Properties

Label 1700.2.m.a.1449.1
Level $1700$
Weight $2$
Character 1700.1449
Analytic conductor $13.575$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1700,2,Mod(149,1700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1700.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1700.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5745683436\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1449.1
Root \(-2.30278i\) of defining polynomial
Character \(\chi\) \(=\) 1700.1449
Dual form 1700.2.m.a.149.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.30278 - 2.30278i) q^{3} +(2.30278 - 2.30278i) q^{7} +7.60555i q^{9} +(-0.302776 - 0.302776i) q^{11} +2.60555i q^{13} +(2.00000 - 3.60555i) q^{17} -0.605551i q^{19} -10.6056 q^{21} +(4.30278 - 4.30278i) q^{23} +(10.6056 - 10.6056i) q^{27} +(1.60555 - 1.60555i) q^{29} +(4.30278 - 4.30278i) q^{31} +1.39445i q^{33} +(-3.00000 - 3.00000i) q^{37} +(6.00000 - 6.00000i) q^{39} +(1.00000 + 1.00000i) q^{41} +3.39445 q^{43} +4.00000i q^{47} -3.60555i q^{49} +(-12.9083 + 3.69722i) q^{51} +5.21110 q^{53} +(-1.39445 + 1.39445i) q^{57} +8.60555i q^{59} +(-6.21110 - 6.21110i) q^{61} +(17.5139 + 17.5139i) q^{63} -9.21110i q^{67} -19.8167 q^{69} +(2.90833 - 2.90833i) q^{71} +(-7.00000 - 7.00000i) q^{73} -1.39445 q^{77} +(0.302776 + 0.302776i) q^{79} -26.0278 q^{81} -17.8167 q^{83} -7.39445 q^{87} -7.81665 q^{89} +(6.00000 + 6.00000i) q^{91} -19.8167 q^{93} +(7.60555 + 7.60555i) q^{97} +(2.30278 - 2.30278i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{7} + 6 q^{11} + 8 q^{17} - 28 q^{21} + 10 q^{23} + 28 q^{27} - 8 q^{29} + 10 q^{31} - 12 q^{37} + 24 q^{39} + 4 q^{41} + 28 q^{43} - 30 q^{51} - 8 q^{53} - 20 q^{57} + 4 q^{61} + 34 q^{63}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(851\) \(1601\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.30278 2.30278i −1.32951 1.32951i −0.905798 0.423710i \(-0.860727\pi\)
−0.423710 0.905798i \(-0.639273\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.30278 2.30278i 0.870367 0.870367i −0.122145 0.992512i \(-0.538977\pi\)
0.992512 + 0.122145i \(0.0389773\pi\)
\(8\) 0 0
\(9\) 7.60555i 2.53518i
\(10\) 0 0
\(11\) −0.302776 0.302776i −0.0912903 0.0912903i 0.659987 0.751277i \(-0.270562\pi\)
−0.751277 + 0.659987i \(0.770562\pi\)
\(12\) 0 0
\(13\) 2.60555i 0.722650i 0.932440 + 0.361325i \(0.117675\pi\)
−0.932440 + 0.361325i \(0.882325\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 3.60555i 0.485071 0.874475i
\(18\) 0 0
\(19\) 0.605551i 0.138923i −0.997585 0.0694615i \(-0.977872\pi\)
0.997585 0.0694615i \(-0.0221281\pi\)
\(20\) 0 0
\(21\) −10.6056 −2.31432
\(22\) 0 0
\(23\) 4.30278 4.30278i 0.897191 0.897191i −0.0979961 0.995187i \(-0.531243\pi\)
0.995187 + 0.0979961i \(0.0312433\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 10.6056 10.6056i 2.04104 2.04104i
\(28\) 0 0
\(29\) 1.60555 1.60555i 0.298143 0.298143i −0.542143 0.840286i \(-0.682387\pi\)
0.840286 + 0.542143i \(0.182387\pi\)
\(30\) 0 0
\(31\) 4.30278 4.30278i 0.772801 0.772801i −0.205794 0.978595i \(-0.565978\pi\)
0.978595 + 0.205794i \(0.0659777\pi\)
\(32\) 0 0
\(33\) 1.39445i 0.242742i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 0 0
\(39\) 6.00000 6.00000i 0.960769 0.960769i
\(40\) 0 0
\(41\) 1.00000 + 1.00000i 0.156174 + 0.156174i 0.780869 0.624695i \(-0.214777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 3.39445 0.517649 0.258824 0.965924i \(-0.416665\pi\)
0.258824 + 0.965924i \(0.416665\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) 3.60555i 0.515079i
\(50\) 0 0
\(51\) −12.9083 + 3.69722i −1.80753 + 0.517715i
\(52\) 0 0
\(53\) 5.21110 0.715800 0.357900 0.933760i \(-0.383493\pi\)
0.357900 + 0.933760i \(0.383493\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.39445 + 1.39445i −0.184699 + 0.184699i
\(58\) 0 0
\(59\) 8.60555i 1.12035i 0.828375 + 0.560174i \(0.189266\pi\)
−0.828375 + 0.560174i \(0.810734\pi\)
\(60\) 0 0
\(61\) −6.21110 6.21110i −0.795250 0.795250i 0.187092 0.982342i \(-0.440094\pi\)
−0.982342 + 0.187092i \(0.940094\pi\)
\(62\) 0 0
\(63\) 17.5139 + 17.5139i 2.20654 + 2.20654i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.21110i 1.12532i −0.826690 0.562658i \(-0.809779\pi\)
0.826690 0.562658i \(-0.190221\pi\)
\(68\) 0 0
\(69\) −19.8167 −2.38564
\(70\) 0 0
\(71\) 2.90833 2.90833i 0.345155 0.345155i −0.513146 0.858301i \(-0.671520\pi\)
0.858301 + 0.513146i \(0.171520\pi\)
\(72\) 0 0
\(73\) −7.00000 7.00000i −0.819288 0.819288i 0.166717 0.986005i \(-0.446683\pi\)
−0.986005 + 0.166717i \(0.946683\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.39445 −0.158912
\(78\) 0 0
\(79\) 0.302776 + 0.302776i 0.0340649 + 0.0340649i 0.723934 0.689869i \(-0.242332\pi\)
−0.689869 + 0.723934i \(0.742332\pi\)
\(80\) 0 0
\(81\) −26.0278 −2.89197
\(82\) 0 0
\(83\) −17.8167 −1.95563 −0.977816 0.209466i \(-0.932827\pi\)
