Properties

Label 117.2.i.a.44.5
Level $117$
Weight $2$
Character 117.44
Analytic conductor $0.934$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,2,Mod(8,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.26525057735983104.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{10} + 103x^{8} - 260x^{6} + 259x^{4} + 356x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 44.5
Root \(-0.248859 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 117.44
Dual form 117.2.i.a.8.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.47512 + 1.47512i) q^{2} +2.35194i q^{4} +(0.955965 + 0.955965i) q^{5} +(-3.08613 - 3.08613i) q^{7} +(-0.519151 + 0.519151i) q^{8} +2.82032i q^{10} +(-0.955965 + 0.955965i) q^{11} +(-3.43807 + 1.08613i) q^{13} -9.10481i q^{14} +3.17226 q^{16} +4.24264 q^{17} +(2.43807 - 2.43807i) q^{19} +(-2.24837 + 2.24837i) q^{20} -2.82032 q^{22} -7.81240 q^{23} -3.17226i q^{25} +(-6.67372 - 3.46939i) q^{26} +(7.25839 - 7.25839i) q^{28} +8.23118i q^{29} +(1.73419 - 1.73419i) q^{31} +(5.71776 + 5.71776i) q^{32} +(6.25839 + 6.25839i) q^{34} -5.90047i q^{35} +(1.00000 + 1.00000i) q^{37} +7.19287 q^{38} -0.992582 q^{40} +(-3.28668 - 3.28668i) q^{41} +7.46838i q^{43} +(-2.24837 - 2.24837i) q^{44} +(-11.5242 - 11.5242i) q^{46} +(-0.955965 + 0.955965i) q^{47} +12.0484i q^{49} +(4.67945 - 4.67945i) q^{50} +(-2.55451 - 8.08613i) q^{52} +5.48169i q^{53} -1.82774 q^{55} +3.20434 q^{56} +(-12.1419 + 12.1419i) q^{58} +(1.57549 - 1.57549i) q^{59} -6.87614 q^{61} +5.11627 q^{62} +10.5242i q^{64} +(-4.32498 - 2.24837i) q^{65} +(2.91387 - 2.91387i) q^{67} +9.97843i q^{68} +(8.70388 - 8.70388i) q^{70} +(6.23691 + 6.23691i) q^{71} +(-3.82032 - 3.82032i) q^{73} +2.95023i q^{74} +(5.73419 + 5.73419i) q^{76} +5.90047 q^{77} +5.64064 q^{79} +(3.03257 + 3.03257i) q^{80} -9.69646i q^{82} +(-10.0608 - 10.0608i) q^{83} +(4.05582 + 4.05582i) q^{85} +(-11.0167 + 11.0167i) q^{86} -0.992582i q^{88} +(6.85643 - 6.85643i) q^{89} +(13.9623 + 7.25839i) q^{91} -18.3743i q^{92} -2.82032 q^{94} +4.66142 q^{95} +(6.52420 - 6.52420i) q^{97} +(-17.7728 + 17.7728i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{7} - 4 q^{13} - 20 q^{16} - 8 q^{19} + 16 q^{22} - 12 q^{34} + 12 q^{37} + 96 q^{40} - 72 q^{46} + 40 q^{52} - 80 q^{55} - 92 q^{58} - 8 q^{61} + 64 q^{67} + 88 q^{70} + 4 q^{73} + 48 q^{76}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.47512 + 1.47512i 1.04307 + 1.04307i 0.999030 + 0.0440351i \(0.0140213\pi\)
0.0440351 + 0.999030i \(0.485979\pi\)
\(3\) 0 0
\(4\) 2.35194i 1.17597i
\(5\) 0.955965 + 0.955965i 0.427521 + 0.427521i 0.887783 0.460262i \(-0.152245\pi\)
−0.460262 + 0.887783i \(0.652245\pi\)
\(6\) 0 0
\(7\) −3.08613 3.08613i −1.16645 1.16645i −0.983036 0.183411i \(-0.941286\pi\)
−0.183411 0.983036i \(-0.558714\pi\)
\(8\) −0.519151 + 0.519151i −0.183548 + 0.183548i
\(9\) 0 0
\(10\) 2.82032i 0.891864i
\(11\) −0.955965 + 0.955965i −0.288234 + 0.288234i −0.836382 0.548147i \(-0.815333\pi\)
0.548147 + 0.836382i \(0.315333\pi\)
\(12\) 0 0
\(13\) −3.43807 + 1.08613i −0.953549 + 0.301238i
\(14\) 9.10481i 2.43336i
\(15\) 0 0
\(16\) 3.17226 0.793065
\(17\) 4.24264 1.02899 0.514496 0.857493i \(-0.327979\pi\)
0.514496 + 0.857493i \(0.327979\pi\)
\(18\) 0 0
\(19\) 2.43807 2.43807i 0.559331 0.559331i −0.369786 0.929117i \(-0.620569\pi\)
0.929117 + 0.369786i \(0.120569\pi\)
\(20\) −2.24837 + 2.24837i −0.502751 + 0.502751i
\(21\) 0 0
\(22\) −2.82032 −0.601294
\(23\) −7.81240 −1.62900 −0.814499 0.580165i \(-0.802988\pi\)
−0.814499 + 0.580165i \(0.802988\pi\)
\(24\) 0 0
\(25\) 3.17226i 0.634452i
\(26\) −6.67372 3.46939i −1.30882 0.680402i
\(27\) 0 0
\(28\) 7.25839 7.25839i 1.37171 1.37171i
\(29\) 8.23118i 1.52849i 0.644925 + 0.764246i \(0.276888\pi\)
−0.644925 + 0.764246i \(0.723112\pi\)
\(30\) 0 0
\(31\) 1.73419 1.73419i 0.311470 0.311470i −0.534009 0.845479i \(-0.679315\pi\)
0.845479 + 0.534009i \(0.179315\pi\)
\(32\) 5.71776 + 5.71776i 1.01077 + 1.01077i
\(33\) 0 0
\(34\) 6.25839 + 6.25839i 1.07331 + 1.07331i
\(35\) 5.90047i 0.997361i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) 7.19287 1.16684
\(39\) 0 0
\(40\) −0.992582 −0.156941
\(41\) −3.28668 3.28668i −0.513292 0.513292i 0.402241 0.915534i \(-0.368231\pi\)
−0.915534 + 0.402241i \(0.868231\pi\)
\(42\) 0 0
\(43\) 7.46838i 1.13892i 0.822020 + 0.569459i \(0.192847\pi\)
−0.822020 + 0.569459i \(0.807153\pi\)
\(44\) −2.24837 2.24837i −0.338955 0.338955i
\(45\) 0 0
\(46\) −11.5242 11.5242i −1.69915 1.69915i
\(47\) −0.955965 + 0.955965i −0.139442 + 0.139442i −0.773382 0.633940i \(-0.781437\pi\)
0.633940 + 0.773382i \(0.281437\pi\)
\(48\) 0 0
\(49\) 12.0484i 1.72120i
\(50\) 4.67945 4.67945i 0.661775 0.661775i
\(51\) 0 0
\(52\) −2.55451 8.08613i −0.354247 1.12134i
\(53\) 5.48169i 0.752968i 0.926423 + 0.376484i \(0.122867\pi\)
−0.926423 + 0.376484i \(0.877133\pi\)
\(54\) 0 0
\(55\) −1.82774 −0.246452
\(56\) 3.20434 0.428198
\(57\) 0 0
\(58\) −12.1419 + 12.1419i −1.59432 + 1.59432i
\(59\) 1.57549 1.57549i 0.205111 0.205111i −0.597075 0.802186i \(-0.703670\pi\)
0.802186 + 0.597075i \(0.203670\pi\)
\(60\) 0 0
\(61\) −6.87614 −0.880399 −0.440200 0.897900i \(-0.645092\pi\)
−0.440200 + 0.897900i \(0.645092\pi\)
\(62\) 5.11627 0.649767
\(63\) 0 0
\(64\) 10.5242i 1.31552i
\(65\) −4.32498 2.24837i −0.536448 0.278876i
\(66\) 0 0
\(67\) 2.91387 2.91387i 0.355986 0.355986i −0.506345 0.862331i \(-0.669004\pi\)
0.862331 + 0.506345i \(0.169004\pi\)
\(68\) 9.97843i 1.21006i
\(69\) 0 0
\(70\) 8.70388 8.70388i 1.04031 1.04031i
\(71\) 6.23691 + 6.23691i 0.740185 + 0.740185i 0.972613 0.232429i \(-0.0746672\pi\)
