.571840 0.820365i \(-0.693770\pi\)
0.571840 0.820365i \(-0.306230\pi\)
\(702\) 0 0
\(703\) 1.38480e6i 2.80205i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −404295. −0.808834
\(708\) 0 0
\(709\) − 310420.i − 0.617530i −0.951138 0.308765i \(-0.900084\pi\)
0.951138 0.308765i \(-0.0999156\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 539136. 1.06052
\(714\) 0 0
\(715\) 342580. 0.670116
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 190613.i 0.368719i 0.982859 + 0.184360i \(0.0590211\pi\)
−0.982859 + 0.184360i \(0.940979\pi\)
\(720\) 0 0
\(721\) −360288. −0.693073
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5467.24i 0.0104014i
\(726\) 0 0
\(727\) − 405919.i − 0.768016i −0.923330 0.384008i \(-0.874543\pi\)
0.923330 0.384008i \(-0.125457\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8956.34 0.0167608
\(732\) 0 0
\(733\) − 355346.i − 0.661368i −0.943742 0.330684i \(-0.892721\pi\)
0.943742 0.330684i \(-0.107279\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 783360. 1.44220
\(738\) 0 0
\(739\) 858689. 1.57234 0.786171 0.618009i \(-0.212060\pi\)
0.786171 + 0.618009i \(0.212060\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 349458.i − 0.633020i −0.948589 0.316510i \(-0.897489\pi\)
0.948589 0.316510i \(-0.102511\pi\)
\(744\) 0 0
\(745\) 606492. 1.09273
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 840718.i − 1.49860i
\(750\) 0 0
\(751\) − 92812.0i − 0.164560i −0.996609 0.0822800i \(-0.973780\pi\)
0.996609 0.0822800i \(-0.0262202\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −578104. −1.01417
\(756\) 0 0
\(757\) − 88762.2i − 0.154895i −0.996996 0.0774473i \(-0.975323\pi\)
0.996996 0.0774473i \(-0.0246770\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 242320. 0.418427 0.209214 0.977870i \(-0.432910\pi\)
0.209214 + 0.977870i \(0.432910\pi\)
\(762\) 0 0
\(763\) −458453. −0.787491
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 360047.i − 0.612025i
\(768\) 0 0
\(769\) −2210.00 −0.00373714 −0.00186857 0.999998i \(-0.500595\pi\)
−0.00186857 + 0.999998i \(0.500595\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 677616.i 1.13403i 0.823707 + 0.567015i \(0.191902\pi\)
−0.823707 + 0.567015i \(0.808098\pi\)
\(774\) 0 0
\(775\) 8604.08i 0.0143252i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −259734. −0.428010
\(780\) 0 0
\(781\) − 455982.i − 0.747560i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 325584. 0.528352
\(786\) 0 0
\(787\) −414791. −0.669699 −0.334849 0.942272i \(-0.608685\pi\)
−0.334849 + 0.942272i \(0.608685\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 793408.i 1.26807i
\(792\) 0 0
\(793\) −421056. −0.669566
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 424688.i 0.668580i 0.942470 + 0.334290i \(0.108497\pi\)
−0.942470 + 0.334290i \(0.891503\pi\)
\(798\) 0 0
\(799\) 39100.2i 0.0612470i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −125669. −0.194893
\(804\) 0 0
\(805\) − 1.02596e6i − 1.58321i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 657232. 1.00420 0.502102 0.864809i \(-0.332560\pi\)
0.502102 + 0.864809i \(0.332560\pi\)
\(810\) 0 0
\(811\) −778642. −1.18385 −0.591924 0.805994i \(-0.701632\pi\)
−0.591924 + 0.805994i \(0.701632\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 540071.i − 0.813085i
\(816\) 0 0
\(817\) −313344. −0.469437
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 914315.i 1.35647i 0.734846 + 0.678234i \(0.237254\pi\)
−0.734846 + 0.678234i \(0.762746\pi\)
\(822\) 0 0
\(823\) − 458663.i − 0.677165i −0.940937 0.338582i \(-0.890053\pi\)
0.940937 0.338582i \(-0.109947\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.14613e6 −1.67581 −0.837903 0.545820i \(-0.816218\pi\)
−0.837903 + 0.545820i \(0.816218\pi\)
\(828\) 0 0
\(829\) 275193.i 0.400431i 0.979752 + 0.200215i \(0.0641642\pi\)
−0.979752 + 0.200215i \(0.935836\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3056.00 0.00440416
\(834\) 0 0
\(835\) 261973. 0.375737
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.39783e6i 1.98578i 0.119041 + 0.992889i \(0.462018\pi\)
−0.119041 + 0.992889i \(0.537982\pi\)
\(840\) 0 0
\(841\) 530413. 0.749932
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 464319.i 0.650285i
\(846\) 0 0
\(847\) − 251656.i − 0.350785i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.01518e6 2.78262
\(852\) 0 0
\(853\) 925918.i 1.27255i 0.771463 + 0.636274i \(0.219525\pi\)
−0.771463 + 0.636274i \(0.780475\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 110512. 0.150469 0.0752346 0.997166i \(-0.476029\pi\)
0.0752346 + 0.997166i \(0.476029\pi\)
\(858\) 0 0
\(859\) −897314. −1.21607 −0.608034 0.793911i \(-0.708042\pi\)
