Properties

Label 116.2.g.b.25.1
Level $116$
Weight $2$
Character 116.25
Analytic conductor $0.926$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [116,2,Mod(25,116)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(116, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("116.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 116 = 2^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 116.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.926264663447\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} + 12 x^{10} - 16 x^{9} + 22 x^{8} + 28 x^{7} + 71 x^{6} + 154 x^{5} + 442 x^{4} + \cdots + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 25.1
Root \(2.94643 - 1.41893i\) of defining polynomial
Character \(\chi\) \(=\) 116.25
Dual form 116.2.g.b.65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.04546 + 0.985042i) q^{3} +(-0.299629 + 1.31276i) q^{5} +(-3.84740 + 1.85281i) q^{7} +(1.34313 - 1.68423i) q^{9} +(1.30367 + 1.63475i) q^{11} +(0.703677 + 0.882383i) q^{13} +(-0.680245 - 2.98035i) q^{15} -1.88433 q^{17} +(4.62603 + 2.22778i) q^{19} +(6.04461 - 7.57970i) q^{21} +(-1.77825 - 7.79102i) q^{23} +(2.87128 + 1.38274i) q^{25} +(0.427279 - 1.87203i) q^{27} +(5.38428 + 0.0974899i) q^{29} +(-2.33321 + 10.2224i) q^{31} +(-4.27690 - 2.05965i) q^{33} +(-1.27950 - 5.60587i) q^{35} +(-3.28770 + 4.12265i) q^{37} +(-2.30853 - 1.11173i) q^{39} -8.84415 q^{41} +(1.02523 + 4.49182i) q^{43} +(1.80856 + 2.26786i) q^{45} +(4.31634 + 5.41252i) q^{47} +(7.00514 - 8.78417i) q^{49} +(3.85432 - 1.85614i) q^{51} +(-0.592990 + 2.59806i) q^{53} +(-2.53665 + 1.22159i) q^{55} -11.6568 q^{57} +5.29544 q^{59} +(-4.27483 + 2.05865i) q^{61} +(-2.04700 + 8.96849i) q^{63} +(-1.36920 + 0.659372i) q^{65} +(1.32608 - 1.66285i) q^{67} +(11.3118 + 14.1846i) q^{69} +(-10.2916 - 12.9052i) q^{71} +(1.28570 + 5.63301i) q^{73} -7.23514 q^{75} +(-8.04461 - 3.87408i) q^{77} +(7.06600 - 8.86048i) q^{79} +(2.40812 + 10.5507i) q^{81} +(11.6640 + 5.61710i) q^{83} +(0.564599 - 2.47367i) q^{85} +(-11.1094 + 5.10433i) q^{87} +(1.21866 - 5.33931i) q^{89} +(-4.34221 - 2.09110i) q^{91} +(-5.29706 - 23.2079i) q^{93} +(-4.31063 + 5.40536i) q^{95} +(2.98370 + 1.43688i) q^{97} +4.50430 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} - q^{5} - 7 q^{7} + q^{9} + 3 q^{11} - 21 q^{13} + 29 q^{15} - 10 q^{17} + 17 q^{19} + 3 q^{21} - 19 q^{23} - 3 q^{25} + 9 q^{27} - 5 q^{29} - 27 q^{31} - 47 q^{33} + 27 q^{35} - 3 q^{37}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/116\mathbb{Z}\right)^\times\).

\(n\) \(59\) \(89\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.04546 + 0.985042i −1.18095 + 0.568714i −0.918187 0.396147i \(-0.870347\pi\)
−0.262760 + 0.964861i \(0.584633\pi\)
\(4\) 0 0
\(5\) −0.299629 + 1.31276i −0.133998 + 0.587085i 0.862688 + 0.505737i \(0.168780\pi\)
−0.996686 + 0.0813475i \(0.974078\pi\)
\(6\) 0 0
\(7\) −3.84740 + 1.85281i −1.45418 + 0.700296i −0.983315 0.181909i \(-0.941772\pi\)
−0.470865 + 0.882205i \(0.656058\pi\)
\(8\) 0 0
\(9\) 1.34313 1.68423i 0.447711 0.561411i
\(10\) 0 0
\(11\) 1.30367 + 1.63475i 0.393071 + 0.492895i 0.938508 0.345256i \(-0.112208\pi\)
−0.545438 + 0.838151i \(0.683637\pi\)
\(12\) 0 0
\(13\) 0.703677 + 0.882383i 0.195165 + 0.244729i 0.869779 0.493442i \(-0.164261\pi\)
−0.674614 + 0.738171i \(0.735690\pi\)
\(14\) 0 0
\(15\) −0.680245 2.98035i −0.175639 0.769523i
\(16\) 0 0
\(17\) −1.88433 −0.457016 −0.228508 0.973542i \(-0.573385\pi\)
−0.228508 + 0.973542i \(0.573385\pi\)
\(18\) 0 0
\(19\) 4.62603 + 2.22778i 1.06128 + 0.511087i 0.881288 0.472580i \(-0.156677\pi\)
0.179996 + 0.983667i \(0.442392\pi\)
\(20\) 0 0
\(21\) 6.04461 7.57970i 1.31904 1.65403i
\(22\) 0 0
\(23\) −1.77825 7.79102i −0.370791 1.62454i −0.724563 0.689208i \(-0.757959\pi\)
0.353773 0.935331i \(-0.384899\pi\)
\(24\) 0 0
\(25\) 2.87128 + 1.38274i 0.574256 + 0.276547i
\(26\) 0 0
\(27\) 0.427279 1.87203i 0.0822298 0.360272i
\(28\) 0 0
\(29\) 5.38428 + 0.0974899i 0.999836 + 0.0181034i
\(30\) 0 0
\(31\) −2.33321 + 10.2224i −0.419056 + 1.83601i 0.118732 + 0.992926i \(0.462117\pi\)
−0.537789 + 0.843080i \(0.680740\pi\)
\(32\) 0 0
\(33\) −4.27690 2.05965i −0.744512 0.358538i
\(34\) 0 0
\(35\) −1.27950 5.60587i −0.216276 0.947565i
\(36\) 0 0
\(37\) −3.28770 + 4.12265i −0.540495 + 0.677759i −0.974819 0.222997i \(-0.928416\pi\)
0.434324 + 0.900757i \(0.356987\pi\)
\(38\) 0 0
\(39\) −2.30853 1.11173i −0.369660 0.178019i
\(40\) 0 0
\(41\) −8.84415 −1.38122 −0.690612 0.723225i \(-0.742659\pi\)
−0.690612 + 0.723225i \(0.742659\pi\)
\(42\) 0 0
\(43\) 1.02523 + 4.49182i 0.156346 + 0.684996i 0.990960 + 0.134161i \(0.0428338\pi\)
−0.834614 + 0.550836i \(0.814309\pi\)
\(44\) 0 0
\(45\) 1.80856 + 2.26786i 0.269604 + 0.338072i
\(46\) 0 0
\(47\) 4.31634 + 5.41252i 0.629603 + 0.789497i 0.989660 0.143433i \(-0.0458143\pi\)
−0.360057 + 0.932930i \(0.617243\pi\)
\(48\) 0 0
\(49\) 7.00514 8.78417i 1.00073 1.25488i
\(50\) 0 0
\(51\) 3.85432 1.85614i 0.539712 0.259912i
\(52\) 0 0
\(53\) −0.592990 + 2.59806i −0.0814535 + 0.356871i −0.999187 0.0403267i \(-0.987160\pi\)
0.917733 + 0.397198i \(0.130017\pi\)
\(54\) 0 0
\(55\) −2.53665 + 1.22159i −0.342042 + 0.164719i
\(56\) 0 0
\(57\) −11.6568 −1.54398
\(58\) 0 0
\(59\) 5.29544 0.689408 0.344704 0.938711i \(-0.387979\pi\)
0.344704 + 0.938711i \(0.387979\pi\)
\(60\) 0 0
\(61\) −4.27483 + 2.05865i −0.547336 + 0.263583i −0.687052 0.726609i \(-0.741095\pi\)
0.139716 + 0.990192i \(0.455381\pi\)
\(62\) 0 0
\(63\) −2.04700 + 8.96849i −0.257898 + 1.12992i
