Properties

Label 1156.2.h.e.733.1
Level $1156$
Weight $2$
Character 1156.733
Analytic conductor $9.231$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,2,Mod(733,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.733");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: 16.0.229607785695641627262976.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 799x^{8} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 733.1
Root \(-2.12749 - 0.881234i\) of defining polynomial
Character \(\chi\) \(=\) 1156.733
Dual form 1156.2.h.e.757.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.00872 + 1.24625i) q^{3} +(-0.541196 - 1.30656i) q^{5} +(1.24625 - 3.00872i) q^{7} +(5.37794 - 5.37794i) q^{9} +(0.395595 + 0.163861i) q^{11} +2.60555i q^{13} +(3.25662 + 3.25662i) q^{15} +(0.428189 + 0.428189i) q^{19} +10.6056i q^{21} +(-5.62185 - 2.32865i) q^{23} +(2.12132 - 2.12132i) q^{25} +(-5.73968 + 13.8568i) q^{27} +(0.868918 + 2.09775i) q^{29} +(-5.62185 + 2.32865i) q^{31} -1.39445 q^{33} -4.60555 q^{35} +(3.91969 - 1.62359i) q^{37} +(-3.24718 - 7.83938i) q^{39} +(0.541196 - 1.30656i) q^{41} +(2.40024 - 2.40024i) q^{43} +(-9.93713 - 4.11609i) q^{45} -4.00000i q^{47} +(-2.54951 - 2.54951i) q^{49} +(-3.68481 - 3.68481i) q^{53} -0.605551i q^{55} +(-1.82194 - 0.754670i) q^{57} +(-6.08504 + 6.08504i) q^{59} +(3.36142 - 8.11520i) q^{61} +(-9.47844 - 22.8830i) q^{63} +(3.40432 - 1.41011i) q^{65} -9.21110 q^{67} +19.8167 q^{69} +(3.79991 - 1.57398i) q^{71} +(-3.78837 - 9.14594i) q^{73} +(-3.73876 + 9.02616i) q^{75} +(0.986024 - 0.986024i) q^{77} +(0.395595 + 0.163861i) q^{79} -26.0278i q^{81} +(-12.5983 - 12.5983i) q^{83} +(-5.22866 - 5.22866i) q^{87} -7.81665i q^{89} +(7.83938 + 3.24718i) q^{91} +(14.0125 - 14.0125i) q^{93} +(0.327722 - 0.791191i) q^{95} +(4.11609 + 9.93713i) q^{97} +(3.00872 - 1.24625i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 80 q^{33} - 16 q^{35} - 32 q^{67} + 144 q^{69}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00872 + 1.24625i −1.73709 + 0.719525i −0.738091 + 0.674701i \(0.764273\pi\)
−0.998995 + 0.0448236i \(0.985727\pi\)
\(4\) 0 0
\(5\) −0.541196 1.30656i −0.242030 0.584313i 0.755454 0.655202i \(-0.227416\pi\)
−0.997484 + 0.0708890i \(0.977416\pi\)
\(6\) 0 0
\(7\) 1.24625 3.00872i 0.471039 1.13719i −0.492665 0.870219i \(-0.663977\pi\)
0.963705 0.266971i \(-0.0860227\pi\)
\(8\) 0 0
\(9\) 5.37794 5.37794i 1.79265 1.79265i
\(10\) 0 0
\(11\) 0.395595 + 0.163861i 0.119277 + 0.0494059i 0.441524 0.897250i \(-0.354438\pi\)
−0.322247 + 0.946656i \(0.604438\pi\)
\(12\) 0 0
\(13\) 2.60555i 0.722650i 0.932440 + 0.361325i \(0.117675\pi\)
−0.932440 + 0.361325i \(0.882325\pi\)
\(14\) 0 0
\(15\) 3.25662 + 3.25662i 0.840855 + 0.840855i
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 0.428189 + 0.428189i 0.0982334 + 0.0982334i 0.754516 0.656282i \(-0.227872\pi\)
−0.656282 + 0.754516i \(0.727872\pi\)
\(20\) 0 0
\(21\) 10.6056i 2.31432i
\(22\) 0 0
\(23\) −5.62185 2.32865i −1.17224 0.485556i −0.290305 0.956934i \(-0.593757\pi\)
−0.881931 + 0.471378i \(0.843757\pi\)
\(24\) 0 0
\(25\) 2.12132 2.12132i 0.424264 0.424264i
\(26\) 0 0
\(27\) −5.73968 + 13.8568i −1.10460 + 2.66675i
\(28\) 0 0
\(29\) 0.868918 + 2.09775i 0.161354 + 0.389543i 0.983792 0.179311i \(-0.0573869\pi\)
−0.822438 + 0.568854i \(0.807387\pi\)
\(30\) 0 0
\(31\) −5.62185 + 2.32865i −1.00971 + 0.418237i −0.825350 0.564621i \(-0.809022\pi\)
−0.184363 + 0.982858i \(0.559022\pi\)
\(32\) 0 0
\(33\) −1.39445 −0.242742
\(34\) 0 0
\(35\) −4.60555 −0.778480
\(36\) 0 0
\(37\) 3.91969 1.62359i 0.644393 0.266916i −0.0364615 0.999335i \(-0.511609\pi\)
0.680854 + 0.732419i \(0.261609\pi\)
\(38\) 0 0
\(39\) −3.24718 7.83938i −0.519964 1.25531i
\(40\) 0 0
\(41\) 0.541196 1.30656i 0.0845206 0.204051i −0.875969 0.482368i \(-0.839777\pi\)
0.960489 + 0.278317i \(0.0897767\pi\)
\(42\) 0 0
\(43\) 2.40024 2.40024i 0.366033 0.366033i −0.499995 0.866028i \(-0.666665\pi\)
0.866028 + 0.499995i \(0.166665\pi\)
\(44\) 0 0
\(45\) −9.93713 4.11609i −1.48134 0.613591i
\(46\) 0 0
\(47\) 4.00000i 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 0 0
\(49\) −2.54951 2.54951i −0.364216 0.364216i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.68481 3.68481i −0.506147 0.506147i 0.407194 0.913341i \(-0.366507\pi\)
−0.913341 + 0.407194i \(0.866507\pi\)
\(54\) 0 0
\(55\) 0.605551i 0.0816525i
\(56\) 0 0
\(57\) −1.82194 0.754670i −0.241321 0.0999585i
\(58\) 0 0
\(59\) −6.08504 + 6.08504i −0.792205 + 0.792205i −0.981852 0.189647i \(-0.939266\pi\)
0.189647 + 0.981852i \(0.439266\pi\)
\(60\) 0 0
\(61\) 3.36142 8.11520i 0.430386 1.03904i −0.548777 0.835969i \(-0.684906\pi\)
0.979163 0.203076i \(-0.0650937\pi\)
\(62\) 0 0
\(63\) −9.47844 22.8830i −1.19417 2.88299i
\(64\) 0 0
\(65\) 3.40432 1.41011i 0.422254 0.174903i
\(66\) 0 0
\(67\) −9.21110 −1.12532 −0.562658 0.826690i \(-0.690221\pi\)
−0.562658 + 0.826690i \(0.690221\pi\)
\(68\) 0 0
\(69\) 19.8167 2.38564
\(70\) 0 0
\(71\) 3.79991 1.57398i 0.450967 0.186796i −0.145628 0.989339i \(-0.546520\pi\)
0.596594 + 0.802543i \(0.296520\pi\)
\(72\) 0 0
\(73\) −3.78837 9.14594i −0.443395 1.07045i −0.974749 0.223301i \(-0.928317\pi\)
0.531354 0.847150i \(-0.321683\pi\)
\(74\) 0 0
\(75\) −3.73876 + 9.02616i −0.431715 + 1.04225i
\(76\) 0 0
\(77\) 0.986024 0.986024i 0.112368 0.112368i
\(78\) 0 0
\(79\) 0.395595 + 0.163861i 0.0445080 + 0.0184358i 0.404826 0.914394i \(-0.367332\pi\)
