Properties

Label 117.2.i.a.8.2
Level $117$
Weight $2$
Character 117.8
Analytic conductor $0.934$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,2,Mod(8,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.26525057735983104.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{10} + 103x^{8} - 260x^{6} + 259x^{4} + 356x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 8.2
Root \(0.248859 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 117.8
Dual form 117.2.i.a.44.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.47512 + 1.47512i) q^{2} -2.35194i q^{4} +(-0.955965 + 0.955965i) q^{5} +(-3.08613 + 3.08613i) q^{7} +(0.519151 + 0.519151i) q^{8} -2.82032i q^{10} +(0.955965 + 0.955965i) q^{11} +(-3.43807 - 1.08613i) q^{13} -9.10481i q^{14} +3.17226 q^{16} -4.24264 q^{17} +(2.43807 + 2.43807i) q^{19} +(2.24837 + 2.24837i) q^{20} -2.82032 q^{22} +7.81240 q^{23} +3.17226i q^{25} +(6.67372 - 3.46939i) q^{26} +(7.25839 + 7.25839i) q^{28} +8.23118i q^{29} +(1.73419 + 1.73419i) q^{31} +(-5.71776 + 5.71776i) q^{32} +(6.25839 - 6.25839i) q^{34} -5.90047i q^{35} +(1.00000 - 1.00000i) q^{37} -7.19287 q^{38} -0.992582 q^{40} +(3.28668 - 3.28668i) q^{41} -7.46838i q^{43} +(2.24837 - 2.24837i) q^{44} +(-11.5242 + 11.5242i) q^{46} +(0.955965 + 0.955965i) q^{47} -12.0484i q^{49} +(-4.67945 - 4.67945i) q^{50} +(-2.55451 + 8.08613i) q^{52} +5.48169i q^{53} -1.82774 q^{55} -3.20434 q^{56} +(-12.1419 - 12.1419i) q^{58} +(-1.57549 - 1.57549i) q^{59} -6.87614 q^{61} -5.11627 q^{62} -10.5242i q^{64} +(4.32498 - 2.24837i) q^{65} +(2.91387 + 2.91387i) q^{67} +9.97843i q^{68} +(8.70388 + 8.70388i) q^{70} +(-6.23691 + 6.23691i) q^{71} +(-3.82032 + 3.82032i) q^{73} +2.95023i q^{74} +(5.73419 - 5.73419i) q^{76} -5.90047 q^{77} +5.64064 q^{79} +(-3.03257 + 3.03257i) q^{80} +9.69646i q^{82} +(10.0608 - 10.0608i) q^{83} +(4.05582 - 4.05582i) q^{85} +(11.0167 + 11.0167i) q^{86} +0.992582i q^{88} +(-6.85643 - 6.85643i) q^{89} +(13.9623 - 7.25839i) q^{91} -18.3743i q^{92} -2.82032 q^{94} -4.66142 q^{95} +(6.52420 + 6.52420i) q^{97} +(17.7728 + 17.7728i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{7} - 4 q^{13} - 20 q^{16} - 8 q^{19} + 16 q^{22} - 12 q^{34} + 12 q^{37} + 96 q^{40} - 72 q^{46} + 40 q^{52} - 80 q^{55} - 92 q^{58} - 8 q^{61} + 64 q^{67} + 88 q^{70} + 4 q^{73} + 48 q^{76}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.47512 + 1.47512i −1.04307 + 1.04307i −0.0440351 + 0.999030i \(0.514021\pi\)
−0.999030 + 0.0440351i \(0.985979\pi\)
\(3\) 0 0
\(4\) 2.35194i 1.17597i
\(5\) −0.955965 + 0.955965i −0.427521 + 0.427521i −0.887783 0.460262i \(-0.847755\pi\)
0.460262 + 0.887783i \(0.347755\pi\)
\(6\) 0 0
\(7\) −3.08613 + 3.08613i −1.16645 + 1.16645i −0.183411 + 0.983036i \(0.558714\pi\)
−0.983036 + 0.183411i \(0.941286\pi\)
\(8\) 0.519151 + 0.519151i 0.183548 + 0.183548i
\(9\) 0 0
\(10\) 2.82032i 0.891864i
\(11\) 0.955965 + 0.955965i 0.288234 + 0.288234i 0.836382 0.548147i \(-0.184667\pi\)
−0.548147 + 0.836382i \(0.684667\pi\)
\(12\) 0 0
\(13\) −3.43807 1.08613i −0.953549 0.301238i
\(14\) 9.10481i 2.43336i
\(15\) 0 0
\(16\) 3.17226 0.793065
\(17\) −4.24264 −1.02899 −0.514496 0.857493i \(-0.672021\pi\)
−0.514496 + 0.857493i \(0.672021\pi\)
\(18\) 0 0
\(19\) 2.43807 + 2.43807i 0.559331 + 0.559331i 0.929117 0.369786i \(-0.120569\pi\)
−0.369786 + 0.929117i \(0.620569\pi\)
\(20\) 2.24837 + 2.24837i 0.502751 + 0.502751i
\(21\) 0 0
\(22\) −2.82032 −0.601294
\(23\) 7.81240 1.62900 0.814499 0.580165i \(-0.197012\pi\)
0.814499 + 0.580165i \(0.197012\pi\)
\(24\) 0 0
\(25\) 3.17226i 0.634452i
\(26\) 6.67372 3.46939i 1.30882 0.680402i
\(27\) 0 0
\(28\) 7.25839 + 7.25839i 1.37171 + 1.37171i
\(29\) 8.23118i 1.52849i 0.644925 + 0.764246i \(0.276888\pi\)
−0.644925 + 0.764246i \(0.723112\pi\)
\(30\) 0 0
\(31\) 1.73419 + 1.73419i 0.311470 + 0.311470i 0.845479 0.534009i \(-0.179315\pi\)
−0.534009 + 0.845479i \(0.679315\pi\)
\(32\) −5.71776 + 5.71776i −1.01077 + 1.01077i
\(33\) 0 0
\(34\) 6.25839 6.25839i 1.07331 1.07331i