\(64\) 0 0
\(65\) −1.36920 + 0.659372i −0.169828 + 0.0817850i
\(66\) 0 0
\(67\) 1.32608 1.66285i 0.162006 0.203150i −0.694202 0.719780i \(-0.744243\pi\)
0.856208 + 0.516631i \(0.172814\pi\)
\(68\) 0 0
\(69\) 11.3118 + 14.1846i 1.36178 + 1.70762i
\(70\) 0 0
\(71\) −10.2916 12.9052i −1.22139 1.53157i −0.768280 0.640114i \(-0.778887\pi\)
−0.453107 0.891456i \(-0.649684\pi\)
\(72\) 0 0
\(73\) 1.28570 + 5.63301i 0.150479 + 0.659294i 0.992746 + 0.120232i \(0.0383639\pi\)
−0.842266 + 0.539062i \(0.818779\pi\)
\(74\) 0 0
\(75\) −7.23514 −0.835442
\(76\) 0 0
\(77\) −8.04461 3.87408i −0.916768 0.441492i
\(78\) 0 0
\(79\) 7.06600 8.86048i 0.794987 0.996882i −0.204850 0.978793i \(-0.565671\pi\)
0.999836 0.0180884i \(-0.00575803\pi\)
\(80\) 0 0
\(81\) 2.40812 + 10.5507i 0.267569 + 1.17230i
\(82\) 0 0
\(83\) 11.6640 + 5.61710i 1.28029 + 0.616557i 0.945465 0.325723i \(-0.105608\pi\)
0.334828 + 0.942279i \(0.391322\pi\)
\(84\) 0 0
\(85\) 0.564599 2.47367i 0.0612394 0.268307i
\(86\) 0 0
\(87\) −11.1094 + 5.10433i −1.19105 + 0.547242i
\(88\) 0 0
\(89\) 1.21866 5.33931i 0.129178 0.565966i −0.868366 0.495924i \(-0.834830\pi\)
0.997544 0.0700419i \(-0.0223133\pi\)
\(90\) 0 0
\(91\) −4.34221 2.09110i −0.455187 0.219207i
\(92\) 0 0
\(93\) −5.29706 23.2079i −0.549279 2.40655i
\(94\) 0 0
\(95\) −4.31063 + 5.40536i −0.442262 + 0.554578i
\(96\) 0 0
\(97\) 2.98370 + 1.43688i 0.302949 + 0.145893i 0.579182 0.815198i \(-0.303372\pi\)
−0.276233 + 0.961091i \(0.589086\pi\)
\(98\) 0 0
\(99\) 4.50430 0.452699
\(100\) 0 0
\(101\) 0.895051 + 3.92148i 0.0890609 + 0.390201i 0.999737 0.0229190i \(-0.00729600\pi\)
−0.910676 + 0.413120i \(0.864439\pi\)
\(102\) 0 0
\(103\) −2.88002 3.61143i −0.283776 0.355844i 0.619429 0.785053i \(-0.287364\pi\)
−0.903206 + 0.429208i \(0.858793\pi\)
\(104\) 0 0
\(105\) 8.13919 + 10.2062i 0.794304 + 0.996026i
\(106\) 0 0
\(107\) 9.24831 11.5970i 0.894068 1.12113i −0.0979707 0.995189i \(-0.531235\pi\)
0.992038 0.125936i \(-0.0401934\pi\)
\(108\) 0 0
\(109\) −3.22737 + 1.55422i −0.309126 + 0.148867i −0.582014 0.813179i \(-0.697735\pi\)
0.272889 + 0.962046i \(0.412021\pi\)
\(110\) 0 0
\(111\) 2.66388 11.6712i 0.252845 1.10779i
\(112\) 0 0
\(113\) 13.7393 6.61649i 1.29248 0.622427i 0.343915 0.939001i \(-0.388247\pi\)
0.948568 + 0.316574i \(0.102532\pi\)
\(114\) 0 0
\(115\) 10.7606 1.00343
\(116\) 0 0
\(117\) 2.43127 0.224771
\(118\) 0 0
\(119\) 7.24975 3.49130i 0.664584 0.320047i
\(120\) 0 0
\(121\) 1.47488 6.46187i 0.134080 0.587443i
\(122\) 0 0
\(123\) 18.0904 8.71186i 1.63115 0.785522i
\(124\) 0 0
\(125\) −6.87323 + 8.61876i −0.614761 + 0.770886i
\(126\) 0 0
\(127\) 6.43919 + 8.07449i 0.571386 + 0.716495i 0.980617 0.195936i \(-0.0627744\pi\)
−0.409231 + 0.912431i \(0.634203\pi\)
\(128\) 0 0
\(129\) −6.52170 8.17795i −0.574203 0.720028i
\(130\) 0 0
\(131\) −0.750417 3.28779i −0.0655642 0.287256i 0.931508 0.363721i \(-0.118494\pi\)
−0.997072 + 0.0764652i \(0.975637\pi\)
\(132\) 0 0
\(133\) −21.9258 −1.90121
\(134\) 0 0
\(135\) 2.32950 + 1.12183i 0.200492 + 0.0965518i
\(136\) 0 0
\(137\) −5.98677 + 7.50717i −0.511484 + 0.641381i −0.968777 0.247935i \(-0.920248\pi\)
0.457292 + 0.889316i \(0.348819\pi\)
\(138\) 0 0
\(139\) −0.373458 1.63623i −0.0316763 0.138783i 0.956617 0.291348i \(-0.0941038\pi\)
−0.988293 + 0.152565i \(0.951247\pi\)
\(140\) 0 0
\(141\) −14.1605 6.81932i −1.19253 0.574290i
\(142\) 0 0
\(143\) −0.525112 + 2.30067i −0.0439121 + 0.192392i
\(144\) 0 0
\(145\) −1.74127 + 7.03907i −0.144605 + 0.584563i
\(146\) 0 0
\(147\) −5.67597 + 24.8680i −0.468146 + 2.05108i
\(148\) 0 0
\(149\) −12.7632 6.14645i −1.04561 0.503537i −0.169437 0.985541i \(-0.554195\pi\)
−0.876169 + 0.482004i \(0.839909\pi\)
\(150\) 0 0
\(151\) 2.54164 + 11.1357i 0.206836 + 0.906208i 0.966657 + 0.256075i \(0.0824295\pi\)
−0.759821 + 0.650133i \(0.774713\pi\)
\(152\) 0 0
\(153\) −2.53090 + 3.17365i −0.204611 + 0.256574i
\(154\) 0 0
\(155\) −12.7205 6.12589i −1.02174 0.492043i
\(156\) 0 0
\(157\) −9.87360 −0.787999 −0.394000 0.919111i \(-0.628909\pi\)
−0.394000 + 0.919111i \(0.628909\pi\)
\(158\) 0 0
\(159\) −1.34626 5.89835i −0.106765 0.467770i
\(160\) 0 0
\(161\) 21.2769 + 26.6804i 1.67686 + 2.10271i
\(162\) 0 0
\(163\) 0.864907 + 1.08456i 0.0677447 + 0.0849492i 0.814549 0.580094i \(-0.196984\pi\)
−0.746805 + 0.665044i \(0.768413\pi\)
\(164\) 0 0
\(165\) 3.98531 4.99742i 0.310256 0.389048i
\(166\) 0 0
\(167\) −7.17500 + 3.45530i −0.555218 + 0.267379i −0.690383 0.723444i \(-0.742558\pi\)
0.135165 + 0.990823i \(0.456844\pi\)
\(168\) 0 0
\(169\) 2.60933 11.4322i 0.200718 0.879403i
\(170\) 0 0
\(171\) 9.96546 4.79911i 0.762078 0.366997i
\(172\) 0 0
\(173\) 12.6447 0.961362 0.480681 0.876896i \(-0.340390\pi\)
0.480681 + 0.876896i \(0.340390\pi\)
\(174\) 0 0
\(175\) −13.6089 −1.02874
\(176\) 0 0
\(177\) −10.8316 + 5.21623i −0.814154 + 0.392076i
\(178\) 0 0
\(179\) −4.98404 + 21.8365i −0.372525 + 1.63214i 0.347139 + 0.937814i \(0.387153\pi\)
−0.719663 + 0.694323i \(0.755704\pi\)
\(180\) 0 0
\(181\) 6.77160 3.26103i 0.503329 0.242390i −0.164949 0.986302i \(-0.552746\pi\)
0.668278 + 0.743912i \(0.267032\pi\)
\(182\) 0 0
\(183\) 6.71614 8.42177i 0.496471 0.622555i
\(184\) 0 0
\(185\) −4.42696 5.55124i −0.325477 0.408135i
\(186\) 0 0
\(187\) −2.45654 3.08040i −0.179640 0.225261i
\(188\) 0 0
\(189\) 1.82460 + 7.99411i 0.132720 + 0.581486i
\(190\) 0 0
\(191\) 6.81136 0.492853 0.246426 0.969162i \(-0.420744\pi\)
0.246426 + 0.969162i \(0.420744\pi\)
\(192\) 0 0