−0.360318 + 0.932829i \(0.617332\pi\)
\(80\) 0 0
\(81\) 26.0278i 2.89197i
\(82\) 0 0
\(83\) −12.5983 12.5983i −1.38284 1.38284i −0.839535 0.543305i \(-0.817173\pi\)
−0.543305 0.839535i \(-0.682827\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −5.22866 5.22866i −0.560572 0.560572i
\(88\) 0 0
\(89\) 7.81665i 0.828564i −0.910149 0.414282i \(-0.864033\pi\)
0.910149 0.414282i \(-0.135967\pi\)
\(90\) 0 0
\(91\) 7.83938 + 3.24718i 0.821790 + 0.340397i
\(92\) 0 0
\(93\) 14.0125 14.0125i 1.45303 1.45303i
\(94\) 0 0
\(95\) 0.327722 0.791191i 0.0336236 0.0811745i
\(96\) 0 0
\(97\) 4.11609 + 9.93713i 0.417926 + 1.00896i 0.982947 + 0.183887i \(0.0588679\pi\)
−0.565021 + 0.825076i \(0.691132\pi\)
\(98\) 0 0
\(99\) 3.00872 1.24625i 0.302388 0.125253i
\(100\) 0 0
\(101\) −10.6056 −1.05529 −0.527646 0.849464i \(-0.676925\pi\)
−0.527646 + 0.849464i \(0.676925\pi\)
\(102\) 0 0
\(103\) −13.2111 −1.30173 −0.650864 0.759194i \(-0.725593\pi\)
−0.650864 + 0.759194i \(0.725593\pi\)
\(104\) 0 0
\(105\) 13.8568 5.73968i 1.35229 0.560136i
\(106\) 0 0
\(107\) 3.08332 + 7.44378i 0.298075 + 0.719618i 0.999973 + 0.00733983i \(0.00233636\pi\)
−0.701898 + 0.712278i \(0.747664\pi\)
\(108\) 0 0
\(109\) −3.36142 + 8.11520i −0.321966 + 0.777295i 0.677174 + 0.735823i \(0.263205\pi\)
−0.999140 + 0.0414716i \(0.986795\pi\)
\(110\) 0 0
\(111\) −9.76985 + 9.76985i −0.927313 + 0.927313i
\(112\) 0 0
\(113\) −12.5503 5.19849i −1.18063 0.489033i −0.295936 0.955208i \(-0.595632\pi\)
−0.884692 + 0.466175i \(0.845632\pi\)
\(114\) 0 0
\(115\) 8.60555i 0.802472i
\(116\) 0 0
\(117\) 14.0125 + 14.0125i 1.29546 + 1.29546i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.64853 7.64853i −0.695321 0.695321i
\(122\) 0 0
\(123\) 4.60555i 0.415269i
\(124\) 0 0
\(125\) −10.4525 4.32957i −0.934900 0.387248i
\(126\) 0 0
\(127\) −0.428189 + 0.428189i −0.0379957 + 0.0379957i −0.725849 0.687854i \(-0.758553\pi\)
0.687854 + 0.725849i \(0.258553\pi\)
\(128\) 0 0
\(129\) −4.23034 + 10.2130i −0.372461 + 0.899200i
\(130\) 0 0
\(131\) 3.41104 + 8.23497i 0.298024 + 0.719493i 0.999974 + 0.00726659i \(0.00231305\pi\)
−0.701950 + 0.712226i \(0.747687\pi\)
\(132\) 0 0
\(133\) 1.82194 0.754670i 0.157982 0.0654382i
\(134\) 0 0
\(135\) 21.2111 1.82556
\(136\) 0 0
\(137\) −2.60555 −0.222607 −0.111304 0.993786i \(-0.535503\pi\)
−0.111304 + 0.993786i \(0.535503\pi\)
\(138\) 0 0
\(139\) 0.395595 0.163861i 0.0335540 0.0138985i −0.365843 0.930676i \(-0.619219\pi\)
0.399397 + 0.916778i \(0.369219\pi\)
\(140\) 0 0
\(141\) 4.98501 + 12.0349i 0.419814 + 1.01352i
\(142\) 0 0
\(143\) −0.426948 + 1.03074i −0.0357032 + 0.0861952i
\(144\) 0 0
\(145\) 2.27059 2.27059i 0.188562 0.188562i
\(146\) 0 0
\(147\) 10.8481 + 4.49343i 0.894736 + 0.370612i
\(148\) 0 0
\(149\) 8.42221i 0.689974i 0.938607 + 0.344987i \(0.112117\pi\)
−0.938607 + 0.344987i \(0.887883\pi\)
\(150\) 0 0
\(151\) −3.25662 3.25662i −0.265020 0.265020i 0.562070 0.827090i \(-0.310005\pi\)
−0.827090 + 0.562070i \(0.810005\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.08504 + 6.08504i 0.488762 + 0.488762i
\(156\) 0 0
\(157\) 8.42221i 0.672165i 0.941833 + 0.336083i \(0.109102\pi\)
−0.941833 + 0.336083i \(0.890898\pi\)
\(158\) 0 0
\(159\) 15.6788 + 6.49435i 1.24341 + 0.515036i
\(160\) 0 0
\(161\) −14.0125 + 14.0125i −1.10434 + 1.10434i
\(162\) 0 0
\(163\) 2.32865 5.62185i 0.182394 0.440337i −0.806065 0.591827i \(-0.798407\pi\)
0.988459 + 0.151490i \(0.0484070\pi\)
\(164\) 0 0
\(165\) 0.754670 + 1.82194i 0.0587510 + 0.141837i
\(166\) 0 0
\(167\) −19.4787 + 8.06833i −1.50730 + 0.624346i −0.975000 0.222207i \(-0.928674\pi\)
−0.532305 + 0.846553i \(0.678674\pi\)
\(168\) 0 0
\(169\) 6.21110 0.477777
\(170\) 0 0
\(171\) 4.60555 0.352195
\(172\) 0 0
\(173\) −19.3589 + 8.01872i −1.47183 + 0.609652i −0.967275 0.253729i \(-0.918343\pi\)
−0.504554 + 0.863380i \(0.668343\pi\)
\(174\) 0 0
\(175\) −3.73876 9.02616i −0.282624 0.682314i
\(176\) 0 0
\(177\) 10.7247 25.8917i 0.806117 1.94614i
\(178\) 0 0
\(179\) 10.6262 10.6262i 0.794242 0.794242i −0.187939 0.982181i \(-0.560181\pi\)
0.982181 + 0.187939i \(0.0601808\pi\)
\(180\) 0 0
\(181\) 16.9853 + 7.03555i 1.26251 + 0.522948i 0.910679 0.413116i \(-0.135559\pi\)
0.351830 + 0.936064i \(0.385559\pi\)
\(182\) 0 0
\(183\) 28.6056i 2.11458i
\(184\) 0 0
\(185\) −4.24264 4.24264i −0.311925 0.311925i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 34.5382 + 34.5382i 2.51229 + 2.51229i
\(190\) 0 0
\(191\) 6.78890i 0.491227i −0.969368 0.245614i \(-0.921011\pi\)
0.969368 0.245614i \(-0.0789895\pi\)
\(192\) 0 0
\(193\) −10.7283 4.44382i −0.772242 0.319873i −0.0384615 0.999260i \(-0.512246\pi\)
−0.733780 + 0.679387i \(0.762246\pi\)
\(194\) 0 0
\(195\) −8.48528 + 8.48528i −0.607644 + 0.607644i
\(196\) 0 0
\(197\) 9.52806 23.0028i 0.678846 1.63888i −0.0872765 0.996184i \(-0.527816\pi\)
0.766122 0.642695i \(-0.222184\pi\)
\(198\) 0 0
\(199\) 5.47660 + 13.2217i 0.388226 + 0.937259i 0.990316 + 0.138832i \(0.0443347\pi\)
−0.602090 + 0.798428i \(0.705665\pi\)
\(200\) 0 0
\(201\) 27.7136 11.4794i 1.95477 0.809692i
\(202\) 0 0
\(203\) 7.39445 0.518989
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) −42.7572 + 17.7106i −2.97183 + 1.23097i
\(208\) 0 0
\(209\) 0.0992262 + 0.239553i 0.00686362 + 0.0165702i
\(210\) 0 0
\(211\) 8.39605 20.2699i 0.578008 1.39543i −0.316590 0.948563i \(-0.602538\pi\)
0.894598 0.446872i \(-0.147462\pi\)