−0.608034 + 0.793911i \(0.708042\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 844727.i 1.13421i 0.823644 + 0.567107i \(0.191937\pi\)
−0.823644 + 0.567107i \(0.808063\pi\)
\(864\) 0 0
\(865\) 421668. 0.563558
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 1.20408e6i − 1.59447i
\(870\) 0 0
\(871\) − 553919.i − 0.730147i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 803552. 1.04954
\(876\) 0 0
\(877\) 282119.i 0.366804i 0.983038 + 0.183402i \(0.0587110\pi\)
−0.983038 + 0.183402i \(0.941289\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 632896. 0.815418 0.407709 0.913112i \(-0.366328\pi\)
0.407709 + 0.913112i \(0.366328\pi\)
\(882\) 0 0
\(883\) −749534. −0.961324 −0.480662 0.876906i \(-0.659604\pi\)
−0.480662 + 0.876906i \(0.659604\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.24958e6i − 1.58824i −0.607762 0.794119i \(-0.707933\pi\)
0.607762 0.794119i \(-0.292067\pi\)
\(888\) 0 0
\(889\) −572832. −0.724809
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 1.36795e6i − 1.71540i
\(894\) 0 0
\(895\) 768563.i 0.959474i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −278346. −0.344402
\(900\) 0 0
\(901\) 51060.5i 0.0628979i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −565488. −0.690440
\(906\) 0 0
\(907\) 1.14249e6 1.38880 0.694399 0.719590i \(-0.255670\pi\)
0.694399 + 0.719590i \(0.255670\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 857760.i 1.03354i 0.856123 + 0.516772i \(0.172867\pi\)
−0.856123 + 0.516772i \(0.827133\pi\)
\(912\) 0 0
\(913\) −58752.0 −0.0704825
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.11146e6i 1.32176i
\(918\) 0 0
\(919\) 123766.i 0.146545i 0.997312 + 0.0732726i \(0.0233443\pi\)
−0.997312 + 0.0732726i \(0.976656\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −322428. −0.378469
\(924\) 0 0
\(925\) 32160.2i 0.0375868i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −443440. −0.513811 −0.256906 0.966437i \(-0.582703\pi\)
−0.256906 + 0.966437i \(0.582703\pi\)
\(930\) 0 0
\(931\) −106916. −0.123352
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 55391.9i 0.0633612i
\(936\) 0 0
\(937\) 256606. 0.292272 0.146136 0.989264i \(-0.453316\pi\)
0.146136 + 0.989264i \(0.453316\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 723927.i 0.817552i 0.912635 + 0.408776i \(0.134044\pi\)
−0.912635 + 0.408776i \(0.865956\pi\)
\(942\) 0 0
\(943\) 377968.i 0.425042i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −83685.8 −0.0933151 −0.0466576 0.998911i \(-0.514857\pi\)
−0.0466576 + 0.998911i \(0.514857\pi\)
\(948\) 0 0
\(949\) 88861.2i 0.0986687i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 401200. 0.441749 0.220874 0.975302i \(-0.429109\pi\)
0.220874 + 0.975302i \(0.429109\pi\)
\(954\) 0 0
\(955\) 1.30987e6 1.43622
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.39702e6i 1.51902i
\(960\) 0 0
\(961\) 485473. 0.525676
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 624651.i − 0.670784i
\(966\) 0 0
\(967\) 1.11278e6i 1.19002i 0.803717 + 0.595011i \(0.202852\pi\)
−0.803717 + 0.595011i \(0.797148\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −16373.3 −0.0173659 −0.00868297 0.999962i \(-0.502764\pi\)
−0.00868297 + 0.999962i \(0.502764\pi\)
\(972\) 0 0
\(973\) 740972.i 0.782665i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −994288. −1.04165 −0.520827 0.853663i \(-0.674376\pi\)
−0.520827 + 0.853663i \(0.674376\pi\)
\(978\) 0 0
\(979\) 989676. 1.03259
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 529482.i 0.547954i 0.961736 + 0.273977i \(0.0883392\pi\)
−0.961736 + 0.273977i \(0.911661\pi\)
\(984\) 0 0
\(985\) −1.42902e6 −1.47287
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 455982.i 0.466182i
\(990\) 0 0
\(991\) − 625959.i − 0.637380i −0.947859 0.318690i \(-0.896757\pi\)
0.947859 0.318690i \(-0.103243\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −197739. −0.199732
\(996\) 0 0
\(997\) 1.82324e6i 1.83423i 0.398627 + 0.917113i \(0.369487\pi\)
−0.398627 + 0.917113i \(0.630513\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.5.b.f.703.3 yes 4
3.2 odd 2 1152.5.b.h.703.1 yes 4
4.3 odd 2 inner 1152.5.b.f.703.4 yes 4
8.3 odd 2 inner 1152.5.b.f.703.2 yes 4
8.5 even 2 inner 1152.5.b.f.703.1 4
12.11 even 2 1152.5.b.h.703.2 yes 4
24.5 odd 2 1152.5.b.h.703.3 yes 4
24.11 even 2 1152.5.b.h.703.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.5.b.f.703.1 4 8.5 even 2 inner
1152.5.b.f.703.2 yes 4 8.3 odd 2 inner
1152.5.b.f.703.3 yes 4 1.1 even 1 trivial
1152.5.b.f.703.4 yes 4 4.3 odd 2 inner
1152.5.b.h.703.1 yes 4 3.2 odd 2
1152.5.b.h.703.2 yes 4 12.11 even 2
1152.5.b.h.703.3 yes 4 24.5 odd 2
1152.5.b.h.703.4 yes 4 24.11 even 2