\(193\) 14.0750 + 6.77814i 1.01314 + 0.487901i 0.865377 0.501122i \(-0.167079\pi\)
0.147761 + 0.989023i \(0.452794\pi\)
\(194\) 0 0
\(195\) 2.15114 2.69744i 0.154046 0.193168i
\(196\) 0 0
\(197\) −0.478661 2.09715i −0.0341032 0.149416i 0.955010 0.296575i \(-0.0958443\pi\)
−0.989113 + 0.147159i \(0.952987\pi\)
\(198\) 0 0
\(199\) −4.68025 2.25389i −0.331774 0.159774i 0.260579 0.965453i \(-0.416087\pi\)
−0.592353 + 0.805679i \(0.701801\pi\)
\(200\) 0 0
\(201\) −1.07447 + 4.70754i −0.0757870 + 0.332044i
\(202\) 0 0
\(203\) −20.8961 + 9.60097i −1.46662 + 0.673856i
\(204\) 0 0
\(205\) 2.64997 11.6103i 0.185082 0.810896i
\(206\) 0 0
\(207\) −15.5103 7.46938i −1.07804 0.519158i
\(208\) 0 0
\(209\) 2.38895 + 10.4667i 0.165247 + 0.723995i
\(210\) 0 0
\(211\) −0.333112 + 0.417709i −0.0229324 + 0.0287563i −0.793165 0.609006i \(-0.791568\pi\)
0.770233 + 0.637762i \(0.220140\pi\)
\(212\) 0 0
\(213\) 33.7632 + 16.2595i 2.31342 + 1.11408i
\(214\) 0 0
\(215\) −6.20388 −0.423101
\(216\) 0 0
\(217\) −9.96347 43.6528i −0.676365 2.96335i
\(218\) 0 0
\(219\) −8.17859 10.2556i −0.552658 0.693011i
\(220\) 0 0
\(221\) −1.32596 1.66270i −0.0891935 0.111845i
\(222\) 0 0
\(223\) −7.58919 + 9.51654i −0.508210 + 0.637275i −0.968059 0.250722i \(-0.919332\pi\)
0.459849 + 0.887997i \(0.347903\pi\)
\(224\) 0 0
\(225\) 6.18536 2.97871i 0.412357 0.198581i
\(226\) 0 0
\(227\) −0.673635 + 2.95139i −0.0447107 + 0.195891i −0.992351 0.123450i \(-0.960604\pi\)
0.947640 + 0.319340i \(0.103461\pi\)
\(228\) 0 0
\(229\) 13.5870 6.54317i 0.897856 0.432385i 0.0727422 0.997351i \(-0.476825\pi\)
0.825114 + 0.564966i \(0.191111\pi\)
\(230\) 0 0
\(231\) 20.2711 1.33374
\(232\) 0 0
\(233\) 11.5349 0.755679 0.377840 0.925871i \(-0.376667\pi\)
0.377840 + 0.925871i \(0.376667\pi\)
\(234\) 0 0
\(235\) −8.39865 + 4.04458i −0.547867 + 0.263839i
\(236\) 0 0
\(237\) −5.72527 + 25.0841i −0.371897 + 1.62939i
\(238\) 0 0
\(239\) −10.1962 + 4.91024i −0.659538 + 0.317617i −0.733545 0.679641i \(-0.762136\pi\)
0.0740067 + 0.997258i \(0.476421\pi\)
\(240\) 0 0
\(241\) 15.7153 19.7064i 1.01231 1.26940i 0.0496322 0.998768i \(-0.484195\pi\)
0.962682 0.270634i \(-0.0872335\pi\)
\(242\) 0 0
\(243\) −11.7269 14.7051i −0.752284 0.943334i
\(244\) 0 0
\(245\) 9.43258 + 11.8281i 0.602625 + 0.755668i
\(246\) 0 0
\(247\) 1.28948 + 5.64956i 0.0820473 + 0.359473i
\(248\) 0 0
\(249\) −29.3914 −1.86260
\(250\) 0 0
\(251\) 10.9496 + 5.27306i 0.691134 + 0.332833i 0.746267 0.665646i \(-0.231844\pi\)
−0.0551331 + 0.998479i \(0.517558\pi\)
\(252\) 0 0
\(253\) 10.4181 13.0639i 0.654981 0.821320i
\(254\) 0 0
\(255\) 1.28180 + 5.61595i 0.0802697 + 0.351685i
\(256\) 0 0
\(257\) −12.7696 6.14950i −0.796544 0.383595i −0.00908185 0.999959i \(-0.502891\pi\)
−0.787462 + 0.616364i \(0.788605\pi\)
\(258\) 0 0
\(259\) 5.01062 21.9530i 0.311345 1.36409i
\(260\) 0 0
\(261\) 7.39600 8.93745i 0.457801 0.553214i
\(262\) 0 0
\(263\) 4.49743 19.7045i 0.277324 1.21503i −0.623839 0.781553i \(-0.714428\pi\)
0.901163 0.433481i \(-0.142715\pi\)
\(264\) 0 0
\(265\) −3.23296 1.55691i −0.198599 0.0956402i
\(266\) 0 0
\(267\) 2.76672 + 12.1218i 0.169320 + 0.741841i
\(268\) 0 0
\(269\) 1.20007 1.50483i 0.0731693 0.0917514i −0.743900 0.668291i \(-0.767026\pi\)
0.817069 + 0.576540i \(0.195597\pi\)
\(270\) 0 0
\(271\) −6.11513 2.94489i −0.371467 0.178889i 0.238830 0.971061i \(-0.423236\pi\)
−0.610298 + 0.792172i \(0.708950\pi\)
\(272\) 0 0
\(273\) 10.9416 0.662218
\(274\) 0 0
\(275\) 1.48277 + 6.49645i 0.0894145 + 0.391750i
\(276\) 0 0
\(277\) 3.29697 + 4.13427i 0.198096 + 0.248404i 0.870951 0.491370i \(-0.163504\pi\)
−0.672855 + 0.739774i \(0.734932\pi\)
\(278\) 0 0
\(279\) 14.0832 + 17.6598i 0.843139 + 1.05726i
\(280\) 0 0
\(281\) 4.44808 5.57771i 0.265350 0.332738i −0.631250 0.775579i \(-0.717458\pi\)
0.896600 + 0.442841i \(0.146029\pi\)
\(282\) 0 0
\(283\) −23.2663 + 11.2045i −1.38304 + 0.666037i −0.969646 0.244515i \(-0.921371\pi\)
−0.413395 + 0.910552i \(0.635657\pi\)
\(284\) 0 0
\(285\) 3.49272 15.3026i 0.206891 0.906448i
\(286\) 0 0
\(287\) 34.0270 16.3865i 2.00855 0.967266i
\(288\) 0 0
\(289\) −13.4493 −0.791136
\(290\) 0 0
\(291\) −7.51843 −0.440738
\(292\) 0 0
\(293\) 12.4805 6.01029i 0.729119 0.351125i −0.0322188 0.999481i \(-0.510257\pi\)
0.761337 + 0.648356i \(0.224543\pi\)
\(294\) 0 0
\(295\) −1.58667 + 6.95165i −0.0923795 + 0.404741i
\(296\) 0 0
\(297\) 3.61733 1.74201i 0.209899 0.101082i
\(298\) 0 0
\(299\) 5.62335 7.05145i 0.325207 0.407796i
\(300\) 0 0
\(301\) −12.2670 15.3823i −0.707055 0.886619i
\(302\) 0 0
\(303\) −5.69361 7.13956i −0.327089 0.410157i
\(304\) 0 0
\(305\) −1.42165 6.22866i −0.0814035 0.356652i
\(306\) 0 0
\(307\) 24.8359 1.41746 0.708729 0.705481i \(-0.249269\pi\)
0.708729 + 0.705481i \(0.249269\pi\)
\(308\) 0 0
\(309\) 9.44837 + 4.55009i 0.537499 + 0.258846i
\(310\) 0 0
\(311\) −6.66824 + 8.36171i −0.378121 + 0.474149i −0.934082 0.357060i \(-0.883779\pi\)
0.555960 + 0.831209i \(0.312351\pi\)
\(312\) 0 0
\(313\) 5.43835 + 23.8270i 0.307394 + 1.34678i 0.858700 + 0.512478i \(0.171272\pi\)
−0.551306 + 0.834303i \(0.685870\pi\)
\(314\) 0 0
\(315\) −11.1601 5.37444i −0.628803 0.302816i
\(316\) 0 0
\(317\) −5.44713 + 23.8654i −0.305941 + 1.34042i 0.555059 + 0.831811i \(0.312696\pi\)
−0.861000 + 0.508605i \(0.830161\pi\)
\(318\) 0 0
\(319\) 6.85995 + 8.92904i 0.384083 + 0.499930i
\(320\) 0 0
\(321\) −7.49351 + 32.8312i −0.418247 + 1.83246i
\(322\) 0 0
\(323\) −8.71694 4.19786i −0.485024 0.233575i
\(324\) 0 0
\(325\) 0.800351 + 3.50657i 0.0443955 + 0.194509i