−0.977816 + 0.209466i \(0.932827\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −7.39445 −0.792768
\(88\) 0 0
\(89\) −7.81665 −0.828564 −0.414282 0.910149i \(-0.635967\pi\)
−0.414282 + 0.910149i \(0.635967\pi\)
\(90\) 0 0
\(91\) 6.00000 + 6.00000i 0.628971 + 0.628971i
\(92\) 0 0
\(93\) −19.8167 −2.05489
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.60555 + 7.60555i 0.772227 + 0.772227i 0.978495 0.206269i \(-0.0661321\pi\)
−0.206269 + 0.978495i \(0.566132\pi\)
\(98\) 0 0
\(99\) 2.30278 2.30278i 0.231438 0.231438i
\(100\) 0 0
\(101\) 10.6056 1.05529 0.527646 0.849464i \(-0.323075\pi\)
0.527646 + 0.849464i \(0.323075\pi\)
\(102\) 0 0
\(103\) 13.2111i 1.30173i −0.759194 0.650864i \(-0.774407\pi\)
0.759194 0.650864i \(-0.225593\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.69722 5.69722i −0.550771 0.550771i 0.375892 0.926663i \(-0.377336\pi\)
−0.926663 + 0.375892i \(0.877336\pi\)
\(108\) 0 0
\(109\) 6.21110 + 6.21110i 0.594916 + 0.594916i 0.938955 0.344039i \(-0.111795\pi\)
−0.344039 + 0.938955i \(0.611795\pi\)
\(110\) 0 0
\(111\) 13.8167i 1.31142i
\(112\) 0 0
\(113\) −9.60555 + 9.60555i −0.903614 + 0.903614i −0.995747 0.0921325i \(-0.970632\pi\)
0.0921325 + 0.995747i \(0.470632\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −19.8167 −1.83205
\(118\) 0 0
\(119\) −3.69722 12.9083i −0.338924 1.18330i
\(120\) 0 0
\(121\) 10.8167i 0.983332i
\(122\) 0 0
\(123\) 4.60555i 0.415269i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −0.605551 −0.0537340 −0.0268670 0.999639i \(-0.508553\pi\)
−0.0268670 + 0.999639i \(0.508553\pi\)
\(128\) 0 0
\(129\) −7.81665 7.81665i −0.688218 0.688218i
\(130\) 0 0
\(131\) −6.30278 + 6.30278i −0.550676 + 0.550676i −0.926636 0.375960i \(-0.877313\pi\)
0.375960 + 0.926636i \(0.377313\pi\)
\(132\) 0 0
\(133\) −1.39445 1.39445i −0.120914 0.120914i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.60555i 0.222607i 0.993786 + 0.111304i \(0.0355026\pi\)
−0.993786 + 0.111304i \(0.964497\pi\)
\(138\) 0 0
\(139\) −0.302776 + 0.302776i −0.0256811 + 0.0256811i −0.719831 0.694150i \(-0.755781\pi\)
0.694150 + 0.719831i \(0.255781\pi\)
\(140\) 0 0
\(141\) 9.21110 9.21110i 0.775715 0.775715i
\(142\) 0 0
\(143\) 0.788897 0.788897i 0.0659709 0.0659709i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −8.30278 + 8.30278i −0.684801 + 0.684801i
\(148\) 0 0
\(149\) −8.42221 −0.689974 −0.344987 0.938607i \(-0.612117\pi\)
−0.344987 + 0.938607i \(0.612117\pi\)
\(150\) 0 0
\(151\) 4.60555i 0.374794i 0.982284 + 0.187397i \(0.0600052\pi\)
−0.982284 + 0.187397i \(0.939995\pi\)
\(152\) 0 0
\(153\) 27.4222 + 15.2111i 2.21695 + 1.22974i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 8.42221i 0.672165i 0.941833 + 0.336083i \(0.109102\pi\)
−0.941833 + 0.336083i \(0.890898\pi\)
\(158\) 0 0
\(159\) −12.0000 12.0000i −0.951662 0.951662i
\(160\) 0 0
\(161\) 19.8167i 1.56177i
\(162\) 0 0
\(163\) 4.30278 4.30278i 0.337019 0.337019i −0.518225 0.855244i \(-0.673407\pi\)
0.855244 + 0.518225i \(0.173407\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.9083 14.9083i −1.15364 1.15364i −0.985817 0.167824i \(-0.946326\pi\)
−0.167824 0.985817i \(-0.553674\pi\)
\(168\) 0 0
\(169\) 6.21110 0.477777
\(170\) 0 0
\(171\) 4.60555 0.352195
\(172\) 0 0
\(173\) −14.8167 14.8167i −1.12649 1.12649i −0.990744 0.135746i \(-0.956657\pi\)
−0.135746 0.990744i \(-0.543343\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 19.8167 19.8167i 1.48951 1.48951i
\(178\) 0 0
\(179\) 15.0278i 1.12323i 0.827400 + 0.561614i \(0.189819\pi\)
−0.827400 + 0.561614i \(0.810181\pi\)
\(180\) 0 0
\(181\) −13.0000 13.0000i −0.966282 0.966282i 0.0331674 0.999450i \(-0.489441\pi\)
−0.999450 + 0.0331674i \(0.989441\pi\)
\(182\) 0 0
\(183\) 28.6056i 2.11458i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.69722 + 0.486122i −0.124113 + 0.0355487i
\(188\) 0 0
\(189\) 48.8444i 3.55291i
\(190\) 0 0
\(191\) 6.78890 0.491227 0.245614 0.969368i \(-0.421011\pi\)
0.245614 + 0.969368i \(0.421011\pi\)
\(192\) 0 0
\(193\) 8.21110 8.21110i 0.591048 0.591048i −0.346866 0.937915i \(-0.612754\pi\)
0.937915 + 0.346866i \(0.112754\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.6056 + 17.6056i −1.25434 + 1.25434i −0.300590 + 0.953753i \(0.597184\pi\)
−0.953753 + 0.300590i \(0.902816\pi\)
\(198\) 0 0
\(199\) 10.1194 10.1194i 0.717347 0.717347i −0.250714 0.968061i \(-0.580665\pi\)
0.968061 + 0.250714i \(0.0806653\pi\)
\(200\) 0 0
\(201\) −21.2111 + 21.2111i −1.49612 + 1.49612i
\(202\) 0 0
\(203\) 7.39445i 0.518989i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 32.7250 + 32.7250i 2.27454 + 2.27454i
\(208\) 0 0
\(209\) −0.183346 + 0.183346i −0.0126823 + 0.0126823i
\(210\) 0 0
\(211\) 15.5139 + 15.5139i 1.06802 + 1.06802i 0.997511 + 0.0705082i \(0.0224621\pi\)
0.0705082 + 0.997511i \(0.477538\pi\)
\(212\) 0 0
\(213\) −13.3944 −0.917773