\(35\) 5.90047i 0.997361i
\(36\) 0 0
\(37\) 1.00000 1.00000i 0.164399 0.164399i −0.620113 0.784512i \(-0.712913\pi\)
0.784512 + 0.620113i \(0.212913\pi\)
\(38\) −7.19287 −1.16684
\(39\) 0 0
\(40\) −0.992582 −0.156941
\(41\) 3.28668 3.28668i 0.513292 0.513292i −0.402241 0.915534i \(-0.631769\pi\)
0.915534 + 0.402241i \(0.131769\pi\)
\(42\) 0 0
\(43\) 7.46838i 1.13892i −0.822020 0.569459i \(-0.807153\pi\)
0.822020 0.569459i \(-0.192847\pi\)
\(44\) 2.24837 2.24837i 0.338955 0.338955i
\(45\) 0 0
\(46\) −11.5242 + 11.5242i −1.69915 + 1.69915i
\(47\) 0.955965 + 0.955965i 0.139442 + 0.139442i 0.773382 0.633940i \(-0.218563\pi\)
−0.633940 + 0.773382i \(0.718563\pi\)
\(48\) 0 0
\(49\) 12.0484i 1.72120i
\(50\) −4.67945 4.67945i −0.661775 0.661775i
\(51\) 0 0
\(52\) −2.55451 + 8.08613i −0.354247 + 1.12134i
\(53\) 5.48169i 0.752968i 0.926423 + 0.376484i \(0.122867\pi\)
−0.926423 + 0.376484i \(0.877133\pi\)
\(54\) 0 0
\(55\) −1.82774 −0.246452
\(56\) −3.20434 −0.428198
\(57\) 0 0
\(58\) −12.1419 12.1419i −1.59432 1.59432i
\(59\) −1.57549 1.57549i −0.205111 0.205111i 0.597075 0.802186i \(-0.296330\pi\)
−0.802186 + 0.597075i \(0.796330\pi\)
\(60\) 0 0
\(61\) −6.87614 −0.880399 −0.440200 0.897900i \(-0.645092\pi\)
−0.440200 + 0.897900i \(0.645092\pi\)
\(62\) −5.11627 −0.649767
\(63\) 0 0
\(64\) 10.5242i 1.31552i
\(65\) 4.32498 2.24837i 0.536448 0.278876i
\(66\) 0 0
\(67\) 2.91387 + 2.91387i 0.355986 + 0.355986i 0.862331 0.506345i \(-0.169004\pi\)
−0.506345 + 0.862331i \(0.669004\pi\)
\(68\) 9.97843i 1.21006i
\(69\) 0 0
\(70\) 8.70388 + 8.70388i 1.04031 + 1.04031i
\(71\) −6.23691 + 6.23691i −0.740185 + 0.740185i −0.972613 0.232429i \(-0.925333\pi\)
0.232429 + 0.972613i \(0.425333\pi\)
\(72\) 0 0
\(73\) −3.82032 + 3.82032i −0.447135 + 0.447135i −0.894401 0.447266i \(-0.852398\pi\)
0.447266 + 0.894401i \(0.352398\pi\)
\(74\) 2.95023i 0.342958i
\(75\) 0 0
\(76\) 5.73419 5.73419i 0.657757 0.657757i
\(77\) −5.90047 −0.672421
\(78\) 0 0
\(79\) 5.64064 0.634622 0.317311 0.948322i \(-0.397220\pi\)
0.317311 + 0.948322i \(0.397220\pi\)
\(80\) −3.03257 + 3.03257i −0.339052 + 0.339052i
\(81\) 0 0
\(82\) 9.69646i 1.07079i
\(83\) 10.0608 10.0608i 1.10431 1.10431i 0.110429 0.993884i \(-0.464778\pi\)
0.993884 0.110429i \(-0.0352225\pi\)
\(84\) 0 0
\(85\) 4.05582 4.05582i 0.439915 0.439915i
\(86\) 11.0167 + 11.0167i 1.18797 + 1.18797i
\(87\) 0 0
\(88\) 0.992582i 0.105810i
\(89\) −6.85643 6.85643i −0.726780 0.726780i 0.243197 0.969977i \(-0.421804\pi\)
−0.969977 + 0.243197i \(0.921804\pi\)
\(90\) 0 0
\(91\) 13.9623 7.25839i 1.46364 0.760886i
\(92\) 18.3743i 1.91565i
\(93\) 0 0
\(94\) −2.82032 −0.290894
\(95\) −4.66142 −0.478252
\(96\) 0 0
\(97\) 6.52420 + 6.52420i 0.662432 + 0.662432i 0.955953 0.293521i \(-0.0948269\pi\)
−0.293521 + 0.955953i \(0.594827\pi\)
\(98\) 17.7728 + 17.7728i 1.79532 + 1.79532i
\(99\) 0 0
\(100\) 7.46096 0.746096
\(101\) −12.0550 −1.19952 −0.599761 0.800180i \(-0.704738\pi\)
−0.599761 + 0.800180i \(0.704738\pi\)
\(102\) 0 0
\(103\) 15.5800i 1.53514i 0.640962 + 0.767572i \(0.278535\pi\)
−0.640962 + 0.767572i \(0.721465\pi\)
\(104\) −1.22101 2.34874i −0.119730 0.230313i
\(105\) 0 0
\(106\) −8.08613 8.08613i −0.785394 0.785394i
\(107\) 5.22758i 0.505370i −0.967549 0.252685i \(-0.918686\pi\)
0.967549 0.252685i \(-0.0813136\pi\)
\(108\) 0 0
\(109\) −3.82032 3.82032i −0.365920 0.365920i 0.500067 0.865987i \(-0.333309\pi\)
−0.865987 + 0.500067i \(0.833309\pi\)
\(110\) 2.69613 2.69613i 0.257066 0.257066i
\(111\) 0 0
\(112\) −9.79001 + 9.79001i −0.925069 + 0.925069i
\(113\) 8.23118i 0.774324i 0.922012 + 0.387162i \(0.126545\pi\)
−0.922012 + 0.387162i \(0.873455\pi\)
\(114\) 0 0
\(115\) −7.46838 + 7.46838i −0.696430 + 0.696430i
\(116\) 19.3592 1.79746
\(117\) 0 0
\(118\) 4.64806 0.427889
\(119\) 13.0933 13.0933i 1.20026 1.20026i
\(120\) 0 0
\(121\) 9.17226i 0.833842i
\(122\) 10.1431 10.1431i 0.918314 0.918314i
\(123\) 0 0
\(124\) 4.07871 4.07871i 0.366279 0.366279i
\(125\) −7.81240 7.81240i −0.698762 0.698762i
\(126\) 0 0