\(212\) 0 0
\(213\) −9.47131 + 9.47131i −0.648963 + 0.648963i
\(214\) 0 0
\(215\) −4.43506 1.83706i −0.302469 0.125287i
\(216\) 0 0
\(217\) 19.8167i 1.34524i
\(218\) 0 0
\(219\) 22.7963 + 22.7963i 1.54043 + 1.54043i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −12.5983 12.5983i −0.843643 0.843643i 0.145688 0.989331i \(-0.453461\pi\)
−0.989331 + 0.145688i \(0.953461\pi\)
\(224\) 0 0
\(225\) 22.8167i 1.52111i
\(226\) 0 0
\(227\) −0.395595 0.163861i −0.0262566 0.0108758i 0.369516 0.929224i \(-0.379523\pi\)
−0.395773 + 0.918348i \(0.629523\pi\)
\(228\) 0 0
\(229\) 3.25662 3.25662i 0.215203 0.215203i −0.591270 0.806474i \(-0.701373\pi\)
0.806474 + 0.591270i \(0.201373\pi\)
\(230\) 0 0
\(231\) −1.73784 + 4.19551i −0.114341 + 0.276044i
\(232\) 0 0
\(233\) −3.03370 7.32401i −0.198744 0.479812i 0.792815 0.609462i \(-0.208614\pi\)
−0.991560 + 0.129650i \(0.958614\pi\)
\(234\) 0 0
\(235\) −5.22625 + 2.16478i −0.340923 + 0.141215i
\(236\) 0 0
\(237\) −1.39445 −0.0905792
\(238\) 0 0
\(239\) −14.7889 −0.956614 −0.478307 0.878193i \(-0.658749\pi\)
−0.478307 + 0.878193i \(0.658749\pi\)
\(240\) 0 0
\(241\) 11.7591 4.87076i 0.757468 0.313754i 0.0296835 0.999559i \(-0.490550\pi\)
0.727785 + 0.685806i \(0.240550\pi\)
\(242\) 0 0
\(243\) 15.2181 + 36.7398i 0.976243 + 2.35686i
\(244\) 0 0
\(245\) −1.95131 + 4.71088i −0.124665 + 0.300967i
\(246\) 0 0
\(247\) −1.11567 + 1.11567i −0.0709883 + 0.0709883i
\(248\) 0 0
\(249\) 53.6053 + 22.2041i 3.39710 + 1.40713i
\(250\) 0 0
\(251\) 12.0000i 0.757433i −0.925513 0.378717i \(-0.876365\pi\)
0.925513 0.378717i \(-0.123635\pi\)
\(252\) 0 0
\(253\) −1.84240 1.84240i −0.115831 0.115831i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.7139 + 13.7139i 0.855452 + 0.855452i 0.990798 0.135346i \(-0.0432146\pi\)
−0.135346 + 0.990798i \(0.543215\pi\)
\(258\) 0 0
\(259\) 13.8167i 0.858525i
\(260\) 0 0
\(261\) 15.9546 + 6.60860i 0.987563 + 0.409062i
\(262\) 0 0
\(263\) 16.2831 16.2831i 1.00406 1.00406i 0.00406616 0.999992i \(-0.498706\pi\)
0.999992 0.00406616i \(-0.00129430\pi\)
\(264\) 0 0
\(265\) −2.82023 + 6.80863i −0.173245 + 0.418251i
\(266\) 0 0
\(267\) 9.74153 + 23.5181i 0.596172 + 1.43929i
\(268\) 0 0
\(269\) −22.7632 + 9.42883i −1.38790 + 0.574886i −0.946581 0.322466i \(-0.895488\pi\)
−0.441316 + 0.897352i \(0.645488\pi\)
\(270\) 0 0
\(271\) −1.21110 −0.0735692 −0.0367846 0.999323i \(-0.511712\pi\)
−0.0367846 + 0.999323i \(0.511712\pi\)
\(272\) 0 0
\(273\) −27.6333 −1.67244
\(274\) 0 0
\(275\) 1.18679 0.491583i 0.0715659 0.0296436i
\(276\) 0 0
\(277\) 1.95131 + 4.71088i 0.117243 + 0.283049i 0.971597 0.236642i \(-0.0760469\pi\)
−0.854354 + 0.519691i \(0.826047\pi\)
\(278\) 0 0
\(279\) −17.7106 + 42.7572i −1.06031 + 2.55981i
\(280\) 0 0
\(281\) −13.0265 + 13.0265i −0.777094 + 0.777094i −0.979336 0.202242i \(-0.935177\pi\)
0.202242 + 0.979336i \(0.435177\pi\)
\(282\) 0 0
\(283\) −2.76917 1.14703i −0.164610 0.0681837i 0.298857 0.954298i \(-0.403395\pi\)
−0.463467 + 0.886114i \(0.653395\pi\)
\(284\) 0 0
\(285\) 2.78890i 0.165200i
\(286\) 0 0
\(287\) −3.25662 3.25662i −0.192232 0.192232i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −24.7684 24.7684i −1.45195 1.45195i
\(292\) 0 0
\(293\) 21.6333i 1.26383i 0.775037 + 0.631916i \(0.217731\pi\)
−0.775037 + 0.631916i \(0.782269\pi\)
\(294\) 0 0
\(295\) 11.2437 + 4.65729i 0.654633 + 0.271158i
\(296\) 0 0
\(297\) −4.54118 + 4.54118i −0.263506 + 0.263506i
\(298\) 0 0
\(299\) 6.06740 14.6480i 0.350887 0.847116i
\(300\) 0 0
\(301\) −4.23034 10.2130i −0.243833 0.588665i
\(302\) 0 0
\(303\) 31.9091 13.2172i 1.83313 0.759308i
\(304\) 0 0
\(305\) −12.4222 −0.711293
\(306\) 0 0
\(307\) 21.2111 1.21058 0.605291 0.796004i \(-0.293057\pi\)
0.605291 + 0.796004i \(0.293057\pi\)
\(308\) 0 0
\(309\) 39.7485 16.4644i 2.26121 0.936626i
\(310\) 0 0
\(311\) 10.2331 + 24.7049i 0.580267 + 1.40089i 0.892572 + 0.450906i \(0.148899\pi\)
−0.312305 + 0.949982i \(0.601101\pi\)
\(312\) 0 0
\(313\) 3.36142 8.11520i 0.189999 0.458698i −0.799960 0.600053i \(-0.795146\pi\)
0.989959 + 0.141355i \(0.0451460\pi\)
\(314\) 0 0
\(315\) −24.7684 + 24.7684i −1.39554 + 1.39554i
\(316\) 0 0
\(317\) −25.6159 10.6104i −1.43873 0.595942i −0.479241 0.877683i \(-0.659088\pi\)
−0.959490 + 0.281741i \(0.909088\pi\)
\(318\) 0 0
\(319\) 0.972244i 0.0544352i
\(320\) 0 0
\(321\) −18.5537 18.5537i −1.03557 1.03557i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 5.52721 + 5.52721i 0.306594 + 0.306594i
\(326\) 0 0
\(327\) 28.6056i 1.58189i
\(328\) 0 0
\(329\) −12.0349 4.98501i −0.663505 0.274833i
\(330\) 0 0
\(331\) −2.40024 + 2.40024i −0.131929 + 0.131929i −0.769988 0.638059i \(-0.779738\pi\)
0.638059 + 0.769988i \(0.279738\pi\)
\(332\) 0 0
\(333\) 12.3483 29.8114i 0.676682 1.63365i
\(334\) 0 0
\(335\) 4.98501 + 12.0349i 0.272360 + 0.657536i
\(336\) 0 0
\(337\) 21.1808 8.77339i 1.15379 0.477917i 0.277989 0.960584i \(-0.410332\pi\)
0.875804 + 0.482667i \(0.160332\pi\)
\(338\) 0 0
\(339\) 44.2389 2.40273
\(340\) 0 0
\(341\) −2.60555 −0.141099
\(342\) 0 0
\(343\) 10.2130 4.23034i 0.551447 0.228417i
\(344\) 0 0
\(345\) −10.7247 25.8917i −0.577398 1.39396i
\(346\) 0 0
\(347\) −2.98409 + 7.20423i −0.160194 + 0.386743i −0.983513 0.180836i \(-0.942120\pi\)
0.823319 + 0.567579i \(0.192120\pi\)
\(348\) 0 0
\(349\) −16.7113 + 16.7113i −0.894534 + 0.894534i −0.994946 0.100412i \(-0.967984\pi\)