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 19.8167i 1.34524i
\(218\) 0 0
\(219\) 32.2389i 2.17850i
\(220\) 0 0
\(221\) 9.39445 + 5.21110i 0.631939 + 0.350537i
\(222\) 0 0
\(223\) 17.8167 1.19309 0.596546 0.802579i \(-0.296539\pi\)
0.596546 + 0.802579i \(0.296539\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.302776 + 0.302776i −0.0200959 + 0.0200959i −0.717083 0.696987i \(-0.754523\pi\)
0.696987 + 0.717083i \(0.254523\pi\)
\(228\) 0 0
\(229\) 4.60555i 0.304343i −0.988354 0.152172i \(-0.951373\pi\)
0.988354 0.152172i \(-0.0486267\pi\)
\(230\) 0 0
\(231\) 3.21110 + 3.21110i 0.211275 + 0.211275i
\(232\) 0 0
\(233\) 5.60555 + 5.60555i 0.367232 + 0.367232i 0.866467 0.499235i \(-0.166386\pi\)
−0.499235 + 0.866467i \(0.666386\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.39445i 0.0905792i
\(238\) 0 0
\(239\) 14.7889 0.956614 0.478307 0.878193i \(-0.341251\pi\)
0.478307 + 0.878193i \(0.341251\pi\)
\(240\) 0 0
\(241\) 9.00000 9.00000i 0.579741 0.579741i −0.355091 0.934832i \(-0.615550\pi\)
0.934832 + 0.355091i \(0.115550\pi\)
\(242\) 0 0
\(243\) 28.1194 + 28.1194i 1.80386 + 1.80386i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.57779 0.100393
\(248\) 0 0
\(249\) 41.0278 + 41.0278i 2.60003 + 2.60003i
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −2.60555 −0.163810
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.3944 1.20979 0.604896 0.796304i \(-0.293215\pi\)
0.604896 + 0.796304i \(0.293215\pi\)
\(258\) 0 0
\(259\) −13.8167 −0.858525
\(260\) 0 0
\(261\) 12.2111 + 12.2111i 0.755848 + 0.755848i
\(262\) 0 0
\(263\) −23.0278 −1.41995 −0.709976 0.704226i \(-0.751294\pi\)
−0.709976 + 0.704226i \(0.751294\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 18.0000 + 18.0000i 1.10158 + 1.10158i
\(268\) 0 0
\(269\) −17.4222 + 17.4222i −1.06225 + 1.06225i −0.0643214 + 0.997929i \(0.520488\pi\)
−0.997929 + 0.0643214i \(0.979512\pi\)
\(270\) 0 0
\(271\) 1.21110 0.0735692 0.0367846 0.999323i \(-0.488288\pi\)
0.0367846 + 0.999323i \(0.488288\pi\)
\(272\) 0 0
\(273\) 27.6333i 1.67244i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3.60555 3.60555i −0.216637 0.216637i 0.590443 0.807079i \(-0.298953\pi\)
−0.807079 + 0.590443i \(0.798953\pi\)
\(278\) 0 0
\(279\) 32.7250 + 32.7250i 1.95919 + 1.95919i
\(280\) 0 0
\(281\) 18.4222i 1.09898i 0.835501 + 0.549488i \(0.185177\pi\)
−0.835501 + 0.549488i \(0.814823\pi\)
\(282\) 0 0
\(283\) −2.11943 + 2.11943i −0.125987 + 0.125987i −0.767289 0.641302i \(-0.778395\pi\)
0.641302 + 0.767289i \(0.278395\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.60555 0.271857
\(288\) 0 0
\(289\) −9.00000 14.4222i −0.529412 0.848365i
\(290\) 0 0
\(291\) 35.0278i 2.05336i
\(292\) 0 0
\(293\) 21.6333i 1.26383i −0.775037 0.631916i \(-0.782269\pi\)
0.775037 0.631916i \(-0.217731\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −6.42221 −0.372654
\(298\) 0 0
\(299\) 11.2111 + 11.2111i 0.648355 + 0.648355i
\(300\) 0 0
\(301\) 7.81665 7.81665i 0.450544 0.450544i
\(302\) 0 0
\(303\) −24.4222 24.4222i −1.40302 1.40302i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 21.2111i 1.21058i −0.796004 0.605291i \(-0.793057\pi\)
0.796004 0.605291i \(-0.206943\pi\)
\(308\) 0 0
\(309\) −30.4222 + 30.4222i −1.73066 + 1.73066i
\(310\) 0 0
\(311\) 18.9083 18.9083i 1.07219 1.07219i 0.0750101 0.997183i \(-0.476101\pi\)
0.997183 0.0750101i \(-0.0238989\pi\)
\(312\) 0 0
\(313\) −6.21110 + 6.21110i −0.351072 + 0.351072i −0.860508 0.509436i \(-0.829854\pi\)
0.509436 + 0.860508i \(0.329854\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.6056 19.6056i 1.10116 1.10116i 0.106886 0.994271i \(-0.465912\pi\)
0.994271 0.106886i \(-0.0340881\pi\)
\(318\) 0 0
\(319\) −0.972244 −0.0544352
\(320\) 0 0
\(321\) 26.2389i 1.46451i
\(322\) 0 0
\(323\) −2.18335 1.21110i −0.121485 0.0673875i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 28.6056i 1.58189i
\(328\) 0 0
\(329\) 9.21110 + 9.21110i 0.507825 + 0.507825i
\(330\) 0 0
\(331\) 3.39445i 0.186576i −0.995639 0.0932879i \(-0.970262\pi\)
0.995639 0.0932879i \(-0.0297377\pi\)
\(332\) 0 0
\(333\) 22.8167 22.8167i 1.25034 1.25034i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 16.2111 + 16.2111i 0.883075 + 0.883075i 0.993846 0.110771i \(-0.0353320\pi\)
−0.110771 + 0.993846i \(0.535332\pi\)
\(338\) 0 0
\(339\) 44.2389 2.40273
\(340\) 0 0
\(341\) −2.60555 −0.141099
\(342\) 0 0
\(343\) 7.81665 + 7.81665i 0.422060 + 0.422060i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.51388 + 5.51388i −0.296000 + 0.296000i −0.839445 0.543445i \(-0.817120\pi\)
0.543445 + 0.839445i \(0.317120\pi\)
\(348\) 0 0
\(349\) 23.6333i 1.26506i −0.774535 0.632531i \(-0.782016\pi\)
0.774535 0.632531i \(-0.217984\pi\)
\(350\) 0 0
\(351\) 27.6333 + 27.6333i 1.47496 + 1.47496i
\(352\) 0 0
\(353\) 31.2111i 1.66120i −0.556870 0.830600i \(-0.687998\pi\)
0.556870 0.830600i \(-0.312002\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −21.2111 + 38.2389i −1.12261 + 2.02382i