\(326\) 0 0
\(327\) 5.07048 6.35818i 0.280398 0.351608i
\(328\) 0 0
\(329\) −26.6350 12.8268i −1.46844 0.707162i
\(330\) 0 0
\(331\) −33.2717 −1.82878 −0.914389 0.404836i \(-0.867328\pi\)
−0.914389 + 0.404836i \(0.867328\pi\)
\(332\) 0 0
\(333\) 2.52769 + 11.0745i 0.138516 + 0.606880i
\(334\) 0 0
\(335\) 1.78560 + 2.23907i 0.0975575 + 0.122333i
\(336\) 0 0
\(337\) −6.57784 8.24835i −0.358318 0.449316i 0.569700 0.821853i \(-0.307060\pi\)
−0.928018 + 0.372537i \(0.878488\pi\)
\(338\) 0 0
\(339\) −21.5856 + 27.0675i −1.17237 + 1.47011i
\(340\) 0 0
\(341\) −19.7529 + 9.51247i −1.06968 + 0.515129i
\(342\) 0 0
\(343\) −4.02458 + 17.6328i −0.217307 + 0.952083i
\(344\) 0 0
\(345\) −22.0103 + 10.5996i −1.18500 + 0.570664i
\(346\) 0 0
\(347\) 6.91676 0.371311 0.185655 0.982615i \(-0.440559\pi\)
0.185655 + 0.982615i \(0.440559\pi\)
\(348\) 0 0
\(349\) −1.63878 −0.0877218 −0.0438609 0.999038i \(-0.513966\pi\)
−0.0438609 + 0.999038i \(0.513966\pi\)
\(350\) 0 0
\(351\) 1.95251 0.940281i 0.104217 0.0501885i
\(352\) 0 0
\(353\) 7.61510 33.3639i 0.405311 1.77578i −0.200001 0.979796i \(-0.564095\pi\)
0.605312 0.795988i \(-0.293048\pi\)
\(354\) 0 0
\(355\) 20.0252 9.64361i 1.06283 0.511830i
\(356\) 0 0
\(357\) −11.3900 + 14.2826i −0.602823 + 0.755917i
\(358\) 0 0
\(359\) 10.6106 + 13.3053i 0.560005 + 0.702224i 0.978559 0.205968i \(-0.0660342\pi\)
−0.418554 + 0.908192i \(0.637463\pi\)
\(360\) 0 0
\(361\) 4.59082 + 5.75670i 0.241622 + 0.302984i
\(362\) 0 0
\(363\) 3.34840 + 14.6703i 0.175746 + 0.769992i
\(364\) 0 0
\(365\) −7.78003 −0.407225
\(366\) 0 0
\(367\) −9.16301 4.41267i −0.478305 0.230340i 0.179167 0.983819i \(-0.442660\pi\)
−0.657472 + 0.753479i \(0.728374\pi\)
\(368\) 0 0
\(369\) −11.8789 + 14.8956i −0.618389 + 0.775436i
\(370\) 0 0
\(371\) −2.53224 11.0945i −0.131467 0.575996i
\(372\) 0 0
\(373\) 5.95244 + 2.86655i 0.308206 + 0.148424i 0.581593 0.813480i \(-0.302430\pi\)
−0.273387 + 0.961904i \(0.588144\pi\)
\(374\) 0 0
\(375\) 5.56909 24.3998i 0.287586 1.26000i
\(376\) 0 0
\(377\) 3.70277 + 4.81960i 0.190702 + 0.248222i
\(378\) 0 0
\(379\) 3.08165 13.5016i 0.158294 0.693529i −0.832028 0.554734i \(-0.812820\pi\)
0.990321 0.138795i \(-0.0443229\pi\)
\(380\) 0 0
\(381\) −21.1248 10.1732i −1.08226 0.521188i
\(382\) 0 0
\(383\) −3.31791 14.5367i −0.169537 0.742792i −0.986184 0.165654i \(-0.947027\pi\)
0.816647 0.577138i \(-0.195831\pi\)
\(384\) 0 0
\(385\) 7.49614 9.39986i 0.382039 0.479061i
\(386\) 0 0
\(387\) 8.94230 + 4.30638i 0.454562 + 0.218906i
\(388\) 0 0
\(389\) 36.3063 1.84080 0.920401 0.390976i \(-0.127862\pi\)
0.920401 + 0.390976i \(0.127862\pi\)
\(390\) 0 0
\(391\) 3.35080 + 14.6808i 0.169457 + 0.742441i
\(392\) 0 0
\(393\) 4.77356 + 5.98585i 0.240794 + 0.301946i
\(394\) 0 0
\(395\) 9.51452 + 11.9308i 0.478727 + 0.600305i
\(396\) 0 0
\(397\) 9.15347 11.4781i 0.459400 0.576069i −0.497140 0.867670i \(-0.665617\pi\)
0.956540 + 0.291601i \(0.0941880\pi\)
\(398\) 0 0
\(399\) 44.8484 21.5978i 2.24523 1.08124i
\(400\) 0 0
\(401\) −4.00830 + 17.5615i −0.200165 + 0.876980i 0.770670 + 0.637234i \(0.219921\pi\)
−0.970836 + 0.239746i \(0.922936\pi\)
\(402\) 0 0
\(403\) −10.6619 + 5.13452i −0.531109 + 0.255769i
\(404\) 0 0
\(405\) −14.5721 −0.724091
\(406\) 0 0
\(407\) −11.0256 −0.546517
\(408\) 0 0
\(409\) 10.1958 4.91006i 0.504152 0.242787i −0.164480 0.986380i \(-0.552594\pi\)
0.668632 + 0.743594i \(0.266880\pi\)
\(410\) 0 0
\(411\) 4.85082 21.2528i 0.239273 1.04833i
\(412\) 0 0
\(413\) −20.3737 + 9.81144i −1.00252 + 0.482790i
\(414\) 0 0
\(415\) −10.8688 + 13.6290i −0.533528 + 0.669023i
\(416\) 0 0
\(417\) 2.37565 + 2.97896i 0.116336 + 0.145881i
\(418\) 0 0
\(419\) −16.3076 20.4491i −0.796680 0.999005i −0.999803 0.0198517i \(-0.993681\pi\)
0.203123 0.979153i \(-0.434891\pi\)
\(420\) 0 0
\(421\) 2.79100 + 12.2282i 0.136025 + 0.595964i 0.996286 + 0.0861098i \(0.0274436\pi\)
−0.860261 + 0.509854i \(0.829699\pi\)
\(422\) 0 0
\(423\) 14.9134 0.725112
\(424\) 0 0
\(425\) −5.41043 2.60552i −0.262444 0.126386i
\(426\) 0 0
\(427\) 12.6327 15.8409i 0.611338 0.766594i
\(428\) 0 0
\(429\) −1.19216 5.22318i −0.0575579 0.252178i
\(430\) 0 0
\(431\) 19.8055 + 9.53782i 0.953997 + 0.459421i 0.845086 0.534631i \(-0.179549\pi\)
0.108911 + 0.994052i \(0.465264\pi\)
\(432\) 0 0
\(433\) −2.61653 + 11.4638i −0.125743 + 0.550914i 0.872333 + 0.488911i \(0.162606\pi\)
−0.998076 + 0.0620026i \(0.980251\pi\)
\(434\) 0 0
\(435\) −3.37208 16.1134i −0.161679 0.772577i
\(436\) 0 0
\(437\) 9.13042 40.0030i 0.436767 1.91360i
\(438\) 0 0
\(439\) 26.7736 + 12.8935i 1.27784 + 0.615374i 0.944833 0.327552i \(-0.106224\pi\)
0.333003 + 0.942926i \(0.391938\pi\)
\(440\) 0 0
\(441\) −5.38577 23.5966i −0.256465 1.12365i
\(442\) 0 0
\(443\) −10.7485 + 13.4782i −0.510677 + 0.640368i −0.968600 0.248623i \(-0.920022\pi\)
0.457923 + 0.888992i \(0.348593\pi\)
\(444\) 0 0
\(445\) 6.64409 + 3.19963i 0.314960 + 0.151677i
\(446\) 0 0
\(447\) 32.1612 1.52117
\(448\) 0 0
\(449\) −0.854732 3.74483i −0.0403373 0.176729i 0.950746 0.309970i \(-0.100319\pi\)
−0.991084 + 0.133240i \(0.957462\pi\)
\(450\) 0 0
\(451\) −11.5298 14.4580i −0.542919 0.680799i
\(452\) 0 0
\(453\) −16.1679 20.2739i −0.759636 0.952553i
\(454\) 0 0
\(455\) 4.04617 5.07373i 0.189687 0.237860i
\(456\) 0 0
\(457\) 9.85882 4.74776i 0.461176 0.222091i −0.188845 0.982007i \(-0.560474\pi\)
0.650021 + 0.759916i \(0.274760\pi\)
\(458\) 0 0
\(459\) −0.805133 + 3.52752i −0.0375804 + 0.164650i
\(460\) 0 0