−0.232429 + 0.972613i \(0.574667\pi\)
\(72\) 0 0
\(73\) −3.82032 3.82032i −0.447135 0.447135i 0.447266 0.894401i \(-0.352398\pi\)
−0.894401 + 0.447266i \(0.852398\pi\)
\(74\) 2.95023i 0.342958i
\(75\) 0 0
\(76\) 5.73419 + 5.73419i 0.657757 + 0.657757i
\(77\) 5.90047 0.672421
\(78\) 0 0
\(79\) 5.64064 0.634622 0.317311 0.948322i \(-0.397220\pi\)
0.317311 + 0.948322i \(0.397220\pi\)
\(80\) 3.03257 + 3.03257i 0.339052 + 0.339052i
\(81\) 0 0
\(82\) 9.69646i 1.07079i
\(83\) −10.0608 10.0608i −1.10431 1.10431i −0.993884 0.110429i \(-0.964778\pi\)
−0.110429 0.993884i \(-0.535222\pi\)
\(84\) 0 0
\(85\) 4.05582 + 4.05582i 0.439915 + 0.439915i
\(86\) −11.0167 + 11.0167i −1.18797 + 1.18797i
\(87\) 0 0
\(88\) 0.992582i 0.105810i
\(89\) 6.85643 6.85643i 0.726780 0.726780i −0.243197 0.969977i \(-0.578196\pi\)
0.969977 + 0.243197i \(0.0781960\pi\)
\(90\) 0 0
\(91\) 13.9623 + 7.25839i 1.46364 + 0.760886i
\(92\) 18.3743i 1.91565i
\(93\) 0 0
\(94\) −2.82032 −0.290894
\(95\) 4.66142 0.478252
\(96\) 0 0
\(97\) 6.52420 6.52420i 0.662432 0.662432i −0.293521 0.955953i \(-0.594827\pi\)
0.955953 + 0.293521i \(0.0948269\pi\)
\(98\) −17.7728 + 17.7728i −1.79532 + 1.79532i
\(99\) 0 0
\(100\) 7.46096 0.746096
\(101\) 12.0550 1.19952 0.599761 0.800180i \(-0.295262\pi\)
0.599761 + 0.800180i \(0.295262\pi\)
\(102\) 0 0
\(103\) 15.5800i 1.53514i −0.640962 0.767572i \(-0.721465\pi\)
0.640962 0.767572i \(-0.278535\pi\)
\(104\) 1.22101 2.34874i 0.119730 0.230313i
\(105\) 0 0
\(106\) −8.08613 + 8.08613i −0.785394 + 0.785394i
\(107\) 5.22758i 0.505370i −0.967549 0.252685i \(-0.918686\pi\)
0.967549 0.252685i \(-0.0813136\pi\)
\(108\) 0 0
\(109\) −3.82032 + 3.82032i −0.365920 + 0.365920i −0.865987 0.500067i \(-0.833309\pi\)
0.500067 + 0.865987i \(0.333309\pi\)
\(110\) −2.69613 2.69613i −0.257066 0.257066i
\(111\) 0 0
\(112\) −9.79001 9.79001i −0.925069 0.925069i
\(113\) 8.23118i 0.774324i 0.922012 + 0.387162i \(0.126545\pi\)
−0.922012 + 0.387162i \(0.873455\pi\)
\(114\) 0 0
\(115\) −7.46838 7.46838i −0.696430 0.696430i
\(116\) −19.3592 −1.79746
\(117\) 0 0
\(118\) 4.64806 0.427889
\(119\) −13.0933 13.0933i −1.20026 1.20026i
\(120\) 0 0
\(121\) 9.17226i 0.833842i
\(122\) −10.1431 10.1431i −0.918314 0.918314i
\(123\) 0 0
\(124\) 4.07871 + 4.07871i 0.366279 + 0.366279i
\(125\) 7.81240 7.81240i 0.698762 0.698762i
\(126\) 0 0
\(127\) 8.87614i 0.787630i −0.919190 0.393815i \(-0.871155\pi\)
0.919190 0.393815i \(-0.128845\pi\)
\(128\) −4.08891 + 4.08891i −0.361412 + 0.361412i
\(129\) 0 0
\(130\) −3.06324 9.69646i −0.268664 0.850436i
\(131\) 3.98854i 0.348480i 0.984703 + 0.174240i \(0.0557469\pi\)
−0.984703 + 0.174240i \(0.944253\pi\)
\(132\) 0 0
\(133\) −15.0484 −1.30486
\(134\) 8.59660 0.742633
\(135\) 0 0
\(136\) −2.20257 + 2.20257i −0.188869 + 0.188869i
\(137\) 3.28668 3.28668i 0.280800 0.280800i −0.552628 0.833428i \(-0.686375\pi\)
0.833428 + 0.552628i \(0.186375\pi\)
\(138\) 0 0
\(139\) 4.11164 0.348744 0.174372 0.984680i \(-0.444210\pi\)
0.174372 + 0.984680i \(0.444210\pi\)
\(140\) 13.8775 1.17287
\(141\) 0 0
\(142\) 18.4003i 1.54412i
\(143\) 2.24837 4.32498i 0.188018 0.361673i
\(144\) 0 0
\(145\) −7.86872 + 7.86872i −0.653462 + 0.653462i
\(146\) 11.2708i 0.932781i
\(147\) 0 0
\(148\) −2.35194 + 2.35194i −0.193328 + 0.193328i
\(149\) −3.28668 3.28668i −0.269255 0.269255i 0.559545 0.828800i \(-0.310976\pi\)
−0.828800 + 0.559545i \(0.810976\pi\)
\(150\) 0 0
\(151\) −4.78259 4.78259i −0.389202 0.389202i 0.485201 0.874403i \(-0.338746\pi\)
−0.874403 + 0.485201i \(0.838746\pi\)
\(152\) 2.53145i 0.205328i
\(153\) 0 0
\(154\) 8.70388 + 8.70388i 0.701379 + 0.701379i
\(155\) 3.31565 0.266320
\(156\) 0 0
\(157\) 23.3929 1.86696 0.933479 0.358632i \(-0.116757\pi\)
0.933479 + 0.358632i \(0.116757\pi\)
\(158\) 8.32061 + 8.32061i 0.661952 + 0.661952i
\(159\) 0 0
\(160\) 10.9320i 0.864247i
\(161\) 24.1101 + 24.1101i 1.90014 + 1.90014i
\(162\) 0 0
\(163\) 3.20257 + 3.20257i 0.250845 + 0.250845i 0.821317 0.570472i \(-0.193240\pi\)
−0.570472 + 0.821317i \(0.693240\pi\)
\(164\) 7.73006 7.73006i 0.603616 0.603616i
\(165\) 0 0
\(166\) 29.6816i 2.30374i
\(167\) −17.2536 + 17.2536i −1.33513 + 1.33513i −0.434414 + 0.900714i \(0.643044\pi\)
−0.900714 + 0.434414i \(0.856956\pi\)
\(168\) 0 0
\(169\) 10.6406 7.46838i 0.818511 0.574491i
\(170\) 11.9656i 0.917720i
\(171\) 0 0
\(172\) −17.5652 −1.33933
\(173\) −5.64636 −0.429285 −0.214643 0.976693i \(-0.568859\pi\)
−0.214643 + 0.976693i \(0.568859\pi\)
\(174\) 0 0
\(175\) −9.79001 + 9.79001i −0.740055 + 0.740055i
\(176\) −3.03257 + 3.03257i −0.228589 + 0.228589i
\(177\) 0 0
\(178\) 20.2281 1.51616
\(179\) −8.48528 −0.634220 −0.317110 0.948389i \(-0.602712\pi\)
−0.317110 + 0.948389i \(0.602712\pi\)
\(180\) 0 0
\(181\) 8.11164i 0.602933i 0.953477 + 0.301467i \(0.0974762\pi\)
−0.953477 + 0.301467i \(0.902524\pi\)
\(182\) 9.88900 + 31.3030i 0.733022 + 2.32033i
\(183\) 0 0
\(184\) 4.05582 4.05582i 0.298999 0.298999i
\(185\) 1.91193i 0.140568i
\(186\) 0 0
\(187\) −4.05582 + 4.05582i −0.296591 + 0.296591i
\(188\) −2.24837 2.24837i −0.163979 0.163979i
\(189\) 0 0
\(190\) 6.87614 + 6.87614i 0.498848 + 0.498848i
\(191\) 9.72433i 0.703628i 0.936070 + 0.351814i \(0.114435\pi\)
−0.936070 + 0.351814i \(0.885565\pi\)
\(192\) 0 0
\(193\) −6.40776 6.40776i −0.461240 0.461240i 0.437821 0.899062i \(-0.355750\pi\)
−0.899062 + 0.437821i \(0.855750\pi\)
\(194\) 19.2479 1.38192
\(195\) 0 0
\(196\) −28.3371 −2.02408
\(197\) −15.3417 15.3417i −1.09305 1.09305i −0.995201 0.0978508i \(-0.968803\pi\)
−0.0978508 0.995201i \(-0.531197\pi\)
\(198\) 0 0