\(358\) 0 0
\(359\) 16.6056i 0.876407i −0.898876 0.438204i \(-0.855615\pi\)
0.898876 0.438204i \(-0.144385\pi\)
\(360\) 0 0
\(361\) 18.6333 0.980700
\(362\) 0 0
\(363\) −24.9083 + 24.9083i −1.30735 + 1.30735i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −6.90833 + 6.90833i −0.360612 + 0.360612i −0.864038 0.503426i \(-0.832073\pi\)
0.503426 + 0.864038i \(0.332073\pi\)
\(368\) 0 0
\(369\) −7.60555 + 7.60555i −0.395929 + 0.395929i
\(370\) 0 0
\(371\) 12.0000 12.0000i 0.623009 0.623009i
\(372\) 0 0
\(373\) 21.0278i 1.08878i 0.838834 + 0.544388i \(0.183238\pi\)
−0.838834 + 0.544388i \(0.816762\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.18335 + 4.18335i 0.215453 + 0.215453i
\(378\) 0 0
\(379\) 20.7250 20.7250i 1.06457 1.06457i 0.0668047 0.997766i \(-0.478720\pi\)
0.997766 0.0668047i \(-0.0212804\pi\)
\(380\) 0 0
\(381\) 1.39445 + 1.39445i 0.0714398 + 0.0714398i
\(382\) 0 0
\(383\) 19.3944 0.991010 0.495505 0.868605i \(-0.334983\pi\)
0.495505 + 0.868605i \(0.334983\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 25.8167i 1.31233i
\(388\) 0 0
\(389\) 10.1833i 0.516316i −0.966103 0.258158i \(-0.916884\pi\)
0.966103 0.258158i \(-0.0831155\pi\)
\(390\) 0 0
\(391\) −6.90833 24.1194i −0.349369 1.21977i
\(392\) 0 0
\(393\) 29.0278 1.46426
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9.00000 + 9.00000i −0.451697 + 0.451697i −0.895918 0.444220i \(-0.853481\pi\)
0.444220 + 0.895918i \(0.353481\pi\)
\(398\) 0 0
\(399\) 6.42221i 0.321512i
\(400\) 0 0
\(401\) −7.00000 7.00000i −0.349563 0.349563i 0.510384 0.859947i \(-0.329503\pi\)
−0.859947 + 0.510384i \(0.829503\pi\)
\(402\) 0 0
\(403\) 11.2111 + 11.2111i 0.558465 + 0.558465i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.81665i 0.0900482i
\(408\) 0 0
\(409\) −23.2111 −1.14772 −0.573858 0.818955i \(-0.694554\pi\)
−0.573858 + 0.818955i \(0.694554\pi\)
\(410\) 0 0
\(411\) 6.00000 6.00000i 0.295958 0.295958i
\(412\) 0 0
\(413\) 19.8167 + 19.8167i 0.975114 + 0.975114i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.39445 0.0682864
\(418\) 0 0
\(419\) −2.30278 2.30278i −0.112498 0.112498i 0.648617 0.761115i \(-0.275348\pi\)
−0.761115 + 0.648617i \(0.775348\pi\)
\(420\) 0 0
\(421\) 18.6056 0.906779 0.453390 0.891312i \(-0.350215\pi\)
0.453390 + 0.891312i \(0.350215\pi\)
\(422\) 0 0
\(423\) −30.4222 −1.47918
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −28.6056 −1.38432
\(428\) 0 0
\(429\) −3.63331 −0.175418
\(430\) 0 0
\(431\) −1.88057 1.88057i −0.0905839 0.0905839i 0.660363 0.750947i \(-0.270403\pi\)
−0.750947 + 0.660363i \(0.770403\pi\)
\(432\) 0 0
\(433\) 15.0278 0.722188 0.361094 0.932529i \(-0.382403\pi\)
0.361094 + 0.932529i \(0.382403\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.60555 2.60555i −0.124640 0.124640i
\(438\) 0 0
\(439\) 26.3028 26.3028i 1.25536 1.25536i 0.302081 0.953282i \(-0.402319\pi\)
0.953282 0.302081i \(-0.0976812\pi\)
\(440\) 0 0
\(441\) 27.4222 1.30582
\(442\) 0 0
\(443\) 17.2111i 0.817724i −0.912596 0.408862i \(-0.865926\pi\)
0.912596 0.408862i \(-0.134074\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 19.3944 + 19.3944i 0.917326 + 0.917326i
\(448\) 0 0
\(449\) 16.8167 + 16.8167i 0.793627 + 0.793627i 0.982082 0.188455i \(-0.0603479\pi\)
−0.188455 + 0.982082i \(0.560348\pi\)
\(450\) 0 0
\(451\) 0.605551i 0.0285143i
\(452\) 0 0
\(453\) 10.6056 10.6056i 0.498292 0.498292i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −36.6056 −1.71234 −0.856168 0.516698i \(-0.827161\pi\)
−0.856168 + 0.516698i \(0.827161\pi\)
\(458\) 0 0
\(459\) −17.0278 59.4500i −0.794788 2.77489i
\(460\) 0 0
\(461\) 29.2111i 1.36050i 0.732982 + 0.680248i \(0.238128\pi\)
−0.732982 + 0.680248i \(0.761872\pi\)
\(462\) 0 0
\(463\) 39.6333i 1.84192i −0.389662 0.920958i \(-0.627408\pi\)
0.389662 0.920958i \(-0.372592\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.2389 0.751445 0.375722 0.926732i \(-0.377395\pi\)
0.375722 + 0.926732i \(0.377395\pi\)
\(468\) 0 0
\(469\) −21.2111 21.2111i −0.979438 0.979438i
\(470\) 0 0
\(471\) 19.3944 19.3944i 0.893649 0.893649i
\(472\) 0 0
\(473\) −1.02776 1.02776i −0.0472563 0.0472563i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 39.6333i 1.81468i
\(478\) 0 0
\(479\) −12.3028 + 12.3028i −0.562128 + 0.562128i −0.929912 0.367783i \(-0.880117\pi\)
0.367783 + 0.929912i \(0.380117\pi\)
\(480\) 0 0
\(481\) 7.81665 7.81665i 0.356409 0.356409i
\(482\) 0 0
\(483\) −45.6333 + 45.6333i −2.07639 + 2.07639i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −17.3305 + 17.3305i −0.785321 + 0.785321i −0.980723 0.195402i \(-0.937399\pi\)
0.195402 + 0.980723i \(0.437399\pi\)
\(488\) 0 0
\(489\) −19.8167 −0.896140
\(490\) 0 0
\(491\) 9.81665i 0.443019i −0.975158 0.221510i \(-0.928902\pi\)
0.975158 0.221510i \(-0.0710984\pi\)
\(492\) 0 0