0.100412 + 0.994946i \(0.467984\pi\)
\(350\) 0 0
\(351\) −36.1047 14.9550i −1.92712 0.798241i
\(352\) 0 0
\(353\) 31.2111i 1.66120i −0.556870 0.830600i \(-0.687998\pi\)
0.556870 0.830600i \(-0.312002\pi\)
\(354\) 0 0
\(355\) −4.11300 4.11300i −0.218295 0.218295i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.7419 + 11.7419i 0.619714 + 0.619714i 0.945458 0.325744i \(-0.105615\pi\)
−0.325744 + 0.945458i \(0.605615\pi\)
\(360\) 0 0
\(361\) 18.6333i 0.980700i
\(362\) 0 0
\(363\) 32.5443 + 13.4803i 1.70813 + 0.707532i
\(364\) 0 0
\(365\) −9.89949 + 9.89949i −0.518163 + 0.518163i
\(366\) 0 0
\(367\) 3.73876 9.02616i 0.195162 0.471162i −0.795758 0.605614i \(-0.792927\pi\)
0.990920 + 0.134452i \(0.0429275\pi\)
\(368\) 0 0
\(369\) −4.11609 9.93713i −0.214275 0.517306i
\(370\) 0 0
\(371\) −15.6788 + 6.49435i −0.814000 + 0.337170i
\(372\) 0 0
\(373\) −21.0278 −1.08878 −0.544388 0.838834i \(-0.683238\pi\)
−0.544388 + 0.838834i \(0.683238\pi\)
\(374\) 0 0
\(375\) 36.8444 1.90264
\(376\) 0 0
\(377\) −5.46581 + 2.26401i −0.281503 + 0.116602i
\(378\) 0 0
\(379\) −11.2163 27.0785i −0.576142 1.39093i −0.896251 0.443548i \(-0.853720\pi\)
0.320109 0.947381i \(-0.396280\pi\)
\(380\) 0 0
\(381\) 0.754670 1.82194i 0.0386629 0.0933406i
\(382\) 0 0
\(383\) 13.7139 13.7139i 0.700750 0.700750i −0.263822 0.964571i \(-0.584983\pi\)
0.964571 + 0.263822i \(0.0849830\pi\)
\(384\) 0 0
\(385\) −1.82194 0.754670i −0.0928544 0.0384616i
\(386\) 0 0
\(387\) 25.8167i 1.31233i
\(388\) 0 0
\(389\) −7.20071 7.20071i −0.365091 0.365091i 0.500592 0.865683i \(-0.333116\pi\)
−0.865683 + 0.500592i \(0.833116\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −20.5257 20.5257i −1.03539 1.03539i
\(394\) 0 0
\(395\) 0.605551i 0.0304686i
\(396\) 0 0
\(397\) −11.7591 4.87076i −0.590171 0.244457i 0.0675534 0.997716i \(-0.478481\pi\)
−0.657724 + 0.753259i \(0.728481\pi\)
\(398\) 0 0
\(399\) −4.54118 + 4.54118i −0.227344 + 0.227344i
\(400\) 0 0
\(401\) 3.78837 9.14594i 0.189182 0.456726i −0.800620 0.599172i \(-0.795497\pi\)
0.989803 + 0.142445i \(0.0454966\pi\)
\(402\) 0 0
\(403\) −6.06740 14.6480i −0.302239 0.729669i
\(404\) 0 0
\(405\) −34.0069 + 14.0861i −1.68982 + 0.699945i
\(406\) 0 0
\(407\) 1.81665 0.0900482
\(408\) 0 0
\(409\) 23.2111 1.14772 0.573858 0.818955i \(-0.305446\pi\)
0.573858 + 0.818955i \(0.305446\pi\)
\(410\) 0 0
\(411\) 7.83938 3.24718i 0.386688 0.160171i
\(412\) 0 0
\(413\) 10.7247 + 25.8917i 0.527728 + 1.27405i
\(414\) 0 0
\(415\) −9.64230 + 23.2786i −0.473322 + 1.14270i
\(416\) 0 0
\(417\) −0.986024 + 0.986024i −0.0482858 + 0.0482858i
\(418\) 0 0
\(419\) −3.00872 1.24625i −0.146986 0.0608835i 0.307978 0.951394i \(-0.400348\pi\)
−0.454964 + 0.890510i \(0.650348\pi\)
\(420\) 0 0
\(421\) 18.6056i 0.906779i 0.891312 + 0.453390i \(0.149785\pi\)
−0.891312 + 0.453390i \(0.850215\pi\)
\(422\) 0 0
\(423\) −21.5117 21.5117i −1.04594 1.04594i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −20.2272 20.2272i −0.978862 0.978862i
\(428\) 0 0
\(429\) 3.63331i 0.175418i
\(430\) 0 0
\(431\) −2.45708 1.01776i −0.118354 0.0490237i 0.322721 0.946494i \(-0.395403\pi\)
−0.441074 + 0.897471i \(0.645403\pi\)
\(432\) 0 0
\(433\) −10.6262 + 10.6262i −0.510664 + 0.510664i −0.914730 0.404066i \(-0.867597\pi\)
0.404066 + 0.914730i \(0.367597\pi\)
\(434\) 0 0
\(435\) −4.00185 + 9.66131i −0.191874 + 0.463224i
\(436\) 0 0
\(437\) −1.41011 3.40432i −0.0674549 0.162851i
\(438\) 0 0
\(439\) 34.3662 14.2350i 1.64021 0.679398i 0.643891 0.765117i \(-0.277319\pi\)
0.996319 + 0.0857193i \(0.0273188\pi\)
\(440\) 0 0
\(441\) −27.4222 −1.30582
\(442\) 0 0
\(443\) −17.2111 −0.817724 −0.408862 0.912596i \(-0.634074\pi\)
−0.408862 + 0.912596i \(0.634074\pi\)
\(444\) 0 0
\(445\) −10.2130 + 4.23034i −0.484140 + 0.200537i
\(446\) 0 0
\(447\) −10.4962 25.3401i −0.496453 1.19854i
\(448\) 0 0
\(449\) −9.10111 + 21.9720i −0.429508 + 1.03692i 0.549936 + 0.835207i \(0.314652\pi\)
−0.979444 + 0.201717i \(0.935348\pi\)
\(450\) 0 0
\(451\) 0.428189 0.428189i 0.0201627 0.0201627i
\(452\) 0 0
\(453\) 13.8568 + 5.73968i 0.651050 + 0.269674i
\(454\) 0 0
\(455\) 12.0000i 0.562569i
\(456\) 0 0
\(457\) 25.8840 + 25.8840i 1.21080 + 1.21080i 0.970763 + 0.240041i \(0.0771610\pi\)
0.240041 + 0.970763i \(0.422839\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.6554 + 20.6554i 0.962016 + 0.962016i 0.999305 0.0372881i \(-0.0118719\pi\)
−0.0372881 + 0.999305i \(0.511872\pi\)
\(462\) 0 0
\(463\) 39.6333i 1.84192i 0.389662 + 0.920958i \(0.372592\pi\)
−0.389662 + 0.920958i \(0.627408\pi\)
\(464\) 0 0
\(465\) −25.8917 10.7247i −1.20070 0.497346i
\(466\) 0 0
\(467\) 11.4826 11.4826i 0.531352 0.531352i −0.389623 0.920975i \(-0.627395\pi\)
0.920975 + 0.389623i \(0.127395\pi\)
\(468\) 0 0
\(469\) −11.4794 + 27.7136i −0.530068 + 1.27970i
\(470\) 0 0
\(471\) −10.4962 25.3401i −0.483639 1.16761i
\(472\) 0 0
\(473\) 1.34283 0.556218i 0.0617433 0.0255749i
\(474\) 0 0
\(475\) 1.81665 0.0833538
\(476\) 0 0
\(477\) −39.6333 −1.81468
\(478\) 0 0
\(479\) 16.0744 6.65821i 0.734456 0.304222i 0.0160742 0.999871i \(-0.494883\pi\)
0.718382 + 0.695649i \(0.244883\pi\)
\(480\) 0 0
\(481\) 4.23034 + 10.2130i 0.192887 + 0.465670i
\(482\) 0 0
\(483\) 24.6966 59.6228i 1.12373 2.71293i
\(484\) 0 0
\(485\) 10.7559 10.7559i 0.488399 0.488399i
\(486\) 0 0
\(487\) 22.6434 + 9.37922i 1.02607 + 0.425013i 0.831293 0.555834i \(-0.187601\pi\)
0.194779 + 0.980847i \(0.437601\pi\)