\(127\) 8.87614i 0.787630i 0.919190 + 0.393815i \(0.128845\pi\)
−0.919190 + 0.393815i \(0.871155\pi\)
\(128\) 4.08891 + 4.08891i 0.361412 + 0.361412i
\(129\) 0 0
\(130\) −3.06324 + 9.69646i −0.268664 + 0.850436i
\(131\) 3.98854i 0.348480i 0.984703 + 0.174240i \(0.0557469\pi\)
−0.984703 + 0.174240i \(0.944253\pi\)
\(132\) 0 0
\(133\) −15.0484 −1.30486
\(134\) −8.59660 −0.742633
\(135\) 0 0
\(136\) −2.20257 2.20257i −0.188869 0.188869i
\(137\) −3.28668 3.28668i −0.280800 0.280800i 0.552628 0.833428i \(-0.313625\pi\)
−0.833428 + 0.552628i \(0.813625\pi\)
\(138\) 0 0
\(139\) 4.11164 0.348744 0.174372 0.984680i \(-0.444210\pi\)
0.174372 + 0.984680i \(0.444210\pi\)
\(140\) −13.8775 −1.17287
\(141\) 0 0
\(142\) 18.4003i 1.54412i
\(143\) −2.24837 4.32498i −0.188018 0.361673i
\(144\) 0 0
\(145\) −7.86872 7.86872i −0.653462 0.653462i
\(146\) 11.2708i 0.932781i
\(147\) 0 0
\(148\) −2.35194 2.35194i −0.193328 0.193328i
\(149\) 3.28668 3.28668i 0.269255 0.269255i −0.559545 0.828800i \(-0.689024\pi\)
0.828800 + 0.559545i \(0.189024\pi\)
\(150\) 0 0
\(151\) −4.78259 + 4.78259i −0.389202 + 0.389202i −0.874403 0.485201i \(-0.838746\pi\)
0.485201 + 0.874403i \(0.338746\pi\)
\(152\) 2.53145i 0.205328i
\(153\) 0 0
\(154\) 8.70388 8.70388i 0.701379 0.701379i
\(155\) −3.31565 −0.266320
\(156\) 0 0
\(157\) 23.3929 1.86696 0.933479 0.358632i \(-0.116757\pi\)
0.933479 + 0.358632i \(0.116757\pi\)
\(158\) −8.32061 + 8.32061i −0.661952 + 0.661952i
\(159\) 0 0
\(160\) 10.9320i 0.864247i
\(161\) −24.1101 + 24.1101i −1.90014 + 1.90014i
\(162\) 0 0
\(163\) 3.20257 3.20257i 0.250845 0.250845i −0.570472 0.821317i \(-0.693240\pi\)
0.821317 + 0.570472i \(0.193240\pi\)
\(164\) −7.73006 7.73006i −0.603616 0.603616i
\(165\) 0 0
\(166\) 29.6816i 2.30374i
\(167\) 17.2536 + 17.2536i 1.33513 + 1.33513i 0.900714 + 0.434414i \(0.143044\pi\)
0.434414 + 0.900714i \(0.356956\pi\)
\(168\) 0 0
\(169\) 10.6406 + 7.46838i 0.818511 + 0.574491i
\(170\) 11.9656i 0.917720i
\(171\) 0 0
\(172\) −17.5652 −1.33933
\(173\) 5.64636 0.429285 0.214643 0.976693i \(-0.431141\pi\)
0.214643 + 0.976693i \(0.431141\pi\)
\(174\) 0 0
\(175\) −9.79001 9.79001i −0.740055 0.740055i
\(176\) 3.03257 + 3.03257i 0.228589 + 0.228589i
\(177\) 0 0
\(178\) 20.2281 1.51616
\(179\) 8.48528 0.634220 0.317110 0.948389i \(-0.397288\pi\)
0.317110 + 0.948389i \(0.397288\pi\)
\(180\) 0 0
\(181\) 8.11164i 0.602933i −0.953477 0.301467i \(-0.902524\pi\)
0.953477 0.301467i \(-0.0974762\pi\)
\(182\) −9.88900 + 31.3030i −0.733022 + 2.32033i
\(183\) 0 0
\(184\) 4.05582 + 4.05582i 0.298999 + 0.298999i
\(185\) 1.91193i 0.140568i
\(186\) 0 0
\(187\) −4.05582 4.05582i −0.296591 0.296591i
\(188\) 2.24837 2.24837i 0.163979 0.163979i
\(189\) 0 0
\(190\) 6.87614 6.87614i 0.498848 0.498848i
\(191\) 9.72433i 0.703628i 0.936070 + 0.351814i \(0.114435\pi\)
−0.936070 + 0.351814i \(0.885565\pi\)
\(192\) 0 0
\(193\) −6.40776 + 6.40776i −0.461240 + 0.461240i −0.899062 0.437821i \(-0.855750\pi\)
0.437821 + 0.899062i \(0.355750\pi\)
\(194\) −19.2479 −1.38192
\(195\) 0 0
\(196\) −28.3371 −2.02408
\(197\) 15.3417 15.3417i 1.09305 1.09305i 0.0978508 0.995201i \(-0.468803\pi\)
0.995201 0.0978508i \(-0.0311968\pi\)
\(198\) 0 0
\(199\) 0.764504i 0.0541942i 0.999633 + 0.0270971i \(0.00862633\pi\)
−0.999633 + 0.0270971i \(0.991374\pi\)
\(200\) −1.64688 + 1.64688i −0.116452 + 0.116452i
\(201\) 0 0
\(202\) 17.7826 17.7826i 1.25118 1.25118i
\(203\) −25.4025 25.4025i −1.78290 1.78290i
\(204\) 0 0
\(205\) 6.28390i 0.438886i
\(206\) −22.9823 22.9823i −1.60126 1.60126i
\(207\) 0 0
\(208\) −10.9065 3.44549i −0.756226 0.238902i
\(209\) 4.66142i 0.322437i
\(210\) 0 0
\(211\) 13.7523 0.946746 0.473373 0.880862i \(-0.343036\pi\)
0.473373 + 0.880862i \(0.343036\pi\)
\(212\) 12.8926 0.885467
\(213\) 0 0
\(214\) 7.71130 + 7.71130i 0.527133 + 0.527133i
\(215\) 7.13951 + 7.13951i 0.486911 + 0.486911i
\(216\) 0 0
\(217\) −10.7039 −0.726627
\(218\) 11.2708 0.763358
\(219\) 0 0
\(220\) 4.29873i 0.289820i
\(221\) 14.5865 + 4.60806i 0.981194 + 0.309972i