\(493\) −2.57779 9.00000i −0.116098 0.405340i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.3944i 0.600823i
\(498\) 0 0
\(499\) −10.3028 10.3028i −0.461216 0.461216i 0.437838 0.899054i \(-0.355744\pi\)
−0.899054 + 0.437838i \(0.855744\pi\)
\(500\) 0 0
\(501\) 68.6611i 3.06755i
\(502\) 0 0
\(503\) −27.5139 + 27.5139i −1.22678 + 1.22678i −0.261609 + 0.965174i \(0.584253\pi\)
−0.965174 + 0.261609i \(0.915747\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −14.3028 14.3028i −0.635209 0.635209i
\(508\) 0 0
\(509\) 3.21110 0.142330 0.0711648 0.997465i \(-0.477328\pi\)
0.0711648 + 0.997465i \(0.477328\pi\)
\(510\) 0 0
\(511\) −32.2389 −1.42616
\(512\) 0 0
\(513\) −6.42221 6.42221i −0.283547 0.283547i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.21110 1.21110i 0.0532642 0.0532642i
\(518\) 0 0
\(519\) 68.2389i 2.99535i
\(520\) 0 0
\(521\) 13.0000 + 13.0000i 0.569540 + 0.569540i 0.932000 0.362459i \(-0.118063\pi\)
−0.362459 + 0.932000i \(0.618063\pi\)
\(522\) 0 0
\(523\) 12.0000i 0.524723i −0.964970 0.262362i \(-0.915499\pi\)
0.964970 0.262362i \(-0.0845013\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.90833 24.1194i −0.300931 1.05066i
\(528\) 0 0
\(529\) 14.0278i 0.609902i
\(530\) 0 0
\(531\) −65.4500 −2.84029
\(532\) 0 0
\(533\) −2.60555 + 2.60555i −0.112859 + 0.112859i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 34.6056 34.6056i 1.49334 1.49334i
\(538\) 0 0
\(539\) −1.09167 + 1.09167i −0.0470217 + 0.0470217i
\(540\) 0 0
\(541\) 3.00000 3.00000i 0.128980 0.128980i −0.639670 0.768650i \(-0.720929\pi\)
0.768650 + 0.639670i \(0.220929\pi\)
\(542\) 0 0
\(543\) 59.8722i 2.56936i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11.5139 + 11.5139i 0.492298 + 0.492298i 0.909030 0.416732i \(-0.136825\pi\)
−0.416732 + 0.909030i \(0.636825\pi\)
\(548\) 0 0
\(549\) 47.2389 47.2389i 2.01611 2.01611i
\(550\) 0 0
\(551\) −0.972244 0.972244i −0.0414190 0.0414190i
\(552\) 0 0
\(553\) 1.39445 0.0592980
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.3944i 0.906512i 0.891380 + 0.453256i \(0.149738\pi\)
−0.891380 + 0.453256i \(0.850262\pi\)
\(558\) 0 0
\(559\) 8.84441i 0.374079i
\(560\) 0 0
\(561\) 5.02776 + 2.78890i 0.212272 + 0.117747i
\(562\) 0 0
\(563\) −20.6056 −0.868420 −0.434210 0.900812i \(-0.642972\pi\)
−0.434210 + 0.900812i \(0.642972\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −59.9361 + 59.9361i −2.51708 + 2.51708i
\(568\) 0 0
\(569\) 30.4222i 1.27537i 0.770299 + 0.637683i \(0.220107\pi\)
−0.770299 + 0.637683i \(0.779893\pi\)
\(570\) 0 0
\(571\) 2.30278 + 2.30278i 0.0963682 + 0.0963682i 0.753647 0.657279i \(-0.228293\pi\)
−0.657279 + 0.753647i \(0.728293\pi\)
\(572\) 0 0
\(573\) −15.6333 15.6333i −0.653091 0.653091i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 31.4500i 1.30928i 0.755941 + 0.654640i \(0.227180\pi\)
−0.755941 + 0.654640i \(0.772820\pi\)
\(578\) 0 0
\(579\) −37.8167 −1.57161
\(580\) 0 0
\(581\) −41.0278 + 41.0278i −1.70212 + 1.70212i
\(582\) 0 0
\(583\) −1.57779 1.57779i −0.0653456 0.0653456i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.60555 −0.190091 −0.0950457 0.995473i \(-0.530300\pi\)
−0.0950457 + 0.995473i \(0.530300\pi\)
\(588\) 0 0
\(589\) −2.60555 2.60555i −0.107360 0.107360i
\(590\) 0 0
\(591\) 81.0833 3.33532
\(592\) 0 0
\(593\) −1.57779 −0.0647923 −0.0323961 0.999475i \(-0.510314\pi\)
−0.0323961 + 0.999475i \(0.510314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −46.6056 −1.90744
\(598\) 0 0
\(599\) −26.0555 −1.06460 −0.532300 0.846556i \(-0.678672\pi\)
−0.532300 + 0.846556i \(0.678672\pi\)
\(600\) 0 0
\(601\) −4.21110 4.21110i −0.171774 0.171774i 0.615984 0.787759i \(-0.288759\pi\)
−0.787759 + 0.615984i \(0.788759\pi\)
\(602\) 0 0
\(603\) 70.0555 2.85288
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −9.51388 9.51388i −0.386156 0.386156i 0.487158 0.873314i \(-0.338034\pi\)
−0.873314 + 0.487158i \(0.838034\pi\)
\(608\) 0 0
\(609\) −17.0278 + 17.0278i −0.690000 + 0.690000i
\(610\) 0 0
\(611\) −10.4222 −0.421637
\(612\) 0 0
\(613\) 40.4222i 1.63264i 0.577602 + 0.816319i \(0.303989\pi\)
−0.577602 + 0.816319i \(0.696011\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.60555 1.60555i −0.0646371 0.0646371i 0.674049 0.738686i \(-0.264554\pi\)
−0.738686 + 0.674049i \(0.764554\pi\)
\(618\) 0 0
\(619\) −14.4861 14.4861i −0.582246 0.582246i 0.353274 0.935520i \(-0.385068\pi\)
−0.935520 + 0.353274i \(0.885068\pi\)
\(620\) 0 0
\(621\) 91.2666i 3.66240i
\(622\) 0 0
\(623\) −18.0000 + 18.0000i −0.721155 + 0.721155i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.844410 0.0337225
\(628\) 0 0
\(629\) −16.8167 + 4.81665i −0.670524 + 0.192053i
\(630\) 0 0
\(631\) 24.2389i 0.964934i 0.875914 + 0.482467i \(0.160259\pi\)
−0.875914 + 0.482467i \(0.839741\pi\)
\(632\) 0 0
\(633\) 71.4500i 2.83988i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9.39445 0.372222
\(638\) 0 0