\(461\) −29.3573 + 14.1377i −1.36730 + 0.658459i −0.966252 0.257597i \(-0.917069\pi\)
−0.401051 + 0.916056i \(0.631355\pi\)
\(462\) 0 0
\(463\) −13.0581 −0.606861 −0.303431 0.952854i \(-0.598132\pi\)
−0.303431 + 0.952854i \(0.598132\pi\)
\(464\) 0 0
\(465\) 32.0536 1.48645
\(466\) 0 0
\(467\) −19.1059 + 9.20091i −0.884115 + 0.425767i −0.820126 0.572183i \(-0.806097\pi\)
−0.0639891 + 0.997951i \(0.520382\pi\)
\(468\) 0 0
\(469\) −2.02101 + 8.85463i −0.0933216 + 0.408869i
\(470\) 0 0
\(471\) 20.1961 9.72591i 0.930586 0.448146i
\(472\) 0 0
\(473\) −6.00644 + 7.53183i −0.276176 + 0.346314i
\(474\) 0 0
\(475\) 10.2022 + 12.7931i 0.468108 + 0.586989i
\(476\) 0 0
\(477\) 3.57928 + 4.48827i 0.163884 + 0.205504i
\(478\) 0 0
\(479\) −0.407929 1.78725i −0.0186388 0.0816617i 0.964753 0.263157i \(-0.0847636\pi\)
−0.983392 + 0.181495i \(0.941906\pi\)
\(480\) 0 0
\(481\) −5.95123 −0.271353
\(482\) 0 0
\(483\) −69.8024 33.6151i −3.17612 1.52954i
\(484\) 0 0
\(485\) −2.78028 + 3.48636i −0.126246 + 0.158308i
\(486\) 0 0
\(487\) −2.63744 11.5554i −0.119514 0.523624i −0.998873 0.0474649i \(-0.984886\pi\)
0.879359 0.476159i \(-0.157971\pi\)
\(488\) 0 0
\(489\) −2.83747 1.36645i −0.128315 0.0617931i
\(490\) 0 0
\(491\) −1.56913 + 6.87480i −0.0708137 + 0.310255i −0.997914 0.0645584i \(-0.979436\pi\)
0.927100 + 0.374814i \(0.122293\pi\)
\(492\) 0 0
\(493\) −10.1457 0.183703i −0.456941 0.00827356i
\(494\) 0 0
\(495\) −1.34962 + 5.91307i −0.0606609 + 0.265773i
\(496\) 0 0
\(497\) 63.5068 + 30.5833i 2.84867 + 1.37185i
\(498\) 0 0
\(499\) 3.87463 + 16.9758i 0.173452 + 0.759943i 0.984560 + 0.175047i \(0.0560077\pi\)
−0.811108 + 0.584896i \(0.801135\pi\)
\(500\) 0 0
\(501\) 11.2726 14.1354i 0.503621 0.631521i
\(502\) 0 0
\(503\) −23.5324 11.3326i −1.04926 0.505296i −0.171891 0.985116i \(-0.554988\pi\)
−0.877367 + 0.479820i \(0.840702\pi\)
\(504\) 0 0
\(505\) −5.41615 −0.241015
\(506\) 0 0
\(507\) 5.92394 + 25.9545i 0.263092 + 1.15268i
\(508\) 0 0
\(509\) −2.36441 2.96488i −0.104801 0.131416i 0.726665 0.686992i \(-0.241069\pi\)
−0.831466 + 0.555576i \(0.812498\pi\)
\(510\) 0 0
\(511\) −15.3835 19.2903i −0.680525 0.853351i
\(512\) 0 0
\(513\) 6.14707 7.70818i 0.271400 0.340324i
\(514\) 0 0
\(515\) 5.60388 2.69869i 0.246936 0.118918i
\(516\) 0 0
\(517\) −3.22103 + 14.1123i −0.141661 + 0.620656i
\(518\) 0 0
\(519\) −25.8643 + 12.4556i −1.13532 + 0.546740i
\(520\) 0 0
\(521\) 0.974452 0.0426915 0.0213458 0.999772i \(-0.493205\pi\)
0.0213458 + 0.999772i \(0.493205\pi\)
\(522\) 0 0
\(523\) 41.7600 1.82604 0.913019 0.407917i \(-0.133745\pi\)
0.913019 + 0.407917i \(0.133745\pi\)
\(524\) 0 0
\(525\) 27.8365 13.4053i 1.21488 0.585057i
\(526\) 0 0
\(527\) 4.39652 19.2624i 0.191516 0.839085i
\(528\) 0 0
\(529\) −36.8155 + 17.7294i −1.60067 + 0.770844i
\(530\) 0 0
\(531\) 7.11248 8.91877i 0.308655 0.387041i
\(532\) 0 0
\(533\) −6.22343 7.80393i −0.269566 0.338026i
\(534\) 0 0
\(535\) 12.4530 + 15.6156i 0.538392 + 0.675122i
\(536\) 0 0
\(537\) −11.3152 49.5752i −0.488288 2.13933i
\(538\) 0 0
\(539\) 23.4923 1.01188
\(540\) 0 0
\(541\) 27.2407 + 13.1184i 1.17117 + 0.564006i 0.915327 0.402712i \(-0.131932\pi\)
0.255844 + 0.966718i \(0.417647\pi\)
\(542\) 0 0
\(543\) −10.6388 + 13.3406i −0.456554 + 0.572501i
\(544\) 0 0
\(545\) −1.07330 4.70245i −0.0459753 0.201431i
\(546\) 0 0
\(547\) 29.9389 + 14.4178i 1.28010 + 0.616461i 0.945415 0.325870i \(-0.105657\pi\)
0.334681 + 0.942332i \(0.391372\pi\)
\(548\) 0 0
\(549\) −2.27441 + 9.96485i −0.0970695 + 0.425289i
\(550\) 0 0
\(551\) 24.6906 + 12.4460i 1.05186 + 0.530216i
\(552\) 0 0
\(553\) −10.7689 + 47.1817i −0.457941 + 2.00637i
\(554\) 0 0
\(555\) 14.5234 + 6.99409i 0.616483 + 0.296883i
\(556\) 0 0
\(557\) −5.66389 24.8151i −0.239987 1.05145i −0.941028 0.338329i \(-0.890138\pi\)
0.701041 0.713121i \(-0.252719\pi\)
\(558\) 0 0
\(559\) −3.24207 + 4.06543i −0.137125 + 0.171950i
\(560\) 0 0
\(561\) 8.05907 + 3.88104i 0.340254 + 0.163858i
\(562\) 0 0
\(563\) −8.50862 −0.358596 −0.179298 0.983795i \(-0.557383\pi\)
−0.179298 + 0.983795i \(0.557383\pi\)
\(564\) 0 0
\(565\) 4.56918 + 20.0189i 0.192227 + 0.842201i
\(566\) 0 0
\(567\) −28.8134 36.1308i −1.21005 1.51735i
\(568\) 0 0
\(569\) −6.24080 7.82571i −0.261628 0.328071i 0.633616 0.773648i \(-0.281570\pi\)
−0.895244 + 0.445577i \(0.852999\pi\)
\(570\) 0 0
\(571\) −10.5332 + 13.2083i −0.440802 + 0.552748i −0.951754 0.306861i \(-0.900721\pi\)
0.510952 + 0.859609i \(0.329293\pi\)
\(572\) 0 0
\(573\) −13.9324 + 6.70947i −0.582033 + 0.280292i
\(574\) 0 0
\(575\) 5.66707 24.8290i 0.236333 1.03544i
\(576\) 0 0
\(577\) −23.0001 + 11.0763i −0.957509 + 0.461112i −0.846313 0.532687i \(-0.821182\pi\)
−0.111196 + 0.993798i \(0.535468\pi\)
\(578\) 0 0
\(579\) −35.4665 −1.47394
\(580\) 0 0
\(581\) −55.2836 −2.29355
\(582\) 0 0
\(583\) −5.02024 + 2.41762i −0.207917 + 0.100128i
\(584\) 0 0
\(585\) −0.728480 + 3.19168i −0.0301189 + 0.131960i
\(586\) 0 0
\(587\) −29.3312 + 14.1252i −1.21063 + 0.583008i −0.926687 0.375834i \(-0.877356\pi\)
−0.283941 + 0.958842i \(0.591642\pi\)
\(588\) 0 0
\(589\) −33.5668 + 42.0914i −1.38310 + 1.73435i
\(590\) 0 0
\(591\) 3.04487 + 3.81814i 0.125249 + 0.157057i
\(592\) 0 0
\(593\) −10.8310 13.5817i −0.444777 0.557732i 0.508019 0.861346i \(-0.330378\pi\)
−0.952795 + 0.303614i \(0.901807\pi\)
\(594\) 0 0
\(595\) 2.41100 + 10.5633i 0.0988415 + 0.433053i
\(596\) 0 0
\(597\) 11.7934 0.482673
\(598\) 0 0
\(599\) 16.9591 + 8.16707i 0.692930 + 0.333698i 0.746985 0.664840i \(-0.231500\pi\)
−0.0540553 + 0.998538i \(0.517215\pi\)