\(488\) 0 0
\(489\) 19.8167i 0.896140i
\(490\) 0 0
\(491\) 6.94142 + 6.94142i 0.313262 + 0.313262i 0.846172 0.532910i \(-0.178902\pi\)
−0.532910 + 0.846172i \(0.678902\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −3.25662 3.25662i −0.146374 0.146374i
\(496\) 0 0
\(497\) 13.3944i 0.600823i
\(498\) 0 0
\(499\) 13.4612 + 5.57582i 0.602607 + 0.249608i 0.663064 0.748563i \(-0.269256\pi\)
−0.0604568 + 0.998171i \(0.519256\pi\)
\(500\) 0 0
\(501\) 48.5507 48.5507i 2.16909 2.16909i
\(502\) 0 0
\(503\) −14.8904 + 35.9486i −0.663930 + 1.60287i 0.127661 + 0.991818i \(0.459253\pi\)
−0.791591 + 0.611052i \(0.790747\pi\)
\(504\) 0 0
\(505\) 5.73968 + 13.8568i 0.255413 + 0.616620i
\(506\) 0 0
\(507\) −18.6875 + 7.74061i −0.829940 + 0.343772i
\(508\) 0 0
\(509\) 3.21110 0.142330 0.0711648 0.997465i \(-0.477328\pi\)
0.0711648 + 0.997465i \(0.477328\pi\)
\(510\) 0 0
\(511\) −32.2389 −1.42616
\(512\) 0 0
\(513\) −8.39102 + 3.47567i −0.370472 + 0.153455i
\(514\) 0 0
\(515\) 7.14980 + 17.2611i 0.315058 + 0.760617i
\(516\) 0 0
\(517\) 0.655444 1.58238i 0.0288264 0.0695931i
\(518\) 0 0
\(519\) 48.2522 48.2522i 2.11803 2.11803i
\(520\) 0 0
\(521\) −16.9853 7.03555i −0.744140 0.308233i −0.0217921 0.999763i \(-0.506937\pi\)
−0.722348 + 0.691530i \(0.756937\pi\)
\(522\) 0 0
\(523\) 12.0000i 0.524723i −0.964970 0.262362i \(-0.915499\pi\)
0.964970 0.262362i \(-0.0845013\pi\)
\(524\) 0 0
\(525\) 22.4978 + 22.4978i 0.981883 + 0.981883i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 9.91912 + 9.91912i 0.431266 + 0.431266i
\(530\) 0 0
\(531\) 65.4500i 2.84029i
\(532\) 0 0
\(533\) 3.40432 + 1.41011i 0.147457 + 0.0610788i
\(534\) 0 0
\(535\) 8.05709 8.05709i 0.348338 0.348338i
\(536\) 0 0
\(537\) −18.7284 + 45.2143i −0.808190 + 1.95114i
\(538\) 0 0
\(539\) −0.590809 1.42634i −0.0254480 0.0614368i
\(540\) 0 0
\(541\) −3.91969 + 1.62359i −0.168521 + 0.0698035i −0.465349 0.885127i \(-0.654071\pi\)
0.296828 + 0.954931i \(0.404071\pi\)
\(542\) 0 0
\(543\) −59.8722 −2.56936
\(544\) 0 0
\(545\) 12.4222 0.532109
\(546\) 0 0
\(547\) −15.0436 + 6.23127i −0.643218 + 0.266430i −0.680357 0.732880i \(-0.738175\pi\)
0.0371393 + 0.999310i \(0.488175\pi\)
\(548\) 0 0
\(549\) −25.5655 61.7205i −1.09111 2.63417i
\(550\) 0 0
\(551\) −0.526174 + 1.27030i −0.0224158 + 0.0541165i
\(552\) 0 0
\(553\) 0.986024 0.986024i 0.0419300 0.0419300i
\(554\) 0 0
\(555\) 18.0523 + 7.47752i 0.766279 + 0.317403i
\(556\) 0 0
\(557\) 21.3944i 0.906512i −0.891380 0.453256i \(-0.850262\pi\)
0.891380 0.453256i \(-0.149738\pi\)
\(558\) 0 0
\(559\) 6.25394 + 6.25394i 0.264514 + 0.264514i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.5703 + 14.5703i 0.614066 + 0.614066i 0.944003 0.329937i \(-0.107028\pi\)
−0.329937 + 0.944003i \(0.607028\pi\)
\(564\) 0 0
\(565\) 19.2111i 0.808217i
\(566\) 0 0
\(567\) −78.3103 32.4372i −3.28872 1.36223i
\(568\) 0 0
\(569\) −21.5117 + 21.5117i −0.901819 + 0.901819i −0.995593 0.0937741i \(-0.970107\pi\)
0.0937741 + 0.995593i \(0.470107\pi\)
\(570\) 0 0
\(571\) −1.24625 + 3.00872i −0.0521541 + 0.125911i −0.947809 0.318838i \(-0.896707\pi\)
0.895655 + 0.444749i \(0.146707\pi\)
\(572\) 0 0
\(573\) 8.46069 + 20.4259i 0.353450 + 0.853304i
\(574\) 0 0
\(575\) −16.8655 + 6.98594i −0.703342 + 0.291334i
\(576\) 0 0
\(577\) 31.4500 1.30928 0.654640 0.755941i \(-0.272820\pi\)
0.654640 + 0.755941i \(0.272820\pi\)
\(578\) 0 0
\(579\) 37.8167 1.57161
\(580\) 0 0
\(581\) −53.6053 + 22.2041i −2.22392 + 0.921180i
\(582\) 0 0
\(583\) −0.853896 2.06149i −0.0353648 0.0853781i
\(584\) 0 0
\(585\) 10.7247 25.8917i 0.443412 1.07049i
\(586\) 0 0
\(587\) 3.25662 3.25662i 0.134415 0.134415i −0.636698 0.771113i \(-0.719700\pi\)
0.771113 + 0.636698i \(0.219700\pi\)
\(588\) 0 0
\(589\) −3.40432 1.41011i −0.140272 0.0581027i
\(590\) 0 0
\(591\) 81.0833i 3.33532i
\(592\) 0 0
\(593\) −1.11567 1.11567i −0.0458151 0.0458151i 0.683828 0.729643i \(-0.260314\pi\)
−0.729643 + 0.683828i \(0.760314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −32.9551 32.9551i −1.34876 1.34876i
\(598\) 0 0
\(599\) 26.0555i 1.06460i −0.846556 0.532300i \(-0.821328\pi\)
0.846556 0.532300i \(-0.178672\pi\)
\(600\) 0 0
\(601\) −5.50207 2.27903i −0.224434 0.0929637i 0.267633 0.963521i \(-0.413759\pi\)
−0.492067 + 0.870557i \(0.663759\pi\)
\(602\) 0 0
\(603\) −49.5367 + 49.5367i −2.01729 + 2.01729i
\(604\) 0 0
\(605\) −5.85393 + 14.1326i −0.237996 + 0.574573i
\(606\) 0 0
\(607\) −5.14887 12.4305i −0.208986 0.504538i 0.784278 0.620410i \(-0.213034\pi\)
−0.993264 + 0.115872i \(0.963034\pi\)
\(608\) 0 0
\(609\) −22.2478 + 9.21536i −0.901528 + 0.373425i
\(610\) 0 0
\(611\) 10.4222 0.421637
\(612\) 0 0
\(613\) 40.4222 1.63264 0.816319 0.577602i \(-0.196011\pi\)
0.816319 + 0.577602i \(0.196011\pi\)
\(614\) 0 0
\(615\) 6.01744 2.49251i 0.242647 0.100508i
\(616\) 0 0
\(617\) 0.868918 + 2.09775i 0.0349813 + 0.0844524i 0.940405 0.340057i \(-0.110446\pi\)
−0.905423 + 0.424510i \(0.860446\pi\)
\(618\) 0 0
\(619\) 7.83983 18.9270i 0.315109 0.760742i −0.684390 0.729116i \(-0.739932\pi\)
0.999500 0.0316257i \(-0.0100685\pi\)
\(620\) 0 0
\(621\) 64.5352 64.5352i 2.58971 2.58971i
\(622\) 0 0
\(623\) −23.5181 9.74153i −0.942234 0.390286i
\(624\) 0 0
\(625\) 1.00000i 0.0400000i
\(626\) 0 0
\(627\) −0.597088 0.597088i −0.0238454 0.0238454i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 17.1395 + 17.1395i 0.682311 + 0.682311i 0.960520 0.278209i \(-0.0897409\pi\)
