Properties

Label 1156.4.a.h
Level 11561156
Weight 44
Character orbit 1156.a
Self dual yes
Analytic conductor 68.20668.206
Analytic rank 11
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1156,4,Mod(1,1156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1156, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1156.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 1156=22172 1156 = 2^{2} \cdot 17^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1156.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 68.206207966668.2062079666
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.5999648.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x421x2+2 x^{4} - 21x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 68)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+β2q5+(β2β1)q7+(β3+15)q9+(2β2β1)q11+(β38)q138q15+(2β340)q19+(β334)q21++(50β241β1)q99+O(q100) q + \beta_1 q^{3} + \beta_{2} q^{5} + ( - \beta_{2} - \beta_1) q^{7} + (\beta_{3} + 15) q^{9} + ( - 2 \beta_{2} - \beta_1) q^{11} + ( - \beta_{3} - 8) q^{13} - 8 q^{15} + ( - 2 \beta_{3} - 40) q^{19} + ( - \beta_{3} - 34) q^{21}+ \cdots + (50 \beta_{2} - 41 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+60q932q1332q15160q19136q21164q25104q33304q35+144q43+1120q47932q4924q53640q55+336q59+320q672600q69+2584q93+O(q100) 4 q + 60 q^{9} - 32 q^{13} - 32 q^{15} - 160 q^{19} - 136 q^{21} - 164 q^{25} - 104 q^{33} - 304 q^{35} + 144 q^{43} + 1120 q^{47} - 932 q^{49} - 24 q^{53} - 640 q^{55} + 336 q^{59} + 320 q^{67} - 2600 q^{69}+ \cdots - 2584 q^{93}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x421x2+2 x^{4} - 21x^{2} + 2 : Copy content Toggle raw display

β1\beta_{1}== 2ν 2\nu Copy content Toggle raw display
β2\beta_{2}== 2ν342ν 2\nu^{3} - 42\nu Copy content Toggle raw display
β3\beta_{3}== 4ν242 4\nu^{2} - 42 Copy content Toggle raw display
ν\nu== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3+42)/4 ( \beta_{3} + 42 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (β2+21β1)/2 ( \beta_{2} + 21\beta_1 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−4.57212
−0.309312
0.309312
4.57212
0 −9.14425 0 0.874867 0 8.26938 0 56.6173 0
1.2 0 −0.618624 0 12.9319 0 −12.3133 0 −26.6173 0
1.3 0 0.618624 0 −12.9319 0 12.3133 0 −26.6173 0
1.4 0 9.14425 0 −0.874867 0 −8.26938 0 56.6173 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1717 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1156.4.a.h 4
17.b even 2 1 inner 1156.4.a.h 4
17.c even 4 2 68.4.b.a 4
51.f odd 4 2 612.4.b.b 4
68.f odd 4 2 272.4.b.c 4
85.f odd 4 2 1700.4.g.a 8
85.i odd 4 2 1700.4.g.a 8
85.j even 4 2 1700.4.c.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.4.b.a 4 17.c even 4 2
272.4.b.c 4 68.f odd 4 2
612.4.b.b 4 51.f odd 4 2
1156.4.a.h 4 1.a even 1 1 trivial
1156.4.a.h 4 17.b even 2 1 inner
1700.4.c.a 4 85.j even 4 2
1700.4.g.a 8 85.f odd 4 2
1700.4.g.a 8 85.i odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3484T32+32 T_{3}^{4} - 84T_{3}^{2} + 32 acting on S4new(Γ0(1156))S_{4}^{\mathrm{new}}(\Gamma_0(1156)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T484T2+32 T^{4} - 84T^{2} + 32 Copy content Toggle raw display
55 T4168T2+128 T^{4} - 168T^{2} + 128 Copy content Toggle raw display
77 T4220T2+10368 T^{4} - 220 T^{2} + 10368 Copy content Toggle raw display
1111 T4692T2+34848 T^{4} - 692 T^{2} + 34848 Copy content Toggle raw display
1313 (T2+16T1668)2 (T^{2} + 16 T - 1668)^{2} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T2+80T5328)2 (T^{2} + 80 T - 5328)^{2} Copy content Toggle raw display
2323 T447996T2+526436352 T^{4} - 47996 T^{2} + 526436352 Copy content Toggle raw display
2929 T441000T2+208080000 T^{4} - 41000 T^{2} + 208080000 Copy content Toggle raw display
3131 T4++1351168128 T^{4} + \cdots + 1351168128 Copy content Toggle raw display
3737 T4++4128133248 T^{4} + \cdots + 4128133248 Copy content Toggle raw display
4141 T4++3053242368 T^{4} + \cdots + 3053242368 Copy content Toggle raw display
4343 (T272T26416)2 (T^{2} - 72 T - 26416)^{2} Copy content Toggle raw display
4747 (T2560T+50688)2 (T^{2} - 560 T + 50688)^{2} Copy content Toggle raw display
5353 (T2+12T249372)2 (T^{2} + 12 T - 249372)^{2} Copy content Toggle raw display
5959 (T2168T242352)2 (T^{2} - 168 T - 242352)^{2} Copy content Toggle raw display
6161 T4++107699974272 T^{4} + \cdots + 107699974272 Copy content Toggle raw display
6767 (T2160T55952)2 (T^{2} - 160 T - 55952)^{2} Copy content Toggle raw display
7171 T4++1666260992 T^{4} + \cdots + 1666260992 Copy content Toggle raw display
7373 T4++27614380032 T^{4} + \cdots + 27614380032 Copy content Toggle raw display
7979 T4++26013892608 T^{4} + \cdots + 26013892608 Copy content Toggle raw display
8383 (T2+1112T+198288)2 (T^{2} + 1112 T + 198288)^{2} Copy content Toggle raw display
8989 (T2+1568T+571356)2 (T^{2} + 1568 T + 571356)^{2} Copy content Toggle raw display
9797 T4++1258180190208 T^{4} + \cdots + 1258180190208 Copy content Toggle raw display
show more
show less