\(600\) 0 0
\(601\) −13.7735 + 17.2714i −0.561833 + 0.704516i −0.978896 0.204361i \(-0.934488\pi\)
0.417062 + 0.908878i \(0.363060\pi\)
\(602\) 0 0
\(603\) −1.01953 4.46686i −0.0415185 0.181905i
\(604\) 0 0
\(605\) 8.04098 + 3.87233i 0.326912 + 0.157433i
\(606\) 0 0
\(607\) −1.78643 + 7.82687i −0.0725091 + 0.317683i −0.998156 0.0607062i \(-0.980665\pi\)
0.925647 + 0.378389i \(0.123522\pi\)
\(608\) 0 0
\(609\) 33.2848 40.2219i 1.34877 1.62988i
\(610\) 0 0
\(611\) −1.73860 + 7.61732i −0.0703364 + 0.308164i
\(612\) 0 0
\(613\) 16.8069 + 8.09380i 0.678826 + 0.326905i 0.741331 0.671139i \(-0.234195\pi\)
−0.0625053 + 0.998045i \(0.519909\pi\)
\(614\) 0 0
\(615\) 6.01620 + 26.3587i 0.242596 + 1.06288i
\(616\) 0 0
\(617\) −10.5367 + 13.2126i −0.424193 + 0.531921i −0.947301 0.320346i \(-0.896201\pi\)
0.523108 + 0.852266i \(0.324772\pi\)
\(618\) 0 0
\(619\) −5.28505 2.54515i −0.212424 0.102298i 0.324646 0.945836i \(-0.394755\pi\)
−0.537070 + 0.843537i \(0.680469\pi\)
\(620\) 0 0
\(621\) −15.3448 −0.615767
\(622\) 0 0
\(623\) 5.20404 + 22.8004i 0.208496 + 0.913479i
\(624\) 0 0
\(625\) 0.679974 + 0.852661i 0.0271990 + 0.0341064i
\(626\) 0 0
\(627\) −15.1966 19.0559i −0.606894 0.761021i
\(628\) 0 0
\(629\) 6.19510 7.76842i 0.247015 0.309747i
\(630\) 0 0
\(631\) 17.4904 8.42292i 0.696281 0.335311i −0.0520430 0.998645i \(-0.516573\pi\)
0.748324 + 0.663334i \(0.230859\pi\)
\(632\) 0 0
\(633\) 0.269906 1.18254i 0.0107278 0.0470016i
\(634\) 0 0
\(635\) −12.5293 + 6.03377i −0.497208 + 0.239443i
\(636\) 0 0
\(637\) 12.6804 0.502414
\(638\) 0 0
\(639\) −35.5584 −1.40667
\(640\) 0 0
\(641\) 3.52772 1.69886i 0.139337 0.0671009i −0.362916 0.931822i \(-0.618219\pi\)
0.502253 + 0.864721i \(0.332505\pi\)
\(642\) 0 0
\(643\) 7.86740 34.4693i 0.310260 1.35934i −0.543823 0.839200i \(-0.683024\pi\)
0.854083 0.520137i \(-0.174119\pi\)
\(644\) 0 0
\(645\) 12.6898 6.11108i 0.499660 0.240624i
\(646\) 0 0
\(647\) 11.5009 14.4216i 0.452146 0.566973i −0.502553 0.864546i \(-0.667606\pi\)
0.954699 + 0.297573i \(0.0961772\pi\)
\(648\) 0 0
\(649\) 6.90350 + 8.65671i 0.270986 + 0.339806i
\(650\) 0 0
\(651\) 63.3797 + 79.4757i 2.48405 + 3.11490i
\(652\) 0 0
\(653\) −5.26947 23.0871i −0.206210 0.903466i −0.967062 0.254541i \(-0.918076\pi\)
0.760852 0.648926i \(-0.224781\pi\)
\(654\) 0 0
\(655\) 4.54093 0.177429
\(656\) 0 0
\(657\) 11.2142 + 5.40046i 0.437506 + 0.210692i
\(658\) 0 0
\(659\) 8.91783 11.1826i 0.347389 0.435612i −0.577185 0.816613i \(-0.695849\pi\)
0.924575 + 0.381001i \(0.124420\pi\)
\(660\) 0 0
\(661\) −10.8875 47.7013i −0.423475 1.85537i −0.511551 0.859253i \(-0.670929\pi\)
0.0880751 0.996114i \(-0.471928\pi\)
\(662\) 0 0
\(663\) 4.35002 + 2.09486i 0.168941 + 0.0813576i
\(664\) 0 0
\(665\) 6.56961 28.7834i 0.254759 1.11617i
\(666\) 0 0
\(667\) −8.81505 42.1224i −0.341320 1.63099i
\(668\) 0 0
\(669\) 6.14920 26.9414i 0.237742 1.04161i
\(670\) 0 0
\(671\) −8.93833 4.30447i −0.345060 0.166172i
\(672\) 0 0
\(673\) 3.20650 + 14.0486i 0.123602 + 0.541534i 0.998374 + 0.0570001i \(0.0181535\pi\)
−0.874773 + 0.484534i \(0.838989\pi\)
\(674\) 0 0
\(675\) 3.81536 4.78431i 0.146853 0.184148i
\(676\) 0 0
\(677\) 42.4357 + 20.4360i 1.63094 + 0.785418i 0.999954 + 0.00962221i \(0.00306289\pi\)
0.630984 + 0.775796i \(0.282651\pi\)
\(678\) 0 0
\(679\) −14.1418 −0.542711
\(680\) 0 0
\(681\) −1.52935 6.70051i −0.0586047 0.256764i
\(682\) 0 0
\(683\) −0.292000 0.366156i −0.0111731 0.0140106i 0.776214 0.630470i \(-0.217138\pi\)
−0.787387 + 0.616459i \(0.788566\pi\)
\(684\) 0 0
\(685\) −8.06132 10.1086i −0.308007 0.386229i
\(686\) 0 0
\(687\) −21.3464 + 26.7676i −0.814418 + 1.02125i
\(688\) 0 0
\(689\) −2.70976 + 1.30495i −0.103234 + 0.0497146i
\(690\) 0 0
\(691\) 3.13009 13.7138i 0.119074 0.521698i −0.879847 0.475257i \(-0.842355\pi\)
0.998921 0.0464410i \(-0.0147879\pi\)
\(692\) 0 0
\(693\) −17.3298 + 8.34560i −0.658306 + 0.317023i
\(694\) 0 0
\(695\) 2.25987 0.0857219
\(696\) 0 0
\(697\) 16.6653 0.631242
\(698\) 0 0
\(699\) −23.5943 + 11.3624i −0.892417 + 0.429765i
\(700\) 0 0
\(701\) 8.42479 36.9114i 0.318200 1.39413i −0.522507 0.852635i \(-0.675003\pi\)
0.840707 0.541490i \(-0.182140\pi\)
\(702\) 0 0
\(703\) −24.3933 + 11.7472i −0.920012 + 0.443054i
\(704\) 0 0
\(705\) 13.1950 16.5460i 0.496953 0.623160i
\(706\) 0 0
\(707\) −10.7094 13.4291i −0.402767 0.505054i
\(708\) 0 0
\(709\) 14.6087 + 18.3187i 0.548641 + 0.687974i 0.976413 0.215913i \(-0.0692726\pi\)
−0.427772 + 0.903887i \(0.640701\pi\)
\(710\) 0 0
\(711\) −5.43256 23.8016i −0.203737 0.892629i
\(712\) 0 0
\(713\) 83.7923 3.13805
\(714\) 0 0
\(715\) −2.86289 1.37870i −0.107066 0.0515603i
\(716\) 0 0
\(717\) 16.0192 20.0874i 0.598247 0.750178i
\(718\) 0 0
\(719\) −1.14696 5.02516i −0.0427744 0.187407i 0.949027 0.315194i \(-0.102070\pi\)
−0.991802 + 0.127787i \(0.959213\pi\)
\(720\) 0 0
\(721\) 17.7719 + 8.55847i 0.661858 + 0.318734i
\(722\) 0 0
\(723\) −12.7335 + 55.7890i −0.473563 + 2.07481i
\(724\) 0 0
\(725\) 15.3250 + 7.72496i 0.569155 + 0.286898i
\(726\) 0 0
\(727\) 9.63820 42.2277i 0.357461 1.56614i −0.402033 0.915625i \(-0.631696\pi\)
0.759494 0.650514i \(-0.225447\pi\)
\(728\) 0 0
\(729\) 9.22131 + 4.44075i 0.341530 + 0.164472i
\(730\) 0 0
\(731\) −1.93187 8.46406i −0.0714526 0.313054i
\(732\) 0 0
\(733\) 27.2882 34.2183i 1.00791 1.26388i 0.0436173 0.999048i \(-0.486112\pi\)
0.964294 0.264833i \(-0.0853168\pi\)
\(734\) 0 0
\(735\) −30.9451 14.9024i −1.14143 0.549683i
\(736\) 0 0
\(737\) 4.44711 0.163811