\(222\) 0 0
\(223\) −14.6103 14.6103i −0.978380 0.978380i 0.0213911 0.999771i \(-0.493190\pi\)
−0.999771 + 0.0213911i \(0.993190\pi\)
\(224\) 35.2915i 2.35801i
\(225\) 0 0
\(226\) −12.1419 12.1419i −0.807670 0.807670i
\(227\) −3.03257 + 3.03257i −0.201279 + 0.201279i −0.800548 0.599269i \(-0.795458\pi\)
0.599269 + 0.800548i \(0.295458\pi\)
\(228\) 0 0
\(229\) −2.35194 + 2.35194i −0.155421 + 0.155421i −0.780534 0.625113i \(-0.785053\pi\)
0.625113 + 0.780534i \(0.285053\pi\)
\(230\) 22.0335i 1.45284i
\(231\) 0 0
\(232\) −4.27323 + 4.27323i −0.280551 + 0.280551i
\(233\) 27.6798 1.81337 0.906683 0.421812i \(-0.138606\pi\)
0.906683 + 0.421812i \(0.138606\pi\)
\(234\) 0 0
\(235\) −1.82774 −0.119229
\(236\) −3.70545 + 3.70545i −0.241205 + 0.241205i
\(237\) 0 0
\(238\) 38.6284i 2.50391i
\(239\) 3.65209 3.65209i 0.236234 0.236234i −0.579054 0.815289i \(-0.696578\pi\)
0.815289 + 0.579054i \(0.196578\pi\)
\(240\) 0 0
\(241\) 1.47580 1.47580i 0.0950647 0.0950647i −0.657975 0.753040i \(-0.728587\pi\)
0.753040 + 0.657975i \(0.228587\pi\)
\(242\) 13.5302 + 13.5302i 0.869751 + 0.869751i
\(243\) 0 0
\(244\) 16.1723i 1.03532i
\(245\) 11.5179 + 11.5179i 0.735849 + 0.735849i
\(246\) 0 0
\(247\) −5.73419 11.0303i −0.364858 0.701842i
\(248\) 1.80062i 0.114339i
\(249\) 0 0
\(250\) 23.0484 1.45771
\(251\) −5.73579 −0.362040 −0.181020 0.983479i \(-0.557940\pi\)
−0.181020 + 0.983479i \(0.557940\pi\)
\(252\) 0 0
\(253\) 7.46838 + 7.46838i 0.469533 + 0.469533i
\(254\) −13.0933 13.0933i −0.821549 0.821549i
\(255\) 0 0
\(256\) 8.98516 0.561573
\(257\) 3.56976 0.222675 0.111338 0.993783i \(-0.464486\pi\)
0.111338 + 0.993783i \(0.464486\pi\)
\(258\) 0 0
\(259\) 6.17226i 0.383526i
\(260\) −5.28804 10.1721i −0.327950 0.630846i
\(261\) 0 0
\(262\) −5.88356 5.88356i −0.363487 0.363487i
\(263\) 23.9454i 1.47654i 0.674507 + 0.738268i \(0.264356\pi\)
−0.674507 + 0.738268i \(0.735644\pi\)
\(264\) 0 0
\(265\) −5.24030 5.24030i −0.321909 0.321909i
\(266\) 22.1981 22.1981i 1.36106 1.36106i
\(267\) 0 0
\(268\) 6.85324 6.85324i 0.418629 0.418629i
\(269\) 0.984943i 0.0600530i −0.999549 0.0300265i \(-0.990441\pi\)
0.999549 0.0300265i \(-0.00955918\pi\)
\(270\) 0 0
\(271\) −5.25839 + 5.25839i −0.319424 + 0.319424i −0.848546 0.529122i \(-0.822522\pi\)
0.529122 + 0.848546i \(0.322522\pi\)
\(272\) −13.4588 −0.816057
\(273\) 0 0
\(274\) 9.69646 0.585785
\(275\) −3.03257 + 3.03257i −0.182871 + 0.182871i
\(276\) 0 0
\(277\) 5.04840i 0.303329i 0.988432 + 0.151664i \(0.0484633\pi\)
−0.988432 + 0.151664i \(0.951537\pi\)
\(278\) −6.06514 + 6.06514i −0.363763 + 0.363763i
\(279\) 0 0
\(280\) 3.06324 3.06324i 0.183063 0.183063i
\(281\) 10.9344 + 10.9344i 0.652292 + 0.652292i 0.953544 0.301253i \(-0.0974048\pi\)
−0.301253 + 0.953544i \(0.597405\pi\)
\(282\) 0 0
\(283\) 7.92454i 0.471065i −0.971866 0.235532i \(-0.924317\pi\)
0.971866 0.235532i \(-0.0756834\pi\)
\(284\) 14.6688 + 14.6688i 0.870435 + 0.870435i
\(285\) 0 0
\(286\) 9.69646 + 3.06324i 0.573364 + 0.181133i
\(287\) 20.2862i 1.19746i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 23.2146 1.36321
\(291\) 0 0
\(292\) 8.98516 + 8.98516i 0.525817 + 0.525817i
\(293\) −21.6610 21.6610i −1.26545 1.26545i −0.948415 0.317032i \(-0.897314\pi\)
−0.317032 0.948415i \(-0.602686\pi\)
\(294\) 0 0
\(295\) 3.01223 0.175379
\(296\) 1.03830 0.0603501
\(297\) 0 0
\(298\) 9.69646i 0.561701i
\(299\) −26.8596 8.48528i −1.55333 0.490716i
\(300\) 0 0
\(301\) 23.0484 + 23.0484i 1.32849 + 1.32849i
\(302\) 14.1098i 0.811925i
\(303\) 0 0
\(304\) 7.73419 + 7.73419i 0.443586 + 0.443586i
\(305\) 6.57335 6.57335i 0.376389 0.376389i
\(306\) 0 0
\(307\) 7.25839 7.25839i 0.414258 0.414258i −0.468961 0.883219i \(-0.655371\pi\)
0.883219 + 0.468961i \(0.155371\pi\)
\(308\) 13.8775i 0.790746i
\(309\) 0 0
\(310\) 4.89098 4.89098i 0.277789 0.277789i
\(311\) 13.3114 0.754819 0.377409 0.926046i \(-0.376815\pi\)
0.377409 + 0.926046i \(0.376815\pi\)
\(312\) 0 0
\(313\) −16.7645 −0.947586 −0.473793 0.880636i \(-0.657115\pi\)
