Properties

Label 1156.4.a.h
Level $1156$
Weight $4$
Character orbit 1156.a
Self dual yes
Analytic conductor $68.206$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,4,Mod(1,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.2062079666\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.5999648.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 21x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 68)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_{2} q^{5} + ( - \beta_{2} - \beta_1) q^{7} + (\beta_{3} + 15) q^{9} + ( - 2 \beta_{2} - \beta_1) q^{11} + ( - \beta_{3} - 8) q^{13} - 8 q^{15} + ( - 2 \beta_{3} - 40) q^{19} + ( - \beta_{3} - 34) q^{21}+ \cdots + (50 \beta_{2} - 41 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 60 q^{9} - 32 q^{13} - 32 q^{15} - 160 q^{19} - 136 q^{21} - 164 q^{25} - 104 q^{33} - 304 q^{35} + 144 q^{43} + 1120 q^{47} - 932 q^{49} - 24 q^{53} - 640 q^{55} + 336 q^{59} + 320 q^{67} - 2600 q^{69}+ \cdots - 2584 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 21x^{2} + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{3} - 42\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{2} - 42 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 42 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 21\beta_1 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.57212
−0.309312
0.309312
4.57212
0 −9.14425 0 0.874867 0 8.26938 0 56.6173 0
1.2 0 −0.618624 0 12.9319 0 −12.3133 0 −26.6173 0
1.3 0 0.618624 0 −12.9319 0 12.3133 0 −26.6173 0
1.4 0 9.14425 0 −0.874867 0 −8.26938 0 56.6173 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(17\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1156.4.a.h 4
17.b even 2 1 inner 1156.4.a.h 4
17.c even 4 2 68.4.b.a 4
51.f odd 4 2 612.4.b.b 4
68.f odd 4 2 272.4.b.c 4
85.f odd 4 2 1700.4.g.a 8
85.i odd 4 2 1700.4.g.a 8
85.j even 4 2 1700.4.c.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.4.b.a 4 17.c even 4 2
272.4.b.c 4 68.f odd 4 2
612.4.b.b 4 51.f odd 4 2
1156.4.a.h 4 1.a even 1 1 trivial
1156.4.a.h 4 17.b even 2 1 inner
1700.4.c.a 4 85.j even 4 2
1700.4.g.a 8 85.f odd 4 2
1700.4.g.a 8 85.i odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 84T_{3}^{2} + 32 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1156))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 84T^{2} + 32 \) Copy content Toggle raw display
$5$ \( T^{4} - 168T^{2} + 128 \) Copy content Toggle raw display
$7$ \( T^{4} - 220 T^{2} + 10368 \) Copy content Toggle raw display
$11$ \( T^{4} - 692 T^{2} + 34848 \) Copy content Toggle raw display
$13$ \( (T^{2} + 16 T - 1668)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 80 T - 5328)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 47996 T^{2} + 526436352 \) Copy content Toggle raw display
$29$ \( T^{4} - 41000 T^{2} + 208080000 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 1351168128 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 4128133248 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 3053242368 \) Copy content Toggle raw display
$43$ \( (T^{2} - 72 T - 26416)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 560 T + 50688)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 12 T - 249372)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 168 T - 242352)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 107699974272 \) Copy content Toggle raw display
$67$ \( (T^{2} - 160 T - 55952)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 1666260992 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 27614380032 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 26013892608 \) Copy content Toggle raw display
$83$ \( (T^{2} + 1112 T + 198288)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 1568 T + 571356)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 1258180190208 \) Copy content Toggle raw display
show more
show less