\(199\) 0.764504i 0.0541942i −0.999633 0.0270971i \(-0.991374\pi\)
0.999633 0.0270971i \(-0.00862633\pi\)
\(200\) 1.64688 + 1.64688i 0.116452 + 0.116452i
\(201\) 0 0
\(202\) 17.7826 + 17.7826i 1.25118 + 1.25118i
\(203\) 25.4025 25.4025i 1.78290 1.78290i
\(204\) 0 0
\(205\) 6.28390i 0.438886i
\(206\) 22.9823 22.9823i 1.60126 1.60126i
\(207\) 0 0
\(208\) −10.9065 + 3.44549i −0.756226 + 0.238902i
\(209\) 4.66142i 0.322437i
\(210\) 0 0
\(211\) 13.7523 0.946746 0.473373 0.880862i \(-0.343036\pi\)
0.473373 + 0.880862i \(0.343036\pi\)
\(212\) −12.8926 −0.885467
\(213\) 0 0
\(214\) 7.71130 7.71130i 0.527133 0.527133i
\(215\) −7.13951 + 7.13951i −0.486911 + 0.486911i
\(216\) 0 0
\(217\) −10.7039 −0.726627
\(218\) −11.2708 −0.763358
\(219\) 0 0
\(220\) 4.29873i 0.289820i
\(221\) −14.5865 + 4.60806i −0.981194 + 0.309972i
\(222\) 0 0
\(223\) −14.6103 + 14.6103i −0.978380 + 0.978380i −0.999771 0.0213911i \(-0.993190\pi\)
0.0213911 + 0.999771i \(0.493190\pi\)
\(224\) 35.2915i 2.35801i
\(225\) 0 0
\(226\) −12.1419 + 12.1419i −0.807670 + 0.807670i
\(227\) 3.03257 + 3.03257i 0.201279 + 0.201279i 0.800548 0.599269i \(-0.204542\pi\)
−0.599269 + 0.800548i \(0.704542\pi\)
\(228\) 0 0
\(229\) −2.35194 2.35194i −0.155421 0.155421i 0.625113 0.780534i \(-0.285053\pi\)
−0.780534 + 0.625113i \(0.785053\pi\)
\(230\) 22.0335i 1.45284i
\(231\) 0 0
\(232\) −4.27323 4.27323i −0.280551 0.280551i
\(233\) −27.6798 −1.81337 −0.906683 0.421812i \(-0.861394\pi\)
−0.906683 + 0.421812i \(0.861394\pi\)
\(234\) 0 0
\(235\) −1.82774 −0.119229
\(236\) 3.70545 + 3.70545i 0.241205 + 0.241205i
\(237\) 0 0
\(238\) 38.6284i 2.50391i
\(239\) −3.65209 3.65209i −0.236234 0.236234i 0.579054 0.815289i \(-0.303422\pi\)
−0.815289 + 0.579054i \(0.803422\pi\)
\(240\) 0 0
\(241\) 1.47580 + 1.47580i 0.0950647 + 0.0950647i 0.753040 0.657975i \(-0.228587\pi\)
−0.657975 + 0.753040i \(0.728587\pi\)
\(242\) −13.5302 + 13.5302i −0.869751 + 0.869751i
\(243\) 0 0
\(244\) 16.1723i 1.03532i
\(245\) −11.5179 + 11.5179i −0.735849 + 0.735849i
\(246\) 0 0
\(247\) −5.73419 + 11.0303i −0.364858 + 0.701842i
\(248\) 1.80062i 0.114339i
\(249\) 0 0
\(250\) 23.0484 1.45771
\(251\) 5.73579 0.362040 0.181020 0.983479i \(-0.442060\pi\)
0.181020 + 0.983479i \(0.442060\pi\)
\(252\) 0 0
\(253\) 7.46838 7.46838i 0.469533 0.469533i
\(254\) 13.0933 13.0933i 0.821549 0.821549i
\(255\) 0 0
\(256\) 8.98516 0.561573
\(257\) −3.56976 −0.222675 −0.111338 0.993783i \(-0.535514\pi\)
−0.111338 + 0.993783i \(0.535514\pi\)
\(258\) 0 0
\(259\) 6.17226i 0.383526i
\(260\) 5.28804 10.1721i 0.327950 0.630846i
\(261\) 0 0
\(262\) −5.88356 + 5.88356i −0.363487 + 0.363487i
\(263\) 23.9454i 1.47654i 0.674507 + 0.738268i \(0.264356\pi\)
−0.674507 + 0.738268i \(0.735644\pi\)
\(264\) 0 0
\(265\) −5.24030 + 5.24030i −0.321909 + 0.321909i
\(266\) −22.1981 22.1981i −1.36106 1.36106i
\(267\) 0 0
\(268\) 6.85324 + 6.85324i 0.418629 + 0.418629i
\(269\) 0.984943i 0.0600530i −0.999549 0.0300265i \(-0.990441\pi\)
0.999549 0.0300265i \(-0.00955918\pi\)
\(270\) 0 0
\(271\) −5.25839 5.25839i −0.319424 0.319424i 0.529122 0.848546i \(-0.322522\pi\)
−0.848546 + 0.529122i \(0.822522\pi\)
\(272\) 13.4588 0.816057
\(273\) 0 0
\(274\) 9.69646 0.585785
\(275\) 3.03257 + 3.03257i 0.182871 + 0.182871i
\(276\) 0 0
\(277\) 5.04840i 0.303329i −0.988432 0.151664i \(-0.951537\pi\)
0.988432 0.151664i \(-0.0484633\pi\)
\(278\) 6.06514 + 6.06514i 0.363763 + 0.363763i
\(279\) 0 0
\(280\) 3.06324 + 3.06324i 0.183063 + 0.183063i
\(281\) −10.9344 + 10.9344i −0.652292 + 0.652292i −0.953544 0.301253i \(-0.902595\pi\)
0.301253 + 0.953544i \(0.402595\pi\)
\(282\) 0 0
\(283\) 7.92454i 0.471065i 0.971866 + 0.235532i \(0.0756834\pi\)
−0.971866 + 0.235532i \(0.924317\pi\)
\(284\) −14.6688 + 14.6688i −0.870435 + 0.870435i
\(285\) 0 0
\(286\) 9.69646 3.06324i 0.573364 0.181133i
\(287\) 20.2862i 1.19746i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −23.2146 −1.36321
\(291\) 0 0
\(292\) 8.98516 8.98516i 0.525817 0.525817i
\(293\) 21.6610 21.6610i 1.26545 1.26545i 0.317032 0.948415i \(-0.397314\pi\)
0.948415 0.317032i \(-0.102686\pi\)
\(294\) 0 0
\(295\) 3.01223 0.175379
\(296\) −1.03830 −0.0603501
\(297\) 0 0
\(298\) 9.69646i 0.561701i
\(299\) 26.8596 8.48528i 1.55333 0.490716i
\(300\) 0 0
\(301\) 23.0484 23.0484i 1.32849 1.32849i
\(302\) 14.1098i 0.811925i
\(303\) 0 0
\(304\) 7.73419 7.73419i 0.443586 0.443586i
\(305\) −6.57335 6.57335i −0.376389 0.376389i
\(306\) 0 0
\(307\) 7.25839 + 7.25839i 0.414258 + 0.414258i 0.883219 0.468961i \(-0.155371\pi\)
−0.468961 + 0.883219i \(0.655371\pi\)
\(308\) 13.8775i 0.790746i
\(309\) 0 0
\(310\) 4.89098 + 4.89098i 0.277789 + 0.277789i
\(311\) −13.3114 −0.754819 −0.377409 0.926046i \(-0.623185\pi\)
−0.377409 + 0.926046i \(0.623185\pi\)
\(312\) 0 0
\(313\) −16.7645 −0.947586 −0.473793 0.880636i \(-0.657115\pi\)
−0.473793 + 0.880636i \(0.657115\pi\)
\(314\) 34.5073 + 34.5073i 1.94736 + 1.94736i
\(315\) 0 0
\(316\) 13.2664i 0.746296i
\(317\) −6.18355 6.18355i −0.347303 0.347303i 0.511801 0.859104i \(-0.328978\pi\)
−0.859104 + 0.511801i \(0.828978\pi\)
\(318\) 0 0
\(319\) −7.86872 7.86872i −0.440564 0.440564i
\(320\) −10.0608 + 10.0608i −0.562414 + 0.562414i
\(321\) 0 0
\(322\) 71.1304i 3.96394i
\(323\) 10.3439 10.3439i 0.575547 0.575547i
\(324\) 0 0
\(325\) 3.44549 + 10.9065i 0.191121 + 0.604981i
\(326\) 9.44834i 0.523295i
\(327\) 0 0
\(328\) 3.41256 0.188427
\(329\) 5.90047 0.325303
\(330\) 0 0
\(331\) −0.666147 + 0.666147i −0.0366148 + 0.0366148i −0.725177 0.688562i \(-0.758242\pi\)
0.688562 + 0.725177i \(0.258242\pi\)
\(332\) 23.6623 23.6623i 1.29864 1.29864i