−0.278209 + 0.960520i \(0.589741\pi\)
\(632\) 0 0
\(633\) 71.4500i 2.83988i
\(634\) 0 0
\(635\) 0.791191 + 0.327722i 0.0313975 + 0.0130053i
\(636\) 0 0
\(637\) 6.64288 6.64288i 0.263200 0.263200i
\(638\) 0 0
\(639\) 11.9709 28.9004i 0.473563 1.14328i
\(640\) 0 0
\(641\) −16.6779 40.2639i −0.658736 1.59033i −0.799758 0.600322i \(-0.795039\pi\)
0.141023 0.990006i \(-0.454961\pi\)
\(642\) 0 0
\(643\) −5.38229 + 2.22942i −0.212257 + 0.0879197i −0.486279 0.873804i \(-0.661646\pi\)
0.274022 + 0.961724i \(0.411646\pi\)
\(644\) 0 0
\(645\) 15.6333 0.615561
\(646\) 0 0
\(647\) −17.2111 −0.676638 −0.338319 0.941031i \(-0.609858\pi\)
−0.338319 + 0.941031i \(0.609858\pi\)
\(648\) 0 0
\(649\) −3.40432 + 1.41011i −0.133631 + 0.0553518i
\(650\) 0 0
\(651\) −24.6966 59.6228i −0.967935 2.33680i
\(652\) 0 0
\(653\) 13.4307 32.4245i 0.525583 1.26887i −0.408808 0.912620i \(-0.634055\pi\)
0.934391 0.356249i \(-0.115945\pi\)
\(654\) 0 0
\(655\) 8.91347 8.91347i 0.348278 0.348278i
\(656\) 0 0
\(657\) −69.5599 28.8127i −2.71379 1.12409i
\(658\) 0 0
\(659\) 32.0000i 1.24654i −0.782006 0.623272i \(-0.785803\pi\)
0.782006 0.623272i \(-0.214197\pi\)
\(660\) 0 0
\(661\) 0.856379 + 0.856379i 0.0333093 + 0.0333093i 0.723565 0.690256i \(-0.242502\pi\)
−0.690256 + 0.723565i \(0.742502\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.97205 1.97205i −0.0764728 0.0764728i
\(666\) 0 0
\(667\) 13.8167i 0.534983i
\(668\) 0 0
\(669\) 53.6053 + 22.2041i 2.07250 + 0.858459i
\(670\) 0 0
\(671\) 2.65953 2.65953i 0.102670 0.102670i
\(672\) 0 0
\(673\) −3.03370 + 7.32401i −0.116941 + 0.282320i −0.971502 0.237030i \(-0.923826\pi\)
0.854562 + 0.519350i \(0.173826\pi\)
\(674\) 0 0
\(675\) 17.2190 + 41.5705i 0.662762 + 1.60005i
\(676\) 0 0
\(677\) 20.9413 8.67416i 0.804838 0.333375i 0.0579459 0.998320i \(-0.481545\pi\)
0.746893 + 0.664945i \(0.231545\pi\)
\(678\) 0 0
\(679\) 35.0278 1.34424
\(680\) 0 0
\(681\) 1.39445 0.0534354
\(682\) 0 0
\(683\) −0.947233 + 0.392357i −0.0362449 + 0.0150131i −0.400732 0.916195i \(-0.631244\pi\)
0.364487 + 0.931208i \(0.381244\pi\)
\(684\) 0 0
\(685\) 1.41011 + 3.40432i 0.0538777 + 0.130072i
\(686\) 0 0
\(687\) −5.73968 + 13.8568i −0.218983 + 0.528671i
\(688\) 0 0
\(689\) 9.60095 9.60095i 0.365767 0.365767i
\(690\) 0 0
\(691\) 7.20423 + 2.98409i 0.274062 + 0.113520i 0.515482 0.856901i \(-0.327613\pi\)
−0.241420 + 0.970421i \(0.577613\pi\)
\(692\) 0 0
\(693\) 10.6056i 0.402872i
\(694\) 0 0
\(695\) −0.428189 0.428189i −0.0162422 0.0162422i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 18.2551 + 18.2551i 0.690472 + 0.690472i
\(700\) 0 0
\(701\) 7.81665i 0.295231i 0.989045 + 0.147615i \(0.0471598\pi\)
−0.989045 + 0.147615i \(0.952840\pi\)
\(702\) 0 0
\(703\) 2.37357 + 0.983166i 0.0895210 + 0.0370808i
\(704\) 0 0
\(705\) 13.0265 13.0265i 0.490605 0.490605i
\(706\) 0 0
\(707\) −13.2172 + 31.9091i −0.497084 + 1.20007i
\(708\) 0 0
\(709\) −7.79022 18.8073i −0.292568 0.706321i 0.707432 0.706781i \(-0.249854\pi\)
−1.00000 0.000460118i \(0.999854\pi\)
\(710\) 0 0
\(711\) 3.00872 1.24625i 0.112836 0.0467381i
\(712\) 0 0
\(713\) 37.0278 1.38670
\(714\) 0 0
\(715\) 1.57779 0.0590062
\(716\) 0 0
\(717\) 44.4957 18.4307i 1.66172 0.688308i
\(718\) 0 0
\(719\) −2.55714 6.17348i −0.0953653 0.230232i 0.868997 0.494817i \(-0.164765\pi\)
−0.964362 + 0.264585i \(0.914765\pi\)
\(720\) 0 0
\(721\) −16.4644 + 39.7485i −0.613166 + 1.48031i
\(722\) 0 0
\(723\) −29.3095 + 29.3095i −1.09003 + 1.09003i
\(724\) 0 0
\(725\) 6.29326 + 2.60675i 0.233726 + 0.0968124i
\(726\) 0 0
\(727\) 6.42221i 0.238186i −0.992883 0.119093i \(-0.962001\pi\)
0.992883 0.119093i \(-0.0379987\pi\)
\(728\) 0 0
\(729\) −36.3610 36.3610i −1.34670 1.34670i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −32.5662 32.5662i −1.20286 1.20286i −0.973293 0.229566i \(-0.926269\pi\)
−0.229566 0.973293i \(-0.573731\pi\)
\(734\) 0 0
\(735\) 16.6056i 0.612505i
\(736\) 0 0
\(737\) −3.64387 1.50934i −0.134224 0.0555973i
\(738\) 0 0
\(739\) 24.5091 24.5091i 0.901581 0.901581i −0.0939921 0.995573i \(-0.529963\pi\)
0.995573 + 0.0939921i \(0.0299628\pi\)
\(740\) 0 0
\(741\) 1.96633 4.74715i 0.0722350 0.174391i
\(742\) 0 0
\(743\) −7.96910 19.2391i −0.292358 0.705815i 0.707642 0.706571i \(-0.249759\pi\)
−1.00000 0.000756791i \(0.999759\pi\)
\(744\) 0 0
\(745\) 11.0041 4.55806i 0.403161 0.166995i
\(746\) 0 0
\(747\) −135.505 −4.95789
\(748\) 0 0
\(749\) 26.2389 0.958747
\(750\) 0 0
\(751\) 2.21753 0.918531i 0.0809188 0.0335177i −0.341857 0.939752i \(-0.611056\pi\)
0.422776 + 0.906234i \(0.361056\pi\)
\(752\) 0 0
\(753\) 14.9550 + 36.1047i 0.544992 + 1.31573i
\(754\) 0 0
\(755\) −2.49251 + 6.01744i −0.0907116 + 0.218997i
\(756\) 0 0
\(757\) −27.5968 + 27.5968i −1.00302 + 1.00302i −0.00302702 + 0.999995i \(0.500964\pi\)
−0.999995 + 0.00302702i \(0.999036\pi\)
\(758\) 0 0
\(759\) 7.83938 + 3.24718i 0.284551 + 0.117865i
\(760\) 0 0
\(761\) 31.4500i 1.14006i −0.821624 0.570030i \(-0.806932\pi\)
0.821624 0.570030i \(-0.193068\pi\)
\(762\) 0 0
\(763\) 20.2272 + 20.2272i 0.732273 + 0.732273i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −15.8549 15.8549i −0.572487 0.572487i
\(768\) 0 0
\(769\) 18.6056i 0.670933i 0.942052 + 0.335467i \(0.108894\pi\)
−0.942052 + 0.335467i \(0.891106\pi\)
\(770\) 0 0
\(771\) −58.3525 24.1704i −2.10151 0.870475i
\(772\) 0 0