−0.473793 + 0.880636i \(0.657115\pi\)
\(314\) −34.5073 + 34.5073i −1.94736 + 1.94736i
\(315\) 0 0
\(316\) 13.2664i 0.746296i
\(317\) 6.18355 6.18355i 0.347303 0.347303i −0.511801 0.859104i \(-0.671022\pi\)
0.859104 + 0.511801i \(0.171022\pi\)
\(318\) 0 0
\(319\) −7.86872 + 7.86872i −0.440564 + 0.440564i
\(320\) 10.0608 + 10.0608i 0.562414 + 0.562414i
\(321\) 0 0
\(322\) 71.1304i 3.96394i
\(323\) −10.3439 10.3439i −0.575547 0.575547i
\(324\) 0 0
\(325\) 3.44549 10.9065i 0.191121 0.604981i
\(326\) 9.44834i 0.523295i
\(327\) 0 0
\(328\) 3.41256 0.188427
\(329\) −5.90047 −0.325303
\(330\) 0 0
\(331\) −0.666147 0.666147i −0.0366148 0.0366148i 0.688562 0.725177i \(-0.258242\pi\)
−0.725177 + 0.688562i \(0.758242\pi\)
\(332\) −23.6623 23.6623i −1.29864 1.29864i
\(333\) 0 0
\(334\) −50.9023 −2.78525
\(335\) −5.57112 −0.304383
\(336\) 0 0
\(337\) 17.1090i 0.931988i 0.884788 + 0.465994i \(0.154303\pi\)
−0.884788 + 0.465994i \(0.845697\pi\)
\(338\) −26.7129 + 4.67945i −1.45299 + 0.254529i
\(339\) 0 0
\(340\) −9.53904 9.53904i −0.517327 0.517327i
\(341\) 3.31565i 0.179553i
\(342\) 0 0
\(343\) 15.5800 + 15.5800i 0.841242 + 0.841242i
\(344\) 3.87722 3.87722i 0.209046 0.209046i
\(345\) 0 0
\(346\) −8.32905 + 8.32905i −0.447772 + 0.447772i
\(347\) 1.23905i 0.0665155i 0.999447 + 0.0332578i \(0.0105882\pi\)
−0.999447 + 0.0332578i \(0.989412\pi\)
\(348\) 0 0
\(349\) −14.8277 + 14.8277i −0.793711 + 0.793711i −0.982095 0.188385i \(-0.939675\pi\)
0.188385 + 0.982095i \(0.439675\pi\)
\(350\) 28.8828 1.54385
\(351\) 0 0
\(352\) −10.9320 −0.582675
\(353\) −4.52572 + 4.52572i −0.240880 + 0.240880i −0.817214 0.576334i \(-0.804483\pi\)
0.576334 + 0.817214i \(0.304483\pi\)
\(354\) 0 0
\(355\) 11.9245i 0.632889i
\(356\) −16.1259 + 16.1259i −0.854672 + 0.854672i
\(357\) 0 0
\(358\) −12.5168 + 12.5168i −0.661532 + 0.661532i
\(359\) 8.09548 + 8.09548i 0.427263 + 0.427263i 0.887695 0.460432i \(-0.152305\pi\)
−0.460432 + 0.887695i \(0.652305\pi\)
\(360\) 0 0
\(361\) 7.11164i 0.374297i
\(362\) 11.9656 + 11.9656i 0.628898 + 0.628898i
\(363\) 0 0
\(364\) −17.0713 32.8384i −0.894779 1.72120i
\(365\) 7.30419i 0.382319i
\(366\) 0 0
\(367\) −13.6406 −0.712036 −0.356018 0.934479i \(-0.615866\pi\)
−0.356018 + 0.934479i \(0.615866\pi\)
\(368\) 24.7830 1.29190
\(369\) 0 0
\(370\) −2.82032 2.82032i −0.146622 0.146622i
\(371\) −16.9172 16.9172i −0.878297 0.878297i
\(372\) 0 0
\(373\) −16.7645 −0.868033 −0.434017 0.900905i \(-0.642904\pi\)
−0.434017 + 0.900905i \(0.642904\pi\)
\(374\) 11.9656 0.618727
\(375\) 0 0
\(376\) 0.992582i 0.0511885i
\(377\) 8.94013 28.2994i 0.460440 1.45749i
\(378\) 0 0
\(379\) 11.3142 + 11.3142i 0.581172 + 0.581172i 0.935225 0.354053i \(-0.115197\pi\)
−0.354053 + 0.935225i \(0.615197\pi\)
\(380\) 10.9634i 0.562409i
\(381\) 0 0
\(382\) −14.3445 14.3445i −0.733930 0.733930i
\(383\) −6.69176 + 6.69176i −0.341933 + 0.341933i −0.857094 0.515161i \(-0.827732\pi\)
0.515161 + 0.857094i \(0.327732\pi\)
\(384\) 0 0
\(385\) 5.64064 5.64064i 0.287474 0.287474i
\(386\) 18.9044i 0.962208i
\(387\) 0 0
\(388\) 15.3445 15.3445i 0.779000 0.779000i
\(389\) −32.5059 −1.64812 −0.824058 0.566505i \(-0.808295\pi\)
−0.824058 + 0.566505i \(0.808295\pi\)
\(390\) 0 0
\(391\) −33.1452 −1.67622
\(392\) 6.25494 6.25494i 0.315922 0.315922i
\(393\) 0 0
\(394\) 45.2616i 2.28025i
\(395\) −5.39226 + 5.39226i −0.271314 + 0.271314i
\(396\) 0 0
\(397\) 22.6406 22.6406i 1.13630 1.13630i 0.147194 0.989108i \(-0.452976\pi\)
0.989108 0.147194i \(-0.0470240\pi\)
\(398\) −1.12773 1.12773i −0.0565281 0.0565281i
\(399\) 0 0
\(400\) 10.0632i 0.503162i
\(401\) −14.6688 14.6688i −0.732526 0.732526i 0.238593 0.971120i \(-0.423314\pi\)
−0.971120 + 0.238593i \(0.923314\pi\)
\(402\) 0 0
\(403\) −4.07871 7.84583i −0.203175 0.390828i
\(404\) 28.3527i 1.41060i
\(405\) 0 0
\(406\) 74.9433 3.71937
\(407\) 1.91193 0.0947709
\(408\) 0 0
\(409\) 13.2281 + 13.2281i 0.654086 + 0.654086i 0.953974 0.299888i \(-0.0969493\pi\)
−0.299888 + 0.953974i \(0.596949\pi\)
\(410\) −9.26948 9.26948i −0.457787 0.457787i