\(333\) 0 0
\(334\) −50.9023 −2.78525
\(335\) 5.57112 0.304383
\(336\) 0 0
\(337\) 17.1090i 0.931988i −0.884788 0.465994i \(-0.845697\pi\)
0.884788 0.465994i \(-0.154303\pi\)
\(338\) 26.7129 + 4.67945i 1.45299 + 0.254529i
\(339\) 0 0
\(340\) −9.53904 + 9.53904i −0.517327 + 0.517327i
\(341\) 3.31565i 0.179553i
\(342\) 0 0
\(343\) 15.5800 15.5800i 0.841242 0.841242i
\(344\) −3.87722 3.87722i −0.209046 0.209046i
\(345\) 0 0
\(346\) −8.32905 8.32905i −0.447772 0.447772i
\(347\) 1.23905i 0.0665155i 0.999447 + 0.0332578i \(0.0105882\pi\)
−0.999447 + 0.0332578i \(0.989412\pi\)
\(348\) 0 0
\(349\) −14.8277 14.8277i −0.793711 0.793711i 0.188385 0.982095i \(-0.439675\pi\)
−0.982095 + 0.188385i \(0.939675\pi\)
\(350\) −28.8828 −1.54385
\(351\) 0 0
\(352\) −10.9320 −0.582675
\(353\) 4.52572 + 4.52572i 0.240880 + 0.240880i 0.817214 0.576334i \(-0.195517\pi\)
−0.576334 + 0.817214i \(0.695517\pi\)
\(354\) 0 0
\(355\) 11.9245i 0.632889i
\(356\) 16.1259 + 16.1259i 0.854672 + 0.854672i
\(357\) 0 0
\(358\) −12.5168 12.5168i −0.661532 0.661532i
\(359\) −8.09548 + 8.09548i −0.427263 + 0.427263i −0.887695 0.460432i \(-0.847695\pi\)
0.460432 + 0.887695i \(0.347695\pi\)
\(360\) 0 0
\(361\) 7.11164i 0.374297i
\(362\) −11.9656 + 11.9656i −0.628898 + 0.628898i
\(363\) 0 0
\(364\) −17.0713 + 32.8384i −0.894779 + 1.72120i
\(365\) 7.30419i 0.382319i
\(366\) 0 0
\(367\) −13.6406 −0.712036 −0.356018 0.934479i \(-0.615866\pi\)
−0.356018 + 0.934479i \(0.615866\pi\)
\(368\) −24.7830 −1.29190
\(369\) 0 0
\(370\) −2.82032 + 2.82032i −0.146622 + 0.146622i
\(371\) 16.9172 16.9172i 0.878297 0.878297i
\(372\) 0 0
\(373\) −16.7645 −0.868033 −0.434017 0.900905i \(-0.642904\pi\)
−0.434017 + 0.900905i \(0.642904\pi\)
\(374\) −11.9656 −0.618727
\(375\) 0 0
\(376\) 0.992582i 0.0511885i
\(377\) −8.94013 28.2994i −0.460440 1.45749i
\(378\) 0 0
\(379\) 11.3142 11.3142i 0.581172 0.581172i −0.354053 0.935225i \(-0.615197\pi\)
0.935225 + 0.354053i \(0.115197\pi\)
\(380\) 10.9634i 0.562409i
\(381\) 0 0
\(382\) −14.3445 + 14.3445i −0.733930 + 0.733930i
\(383\) 6.69176 + 6.69176i 0.341933 + 0.341933i 0.857094 0.515161i \(-0.172268\pi\)
−0.515161 + 0.857094i \(0.672268\pi\)
\(384\) 0 0
\(385\) 5.64064 + 5.64064i 0.287474 + 0.287474i
\(386\) 18.9044i 0.962208i
\(387\) 0 0
\(388\) 15.3445 + 15.3445i 0.779000 + 0.779000i
\(389\) 32.5059 1.64812 0.824058 0.566505i \(-0.191705\pi\)
0.824058 + 0.566505i \(0.191705\pi\)
\(390\) 0 0
\(391\) −33.1452 −1.67622
\(392\) −6.25494 6.25494i −0.315922 0.315922i
\(393\) 0 0
\(394\) 45.2616i 2.28025i
\(395\) 5.39226 + 5.39226i 0.271314 + 0.271314i
\(396\) 0 0
\(397\) 22.6406 + 22.6406i 1.13630 + 1.13630i 0.989108 + 0.147194i \(0.0470240\pi\)
0.147194 + 0.989108i \(0.452976\pi\)
\(398\) 1.12773 1.12773i 0.0565281 0.0565281i
\(399\) 0 0
\(400\) 10.0632i 0.503162i
\(401\) 14.6688 14.6688i 0.732526 0.732526i −0.238593 0.971120i \(-0.576686\pi\)
0.971120 + 0.238593i \(0.0766862\pi\)
\(402\) 0 0
\(403\) −4.07871 + 7.84583i −0.203175 + 0.390828i
\(404\) 28.3527i 1.41060i
\(405\) 0 0
\(406\) 74.9433 3.71937
\(407\) −1.91193 −0.0947709
\(408\) 0 0
\(409\) 13.2281 13.2281i 0.654086 0.654086i −0.299888 0.953974i \(-0.596949\pi\)
0.953974 + 0.299888i \(0.0969493\pi\)
\(410\) 9.26948 9.26948i 0.457787 0.457787i
\(411\) 0 0
\(412\) 36.6433 1.80528
\(413\) −9.72433 −0.478503
\(414\) 0 0
\(415\) 19.2355i 0.944233i
\(416\) −25.8683 13.4478i −1.26830 0.659334i
\(417\) 0 0
\(418\) −6.87614 + 6.87614i −0.336323 + 0.336323i
\(419\) 20.9591i 1.02392i 0.859010 + 0.511960i \(0.171080\pi\)
−0.859010 + 0.511960i \(0.828920\pi\)
\(420\) 0 0
\(421\) 4.16484 4.16484i 0.202982 0.202982i −0.598294 0.801276i \(-0.704155\pi\)
0.801276 + 0.598294i \(0.204155\pi\)
\(422\) 20.2862 + 20.2862i 0.987518 + 0.987518i
\(423\) 0 0
\(424\) −2.84583 2.84583i −0.138206 0.138206i
\(425\) 13.4588i 0.652846i
\(426\) 0 0
\(427\) 21.2207 + 21.2207i 1.02694 + 1.02694i
\(428\) 12.2950 0.594299
\(429\) 0 0
\(430\) −21.0632 −1.01576
\(431\) 10.8450 + 10.8450i 0.522384 + 0.522384i 0.918291 0.395907i \(-0.129570\pi\)
−0.395907 + 0.918291i \(0.629570\pi\)
\(432\) 0 0
\(433\) 8.87614i 0.426560i 0.976991 + 0.213280i \(0.0684147\pi\)
−0.976991 + 0.213280i \(0.931585\pi\)
\(434\) −15.7895 15.7895i −0.757919 0.757919i
\(435\) 0 0
\(436\) −8.98516 8.98516i −0.430311 0.430311i
\(437\) −19.0472 + 19.0472i −0.911150 + 0.911150i
\(438\) 0 0
\(439\) 7.46838i 0.356446i 0.983990 + 0.178223i \(0.0570349\pi\)
−0.983990 + 0.178223i \(0.942965\pi\)
\(440\) 0.948874 0.948874i 0.0452358 0.0452358i
\(441\) 0 0
\(442\) −28.3142 14.7194i −1.34677 0.700128i
\(443\) 16.6992i 0.793401i −0.917948 0.396701i \(-0.870155\pi\)
0.917948 0.396701i \(-0.129845\pi\)
\(444\) 0 0
\(445\) 13.1090 0.621427
\(446\) −43.1039 −2.04103
\(447\) 0 0
\(448\) 32.4791 32.4791i 1.53449 1.53449i
\(449\) −10.8450 + 10.8450i −0.511806 + 0.511806i −0.915079 0.403274i \(-0.867872\pi\)
0.403274 + 0.915079i \(0.367872\pi\)
\(450\) 0 0
\(451\) 6.28390 0.295897
\(452\) −19.3592 −0.910582
\(453\) 0 0
\(454\) 8.94679i 0.419894i
\(455\) 6.40868 + 20.2862i 0.300443 + 0.951032i
\(456\) 0 0
\(457\) 27.1526 27.1526i 1.27015 1.27015i 0.324135 0.946011i \(-0.394927\pi\)
0.946011 0.324135i \(-0.105073\pi\)
\(458\) 6.93877i 0.324227i
\(459\) 0 0
\(460\) 17.5652 17.5652i 0.818981 0.818981i
\(461\) −23.1541 23.1541i −1.07839 1.07839i −0.996654 0.0817409i \(-0.973952\pi\)
−0.0817409 0.996654i \(-0.526048\pi\)
\(462\) 0 0
\(463\) 28.8384 + 28.8384i 1.34023 + 1.34023i 0.895823 + 0.444412i \(0.146587\pi\)
0.444412 + 0.895823i \(0.353413\pi\)
\(464\) 26.1114i 1.21219i