\(639\) 22.1194 + 22.1194i 0.875031 + 0.875031i
\(640\) 0 0
\(641\) 30.8167 30.8167i 1.21718 1.21718i 0.248571 0.968614i \(-0.420039\pi\)
0.968614 0.248571i \(-0.0799609\pi\)
\(642\) 0 0
\(643\) 4.11943 + 4.11943i 0.162454 + 0.162454i 0.783653 0.621199i \(-0.213354\pi\)
−0.621199 + 0.783653i \(0.713354\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.2111i 0.676638i 0.941031 + 0.338319i \(0.109858\pi\)
−0.941031 + 0.338319i \(0.890142\pi\)
\(648\) 0 0
\(649\) 2.60555 2.60555i 0.102277 0.102277i
\(650\) 0 0
\(651\) −45.6333 + 45.6333i −1.78851 + 1.78851i
\(652\) 0 0
\(653\) −24.8167 + 24.8167i −0.971151 + 0.971151i −0.999595 0.0284447i \(-0.990945\pi\)
0.0284447 + 0.999595i \(0.490945\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 53.2389 53.2389i 2.07705 2.07705i
\(658\) 0 0
\(659\) 32.0000 1.24654 0.623272 0.782006i \(-0.285803\pi\)
0.623272 + 0.782006i \(0.285803\pi\)
\(660\) 0 0
\(661\) 1.21110i 0.0471064i −0.999723 0.0235532i \(-0.992502\pi\)
0.999723 0.0235532i \(-0.00749791\pi\)
\(662\) 0 0
\(663\) −9.63331 33.6333i −0.374127 1.30621i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 13.8167i 0.534983i
\(668\) 0 0
\(669\) −41.0278 41.0278i −1.58622 1.58622i
\(670\) 0 0
\(671\) 3.76114i 0.145197i
\(672\) 0 0
\(673\) −5.60555 + 5.60555i −0.216078 + 0.216078i −0.806843 0.590765i \(-0.798826\pi\)
0.590765 + 0.806843i \(0.298826\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.0278 + 16.0278i 0.615997 + 0.615997i 0.944502 0.328505i \(-0.106545\pi\)
−0.328505 + 0.944502i \(0.606545\pi\)
\(678\) 0 0
\(679\) 35.0278 1.34424
\(680\) 0 0
\(681\) 1.39445 0.0534354
\(682\) 0 0
\(683\) −0.724981 0.724981i −0.0277406 0.0277406i 0.693100 0.720841i \(-0.256244\pi\)
−0.720841 + 0.693100i \(0.756244\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10.6056 + 10.6056i −0.404627 + 0.404627i
\(688\) 0 0
\(689\) 13.5778i 0.517273i
\(690\) 0 0
\(691\) −5.51388 5.51388i −0.209758 0.209758i 0.594407 0.804165i \(-0.297387\pi\)
−0.804165 + 0.594407i \(0.797387\pi\)
\(692\) 0 0
\(693\) 10.6056i 0.402872i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.60555 1.60555i 0.212325 0.0608146i
\(698\) 0 0
\(699\) 25.8167i 0.976476i
\(700\) 0 0
\(701\) −7.81665 −0.295231 −0.147615 0.989045i \(-0.547160\pi\)
−0.147615 + 0.989045i \(0.547160\pi\)
\(702\) 0 0
\(703\) −1.81665 + 1.81665i −0.0685164 + 0.0685164i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.4222 24.4222i 0.918492 0.918492i
\(708\) 0 0
\(709\) −14.3944 + 14.3944i −0.540595 + 0.540595i −0.923703 0.383108i \(-0.874854\pi\)
0.383108 + 0.923703i \(0.374854\pi\)
\(710\) 0 0
\(711\) −2.30278 + 2.30278i −0.0863608 + 0.0863608i
\(712\) 0 0
\(713\) 37.0278i 1.38670i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −34.0555 34.0555i −1.27183 1.27183i
\(718\) 0 0
\(719\) 4.72498 4.72498i 0.176212 0.176212i −0.613490 0.789702i \(-0.710235\pi\)
0.789702 + 0.613490i \(0.210235\pi\)
\(720\) 0 0
\(721\) −30.4222 30.4222i −1.13298 1.13298i
\(722\) 0 0
\(723\) −41.4500 −1.54154
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.42221i 0.238186i 0.992883 + 0.119093i \(0.0379987\pi\)
−0.992883 + 0.119093i \(0.962001\pi\)
\(728\) 0 0
\(729\) 51.4222i 1.90453i
\(730\) 0 0
\(731\) 6.78890 12.2389i 0.251096 0.452671i
\(732\) 0 0
\(733\) 46.0555 1.70110 0.850550 0.525895i \(-0.176269\pi\)
0.850550 + 0.525895i \(0.176269\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.78890 + 2.78890i −0.102730 + 0.102730i
\(738\) 0 0
\(739\) 34.6611i 1.27503i −0.770439 0.637514i \(-0.779963\pi\)
0.770439 0.637514i \(-0.220037\pi\)
\(740\) 0 0
\(741\) −3.63331 3.63331i −0.133473 0.133473i
\(742\) 0 0
\(743\) 14.7250 + 14.7250i 0.540207 + 0.540207i 0.923590 0.383383i \(-0.125241\pi\)
−0.383383 + 0.923590i \(0.625241\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 135.505i 4.95789i
\(748\) 0 0
\(749\) −26.2389 −0.958747
\(750\) 0 0
\(751\) 1.69722 1.69722i 0.0619326 0.0619326i −0.675462 0.737395i \(-0.736056\pi\)
0.737395 + 0.675462i \(0.236056\pi\)
\(752\) 0 0
\(753\) 27.6333 + 27.6333i 1.00701 + 1.00701i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 39.0278 1.41849 0.709244 0.704963i \(-0.249036\pi\)
0.709244 + 0.704963i \(0.249036\pi\)
\(758\) 0 0
\(759\) 6.00000 + 6.00000i 0.217786 + 0.217786i
\(760\) 0 0
\(761\) −31.4500 −1.14006 −0.570030 0.821624i \(-0.693068\pi\)
−0.570030 + 0.821624i \(0.693068\pi\)
\(762\) 0 0
\(763\) 28.6056 1.03559
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22.4222 −0.809619
\(768\) 0 0
\(769\) 18.6056 0.670933 0.335467 0.942052i \(-0.391106\pi\)
0.335467 + 0.942052i \(0.391106\pi\)
\(770\) 0 0
\(771\) −44.6611 44.6611i −1.60843 1.60843i
\(772\) 0 0
\(773\) 28.6056 1.02887 0.514435 0.857529i \(-0.328002\pi\)
0.514435 + 0.857529i \(0.328002\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 31.8167 + 31.8167i 1.14142 + 1.14142i
\(778\) 0 0
