gp: [N,k,chi] = [1156,4,Mod(1,1156)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1156, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1156.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 21 x 2 + 2 x^{4} - 21x^{2} + 2 x 4 − 2 1 x 2 + 2
x^4 - 21*x^2 + 2
:
β 1 \beta_{1} β 1 = = =
2 ν 2\nu 2 ν
2*v
β 2 \beta_{2} β 2 = = =
2 ν 3 − 42 ν 2\nu^{3} - 42\nu 2 ν 3 − 4 2 ν
2*v^3 - 42*v
β 3 \beta_{3} β 3 = = =
4 ν 2 − 42 4\nu^{2} - 42 4 ν 2 − 4 2
4*v^2 - 42
ν \nu ν = = =
( β 1 ) / 2 ( \beta_1 ) / 2 ( β 1 ) / 2
(b1) / 2
ν 2 \nu^{2} ν 2 = = =
( β 3 + 42 ) / 4 ( \beta_{3} + 42 ) / 4 ( β 3 + 4 2 ) / 4
(b3 + 42) / 4
ν 3 \nu^{3} ν 3 = = =
( β 2 + 21 β 1 ) / 2 ( \beta_{2} + 21\beta_1 ) / 2 ( β 2 + 2 1 β 1 ) / 2
(b2 + 21*b1) / 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
17 17 1 7
+ 1 +1 + 1
This newform subspace can be constructed as the kernel of the linear operator
T 3 4 − 84 T 3 2 + 32 T_{3}^{4} - 84T_{3}^{2} + 32 T 3 4 − 8 4 T 3 2 + 3 2
T3^4 - 84*T3^2 + 32
acting on S 4 n e w ( Γ 0 ( 1156 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1156)) S 4 n e w ( Γ 0 ( 1 1 5 6 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 − 84 T 2 + 32 T^{4} - 84T^{2} + 32 T 4 − 8 4 T 2 + 3 2
T^4 - 84*T^2 + 32
5 5 5
T 4 − 168 T 2 + 128 T^{4} - 168T^{2} + 128 T 4 − 1 6 8 T 2 + 1 2 8
T^4 - 168*T^2 + 128
7 7 7
T 4 − 220 T 2 + 10368 T^{4} - 220 T^{2} + 10368 T 4 − 2 2 0 T 2 + 1 0 3 6 8
T^4 - 220*T^2 + 10368
11 11 1 1
T 4 − 692 T 2 + 34848 T^{4} - 692 T^{2} + 34848 T 4 − 6 9 2 T 2 + 3 4 8 4 8
T^4 - 692*T^2 + 34848
13 13 1 3
( T 2 + 16 T − 1668 ) 2 (T^{2} + 16 T - 1668)^{2} ( T 2 + 1 6 T − 1 6 6 8 ) 2
(T^2 + 16*T - 1668)^2
17 17 1 7
T 4 T^{4} T 4
T^4
19 19 1 9
( T 2 + 80 T − 5328 ) 2 (T^{2} + 80 T - 5328)^{2} ( T 2 + 8 0 T − 5 3 2 8 ) 2
(T^2 + 80*T - 5328)^2
23 23 2 3
T 4 − 47996 T 2 + 526436352 T^{4} - 47996 T^{2} + 526436352 T 4 − 4 7 9 9 6 T 2 + 5 2 6 4 3 6 3 5 2
T^4 - 47996*T^2 + 526436352
29 29 2 9
T 4 − 41000 T 2 + 208080000 T^{4} - 41000 T^{2} + 208080000 T 4 − 4 1 0 0 0 T 2 + 2 0 8 0 8 0 0 0 0
T^4 - 41000*T^2 + 208080000
31 31 3 1
T 4 + ⋯ + 1351168128 T^{4} + \cdots + 1351168128 T 4 + ⋯ + 1 3 5 1 1 6 8 1 2 8
T^4 - 79420*T^2 + 1351168128
37 37 3 7
T 4 + ⋯ + 4128133248 T^{4} + \cdots + 4128133248 T 4 + ⋯ + 4 1 2 8 1 3 3 2 4 8
T^4 - 129640*T^2 + 4128133248
41 41 4 1
T 4 + ⋯ + 3053242368 T^{4} + \cdots + 3053242368 T 4 + ⋯ + 3 0 5 3 2 4 2 3 6 8
T^4 - 149408*T^2 + 3053242368
43 43 4 3
( T 2 − 72 T − 26416 ) 2 (T^{2} - 72 T - 26416)^{2} ( T 2 − 7 2 T − 2 6 4 1 6 ) 2
(T^2 - 72*T - 26416)^2
47 47 4 7
( T 2 − 560 T + 50688 ) 2 (T^{2} - 560 T + 50688)^{2} ( T 2 − 5 6 0 T + 5 0 6 8 8 ) 2
(T^2 - 560*T + 50688)^2
53 53 5 3
( T 2 + 12 T − 249372 ) 2 (T^{2} + 12 T - 249372)^{2} ( T 2 + 1 2 T − 2 4 9 3 7 2 ) 2
(T^2 + 12*T - 249372)^2
59 59 5 9
( T 2 − 168 T − 242352 ) 2 (T^{2} - 168 T - 242352)^{2} ( T 2 − 1 6 8 T − 2 4 2 3 5 2 ) 2
(T^2 - 168*T - 242352)^2
61 61 6 1
T 4 + ⋯ + 107699974272 T^{4} + \cdots + 107699974272 T 4 + ⋯ + 1 0 7 6 9 9 9 7 4 2 7 2
T^4 - 889576*T^2 + 107699974272
67 67 6 7
( T 2 − 160 T − 55952 ) 2 (T^{2} - 160 T - 55952)^{2} ( T 2 − 1 6 0 T − 5 5 9 5 2 ) 2
(T^2 - 160*T - 55952)^2
71 71 7 1
T 4 + ⋯ + 1666260992 T^{4} + \cdots + 1666260992 T 4 + ⋯ + 1 6 6 6 2 6 0 9 9 2
T^4 - 84924*T^2 + 1666260992
73 73 7 3
T 4 + ⋯ + 27614380032 T^{4} + \cdots + 27614380032 T 4 + ⋯ + 2 7 6 1 4 3 8 0 0 3 2
T^4 - 719296*T^2 + 27614380032
79 79 7 9
T 4 + ⋯ + 26013892608 T^{4} + \cdots + 26013892608 T 4 + ⋯ + 2 6 0 1 3 8 9 2 6 0 8
T^4 - 1132380*T^2 + 26013892608
83 83 8 3
( T 2 + 1112 T + 198288 ) 2 (T^{2} + 1112 T + 198288)^{2} ( T 2 + 1 1 1 2 T + 1 9 8 2 8 8 ) 2
(T^2 + 1112*T + 198288)^2
89 89 8 9
( T 2 + 1568 T + 571356 ) 2 (T^{2} + 1568 T + 571356)^{2} ( T 2 + 1 5 6 8 T + 5 7 1 3 5 6 ) 2
(T^2 + 1568*T + 571356)^2
97 97 9 7
T 4 + ⋯ + 1258180190208 T^{4} + \cdots + 1258180190208 T 4 + ⋯ + 1 2 5 8 1 8 0 1 9 0 2 0 8
T^4 - 3421152*T^2 + 1258180190208
show more
show less