\(465\) 0 0
\(466\) −40.8310 40.8310i −1.89146 1.89146i
\(467\) −11.2348 −0.519883 −0.259942 0.965624i \(-0.583703\pi\)
−0.259942 + 0.965624i \(0.583703\pi\)
\(468\) 0 0
\(469\) −17.9852 −0.830478
\(470\) −2.69613 2.69613i −0.124363 0.124363i
\(471\) 0 0
\(472\) 1.63583i 0.0752954i
\(473\) −7.13951 7.13951i −0.328275 0.328275i
\(474\) 0 0
\(475\) −7.73419 7.73419i −0.354869 0.354869i
\(476\) 30.7947 30.7947i 1.41147 1.41147i
\(477\) 0 0
\(478\) 10.7745i 0.492816i
\(479\) −11.2998 + 11.2998i −0.516302 + 0.516302i −0.916450 0.400148i \(-0.868959\pi\)
0.400148 + 0.916450i \(0.368959\pi\)
\(480\) 0 0
\(481\) −4.52420 2.35194i −0.206286 0.107239i
\(482\) 4.35396i 0.198317i
\(483\) 0 0
\(484\) −21.5726 −0.980573
\(485\) 12.4738 0.566407
\(486\) 0 0
\(487\) −6.68579 + 6.68579i −0.302962 + 0.302962i −0.842172 0.539210i \(-0.818723\pi\)
0.539210 + 0.842172i \(0.318723\pi\)
\(488\) 3.56976 3.56976i 0.161595 0.161595i
\(489\) 0 0
\(490\) −33.9804 −1.53508
\(491\) −7.08156 −0.319586 −0.159793 0.987151i \(-0.551083\pi\)
−0.159793 + 0.987151i \(0.551083\pi\)
\(492\) 0 0
\(493\) 34.9219i 1.57280i
\(494\) −24.7296 + 7.81240i −1.11264 + 0.351496i
\(495\) 0 0
\(496\) 5.50131 5.50131i 0.247016 0.247016i
\(497\) 38.4958i 1.72677i
\(498\) 0 0
\(499\) −14.8384 + 14.8384i −0.664258 + 0.664258i −0.956381 0.292123i \(-0.905638\pi\)
0.292123 + 0.956381i \(0.405638\pi\)
\(500\) 18.3743 + 18.3743i 0.821723 + 0.821723i
\(501\) 0 0
\(502\) 8.46096 + 8.46096i 0.377631 + 0.377631i
\(503\) 42.1550i 1.87960i −0.341726 0.939800i \(-0.611012\pi\)
0.341726 0.939800i \(-0.388988\pi\)
\(504\) 0 0
\(505\) 11.5242 + 11.5242i 0.512820 + 0.512820i
\(506\) 22.0335 0.979507
\(507\) 0 0
\(508\) 20.8761 0.926229
\(509\) −13.2651 13.2651i −0.587966 0.587966i 0.349114 0.937080i \(-0.386482\pi\)
−0.937080 + 0.349114i \(0.886482\pi\)
\(510\) 0 0
\(511\) 23.5800i 1.04312i
\(512\) 21.4320 + 21.4320i 0.947169 + 0.947169i
\(513\) 0 0
\(514\) −5.26581 5.26581i −0.232265 0.232265i
\(515\) 14.8940 14.8940i 0.656306 0.656306i
\(516\) 0 0
\(517\) 1.82774i 0.0803839i
\(518\) 9.10481 9.10481i 0.400042 0.400042i
\(519\) 0 0
\(520\) 3.41256 1.07807i 0.149651 0.0472766i
\(521\) 8.23118i 0.360614i 0.983610 + 0.180307i \(0.0577092\pi\)
−0.983610 + 0.180307i \(0.942291\pi\)
\(522\) 0 0
\(523\) −33.7523 −1.47588 −0.737942 0.674864i \(-0.764202\pi\)
−0.737942 + 0.674864i \(0.764202\pi\)
\(524\) −9.38080 −0.409802
\(525\) 0 0
\(526\) −35.3223 + 35.3223i −1.54012 + 1.54012i
\(527\) 7.35755 7.35755i 0.320500 0.320500i
\(528\) 0 0
\(529\) 38.0336 1.65363
\(530\) −15.4601 −0.671545
\(531\) 0 0
\(532\) 35.3929i 1.53448i
\(533\) 14.8696 + 7.73006i 0.644073 + 0.334826i
\(534\) 0 0
\(535\) 4.99739 4.99739i 0.216056 0.216056i
\(536\) 3.02548i 0.130681i
\(537\) 0 0
\(538\) 1.45291 1.45291i 0.0626392 0.0626392i
\(539\) −11.5179 11.5179i −0.496109 0.496109i
\(540\) 0 0
\(541\) −21.8203 21.8203i −0.938129 0.938129i 0.0600656 0.998194i \(-0.480869\pi\)
−0.998194 + 0.0600656i \(0.980869\pi\)
\(542\) 15.5135i 0.666361i
\(543\) 0 0
\(544\) 24.2584 + 24.2584i 1.04007 + 1.04007i
\(545\) −7.30419 −0.312877
\(546\) 0 0
\(547\) 16.1116 0.688884 0.344442 0.938808i \(-0.388068\pi\)
0.344442 + 0.938808i \(0.388068\pi\)
\(548\) 7.73006 + 7.73006i 0.330212 + 0.330212i
\(549\) 0 0
\(550\) 8.94679i 0.381493i
\(551\) 20.0682 + 20.0682i 0.854933 + 0.854933i
\(552\) 0 0
\(553\) −17.4078 17.4078i −0.740253 0.740253i
\(554\) 7.44698 7.44698i 0.316392 0.316392i
\(555\) 0 0
\(556\) 9.67032i 0.410113i
\(557\) −29.3087 + 29.3087i −1.24185 + 1.24185i −0.282615 + 0.959233i \(0.591202\pi\)
−0.959233 + 0.282615i \(0.908798\pi\)
\(558\) 0 0
\(559\) −8.11164 25.6768i −0.343086 1.08601i
\(560\) 18.7178i 0.790972i
\(561\) 0 0
\(562\) −32.2590 −1.36077
\(563\) 33.3262 1.40453 0.702266 0.711915i \(-0.252172\pi\)
0.702266 + 0.711915i \(0.252172\pi\)
\(564\) 0 0
\(565\) −7.86872 + 7.86872i −0.331040 + 0.331040i
\(566\) −11.6896 + 11.6896i −0.491351 + 0.491351i
\(567\) 0 0
\(568\) −6.47580 −0.271719
\(569\) −7.90183 −0.331262 −0.165631 0.986188i \(-0.552966\pi\)
−0.165631 + 0.986188i \(0.552966\pi\)
\(570\) 0 0
\(571\) 35.3175i 1.47799i 0.673711 + 0.738995i \(0.264699\pi\)
−0.673711 + 0.738995i \(0.735301\pi\)
\(572\) 10.1721 + 5.28804i 0.425316 + 0.221104i
\(573\) 0 0
\(574\) −29.9245 + 29.9245i −1.24903 + 1.24903i
\(575\) 24.7830i 1.03352i
\(576\) 0 0
\(577\) −19.6284 + 19.6284i −0.817142 + 0.817142i −0.985693 0.168551i \(-0.946091\pi\)
0.168551 + 0.985693i \(0.446091\pi\)
\(578\) 1.47512 + 1.47512i 0.0613568 + 0.0613568i
\(579\) 0 0
\(580\) −18.5068 18.5068i −0.768451 0.768451i
\(581\) 62.0977i 2.57625i
\(582\) 0 0
\(583\) −5.24030 5.24030i −0.217031 0.217031i
\(584\) 3.96665 0.164141
\(585\) 0 0
\(586\) 63.9049 2.63989
\(587\) 9.89610 + 9.89610i 0.408456 + 0.408456i 0.881200 0.472744i \(-0.156737\pi\)
−0.472744 + 0.881200i \(0.656737\pi\)
\(588\) 0 0
\(589\) 8.45616i 0.348430i
\(590\) 4.44339 + 4.44339i 0.182931 + 0.182931i
\(591\) 0 0
\(592\) 3.17226 + 3.17226i 0.130379 + 0.130379i
\(593\) −13.5945 + 13.5945i −0.558257 + 0.558257i −0.928811 0.370554i \(-0.879168\pi\)
0.370554 + 0.928811i \(0.379168\pi\)
\(594\) 0 0
\(595\) 25.0336i 1.02628i
\(596\) 7.73006 7.73006i 0.316636 0.316636i
\(597\) 0 0
\(598\) 52.1378 + 27.1042i 2.13207 + 1.10837i
\(599\) 19.2118i 0.784975i −0.919757 0.392487i \(-0.871615\pi\)
0.919757 0.392487i \(-0.128385\pi\)
\(600\) 0 0
\(601\) 44.2691 1.80577 0.902886 0.429879i \(-0.141444\pi\)
0.902886 + 0.429879i \(0.141444\pi\)
\(602\) 67.9982 2.77140
\(603\) 0 0
\(604\) 11.2484 11.2484i 0.457689 0.457689i