\(411\) 0 0
\(412\) 36.6433 1.80528
\(413\) 9.72433 0.478503
\(414\) 0 0
\(415\) 19.2355i 0.944233i
\(416\) 25.8683 13.4478i 1.26830 0.659334i
\(417\) 0 0
\(418\) −6.87614 6.87614i −0.336323 0.336323i
\(419\) 20.9591i 1.02392i 0.859010 + 0.511960i \(0.171080\pi\)
−0.859010 + 0.511960i \(0.828920\pi\)
\(420\) 0 0
\(421\) 4.16484 + 4.16484i 0.202982 + 0.202982i 0.801276 0.598294i \(-0.204155\pi\)
−0.598294 + 0.801276i \(0.704155\pi\)
\(422\) −20.2862 + 20.2862i −0.987518 + 0.987518i
\(423\) 0 0
\(424\) −2.84583 + 2.84583i −0.138206 + 0.138206i
\(425\) 13.4588i 0.652846i
\(426\) 0 0
\(427\) 21.2207 21.2207i 1.02694 1.02694i
\(428\) −12.2950 −0.594299
\(429\) 0 0
\(430\) −21.0632 −1.01576
\(431\) −10.8450 + 10.8450i −0.522384 + 0.522384i −0.918291 0.395907i \(-0.870430\pi\)
0.395907 + 0.918291i \(0.370430\pi\)
\(432\) 0 0
\(433\) 8.87614i 0.426560i −0.976991 0.213280i \(-0.931585\pi\)
0.976991 0.213280i \(-0.0684147\pi\)
\(434\) 15.7895 15.7895i 0.757919 0.757919i
\(435\) 0 0
\(436\) −8.98516 + 8.98516i −0.430311 + 0.430311i
\(437\) 19.0472 + 19.0472i 0.911150 + 0.911150i
\(438\) 0 0
\(439\) 7.46838i 0.356446i −0.983990 0.178223i \(-0.942965\pi\)
0.983990 0.178223i \(-0.0570349\pi\)
\(440\) −0.948874 0.948874i −0.0452358 0.0452358i
\(441\) 0 0
\(442\) −28.3142 + 14.7194i −1.34677 + 0.700128i
\(443\) 16.6992i 0.793401i −0.917948 0.396701i \(-0.870155\pi\)
0.917948 0.396701i \(-0.129845\pi\)
\(444\) 0 0
\(445\) 13.1090 0.621427
\(446\) 43.1039 2.04103
\(447\) 0 0
\(448\) 32.4791 + 32.4791i 1.53449 + 1.53449i
\(449\) 10.8450 + 10.8450i 0.511806 + 0.511806i 0.915079 0.403274i \(-0.132128\pi\)
−0.403274 + 0.915079i \(0.632128\pi\)
\(450\) 0 0
\(451\) 6.28390 0.295897
\(452\) 19.3592 0.910582
\(453\) 0 0
\(454\) 8.94679i 0.419894i
\(455\) −6.40868 + 20.2862i −0.300443 + 0.951032i
\(456\) 0 0
\(457\) 27.1526 + 27.1526i 1.27015 + 1.27015i 0.946011 + 0.324135i \(0.105073\pi\)
0.324135 + 0.946011i \(0.394927\pi\)
\(458\) 6.93877i 0.324227i
\(459\) 0 0
\(460\) 17.5652 + 17.5652i 0.818981 + 0.818981i
\(461\) 23.1541 23.1541i 1.07839 1.07839i 0.0817409 0.996654i \(-0.473952\pi\)
0.996654 0.0817409i \(-0.0260480\pi\)
\(462\) 0 0
\(463\) 28.8384 28.8384i 1.34023 1.34023i 0.444412 0.895823i \(-0.353413\pi\)
0.895823 0.444412i \(-0.146587\pi\)
\(464\) 26.1114i 1.21219i
\(465\) 0 0
\(466\) −40.8310 + 40.8310i −1.89146 + 1.89146i
\(467\) 11.2348 0.519883 0.259942 0.965624i \(-0.416297\pi\)
0.259942 + 0.965624i \(0.416297\pi\)
\(468\) 0 0
\(469\) −17.9852 −0.830478
\(470\) 2.69613 2.69613i 0.124363 0.124363i
\(471\) 0 0
\(472\) 1.63583i 0.0752954i
\(473\) 7.13951 7.13951i 0.328275 0.328275i
\(474\) 0 0
\(475\) −7.73419 + 7.73419i −0.354869 + 0.354869i
\(476\) −30.7947 30.7947i −1.41147 1.41147i
\(477\) 0 0
\(478\) 10.7745i 0.492816i
\(479\) 11.2998 + 11.2998i 0.516302 + 0.516302i 0.916450 0.400148i \(-0.131041\pi\)
−0.400148 + 0.916450i \(0.631041\pi\)
\(480\) 0 0
\(481\) −4.52420 + 2.35194i −0.206286 + 0.107239i
\(482\) 4.35396i 0.198317i
\(483\) 0 0
\(484\) −21.5726 −0.980573
\(485\) −12.4738 −0.566407
\(486\) 0 0
\(487\) −6.68579 6.68579i −0.302962 0.302962i 0.539210 0.842172i \(-0.318723\pi\)
−0.842172 + 0.539210i \(0.818723\pi\)
\(488\) −3.56976 3.56976i −0.161595 0.161595i
\(489\) 0 0
\(490\) −33.9804 −1.53508
\(491\) 7.08156 0.319586 0.159793 0.987151i \(-0.448917\pi\)
0.159793 + 0.987151i \(0.448917\pi\)
\(492\) 0 0
\(493\) 34.9219i 1.57280i
\(494\) 24.7296 + 7.81240i 1.11264 + 0.351496i
\(495\) 0 0
\(496\) 5.50131 + 5.50131i 0.247016 + 0.247016i
\(497\) 38.4958i 1.72677i
\(498\) 0 0
\(499\) −14.8384 14.8384i −0.664258 0.664258i 0.292123 0.956381i \(-0.405638\pi\)
−0.956381 + 0.292123i \(0.905638\pi\)
\(500\) −18.3743 + 18.3743i −0.821723 + 0.821723i
\(501\) 0 0
\(502\) 8.46096 8.46096i 0.377631 0.377631i
\(503\) 42.1550i 1.87960i −0.341726 0.939800i \(-0.611012\pi\)
0.341726 0.939800i \(-0.388988\pi\)
\(504\) 0 0
\(505\) 11.5242 11.5242i 0.512820 0.512820i
\(506\) −22.0335 −0.979507
\(507\) 0 0
\(508\) 20.8761 0.926229