\(779\) 0.605551 0.605551i 0.0216961 0.0216961i
\(780\) 0 0
\(781\) −1.76114 −0.0630186
\(782\) 0 0
\(783\) 34.0555i 1.21704i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −14.7250 14.7250i −0.524889 0.524889i 0.394155 0.919044i \(-0.371037\pi\)
−0.919044 + 0.394155i \(0.871037\pi\)
\(788\) 0 0
\(789\) 53.0278 + 53.0278i 1.88784 + 1.88784i
\(790\) 0 0
\(791\) 44.2389i 1.57295i
\(792\) 0 0
\(793\) 16.1833 16.1833i 0.574687 0.574687i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.63331 0.128698 0.0643492 0.997927i \(-0.479503\pi\)
0.0643492 + 0.997927i \(0.479503\pi\)
\(798\) 0 0
\(799\) 14.4222 + 8.00000i 0.510221 + 0.283020i
\(800\) 0 0
\(801\) 59.4500i 2.10056i
\(802\) 0 0
\(803\) 4.23886i 0.149586i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 80.2389 2.82454
\(808\) 0 0
\(809\) 20.8167 + 20.8167i 0.731875 + 0.731875i 0.970991 0.239116i \(-0.0768577\pi\)
−0.239116 + 0.970991i \(0.576858\pi\)
\(810\) 0 0
\(811\) 10.7250 10.7250i 0.376605 0.376605i −0.493271 0.869876i \(-0.664199\pi\)
0.869876 + 0.493271i \(0.164199\pi\)
\(812\) 0 0
\(813\) −2.78890 2.78890i −0.0978109 0.0978109i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.05551i 0.0719133i
\(818\) 0 0
\(819\) −45.6333 + 45.6333i −1.59456 + 1.59456i
\(820\) 0 0
\(821\) 12.8167 12.8167i 0.447304 0.447304i −0.447153 0.894457i \(-0.647562\pi\)
0.894457 + 0.447153i \(0.147562\pi\)
\(822\) 0 0
\(823\) −12.9083 + 12.9083i −0.449956 + 0.449956i −0.895340 0.445384i \(-0.853067\pi\)
0.445384 + 0.895340i \(0.353067\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.30278 6.30278i 0.219169 0.219169i −0.588979 0.808148i \(-0.700470\pi\)
0.808148 + 0.588979i \(0.200470\pi\)
\(828\) 0 0
\(829\) 18.8444 0.654493 0.327247 0.944939i \(-0.393879\pi\)
0.327247 + 0.944939i \(0.393879\pi\)
\(830\) 0 0
\(831\) 16.6056i 0.576040i
\(832\) 0 0
\(833\) −13.0000 7.21110i −0.450423 0.249850i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 91.2666i 3.15464i
\(838\) 0 0
\(839\) 14.9083 + 14.9083i 0.514693 + 0.514693i 0.915961 0.401268i \(-0.131430\pi\)
−0.401268 + 0.915961i \(0.631430\pi\)
\(840\) 0 0
\(841\) 23.8444i 0.822221i
\(842\) 0 0
\(843\) 42.4222 42.4222i 1.46110 1.46110i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −24.9083 24.9083i −0.855860 0.855860i
\(848\) 0 0
\(849\) 9.76114 0.335001
\(850\) 0 0
\(851\) −25.8167 −0.884983
\(852\) 0 0
\(853\) 29.4222 + 29.4222i 1.00740 + 1.00740i 0.999972 + 0.00742468i \(0.00236337\pi\)
0.00742468 + 0.999972i \(0.497637\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.6333 + 18.6333i −0.636502 + 0.636502i −0.949691 0.313189i \(-0.898603\pi\)
0.313189 + 0.949691i \(0.398603\pi\)
\(858\) 0 0
\(859\) 1.81665i 0.0619834i −0.999520 0.0309917i \(-0.990133\pi\)
0.999520 0.0309917i \(-0.00986655\pi\)
\(860\) 0 0
\(861\) −10.6056 10.6056i −0.361436 0.361436i
\(862\) 0 0
\(863\) 52.4777i 1.78636i −0.449697 0.893181i \(-0.648468\pi\)
0.449697 0.893181i \(-0.351532\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −12.4861 + 53.9361i −0.424051 + 1.83177i
\(868\) 0 0
\(869\) 0.183346i 0.00621959i
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) 0 0
\(873\) −57.8444 + 57.8444i −1.95774 + 1.95774i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.78890 1.78890i 0.0604068 0.0604068i −0.676258 0.736665i \(-0.736400\pi\)
0.736665 + 0.676258i \(0.236400\pi\)
\(878\) 0 0
\(879\) −49.8167 + 49.8167i −1.68027 + 1.68027i
\(880\) 0 0
\(881\) −24.2111 + 24.2111i −0.815693 + 0.815693i −0.985481 0.169788i \(-0.945692\pi\)
0.169788 + 0.985481i \(0.445692\pi\)
\(882\) 0 0
\(883\) 25.5778i 0.860761i 0.902647 + 0.430381i \(0.141621\pi\)
−0.902647 + 0.430381i \(0.858379\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.6972 + 11.6972i 0.392754 + 0.392754i 0.875668 0.482914i \(-0.160421\pi\)
−0.482914 + 0.875668i \(0.660421\pi\)
\(888\) 0 0
\(889\) −1.39445 + 1.39445i −0.0467683 + 0.0467683i
\(890\) 0 0
\(891\) 7.88057 + 7.88057i 0.264009 + 0.264009i
\(892\) 0 0
\(893\) 2.42221 0.0810560
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 51.6333i 1.72399i
\(898\) 0 0
\(899\) 13.8167i 0.460811i
\(900\) 0 0
\(901\) 10.4222 18.7889i 0.347214 0.625949i
\(902\) 0 0
\(903\) −36.0000 −1.19800
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 24.5416 24.5416i 0.814892 0.814892i −0.170471 0.985363i \(-0.554529\pi\)
0.985363 + 0.170471i \(0.0545289\pi\)
\(908\) 0 0
\(909\) 80.6611i 2.67536i
\(910\) 0 0
\(911\) 4.72498 + 4.72498i 0.156546 + 0.156546i 0.781034 0.624488i \(-0.214693\pi\)
−0.624488 + 0.781034i \(0.714693\pi\)
\(912\) 0 0
\(913\) 5.39445 + 5.39445i 0.178530 + 0.178530i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 29.0278i 0.958581i
\(918\) 0 0
\(919\) −40.8444 −1.34733 −0.673666 0.739036i \(-0.735282\pi\)
−0.673666 + 0.739036i \(0.735282\pi\)
\(920\) 0 0
\(921\) −48.8444 + 48.8444i −1.60948 + 1.60948i
\(922\) 0 0