\(605\) −8.76836 + 8.76836i −0.356485 + 0.356485i
\(606\) 0 0
\(607\) −17.8639 −0.725074 −0.362537 0.931969i \(-0.618089\pi\)
−0.362537 + 0.931969i \(0.618089\pi\)
\(608\) 27.8806 1.13071
\(609\) 0 0
\(610\) 19.3929i 0.785196i
\(611\) 2.24837 4.32498i 0.0909594 0.174970i
\(612\) 0 0
\(613\) −7.11164 + 7.11164i −0.287236 + 0.287236i −0.835986 0.548750i \(-0.815104\pi\)
0.548750 + 0.835986i \(0.315104\pi\)
\(614\) 21.4139i 0.864197i
\(615\) 0 0
\(616\) −3.06324 + 3.06324i −0.123421 + 0.123421i
\(617\) 7.94810 + 7.94810i 0.319978 + 0.319978i 0.848759 0.528780i \(-0.177350\pi\)
−0.528780 + 0.848759i \(0.677350\pi\)
\(618\) 0 0
\(619\) 14.9139 + 14.9139i 0.599439 + 0.599439i 0.940163 0.340724i \(-0.110672\pi\)
−0.340724 + 0.940163i \(0.610672\pi\)
\(620\) 7.79821i 0.313184i
\(621\) 0 0
\(622\) −19.6358 19.6358i −0.787325 0.787325i
\(623\) −42.3197 −1.69550
\(624\) 0 0
\(625\) −0.924538 −0.0369815
\(626\) −24.7296 24.7296i −0.988394 0.988394i
\(627\) 0 0
\(628\) 55.0187i 2.19549i
\(629\) 4.24264 + 4.24264i 0.169165 + 0.169165i
\(630\) 0 0
\(631\) 23.0665 + 23.0665i 0.918262 + 0.918262i 0.996903 0.0786407i \(-0.0250580\pi\)
−0.0786407 + 0.996903i \(0.525058\pi\)
\(632\) −2.92835 + 2.92835i −0.116483 + 0.116483i
\(633\) 0 0
\(634\) 18.2429i 0.724519i
\(635\) 8.48528 8.48528i 0.336728 0.336728i
\(636\) 0 0
\(637\) −13.0861 41.4232i −0.518491 1.64125i
\(638\) 23.2146i 0.919073i
\(639\) 0 0
\(640\) −7.81771 −0.309022
\(641\) 34.7614 1.37299 0.686496 0.727133i \(-0.259148\pi\)
0.686496 + 0.727133i \(0.259148\pi\)
\(642\) 0 0
\(643\) 11.0255 11.0255i 0.434803 0.434803i −0.455455 0.890259i \(-0.650523\pi\)
0.890259 + 0.455455i \(0.150523\pi\)
\(644\) −56.7054 + 56.7054i −2.23451 + 2.23451i
\(645\) 0 0
\(646\) 30.5168 1.20067
\(647\) 31.6857 1.24569 0.622846 0.782345i \(-0.285976\pi\)
0.622846 + 0.782345i \(0.285976\pi\)
\(648\) 0 0
\(649\) 3.01223i 0.118240i
\(650\) −11.0058 + 21.1708i −0.431683 + 0.830387i
\(651\) 0 0
\(652\) −7.53226 + 7.53226i −0.294986 + 0.294986i
\(653\) 35.6569i 1.39536i −0.716408 0.697681i \(-0.754215\pi\)
0.716408 0.697681i \(-0.245785\pi\)
\(654\) 0 0
\(655\) −3.81290 + 3.81290i −0.148982 + 0.148982i
\(656\) −10.4262 10.4262i −0.407074 0.407074i
\(657\) 0 0
\(658\) 8.70388 + 8.70388i 0.339313 + 0.339313i
\(659\) 18.2096i 0.709346i 0.934990 + 0.354673i \(0.115408\pi\)
−0.934990 + 0.354673i \(0.884592\pi\)
\(660\) 0 0
\(661\) −10.5652 10.5652i −0.410938 0.410938i 0.471127 0.882065i \(-0.343847\pi\)
−0.882065 + 0.471127i \(0.843847\pi\)
\(662\) −1.96529 −0.0763832
\(663\) 0 0
\(664\) 10.4461 0.405388
\(665\) −14.3857 14.3857i −0.557855 0.557855i
\(666\) 0 0
\(667\) 64.3052i 2.48991i
\(668\) −40.5795 40.5795i −1.57007 1.57007i
\(669\) 0 0
\(670\) 8.21805 + 8.21805i 0.317491 + 0.317491i
\(671\) 6.57335 6.57335i 0.253761 0.253761i
\(672\) 0 0
\(673\) 30.0820i 1.15957i −0.814768 0.579787i \(-0.803136\pi\)
0.814768 0.579787i \(-0.196864\pi\)
\(674\) 25.2378 25.2378i 0.972124 0.972124i
\(675\) 0 0
\(676\) 17.5652 + 25.0261i 0.675584 + 0.962544i
\(677\) 29.1903i 1.12187i −0.827859 0.560937i \(-0.810441\pi\)
0.827859 0.560937i \(-0.189559\pi\)
\(678\) 0 0
\(679\) −40.2691 −1.54538
\(680\) −4.21117 −0.161491
\(681\) 0 0
\(682\) −4.89098 + 4.89098i −0.187285 + 0.187285i
\(683\) −30.5650 + 30.5650i −1.16954 + 1.16954i −0.187220 + 0.982318i \(0.559948\pi\)
−0.982318 + 0.187220i \(0.940052\pi\)
\(684\) 0 0
\(685\) 6.28390 0.240095
\(686\) 45.9647 1.75494
\(687\) 0 0
\(688\) 23.6917i 0.903236i
\(689\) −5.95383 18.8464i −0.226823 0.717992i
\(690\) 0 0
\(691\) −26.1952 + 26.1952i −0.996511 + 0.996511i −0.999994 0.00348329i \(-0.998891\pi\)
0.00348329 + 0.999994i \(0.498891\pi\)
\(692\) 13.2799i 0.504826i
\(693\) 0 0
\(694\) −1.82774 + 1.82774i −0.0693800 + 0.0693800i
\(695\) 3.93058 + 3.93058i 0.149095 + 0.149095i
\(696\) 0 0
\(697\) −13.9442 13.9442i −0.528174 0.528174i
\(698\) 43.7453i 1.65578i
\(699\) 0 0
\(700\) −23.0255 23.0255i −0.870282 0.870282i
\(701\) 29.6985 1.12170 0.560848 0.827919i \(-0.310475\pi\)
0.560848 + 0.827919i \(0.310475\pi\)
\(702\) 0 0
\(703\) 4.87614 0.183907
\(704\) −10.0608 10.0608i −0.379180 0.379180i
\(705\) 0 0
\(706\) 13.3519i 0.502507i
\(707\) −37.2034 37.2034i −1.39918 1.39918i
\(708\) 0 0
\(709\) 4.10422 + 4.10422i 0.154137 + 0.154137i 0.779963 0.625826i \(-0.215238\pi\)
−0.625826 + 0.779963i \(0.715238\pi\)
\(710\) −17.5901 + 17.5901i −0.660144 + 0.660144i
\(711\) 0 0
\(712\) 7.11905i 0.266798i
\(713\) −13.5482 + 13.5482i −0.507384 + 0.507384i
\(714\) 0 0
\(715\) 6.28390 1.98516i 0.235004 0.0742409i
\(716\) 19.9569i 0.745823i
\(717\) 0 0
\(718\) −23.8836 −0.891326
\(719\) −49.6239 −1.85066 −0.925329 0.379165i \(-0.876211\pi\)
−0.925329 + 0.379165i \(0.876211\pi\)
\(720\) 0 0
\(721\) −48.0820 + 48.0820i −1.79067 + 1.79067i
\(722\) −10.4905 + 10.4905i −0.390416 + 0.390416i
\(723\) 0 0
\(724\) −19.0781 −0.709031
\(725\) 26.1114 0.969754
\(726\) 0 0
\(727\) 26.1723i 0.970675i −0.874327 0.485338i \(-0.838697\pi\)
0.874327 0.485338i \(-0.161303\pi\)
\(728\) −11.0167 + 3.48033i −0.408307 + 0.128990i
\(729\) 0 0
\(730\) 10.7745 10.7745i 0.398783 0.398783i
\(731\) 31.6857i 1.17194i
\(732\) 0 0
\(733\) 20.5094 20.5094i 0.757531 0.757531i −0.218342 0.975872i \(-0.570065\pi\)
0.975872 + 0.218342i \(0.0700648\pi\)
\(734\) −20.1215 20.1215i −0.742700 0.742700i
\(735\) 0 0
\(736\) −44.6694 44.6694i −1.64654 1.64654i
\(737\) 5.57112i 0.205215i
\(738\) 0 0
\(739\) 20.7874 + 20.7874i 0.764677 + 0.764677i 0.977164 0.212487i \(-0.0681563\pi\)
−0.212487 + 0.977164i \(0.568156\pi\)
\(740\) −4.49674 −0.165304
\(741\) 0 0
\(742\) 49.9097 1.83224