\(509\) 13.2651 13.2651i 0.587966 0.587966i −0.349114 0.937080i \(-0.613518\pi\)
0.937080 + 0.349114i \(0.113518\pi\)
\(510\) 0 0
\(511\) 23.5800i 1.04312i
\(512\) −21.4320 + 21.4320i −0.947169 + 0.947169i
\(513\) 0 0
\(514\) −5.26581 + 5.26581i −0.232265 + 0.232265i
\(515\) −14.8940 14.8940i −0.656306 0.656306i
\(516\) 0 0
\(517\) 1.82774i 0.0803839i
\(518\) −9.10481 9.10481i −0.400042 0.400042i
\(519\) 0 0
\(520\) 3.41256 + 1.07807i 0.149651 + 0.0472766i
\(521\) 8.23118i 0.360614i 0.983610 + 0.180307i \(0.0577092\pi\)
−0.983610 + 0.180307i \(0.942291\pi\)
\(522\) 0 0
\(523\) −33.7523 −1.47588 −0.737942 0.674864i \(-0.764202\pi\)
−0.737942 + 0.674864i \(0.764202\pi\)
\(524\) 9.38080 0.409802
\(525\) 0 0
\(526\) −35.3223 35.3223i −1.54012 1.54012i
\(527\) −7.35755 7.35755i −0.320500 0.320500i
\(528\) 0 0
\(529\) 38.0336 1.65363
\(530\) 15.4601 0.671545
\(531\) 0 0
\(532\) 35.3929i 1.53448i
\(533\) −14.8696 + 7.73006i −0.644073 + 0.334826i
\(534\) 0 0
\(535\) 4.99739 + 4.99739i 0.216056 + 0.216056i
\(536\) 3.02548i 0.130681i
\(537\) 0 0
\(538\) 1.45291 + 1.45291i 0.0626392 + 0.0626392i
\(539\) 11.5179 11.5179i 0.496109 0.496109i
\(540\) 0 0
\(541\) −21.8203 + 21.8203i −0.938129 + 0.938129i −0.998194 0.0600656i \(-0.980869\pi\)
0.0600656 + 0.998194i \(0.480869\pi\)
\(542\) 15.5135i 0.666361i
\(543\) 0 0
\(544\) 24.2584 24.2584i 1.04007 1.04007i
\(545\) 7.30419 0.312877
\(546\) 0 0
\(547\) 16.1116 0.688884 0.344442 0.938808i \(-0.388068\pi\)
0.344442 + 0.938808i \(0.388068\pi\)
\(548\) −7.73006 + 7.73006i −0.330212 + 0.330212i
\(549\) 0 0
\(550\) 8.94679i 0.381493i
\(551\) −20.0682 + 20.0682i −0.854933 + 0.854933i
\(552\) 0 0
\(553\) −17.4078 + 17.4078i −0.740253 + 0.740253i
\(554\) −7.44698 7.44698i −0.316392 0.316392i
\(555\) 0 0
\(556\) 9.67032i 0.410113i
\(557\) 29.3087 + 29.3087i 1.24185 + 1.24185i 0.959233 + 0.282615i \(0.0912020\pi\)
0.282615 + 0.959233i \(0.408798\pi\)
\(558\) 0 0
\(559\) −8.11164 + 25.6768i −0.343086 + 1.08601i
\(560\) 18.7178i 0.790972i
\(561\) 0 0
\(562\) −32.2590 −1.36077
\(563\) −33.3262 −1.40453 −0.702266 0.711915i \(-0.747828\pi\)
−0.702266 + 0.711915i \(0.747828\pi\)
\(564\) 0 0
\(565\) −7.86872 7.86872i −0.331040 0.331040i
\(566\) 11.6896 + 11.6896i 0.491351 + 0.491351i
\(567\) 0 0
\(568\) −6.47580 −0.271719
\(569\) 7.90183 0.331262 0.165631 0.986188i \(-0.447034\pi\)
0.165631 + 0.986188i \(0.447034\pi\)
\(570\) 0 0
\(571\) 35.3175i 1.47799i −0.673711 0.738995i \(-0.735301\pi\)
0.673711 0.738995i \(-0.264699\pi\)
\(572\) −10.1721 + 5.28804i −0.425316 + 0.221104i
\(573\) 0 0
\(574\) −29.9245 29.9245i −1.24903 1.24903i
\(575\) 24.7830i 1.03352i
\(576\) 0 0
\(577\) −19.6284 19.6284i −0.817142 0.817142i 0.168551 0.985693i \(-0.446091\pi\)
−0.985693 + 0.168551i \(0.946091\pi\)
\(578\) −1.47512 + 1.47512i −0.0613568 + 0.0613568i
\(579\) 0 0
\(580\) −18.5068 + 18.5068i −0.768451 + 0.768451i
\(581\) 62.0977i 2.57625i
\(582\) 0 0
\(583\) −5.24030 + 5.24030i −0.217031 + 0.217031i
\(584\) −3.96665 −0.164141
\(585\) 0 0
\(586\) 63.9049 2.63989
\(587\) −9.89610 + 9.89610i −0.408456 + 0.408456i −0.881200 0.472744i \(-0.843263\pi\)
0.472744 + 0.881200i \(0.343263\pi\)
\(588\) 0 0
\(589\) 8.45616i 0.348430i
\(590\) −4.44339 + 4.44339i −0.182931 + 0.182931i
\(591\) 0 0
\(592\) 3.17226 3.17226i 0.130379 0.130379i
\(593\) 13.5945 + 13.5945i 0.558257 + 0.558257i 0.928811 0.370554i \(-0.120832\pi\)
−0.370554 + 0.928811i \(0.620832\pi\)
\(594\) 0 0
\(595\) 25.0336i 1.02628i
\(596\) −7.73006 7.73006i −0.316636 0.316636i
\(597\) 0 0
\(598\) 52.1378 27.1042i 2.13207 1.10837i
\(599\) 19.2118i 0.784975i −0.919757 0.392487i \(-0.871615\pi\)
0.919757 0.392487i \(-0.128385\pi\)
\(600\) 0 0
\(601\) 44.2691 1.80577 0.902886 0.429879i \(-0.141444\pi\)
0.902886 + 0.429879i \(0.141444\pi\)
\(602\) −67.9982 −2.77140
\(603\) 0 0
\(604\) 11.2484 + 11.2484i 0.457689 + 0.457689i
\(605\) 8.76836 + 8.76836i 0.356485 + 0.356485i
\(606\) 0 0
\(607\) −17.8639 −0.725074 −0.362537 0.931969i \(-0.618089\pi\)