\(773\) −20.2272 + 20.2272i −0.727521 + 0.727521i −0.970125 0.242604i \(-0.921998\pi\)
0.242604 + 0.970125i \(0.421998\pi\)
\(774\) 0 0
\(775\) −6.98594 + 16.8655i −0.250942 + 0.605828i
\(776\) 0 0
\(777\) 17.2190 + 41.5705i 0.617730 + 1.49133i
\(778\) 0 0
\(779\) 0.791191 0.327722i 0.0283474 0.0117419i
\(780\) 0 0
\(781\) 1.76114 0.0630186
\(782\) 0 0
\(783\) −34.0555 −1.21704
\(784\) 0 0
\(785\) 11.0041 4.55806i 0.392755 0.162684i
\(786\) 0 0
\(787\) 7.96910 + 19.2391i 0.284068 + 0.685800i 0.999923 0.0124489i \(-0.00396271\pi\)
−0.715855 + 0.698249i \(0.753963\pi\)
\(788\) 0 0
\(789\) −28.6984 + 69.2841i −1.02169 + 2.46658i
\(790\) 0 0
\(791\) −31.2816 + 31.2816i −1.11225 + 1.11225i
\(792\) 0 0
\(793\) 21.1446 + 8.75836i 0.750865 + 0.311019i
\(794\) 0 0
\(795\) 24.0000i 0.851192i
\(796\) 0 0
\(797\) −2.56914 2.56914i −0.0910035 0.0910035i 0.660140 0.751143i \(-0.270497\pi\)
−0.751143 + 0.660140i \(0.770497\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −42.0375 42.0375i −1.48532 1.48532i
\(802\) 0 0
\(803\) 4.23886i 0.149586i
\(804\) 0 0
\(805\) 25.8917 + 10.7247i 0.912563 + 0.377996i
\(806\) 0 0
\(807\) 56.7374 56.7374i 1.99725 1.99725i
\(808\) 0 0
\(809\) 11.2659 27.1983i 0.396088 0.956240i −0.592497 0.805573i \(-0.701858\pi\)
0.988585 0.150667i \(-0.0481423\pi\)
\(810\) 0 0
\(811\) −5.80432 14.0129i −0.203817 0.492058i 0.788610 0.614894i \(-0.210801\pi\)
−0.992427 + 0.122836i \(0.960801\pi\)
\(812\) 0 0
\(813\) 3.64387 1.50934i 0.127796 0.0529349i
\(814\) 0 0
\(815\) −8.60555 −0.301439
\(816\) 0 0
\(817\) 2.05551 0.0719133
\(818\) 0 0
\(819\) 59.6228 24.6966i 2.08339 0.862968i
\(820\) 0 0
\(821\) 6.93632 + 16.7458i 0.242079 + 0.584431i 0.997489 0.0708216i \(-0.0225621\pi\)
−0.755410 + 0.655253i \(0.772562\pi\)
\(822\) 0 0
\(823\) 6.98594 16.8655i 0.243514 0.587896i −0.754113 0.656745i \(-0.771933\pi\)
0.997627 + 0.0688493i \(0.0219328\pi\)
\(824\) 0 0
\(825\) −2.95807 + 2.95807i −0.102987 + 0.102987i
\(826\) 0 0
\(827\) −8.23497 3.41104i −0.286358 0.118613i 0.234881 0.972024i \(-0.424530\pi\)
−0.521239 + 0.853411i \(0.674530\pi\)
\(828\) 0 0
\(829\) 18.8444i 0.654493i −0.944939 0.327247i \(-0.893879\pi\)
0.944939 0.327247i \(-0.106121\pi\)
\(830\) 0 0
\(831\) −11.7419 11.7419i −0.407322 0.407322i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 21.0836 + 21.0836i 0.729627 + 0.729627i
\(836\) 0 0
\(837\) 91.2666i 3.15464i
\(838\) 0 0
\(839\) −19.4787 8.06833i −0.672478 0.278550i 0.0202004 0.999796i \(-0.493570\pi\)
−0.692679 + 0.721246i \(0.743570\pi\)
\(840\) 0 0
\(841\) 16.8605 16.8605i 0.581398 0.581398i
\(842\) 0 0
\(843\) 22.9587 55.4273i 0.790741 1.90902i
\(844\) 0 0
\(845\) −3.36142 8.11520i −0.115637 0.279171i
\(846\) 0 0
\(847\) −32.5443 + 13.4803i −1.11824 + 0.463188i
\(848\) 0 0
\(849\) 9.76114 0.335001
\(850\) 0 0
\(851\) −25.8167 −0.884983
\(852\) 0 0
\(853\) 38.4420 15.9232i 1.31623 0.545199i 0.389532 0.921013i \(-0.372637\pi\)
0.926695 + 0.375813i \(0.122637\pi\)
\(854\) 0 0
\(855\) −2.49251 6.01744i −0.0852419 0.205792i
\(856\) 0 0
\(857\) −10.0843 + 24.3456i −0.344472 + 0.831630i 0.652780 + 0.757548i \(0.273603\pi\)
−0.997252 + 0.0740819i \(0.976397\pi\)
\(858\) 0 0
\(859\) −1.28457 + 1.28457i −0.0438289 + 0.0438289i −0.728682 0.684853i \(-0.759867\pi\)
0.684853 + 0.728682i \(0.259867\pi\)
\(860\) 0 0
\(861\) 13.8568 + 5.73968i 0.472239 + 0.195608i
\(862\) 0 0
\(863\) 52.4777i 1.78636i −0.449697 0.893181i \(-0.648468\pi\)
0.449697 0.893181i \(-0.351532\pi\)
\(864\) 0 0
\(865\) 20.9539 + 20.9539i 0.712454 + 0.712454i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.129645 + 0.129645i 0.00439792 + 0.00439792i
\(870\) 0 0
\(871\) 24.0000i 0.813209i
\(872\) 0 0
\(873\) 75.5774 + 31.3052i 2.55791 + 1.05952i
\(874\) 0 0
\(875\) −26.0529 + 26.0529i −0.880750 + 0.880750i
\(876\) 0 0
\(877\) −0.968144 + 2.33731i −0.0326919 + 0.0789253i −0.939382 0.342872i \(-0.888600\pi\)
0.906690 + 0.421797i \(0.138600\pi\)
\(878\) 0 0
\(879\) −26.9606 65.0886i −0.909358 2.19538i
\(880\) 0 0
\(881\) 31.6333 13.1030i 1.06575 0.441450i 0.220264 0.975440i \(-0.429308\pi\)
0.845490 + 0.533991i \(0.179308\pi\)
\(882\) 0 0
\(883\) −25.5778 −0.860761 −0.430381 0.902647i \(-0.641621\pi\)
−0.430381 + 0.902647i \(0.641621\pi\)
\(884\) 0 0
\(885\) −39.6333 −1.33226
\(886\) 0 0
\(887\) −15.2832 + 6.33049i −0.513158 + 0.212557i −0.624209 0.781258i \(-0.714579\pi\)
0.111050 + 0.993815i \(0.464579\pi\)
\(888\) 0 0
\(889\) 0.754670 + 1.82194i 0.0253108 + 0.0611057i
\(890\) 0 0
\(891\) 4.26493 10.2965i 0.142881 0.344944i
\(892\) 0 0
\(893\) 1.71276 1.71276i 0.0573152 0.0573152i
\(894\) 0 0
\(895\) −19.6347 8.13296i −0.656316 0.271855i
\(896\) 0 0
\(897\) 51.6333i 1.72399i
\(898\) 0 0
\(899\) −9.76985 9.76985i −0.325843 0.325843i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 25.4558 + 25.4558i 0.847117 + 0.847117i
\(904\) 0 0
\(905\) 26.0000i 0.864269i
\(906\) 0 0
\(907\) 32.0652 + 13.2818i 1.06471 + 0.441016i 0.845120 0.534577i \(-0.179529\pi\)
0.219587 + 0.975593i \(0.429529\pi\)
\(908\) 0 0
\(909\) −57.0360 + 57.0360i −1.89176 + 1.89176i
\(910\) 0 0
\(911\) −2.55714 + 6.17348i −0.0847219 + 0.204537i −0.960563 0.278063i \(-0.910307\pi\)
0.875841 + 0.482600i \(0.160307\pi\)
\(912\) 0 0
\(913\) −2.91945 7.04819i −0.0966198 0.233261i
\(914\) 0 0
\(915\) 37.3750 15.4812i 1.23558 0.511793i
\(916\) 0 0
\(917\) 29.0278 0.958581
\(918\) 0 0
\(919\) 40.8444 1.34733 0.673666 0.739036i \(-0.264718\pi\)