\(743\) 16.7988 + 16.7988i 0.616288 + 0.616288i 0.944577 0.328289i \(-0.106472\pi\)
−0.328289 + 0.944577i \(0.606472\pi\)
\(744\) 0 0
\(745\) 6.28390i 0.230224i
\(746\) −24.7296 24.7296i −0.905415 0.905415i
\(747\) 0 0
\(748\) −9.53904 9.53904i −0.348782 0.348782i
\(749\) −16.1330 + 16.1330i −0.589487 + 0.589487i
\(750\) 0 0
\(751\) 40.6136i 1.48201i −0.671499 0.741005i \(-0.734349\pi\)
0.671499 0.741005i \(-0.265651\pi\)
\(752\) −3.03257 + 3.03257i −0.110586 + 0.110586i
\(753\) 0 0
\(754\) 28.5571 54.9326i 1.03999 2.00053i
\(755\) 9.14398i 0.332784i
\(756\) 0 0
\(757\) −13.9097 −0.505557 −0.252778 0.967524i \(-0.581344\pi\)
−0.252778 + 0.967524i \(0.581344\pi\)
\(758\) 33.3796 1.21240
\(759\) 0 0
\(760\) −2.41998 + 2.41998i −0.0877820 + 0.0877820i
\(761\) −1.53942 + 1.53942i −0.0558039 + 0.0558039i −0.734458 0.678654i \(-0.762564\pi\)
0.678654 + 0.734458i \(0.262564\pi\)
\(762\) 0 0
\(763\) 23.5800 0.853654
\(764\) −22.8710 −0.827445
\(765\) 0 0
\(766\) 19.7422i 0.713316i
\(767\) −3.70545 + 7.12783i −0.133796 + 0.257371i
\(768\) 0 0
\(769\) −8.58002 + 8.58002i −0.309403 + 0.309403i −0.844678 0.535275i \(-0.820208\pi\)
0.535275 + 0.844678i \(0.320208\pi\)
\(770\) 16.6412i 0.599708i
\(771\) 0 0
\(772\) 15.0707 15.0707i 0.542405 0.542405i
\(773\) 20.8234 + 20.8234i 0.748966 + 0.748966i 0.974285 0.225319i \(-0.0723425\pi\)
−0.225319 + 0.974285i \(0.572343\pi\)
\(774\) 0 0
\(775\) −5.50131 5.50131i −0.197613 0.197613i
\(776\) 6.77410i 0.243176i
\(777\) 0 0
\(778\) 47.9500 + 47.9500i 1.71909 + 1.71909i
\(779\) −16.0263 −0.574201
\(780\) 0 0
\(781\) −11.9245 −0.426694
\(782\) −48.8930 48.8930i −1.74841 1.74841i
\(783\) 0 0
\(784\) 38.2207i 1.36502i
\(785\) 22.3628 + 22.3628i 0.798163 + 0.798163i
\(786\) 0 0
\(787\) 2.72677 + 2.72677i 0.0971989 + 0.0971989i 0.754034 0.656835i \(-0.228105\pi\)
−0.656835 + 0.754034i \(0.728105\pi\)
\(788\) 36.0828 36.0828i 1.28540 1.28540i
\(789\) 0 0
\(790\) 15.9084i 0.565996i
\(791\) 25.4025 25.4025i 0.903208 0.903208i
\(792\) 0 0
\(793\) 23.6406 7.46838i 0.839504 0.265210i
\(794\) 66.7952i 2.37047i
\(795\) 0 0
\(796\) 1.79807 0.0637308
\(797\) 8.39585 0.297396 0.148698 0.988883i \(-0.452492\pi\)
0.148698 + 0.988883i \(0.452492\pi\)
\(798\) 0 0
\(799\) −4.05582 + 4.05582i −0.143485 + 0.143485i
\(800\) 18.1382 18.1382i 0.641283 0.641283i
\(801\) 0 0
\(802\) 43.2765 1.52815
\(803\) 7.30419 0.257759
\(804\) 0 0
\(805\) 46.0968i 1.62470i
\(806\) −17.5901 + 5.55693i −0.619584 + 0.195735i
\(807\) 0 0
\(808\) −6.25839 + 6.25839i −0.220169 + 0.220169i
\(809\) 34.9261i 1.22794i −0.789331 0.613968i \(-0.789573\pi\)
0.789331 0.613968i \(-0.210427\pi\)
\(810\) 0 0
\(811\) 32.9549 32.9549i 1.15720 1.15720i 0.172126 0.985075i \(-0.444936\pi\)
0.985075 0.172126i \(-0.0550638\pi\)
\(812\) 59.7451 + 59.7451i 2.09664 + 2.09664i
\(813\) 0 0
\(814\) −2.82032 2.82032i −0.0988522 0.0988522i
\(815\) 6.12310i 0.214483i
\(816\) 0 0
\(817\) 18.2084 + 18.2084i 0.637032 + 0.637032i
\(818\) 39.0259 1.36451
\(819\) 0 0
\(820\) 14.7793 0.516117
\(821\) −3.95956 3.95956i −0.138190 0.138190i 0.634628 0.772818i \(-0.281153\pi\)
−0.772818 + 0.634628i \(0.781153\pi\)
\(822\) 0 0
\(823\) 32.5019i 1.13295i −0.824080 0.566473i \(-0.808307\pi\)
0.824080 0.566473i \(-0.191693\pi\)
\(824\) 8.08839 + 8.08839i 0.281772 + 0.281772i
\(825\) 0 0
\(826\) −14.3445 14.3445i −0.499110 0.499110i
\(827\) 9.60592 9.60592i 0.334031 0.334031i −0.520084 0.854115i \(-0.674099\pi\)
0.854115 + 0.520084i \(0.174099\pi\)
\(828\) 0 0
\(829\) 34.9878i 1.21518i 0.794253 + 0.607588i \(0.207863\pi\)
−0.794253 + 0.607588i \(0.792137\pi\)
\(830\) 28.3746 28.3746i 0.984897 0.984897i
\(831\) 0 0
\(832\) −11.4307 36.1829i −0.396287 1.25442i
\(833\) 51.1170i 1.77110i
\(834\) 0 0
\(835\) −32.9878 −1.14159
\(836\) −10.9634 −0.379176
\(837\) 0 0
\(838\) −30.9171 + 30.9171i −1.06801 + 1.06801i
\(839\) −31.0199 + 31.0199i −1.07092 + 1.07092i −0.0736399 + 0.997285i \(0.523462\pi\)
−0.997285 + 0.0736399i \(0.976538\pi\)
\(840\) 0 0
\(841\) −38.7523 −1.33629
\(842\) 12.2873 0.423447
\(843\) 0 0
\(844\) 32.3445i 1.11334i
\(845\) 17.3116 + 3.03257i 0.595537 + 0.104324i
\(846\) 0 0
\(847\) 28.3068 28.3068i 0.972633 0.972633i
\(848\) 17.3893i 0.597152i
\(849\) 0 0
\(850\) 19.8532 19.8532i 0.680961 0.680961i
\(851\) −7.81240 7.81240i −0.267806 0.267806i
\(852\) 0 0
\(853\) 22.4535 + 22.4535i 0.768795 + 0.768795i 0.977894 0.209100i \(-0.0670533\pi\)
−0.209100 + 0.977894i \(0.567053\pi\)
\(854\) 62.6059i 2.14233i
\(855\) 0 0
\(856\) 2.71391 + 2.71391i 0.0927595 + 0.0927595i
\(857\) 5.82522 0.198986 0.0994929 0.995038i \(-0.468278\pi\)
0.0994929 + 0.995038i \(0.468278\pi\)
\(858\) 0 0
\(859\) −19.3929 −0.661678 −0.330839 0.943687i \(-0.607332\pi\)
−0.330839 + 0.943687i \(0.607332\pi\)
\(860\) −16.7917 16.7917i −0.572592 0.572592i
\(861\) 0 0
\(862\) 31.9952i 1.08976i
\(863\) −26.5765 26.5765i −0.904674 0.904674i 0.0911620 0.995836i \(-0.470942\pi\)
−0.995836 + 0.0911620i \(0.970942\pi\)
\(864\) 0 0
\(865\) −5.39773 5.39773i −0.183528 0.183528i
\(866\) −13.0933 + 13.0933i −0.444930 + 0.444930i
\(867\) 0 0
\(868\) 25.1749i 0.854491i
\(869\) −5.39226 + 5.39226i −0.182920 + 0.182920i
\(870\) 0 0
\(871\) −6.85324 + 13.1829i −0.232213 + 0.446686i
\(872\) 3.96665i 0.134328i
\(873\) 0 0
\(874\) −56.1936 −1.90078
\(875\) −48.2202 −1.63014
\(876\) 0 0
\(877\) 2.16003 2.16003i 0.0729392 0.0729392i −0.669696 0.742635i \(-0.733576\pi\)
0.742635 + 0.669696i \(0.233576\pi\)
\(878\) −11.0167 + 11.0167i −0.371797 + 0.371797i
\(879\) 0 0
\(880\) −5.79807 −0.195453
\(881\) 39.1514 1.31904 0.659522 0.751685i \(-0.270759\pi\)