\(738\) 0 0
\(739\) −6.44093 28.2196i −0.236934 1.03807i −0.943746 0.330672i \(-0.892725\pi\)
0.706812 0.707401i \(-0.250133\pi\)
\(740\) 0 0
\(741\) −8.20262 10.2858i −0.301331 0.377857i
\(742\) 0 0
\(743\) 5.37897 + 6.74501i 0.197335 + 0.247451i 0.870647 0.491908i \(-0.163700\pi\)
−0.673312 + 0.739358i \(0.735129\pi\)
\(744\) 0 0
\(745\) 11.8931 14.9134i 0.435728 0.546386i
\(746\) 0 0
\(747\) 25.1268 12.1004i 0.919343 0.442732i
\(748\) 0 0
\(749\) −14.0949 + 61.7537i −0.515015 + 2.25643i
\(750\) 0 0
\(751\) 17.2619 8.31291i 0.629897 0.303342i −0.0915621 0.995799i \(-0.529186\pi\)
0.721459 + 0.692457i \(0.243472\pi\)
\(752\) 0 0
\(753\) −27.5912 −1.00548
\(754\) 0 0
\(755\) −15.3800 −0.559737
\(756\) 0 0
\(757\) −14.0242 + 6.75368i −0.509717 + 0.245467i −0.671021 0.741438i \(-0.734144\pi\)
0.161305 + 0.986905i \(0.448430\pi\)
\(758\) 0 0
\(759\) −8.44134 + 36.9839i −0.306401 + 1.34243i
\(760\) 0 0
\(761\) −29.8165 + 14.3589i −1.08085 + 0.520509i −0.887588 0.460638i \(-0.847621\pi\)
−0.193261 + 0.981147i \(0.561906\pi\)
\(762\) 0 0
\(763\) 9.53729 11.9594i 0.345273 0.432959i
\(764\) 0 0
\(765\) −3.40791 4.27339i −0.123213 0.154505i
\(766\) 0 0
\(767\) 3.72628 + 4.67261i 0.134548 + 0.168718i
\(768\) 0 0
\(769\) −4.60266 20.1656i −0.165976 0.727190i −0.987578 0.157128i \(-0.949776\pi\)
0.821602 0.570062i \(-0.193081\pi\)
\(770\) 0 0
\(771\) 32.1772 1.15883
\(772\) 0 0
\(773\) −14.3719 6.92113i −0.516920 0.248936i 0.157187 0.987569i \(-0.449757\pi\)
−0.674108 + 0.738633i \(0.735472\pi\)
\(774\) 0 0
\(775\) −20.8342 + 26.1253i −0.748388 + 0.938448i
\(776\) 0 0
\(777\) 11.3756 + 49.8396i 0.408096 + 1.78798i
\(778\) 0 0
\(779\) −40.9133 19.7028i −1.46587 0.705926i
\(780\) 0 0
\(781\) 7.68001 33.6483i 0.274812 1.20403i
\(782\) 0 0
\(783\) 2.48309 10.0379i 0.0887385 0.358725i
\(784\) 0 0
\(785\) 2.95842 12.9617i 0.105591 0.462622i
\(786\) 0 0
\(787\) 35.1795 + 16.9416i 1.25401 + 0.603902i 0.938585 0.345047i \(-0.112137\pi\)
0.315429 + 0.948949i \(0.397851\pi\)
\(788\) 0 0
\(789\) 10.2105 + 44.7350i 0.363503 + 1.59261i
\(790\) 0 0
\(791\) −40.6014 + 50.9125i −1.44362 + 1.81024i
\(792\) 0 0
\(793\) −4.82461 2.32341i −0.171327 0.0825067i
\(794\) 0 0
\(795\) 8.14651 0.288927
\(796\) 0 0
\(797\) −8.91131 39.0430i −0.315655 1.38297i −0.845090 0.534624i \(-0.820453\pi\)
0.529436 0.848350i \(-0.322404\pi\)
\(798\) 0 0
\(799\) −8.13339 10.1990i −0.287739 0.360813i
\(800\) 0 0
\(801\) −7.35582 9.22391i −0.259905 0.325911i
\(802\) 0 0
\(803\) −7.53243 + 9.44536i −0.265814 + 0.333320i
\(804\) 0 0
\(805\) −41.4002 + 19.9373i −1.45916 + 0.702697i
\(806\) 0 0
\(807\) −0.972361 + 4.26019i −0.0342287 + 0.149966i
\(808\) 0 0
\(809\) −15.0565 + 7.25082i −0.529358 + 0.254925i −0.679418 0.733751i \(-0.737768\pi\)
0.150060 + 0.988677i \(0.452053\pi\)
\(810\) 0 0
\(811\) 0.618522 0.0217192 0.0108596 0.999941i \(-0.496543\pi\)
0.0108596 + 0.999941i \(0.496543\pi\)
\(812\) 0 0
\(813\) 15.4091 0.540420
\(814\) 0 0
\(815\) −1.68292 + 0.810451i −0.0589501 + 0.0283889i
\(816\) 0 0
\(817\) −5.26404 + 23.0633i −0.184165 + 0.806881i
\(818\) 0 0
\(819\) −9.35406 + 4.50468i −0.326857 + 0.157406i
\(820\) 0 0
\(821\) −4.73264 + 5.93454i −0.165170 + 0.207117i −0.857528 0.514438i \(-0.828001\pi\)
0.692358 + 0.721555i \(0.256572\pi\)
\(822\) 0 0
\(823\) −15.1241 18.9650i −0.527193 0.661079i 0.444926 0.895567i \(-0.353230\pi\)
−0.972119 + 0.234489i \(0.924658\pi\)
\(824\) 0 0
\(825\) −9.43222 11.8276i −0.328388 0.411785i
\(826\) 0 0
\(827\) 3.18469 + 13.9531i 0.110743 + 0.485195i 0.999633 + 0.0270759i \(0.00861958\pi\)
−0.888891 + 0.458119i \(0.848523\pi\)
\(828\) 0 0
\(829\) −29.5741 −1.02715 −0.513576 0.858044i \(-0.671679\pi\)
−0.513576 + 0.858044i \(0.671679\pi\)
\(830\) 0 0
\(831\) −10.8163 5.20883i −0.375212 0.180692i
\(832\) 0 0
\(833\) −13.2000 + 16.5522i −0.457352 + 0.573501i
\(834\) 0 0
\(835\) −2.38614 10.4544i −0.0825759 0.361789i
\(836\) 0 0
\(837\) 18.1398 + 8.73567i 0.627003 + 0.301949i
\(838\) 0 0
\(839\) 5.01169 21.9576i 0.173023 0.758062i −0.811720 0.584047i \(-0.801469\pi\)
0.984743 0.174016i \(-0.0556743\pi\)
\(840\) 0 0
\(841\) 28.9810 + 1.04983i 0.999345 + 0.0362009i
\(842\) 0 0
\(843\) −3.60409 + 15.7905i −0.124131 + 0.543855i
\(844\) 0 0
\(845\) 14.2260 + 6.85087i 0.489388 + 0.235677i
\(846\) 0 0
\(847\) 6.29816 + 27.5941i 0.216407 + 0.948143i
\(848\) 0 0
\(849\) 36.5535 45.8366i 1.25451 1.57311i
\(850\) 0 0
\(851\) 37.9660 + 18.2835i 1.30146 + 0.626749i
\(852\) 0 0
\(853\) 19.8193 0.678600 0.339300 0.940678i \(-0.389810\pi\)
0.339300 + 0.940678i \(0.389810\pi\)
\(854\) 0 0
\(855\) 3.31415 + 14.5202i 0.113341 + 0.496581i
\(856\) 0 0
\(857\) −12.0411 15.0990i −0.411315 0.515772i 0.532418 0.846482i \(-0.321283\pi\)
−0.943733 + 0.330709i \(0.892712\pi\)
\(858\) 0 0
\(859\) −12.1131 15.1893i −0.413293 0.518253i 0.530994 0.847375i \(-0.321818\pi\)
−0.944287 + 0.329123i \(0.893247\pi\)
\(860\) 0 0
\(861\) −53.4594 + 67.0360i −1.82189 + 2.28458i
\(862\) 0 0
\(863\) 33.3600 16.0653i 1.13559 0.546870i 0.230913 0.972974i \(-0.425829\pi\)
0.904674 + 0.426104i \(0.140114\pi\)
\(864\) 0 0
\(865\) −3.78873 + 16.5995i −0.128821 + 0.564401i
\(866\) 0 0
\(867\) 27.5100 13.2481i 0.934290 0.449930i
\(868\) 0 0
\(869\) 23.6964 0.803844
\(870\) 0 0
\(871\) 2.40040 0.0813346
\(872\) 0 0
\(873\) 6.42755 3.09534i 0.217539 0.104761i
\(874\) 0 0
\(875\) 10.4751 45.8946i 0.354124 1.55152i
\(876\) 0 0
\(877\) 36.7338 17.6901i 1.24041 0.597351i 0.305487 0.952196i \(-0.401181\pi\)