0.673666 + 0.739036i \(0.264718\pi\)
\(920\) 0 0
\(921\) −63.8183 + 26.4344i −2.10288 + 0.871043i
\(922\) 0 0
\(923\) 4.10107 + 9.90087i 0.134988 + 0.325891i
\(924\) 0 0
\(925\) 4.87076 11.7591i 0.160150 0.386636i
\(926\) 0 0
\(927\) −71.0485 + 71.0485i −2.33354 + 2.33354i
\(928\) 0 0
\(929\) −1.30656 0.541196i −0.0428669 0.0177561i 0.361147 0.932509i \(-0.382385\pi\)
−0.404014 + 0.914753i \(0.632385\pi\)
\(930\) 0 0
\(931\) 2.18335i 0.0715563i
\(932\) 0 0
\(933\) −61.5772 61.5772i −2.01595 2.01595i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.54118 + 4.54118i 0.148354 + 0.148354i 0.777382 0.629028i \(-0.216547\pi\)
−0.629028 + 0.777382i \(0.716547\pi\)
\(938\) 0 0
\(939\) 28.6056i 0.933507i
\(940\) 0 0
\(941\) −20.9413 8.67416i −0.682666 0.282770i 0.0142749 0.999898i \(-0.495456\pi\)
−0.696941 + 0.717129i \(0.745456\pi\)
\(942\) 0 0
\(943\) −6.08504 + 6.08504i −0.198156 + 0.198156i
\(944\) 0 0
\(945\) 26.4344 63.8183i 0.859911 2.07601i
\(946\) 0 0
\(947\) 5.01960 + 12.1184i 0.163115 + 0.393795i 0.984212 0.176994i \(-0.0566374\pi\)
−0.821097 + 0.570789i \(0.806637\pi\)
\(948\) 0 0
\(949\) 23.8302 9.87080i 0.773562 0.320420i
\(950\) 0 0
\(951\) 90.2944 2.92800
\(952\) 0 0
\(953\) 50.2389 1.62740 0.813698 0.581288i \(-0.197451\pi\)
0.813698 + 0.581288i \(0.197451\pi\)
\(954\) 0 0
\(955\) −8.87012 + 3.67412i −0.287030 + 0.118892i
\(956\) 0 0
\(957\) −1.21166 2.92521i −0.0391675 0.0945586i
\(958\) 0 0
\(959\) −3.24718 + 7.83938i −0.104857 + 0.253147i
\(960\) 0 0
\(961\) 4.26227 4.26227i 0.137492 0.137492i
\(962\) 0 0
\(963\) 56.6141 + 23.4503i 1.82436 + 0.755676i
\(964\) 0 0
\(965\) 16.4222i 0.528649i
\(966\) 0 0
\(967\) −15.4267 15.4267i −0.496089 0.496089i 0.414129 0.910218i \(-0.364086\pi\)
−0.910218 + 0.414129i \(0.864086\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 38.9105 + 38.9105i 1.24870 + 1.24870i 0.956296 + 0.292402i \(0.0944545\pi\)
0.292402 + 0.956296i \(0.405546\pi\)
\(972\) 0 0
\(973\) 1.39445i 0.0447040i
\(974\) 0 0
\(975\) −23.5181 9.74153i −0.753183 0.311979i
\(976\) 0 0
\(977\) 11.9108 11.9108i 0.381060 0.381060i −0.490424 0.871484i \(-0.663158\pi\)
0.871484 + 0.490424i \(0.163158\pi\)
\(978\) 0 0
\(979\) 1.28084 3.09223i 0.0409360 0.0988282i
\(980\) 0 0
\(981\) 25.5655 + 61.7205i 0.816243 + 1.97059i
\(982\) 0 0
\(983\) −10.6085 + 4.39420i −0.338360 + 0.140153i −0.545393 0.838181i \(-0.683619\pi\)
0.207033 + 0.978334i \(0.433619\pi\)
\(984\) 0 0
\(985\) −35.2111 −1.12192
\(986\) 0 0
\(987\) 42.4222 1.35031
\(988\) 0 0
\(989\) −19.0831 + 7.90447i −0.606806 + 0.251347i
\(990\) 0 0
\(991\) −12.7256 30.7224i −0.404243 0.975928i −0.986624 0.163012i \(-0.947879\pi\)
0.582381 0.812916i \(-0.302121\pi\)
\(992\) 0 0
\(993\) 4.23034 10.2130i 0.134246 0.324098i
\(994\) 0 0
\(995\) 14.3110 14.3110i 0.453690 0.453690i
\(996\) 0 0
\(997\) −51.2680 21.2359i −1.62368 0.672548i −0.629173 0.777265i \(-0.716606\pi\)
−0.994502 + 0.104717i \(0.966606\pi\)
\(998\) 0 0
\(999\) 63.6333i 2.01327i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.h.e.733.1 16
17.2 even 8 inner 1156.2.h.e.977.1 16
17.3 odd 16 1156.2.a.h.1.1 4
17.4 even 4 inner 1156.2.h.e.1001.4 16
17.5 odd 16 1156.2.b.a.577.1 4
17.6 odd 16 68.2.e.a.21.1 yes 4
17.7 odd 16 1156.2.e.c.829.2 4
17.8 even 8 inner 1156.2.h.e.757.4 16
17.9 even 8 inner 1156.2.h.e.757.1 16
17.10 odd 16 68.2.e.a.13.1 4
17.11 odd 16 1156.2.e.c.905.2 4
17.12 odd 16 1156.2.b.a.577.4 4
17.13 even 4 inner 1156.2.h.e.1001.1 16
17.14 odd 16 1156.2.a.h.1.4 4
17.15 even 8 inner 1156.2.h.e.977.4 16
17.16 even 2 inner 1156.2.h.e.733.4 16
51.23 even 16 612.2.k.e.361.2 4
51.44 even 16 612.2.k.e.217.2 4
68.3 even 16 4624.2.a.bq.1.4 4
68.23 even 16 272.2.o.g.225.2 4
68.27 even 16 272.2.o.g.81.2 4
68.31 even 16 4624.2.a.bq.1.1 4
85.23 even 16 1700.2.m.a.1449.1 4
85.27 even 16 1700.2.m.a.149.1 4
85.44 odd 16 1700.2.o.c.1101.2 4
85.57 even 16 1700.2.m.b.1449.2 4
85.74 odd 16 1700.2.o.c.701.2 4
85.78 even 16 1700.2.m.b.149.2 4
136.27 even 16 1088.2.o.s.897.1 4
136.61 odd 16 1088.2.o.t.897.2 4
136.91 even 16 1088.2.o.s.769.1 4
136.125 odd 16 1088.2.o.t.769.2 4
204.23 odd 16 2448.2.be.u.1585.1 4
204.95 odd 16 2448.2.be.u.1441.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.e.a.13.1 4 17.10 odd 16
68.2.e.a.21.1 yes 4 17.6 odd 16
272.2.o.g.81.2 4 68.27 even 16
272.2.o.g.225.2 4 68.23 even 16
612.2.k.e.217.2 4 51.44 even 16
612.2.k.e.361.2 4 51.23 even 16
1088.2.o.s.769.1 4 136.91 even 16
1088.2.o.s.897.1 4 136.27 even 16
1088.2.o.t.769.2 4 136.125 odd 16
1088.2.o.t.897.2 4 136.61 odd 16
1156.2.a.h.1.1 4 17.3 odd 16
1156.2.a.h.1.4 4 17.14 odd 16
1156.2.b.a.577.1 4 17.5 odd 16
1156.2.b.a.577.4 4 17.12 odd 16
1156.2.e.c.829.2 4 17.7 odd 16
1156.2.e.c.905.2 4 17.11 odd 16
1156.2.h.e.733.1 16 1.1 even 1 trivial
1156.2.h.e.733.4 16 17.16 even 2 inner
1156.2.h.e.757.1 16 17.9 even 8 inner
1156.2.h.e.757.4 16 17.8 even 8 inner
1156.2.h.e.977.1 16 17.2 even 8 inner
1156.2.h.e.977.4 16 17.15 even 8 inner
1156.2.h.e.1001.1 16 17.13 even 4 inner
1156.2.h.e.1001.4 16 17.4 even 4 inner
1700.2.m.a.149.1 4 85.27 even 16
1700.2.m.a.1449.1 4 85.23 even 16
1700.2.m.b.149.2 4 85.78 even 16
1700.2.m.b.1449.2 4 85.57 even 16
1700.2.o.c.701.2 4 85.74 odd 16
1700.2.o.c.1101.2 4 85.44 odd 16
2448.2.be.u.1441.1 4 204.95 odd 16
2448.2.be.u.1585.1 4 204.23 odd 16
4624.2.a.bq.1.1 4 68.31 even 16
4624.2.a.bq.1.4 4 68.3 even 16