0.659522 + 0.751685i \(0.270759\pi\)
\(882\) 0 0
\(883\) 0.764504i 0.0257276i −0.999917 0.0128638i \(-0.995905\pi\)
0.999917 0.0128638i \(-0.00409479\pi\)
\(884\) −10.8379 34.3065i −0.364517 1.15385i
\(885\) 0 0
\(886\) 24.6332 24.6332i 0.827569 0.827569i
\(887\) 10.9634i 0.368114i −0.982916 0.184057i \(-0.941077\pi\)
0.982916 0.184057i \(-0.0589231\pi\)
\(888\) 0 0
\(889\) −27.3929 + 27.3929i −0.918729 + 0.918729i
\(890\) 19.3373 + 19.3373i 0.648189 + 0.648189i
\(891\) 0 0
\(892\) −34.3626 34.3626i −1.15055 1.15055i
\(893\) 4.66142i 0.155988i
\(894\) 0 0
\(895\) −8.11164 8.11164i −0.271142 0.271142i
\(896\) 25.2378 0.843136
\(897\) 0 0
\(898\) −31.9952 −1.06769
\(899\) 14.2744 + 14.2744i 0.476079 + 0.476079i
\(900\) 0 0
\(901\) 23.2568i 0.774797i
\(902\) 9.26948 + 9.26948i 0.308640 + 0.308640i
\(903\) 0 0
\(904\) −4.27323 4.27323i −0.142125 0.142125i
\(905\) −7.75444 + 7.75444i −0.257766 + 0.257766i
\(906\) 0 0
\(907\) 38.2542i 1.27021i 0.772426 + 0.635105i \(0.219043\pi\)
−0.772426 + 0.635105i \(0.780957\pi\)
\(908\) −7.13242 + 7.13242i −0.236698 + 0.236698i
\(909\) 0 0
\(910\) −20.4710 + 39.3781i −0.678607 + 1.30537i
\(911\) 44.9045i 1.48775i −0.668317 0.743876i \(-0.732985\pi\)
0.668317 0.743876i \(-0.267015\pi\)
\(912\) 0 0
\(913\) 19.2355 0.636602
\(914\) 80.1066 2.64969
\(915\) 0 0
\(916\) 5.53162 5.53162i 0.182770 0.182770i
\(917\) 12.3091 12.3091i 0.406484 0.406484i
\(918\) 0 0
\(919\) 30.6742 1.01185 0.505924 0.862578i \(-0.331151\pi\)
0.505924 + 0.862578i \(0.331151\pi\)
\(920\) 7.75444 0.255656
\(921\) 0 0
\(922\) 68.3100i 2.24967i
\(923\) −28.2170 14.6688i −0.928775 0.482830i
\(924\) 0 0
\(925\) 3.17226 3.17226i 0.104303 0.104303i
\(926\) 85.0800i 2.79590i
\(927\) 0 0
\(928\) −47.0639 + 47.0639i −1.54495 + 1.54495i
\(929\) 13.7418 + 13.7418i 0.450855 + 0.450855i 0.895638 0.444783i \(-0.146719\pi\)
−0.444783 + 0.895638i \(0.646719\pi\)
\(930\) 0 0
\(931\) 29.3748 + 29.3748i 0.962721 + 0.962721i
\(932\) 65.1013i 2.13246i
\(933\) 0 0
\(934\) −16.5726 16.5726i −0.542272 0.542272i
\(935\) −7.75444 −0.253597
\(936\) 0 0
\(937\) −23.0994 −0.754625 −0.377312 0.926086i \(-0.623152\pi\)
−0.377312 + 0.926086i \(0.623152\pi\)
\(938\) −26.5302 26.5302i −0.866242 0.866242i
\(939\) 0 0
\(940\) 4.29873i 0.140209i
\(941\) −23.7376 23.7376i −0.773823 0.773823i 0.204950 0.978772i \(-0.434297\pi\)
−0.978772 + 0.204950i \(0.934297\pi\)
\(942\) 0 0
\(943\) 25.6768 + 25.6768i 0.836152 + 0.836152i
\(944\) 4.99786 4.99786i 0.162667 0.162667i
\(945\) 0 0
\(946\) 21.0632i 0.684825i
\(947\) 26.3584 26.3584i 0.856535 0.856535i −0.134394 0.990928i \(-0.542909\pi\)
0.990928 + 0.134394i \(0.0429086\pi\)
\(948\) 0 0
\(949\) 17.2839 + 8.98516i 0.561059 + 0.291671i
\(950\) 22.8177i 0.740303i
\(951\) 0 0
\(952\) 13.5949 0.440612
\(953\) −12.9647 −0.419969 −0.209984 0.977705i \(-0.567341\pi\)
−0.209984 + 0.977705i \(0.567341\pi\)
\(954\) 0 0
\(955\) −9.29612 + 9.29612i −0.300815 + 0.300815i
\(956\) 8.58950 8.58950i 0.277804 0.277804i
\(957\) 0 0
\(958\) −33.3371 −1.07707
\(959\) −20.2862 −0.655076
\(960\) 0 0
\(961\) 24.9852i 0.805973i
\(962\) −3.20434 10.1431i −0.103312 0.327027i
\(963\) 0 0
\(964\) −3.47099 + 3.47099i −0.111793 + 0.111793i
\(965\) 12.2512i 0.394380i
\(966\) 0 0
\(967\) −2.91868 + 2.91868i −0.0938583 + 0.0938583i −0.752477 0.658619i \(-0.771141\pi\)
0.658619 + 0.752477i \(0.271141\pi\)
\(968\) −4.76179 4.76179i −0.153050 0.153050i
\(969\) 0 0
\(970\) 18.4003 + 18.4003i 0.590799 + 0.590799i
\(971\) 17.1932i 0.551756i −0.961193 0.275878i \(-0.911031\pi\)
0.961193 0.275878i \(-0.0889685\pi\)
\(972\) 0 0
\(973\) −12.6890 12.6890i −0.406792 0.406792i
\(974\) −19.7246 −0.632018
\(975\) 0 0
\(976\) −21.8129 −0.698214
\(977\) 36.3588 + 36.3588i 1.16322 + 1.16322i 0.983766 + 0.179454i \(0.0574330\pi\)
0.179454 + 0.983766i \(0.442567\pi\)
\(978\) 0 0
\(979\) 13.1090i 0.418966i
\(980\) −27.0893 27.0893i −0.865336 0.865336i
\(981\) 0 0
\(982\) −10.4461 10.4461i −0.333349 0.333349i
\(983\) 17.8732 17.8732i 0.570066 0.570066i −0.362081 0.932147i \(-0.617934\pi\)
0.932147 + 0.362081i \(0.117934\pi\)
\(984\) 0 0
\(985\) 29.3323i 0.934605i
\(986\) −51.5139 + 51.5139i −1.64054 + 1.64054i
\(987\) 0 0
\(988\) −25.9426 13.4865i −0.825345 0.429062i
\(989\) 58.3460i 1.85529i
\(990\) 0 0
\(991\) 25.2568 0.802310 0.401155 0.916010i \(-0.368609\pi\)
0.401155 + 0.916010i \(0.368609\pi\)
\(992\) 19.8314 0.629647
\(993\) 0 0
\(994\) 56.7858 56.7858i 1.80114 1.80114i
\(995\) 0.730839 0.730839i 0.0231692 0.0231692i
\(996\) 0 0
\(997\) −3.75228 −0.118836 −0.0594179 0.998233i \(-0.518924\pi\)
−0.0594179 + 0.998233i \(0.518924\pi\)
\(998\) −43.7768 −1.38573
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.2.i.a.44.5 yes 12
3.2 odd 2 inner 117.2.i.a.44.2 yes 12
4.3 odd 2 1872.2.bi.f.161.4 12
12.11 even 2 1872.2.bi.f.161.3 12
13.5 odd 4 1521.2.i.g.944.5 12
13.8 odd 4 inner 117.2.i.a.8.2 12
13.12 even 2 1521.2.i.g.746.2 12
39.5 even 4 1521.2.i.g.944.2 12
39.8 even 4 inner 117.2.i.a.8.5 yes 12
39.38 odd 2 1521.2.i.g.746.5 12
52.47 even 4 1872.2.bi.f.593.3 12
156.47 odd 4 1872.2.bi.f.593.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.i.a.8.2 12 13.8 odd 4 inner
117.2.i.a.8.5 yes 12 39.8 even 4 inner
117.2.i.a.44.2 yes 12 3.2 odd 2 inner
117.2.i.a.44.5 yes 12 1.1 even 1 trivial
1521.2.i.g.746.2 12 13.12 even 2
1521.2.i.g.746.5 12 39.38 odd 2
1521.2.i.g.944.2 12 39.5 even 4
1521.2.i.g.944.5 12 13.5 odd 4
1872.2.bi.f.161.3 12 12.11 even 2
1872.2.bi.f.161.4 12 4.3 odd 2
1872.2.bi.f.593.3 12 52.47 even 4
1872.2.bi.f.593.4 12 156.47 odd 4