\(923\) 7.57779 + 7.57779i 0.249426 + 0.249426i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 100.478 3.30012
\(928\) 0 0
\(929\) −1.00000 1.00000i −0.0328089 0.0328089i 0.690512 0.723321i \(-0.257385\pi\)
−0.723321 + 0.690512i \(0.757385\pi\)
\(930\) 0 0
\(931\) −2.18335 −0.0715563
\(932\) 0 0
\(933\) −87.0833 −2.85098
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 6.42221 0.209804 0.104902 0.994483i \(-0.466547\pi\)
0.104902 + 0.994483i \(0.466547\pi\)
\(938\) 0 0
\(939\) 28.6056 0.933507
\(940\) 0 0
\(941\) −16.0278 16.0278i −0.522490 0.522490i 0.395833 0.918323i \(-0.370456\pi\)
−0.918323 + 0.395833i \(0.870456\pi\)
\(942\) 0 0
\(943\) 8.60555 0.280235
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.27502 + 9.27502i 0.301398 + 0.301398i 0.841560 0.540163i \(-0.181637\pi\)
−0.540163 + 0.841560i \(0.681637\pi\)
\(948\) 0 0
\(949\) 18.2389 18.2389i 0.592058 0.592058i
\(950\) 0 0
\(951\) −90.2944 −2.92800
\(952\) 0 0
\(953\) 50.2389i 1.62740i 0.581288 + 0.813698i \(0.302549\pi\)
−0.581288 + 0.813698i \(0.697451\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2.23886 + 2.23886i 0.0723720 + 0.0723720i
\(958\) 0 0
\(959\) 6.00000 + 6.00000i 0.193750 + 0.193750i
\(960\) 0 0
\(961\) 6.02776i 0.194444i
\(962\) 0 0
\(963\) 43.3305 43.3305i 1.39631 1.39631i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 21.8167 0.701576 0.350788 0.936455i \(-0.385914\pi\)
0.350788 + 0.936455i \(0.385914\pi\)
\(968\) 0 0
\(969\) 2.23886 + 7.81665i 0.0719225 + 0.251107i
\(970\) 0 0
\(971\) 55.0278i 1.76592i 0.469444 + 0.882962i \(0.344454\pi\)
−0.469444 + 0.882962i \(0.655546\pi\)
\(972\) 0 0
\(973\) 1.39445i 0.0447040i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.8444 0.538900 0.269450 0.963014i \(-0.413158\pi\)
0.269450 + 0.963014i \(0.413158\pi\)
\(978\) 0 0
\(979\) 2.36669 + 2.36669i 0.0756398 + 0.0756398i
\(980\) 0 0
\(981\) −47.2389 + 47.2389i −1.50822 + 1.50822i
\(982\) 0 0
\(983\) 8.11943 + 8.11943i 0.258970 + 0.258970i 0.824635 0.565665i \(-0.191381\pi\)
−0.565665 + 0.824635i \(0.691381\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 42.4222i 1.35031i
\(988\) 0 0
\(989\) 14.6056 14.6056i 0.464430 0.464430i
\(990\) 0 0
\(991\) −23.5139 + 23.5139i −0.746943 + 0.746943i −0.973904 0.226961i \(-0.927121\pi\)
0.226961 + 0.973904i \(0.427121\pi\)
\(992\) 0 0
\(993\) −7.81665 + 7.81665i −0.248054 + 0.248054i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 39.2389 39.2389i 1.24271 1.24271i 0.283834 0.958874i \(-0.408394\pi\)
0.958874 0.283834i \(-0.0916063\pi\)
\(998\) 0 0
\(999\) −63.6333 −2.01327
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1700.2.m.a.1449.1 4
5.2 odd 4 68.2.e.a.21.1 yes 4
5.3 odd 4 1700.2.o.c.701.2 4
5.4 even 2 1700.2.m.b.1449.2 4
15.2 even 4 612.2.k.e.361.2 4
17.13 even 4 1700.2.m.b.149.2 4
20.7 even 4 272.2.o.g.225.2 4
40.27 even 4 1088.2.o.s.769.1 4
40.37 odd 4 1088.2.o.t.769.2 4
60.47 odd 4 2448.2.be.u.1585.1 4
85.2 odd 8 1156.2.b.a.577.4 4
85.7 even 16 1156.2.h.e.757.4 16
85.12 even 16 1156.2.h.e.1001.4 16
85.13 odd 4 1700.2.o.c.1101.2 4
85.22 even 16 1156.2.h.e.1001.1 16
85.27 even 16 1156.2.h.e.757.1 16
85.32 odd 8 1156.2.b.a.577.1 4
85.37 even 16 1156.2.h.e.733.1 16
85.42 odd 8 1156.2.a.h.1.4 4
85.47 odd 4 68.2.e.a.13.1 4
85.57 even 16 1156.2.h.e.977.1 16
85.62 even 16 1156.2.h.e.977.4 16
85.64 even 4 inner 1700.2.m.a.149.1 4
85.67 odd 4 1156.2.e.c.905.2 4
85.72 odd 4 1156.2.e.c.829.2 4
85.77 odd 8 1156.2.a.h.1.1 4
85.82 even 16 1156.2.h.e.733.4 16
255.47 even 4 612.2.k.e.217.2 4
340.47 even 4 272.2.o.g.81.2 4
340.127 even 8 4624.2.a.bq.1.1 4
340.247 even 8 4624.2.a.bq.1.4 4
680.387 even 4 1088.2.o.s.897.1 4
680.557 odd 4 1088.2.o.t.897.2 4
1020.47 odd 4 2448.2.be.u.1441.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.e.a.13.1 4 85.47 odd 4
68.2.e.a.21.1 yes 4 5.2 odd 4
272.2.o.g.81.2 4 340.47 even 4
272.2.o.g.225.2 4 20.7 even 4
612.2.k.e.217.2 4 255.47 even 4
612.2.k.e.361.2 4 15.2 even 4
1088.2.o.s.769.1 4 40.27 even 4
1088.2.o.s.897.1 4 680.387 even 4
1088.2.o.t.769.2 4 40.37 odd 4
1088.2.o.t.897.2 4 680.557 odd 4
1156.2.a.h.1.1 4 85.77 odd 8
1156.2.a.h.1.4 4 85.42 odd 8
1156.2.b.a.577.1 4 85.32 odd 8
1156.2.b.a.577.4 4 85.2 odd 8
1156.2.e.c.829.2 4 85.72 odd 4
1156.2.e.c.905.2 4 85.67 odd 4
1156.2.h.e.733.1 16 85.37 even 16
1156.2.h.e.733.4 16 85.82 even 16
1156.2.h.e.757.1 16 85.27 even 16
1156.2.h.e.757.4 16 85.7 even 16
1156.2.h.e.977.1 16 85.57 even 16
1156.2.h.e.977.4 16 85.62 even 16
1156.2.h.e.1001.1 16 85.22 even 16
1156.2.h.e.1001.4 16 85.12 even 16
1700.2.m.a.149.1 4 85.64 even 4 inner
1700.2.m.a.1449.1 4 1.1 even 1 trivial
1700.2.m.b.149.2 4 17.13 even 4
1700.2.m.b.1449.2 4 5.4 even 2
1700.2.o.c.701.2 4 5.3 odd 4
1700.2.o.c.1101.2 4 85.13 odd 4
2448.2.be.u.1441.1 4 1020.47 odd 4
2448.2.be.u.1585.1 4 60.47 odd 4
4624.2.a.bq.1.1 4 340.127 even 8
4624.2.a.bq.1.4 4 340.247 even 8