0.934925 + 0.354846i \(0.115467\pi\)
\(878\) 0 0
\(879\) −19.6080 + 24.5876i −0.661361 + 0.829320i
\(880\) 0 0
\(881\) −18.6816 23.4260i −0.629400 0.789243i 0.360233 0.932862i \(-0.382697\pi\)
−0.989633 + 0.143620i \(0.954126\pi\)
\(882\) 0 0
\(883\) −15.8437 19.8674i −0.533184 0.668591i 0.440166 0.897916i \(-0.354919\pi\)
−0.973350 + 0.229325i \(0.926348\pi\)
\(884\) 0 0
\(885\) −3.60220 15.7823i −0.121087 0.530515i
\(886\) 0 0
\(887\) −14.8245 −0.497759 −0.248879 0.968534i \(-0.580062\pi\)
−0.248879 + 0.968534i \(0.580062\pi\)
\(888\) 0 0
\(889\) −39.7346 19.1352i −1.33266 0.641774i
\(890\) 0 0
\(891\) −14.1083 + 17.6912i −0.472646 + 0.592679i
\(892\) 0 0
\(893\) 7.90961 + 34.6543i 0.264685 + 1.15966i
\(894\) 0 0
\(895\) −27.1728 13.0857i −0.908285 0.437407i
\(896\) 0 0
\(897\) −4.55636 + 19.9627i −0.152132 + 0.666535i
\(898\) 0 0
\(899\) −13.5592 + 54.8131i −0.452226 + 1.82812i
\(900\) 0 0
\(901\) 1.11739 4.89559i 0.0372256 0.163096i
\(902\) 0 0
\(903\) 40.2437 + 19.3804i 1.33923 + 0.644938i
\(904\) 0 0
\(905\) 2.25199 + 9.86659i 0.0748585 + 0.327977i
\(906\) 0 0
\(907\) 10.2633 12.8697i 0.340786 0.427332i −0.581676 0.813421i \(-0.697603\pi\)
0.922462 + 0.386089i \(0.126174\pi\)
\(908\) 0 0
\(909\) 7.80686 + 3.75958i 0.258937 + 0.124698i
\(910\) 0 0
\(911\) 10.4862 0.347422 0.173711 0.984797i \(-0.444424\pi\)
0.173711 + 0.984797i \(0.444424\pi\)
\(912\) 0 0
\(913\) 6.02348 + 26.3906i 0.199348 + 0.873401i
\(914\) 0 0
\(915\) 9.04342 + 11.3401i 0.298966 + 0.374892i
\(916\) 0 0
\(917\) 8.97880 + 11.2591i 0.296506 + 0.371807i
\(918\) 0 0
\(919\) −12.8073 + 16.0599i −0.422474 + 0.529766i −0.946830 0.321733i \(-0.895735\pi\)
0.524356 + 0.851499i \(0.324306\pi\)
\(920\) 0 0
\(921\) −50.8008 + 24.4644i −1.67394 + 0.806129i
\(922\) 0 0
\(923\) 4.14541 18.1622i 0.136448 0.597817i
\(924\) 0 0
\(925\) −15.1404 + 7.29125i −0.497815 + 0.239735i
\(926\) 0 0
\(927\) −9.95073 −0.326825
\(928\) 0 0
\(929\) −39.5714 −1.29830 −0.649148 0.760662i \(-0.724874\pi\)
−0.649148 + 0.760662i \(0.724874\pi\)
\(930\) 0 0
\(931\) 51.9751 25.0299i 1.70342 0.820322i
\(932\) 0 0
\(933\) 5.40299 23.6720i 0.176886 0.774988i
\(934\) 0 0
\(935\) 4.77988 2.30187i 0.156319 0.0752792i
\(936\) 0 0
\(937\) −0.724114 + 0.908010i −0.0236558 + 0.0296634i −0.793519 0.608546i \(-0.791753\pi\)
0.769863 + 0.638209i \(0.220325\pi\)
\(938\) 0 0
\(939\) −34.5945 43.3802i −1.12895 1.41566i
\(940\) 0 0
\(941\) 19.1225 + 23.9789i 0.623377 + 0.781690i 0.988815 0.149146i \(-0.0476524\pi\)
−0.365438 + 0.930836i \(0.619081\pi\)
\(942\) 0 0
\(943\) 15.7271 + 68.9050i 0.512145 + 2.24385i
\(944\) 0 0
\(945\) −11.0411 −0.359166
\(946\) 0 0
\(947\) 46.6013 + 22.4420i 1.51434 + 0.729267i 0.992324 0.123668i \(-0.0394659\pi\)
0.522016 + 0.852936i \(0.325180\pi\)
\(948\) 0 0
\(949\) −4.06575 + 5.09829i −0.131980 + 0.165498i
\(950\) 0 0
\(951\) −12.3666 54.1814i −0.401013 1.75695i
\(952\) 0 0
\(953\) −43.0360 20.7250i −1.39407 0.671349i −0.422122 0.906539i \(-0.638715\pi\)
−0.971950 + 0.235190i \(0.924429\pi\)
\(954\) 0 0
\(955\) −2.04088 + 8.94169i −0.0660414 + 0.289346i
\(956\) 0 0
\(957\) −22.8272 11.5067i −0.737899 0.371958i
\(958\) 0 0
\(959\) 9.12413 39.9754i 0.294634 1.29087i
\(960\) 0 0
\(961\) −71.1246 34.2518i −2.29434 1.10490i
\(962\) 0 0
\(963\) −7.11039 31.1526i −0.229129 1.00388i
\(964\) 0 0
\(965\) −13.1153 + 16.4461i −0.422198 + 0.529420i
\(966\) 0 0
\(967\) −32.7038 15.7493i −1.05168 0.506464i −0.173523 0.984830i \(-0.555515\pi\)
−0.878161 + 0.478366i \(0.841229\pi\)
\(968\) 0 0
\(969\) 21.9652 0.705625
\(970\) 0 0
\(971\) 11.1459 + 48.8332i 0.357687 + 1.56713i 0.758938 + 0.651163i \(0.225718\pi\)
−0.401251 + 0.915968i \(0.631424\pi\)
\(972\) 0 0
\(973\) 4.46846 + 5.60327i 0.143252 + 0.179633i
\(974\) 0 0
\(975\) −5.09120 6.38416i −0.163049 0.204457i
\(976\) 0 0
\(977\) −11.4414 + 14.3471i −0.366043 + 0.459004i −0.930410 0.366521i \(-0.880549\pi\)
0.564367 + 0.825524i \(0.309120\pi\)
\(978\) 0 0
\(979\) 10.3172 4.96848i 0.329738 0.158793i
\(980\) 0 0
\(981\) −1.71711 + 7.52316i −0.0548232 + 0.240196i
\(982\) 0 0
\(983\) −18.6006 + 8.95757i −0.593267 + 0.285702i −0.706327 0.707886i \(-0.749649\pi\)
0.113060 + 0.993588i \(0.463935\pi\)
\(984\) 0 0
\(985\) 2.89648 0.0922896
\(986\) 0 0
\(987\) 67.1158 2.13632
\(988\) 0 0
\(989\) 33.1727 15.9752i 1.05483 0.507980i
\(990\) 0 0
\(991\) 5.78698 25.3544i 0.183829 0.805409i −0.795955 0.605355i \(-0.793031\pi\)
0.979785 0.200054i \(-0.0641118\pi\)
\(992\) 0 0
\(993\) 68.0560 32.7740i 2.15969 1.04005i
\(994\) 0 0
\(995\) 4.36116 5.46872i 0.138258 0.173370i
\(996\) 0 0
\(997\) −1.14766 1.43911i −0.0363466 0.0455772i 0.763326 0.646014i \(-0.223565\pi\)
−0.799673 + 0.600436i \(0.794994\pi\)
\(998\) 0 0
\(999\) 6.31296 + 7.91620i 0.199733 + 0.250457i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 116.2.g.b.25.1 12
3.2 odd 2 1044.2.u.c.721.1 12
4.3 odd 2 464.2.u.g.257.2 12
29.6 even 14 3364.2.a.p.1.1 6
29.7 even 7 inner 116.2.g.b.65.1 yes 12
29.14 odd 28 3364.2.c.j.1681.4 12
29.15 odd 28 3364.2.c.j.1681.9 12
29.23 even 7 3364.2.a.m.1.6 6
87.65 odd 14 1044.2.u.c.181.1 12
116.7 odd 14 464.2.u.g.65.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.g.b.25.1 12 1.1 even 1 trivial
116.2.g.b.65.1 yes 12 29.7 even 7 inner
464.2.u.g.65.2 12 116.7 odd 14
464.2.u.g.257.2 12 4.3 odd 2
1044.2.u.c.181.1 12 87.65 odd 14
1044.2.u.c.721.1 12 3.2 odd 2
3364.2.a.m.1.6 6 29.23 even 7
3364.2.a.p.1.1 6 29.6 even 14
3364.2.c.j.1681.4 12 29.14 odd 28
3364.2.c.j.1681.9 12 29.15 odd 28