−0.362537 + 0.931969i \(0.618089\pi\)
\(608\) −27.8806 −1.13071
\(609\) 0 0
\(610\) 19.3929i 0.785196i
\(611\) −2.24837 4.32498i −0.0909594 0.174970i
\(612\) 0 0
\(613\) −7.11164 7.11164i −0.287236 0.287236i 0.548750 0.835986i \(-0.315104\pi\)
−0.835986 + 0.548750i \(0.815104\pi\)
\(614\) 21.4139i 0.864197i
\(615\) 0 0
\(616\) −3.06324 3.06324i −0.123421 0.123421i
\(617\) −7.94810 + 7.94810i −0.319978 + 0.319978i −0.848759 0.528780i \(-0.822650\pi\)
0.528780 + 0.848759i \(0.322650\pi\)
\(618\) 0 0
\(619\) 14.9139 14.9139i 0.599439 0.599439i −0.340724 0.940163i \(-0.610672\pi\)
0.940163 + 0.340724i \(0.110672\pi\)
\(620\) 7.79821i 0.313184i
\(621\) 0 0
\(622\) −19.6358 + 19.6358i −0.787325 + 0.787325i
\(623\) 42.3197 1.69550
\(624\) 0 0
\(625\) −0.924538 −0.0369815
\(626\) 24.7296 24.7296i 0.988394 0.988394i
\(627\) 0 0
\(628\) 55.0187i 2.19549i
\(629\) −4.24264 + 4.24264i −0.169165 + 0.169165i
\(630\) 0 0
\(631\) 23.0665 23.0665i 0.918262 0.918262i −0.0786407 0.996903i \(-0.525058\pi\)
0.996903 + 0.0786407i \(0.0250580\pi\)
\(632\) 2.92835 + 2.92835i 0.116483 + 0.116483i
\(633\) 0 0
\(634\) 18.2429i 0.724519i
\(635\) −8.48528 8.48528i −0.336728 0.336728i
\(636\) 0 0
\(637\) −13.0861 + 41.4232i −0.518491 + 1.64125i
\(638\) 23.2146i 0.919073i
\(639\) 0 0
\(640\) −7.81771 −0.309022
\(641\) −34.7614 −1.37299 −0.686496 0.727133i \(-0.740852\pi\)
−0.686496 + 0.727133i \(0.740852\pi\)
\(642\) 0 0
\(643\) 11.0255 + 11.0255i 0.434803 + 0.434803i 0.890259 0.455455i \(-0.150523\pi\)
−0.455455 + 0.890259i \(0.650523\pi\)
\(644\) 56.7054 + 56.7054i 2.23451 + 2.23451i
\(645\) 0 0
\(646\) 30.5168 1.20067
\(647\) −31.6857 −1.24569 −0.622846 0.782345i \(-0.714024\pi\)
−0.622846 + 0.782345i \(0.714024\pi\)
\(648\) 0 0
\(649\) 3.01223i 0.118240i
\(650\) 11.0058 + 21.1708i 0.431683 + 0.830387i
\(651\) 0 0
\(652\) −7.53226 7.53226i −0.294986 0.294986i
\(653\) 35.6569i 1.39536i −0.716408 0.697681i \(-0.754215\pi\)
0.716408 0.697681i \(-0.245785\pi\)
\(654\) 0 0
\(655\) −3.81290 3.81290i −0.148982 0.148982i
\(656\) 10.4262 10.4262i 0.407074 0.407074i
\(657\) 0 0
\(658\) 8.70388 8.70388i 0.339313 0.339313i
\(659\) 18.2096i 0.709346i 0.934990 + 0.354673i \(0.115408\pi\)
−0.934990 + 0.354673i \(0.884592\pi\)
\(660\) 0 0
\(661\) −10.5652 + 10.5652i −0.410938 + 0.410938i −0.882065 0.471127i \(-0.843847\pi\)
0.471127 + 0.882065i \(0.343847\pi\)
\(662\) 1.96529 0.0763832
\(663\) 0 0
\(664\) 10.4461 0.405388
\(665\) 14.3857 14.3857i 0.557855 0.557855i
\(666\) 0 0
\(667\) 64.3052i 2.48991i
\(668\) 40.5795 40.5795i 1.57007 1.57007i
\(669\) 0 0
\(670\) 8.21805 8.21805i 0.317491 0.317491i
\(671\) −6.57335 6.57335i −0.253761 0.253761i
\(672\) 0 0
\(673\) 30.0820i 1.15957i 0.814768 + 0.579787i \(0.196864\pi\)
−0.814768 + 0.579787i \(0.803136\pi\)
\(674\) −25.2378 25.2378i −0.972124 0.972124i
\(675\) 0 0
\(676\) 17.5652 25.0261i 0.675584 0.962544i
\(677\) 29.1903i 1.12187i −0.827859 0.560937i \(-0.810441\pi\)
0.827859 0.560937i \(-0.189559\pi\)
\(678\) 0 0
\(679\) −40.2691 −1.54538
\(680\) 4.21117 0.161491
\(681\) 0 0
\(682\) −4.89098 4.89098i −0.187285 0.187285i
\(683\) 30.5650 + 30.5650i 1.16954 + 1.16954i 0.982318 + 0.187220i \(0.0599477\pi\)
0.187220 + 0.982318i \(0.440052\pi\)
\(684\) 0 0
\(685\) 6.28390 0.240095
\(686\) −45.9647 −1.75494
\(687\) 0 0
\(688\) 23.6917i 0.903236i
\(689\) 5.95383 18.8464i 0.226823 0.717992i
\(690\) 0 0
\(691\) −26.1952 26.1952i −0.996511 0.996511i 0.00348329 0.999994i \(-0.498891\pi\)
−0.999994 + 0.00348329i \(0.998891\pi\)
\(692\) 13.2799i 0.504826i
\(693\) 0 0
\(694\) −1.82774 1.82774i −0.0693800 0.0693800i
\(695\) −3.93058 + 3.93058i −0.149095 + 0.149095i
\(696\) 0 0
\(697\) −13.9442 + 13.9442i −0.528174 + 0.528174i
\(698\) 43.7453i 1.65578i
\(699\) 0 0
\(700\) −23.0255 + 23.0255i −0.870282 + 0.870282i
\(701\) −29.6985 −1.12170 −0.560848 0.827919i \(-0.689525\pi\)
−0.560848 + 0.827919i \(0.689525\pi\)
\(702\) 0 0
\(703\) 4.87614 0.183907
\(704\) 10.0608 10.0608i 0.379180 0.379180i
\(705\) 0 0
\(706\) 13.3519i 0.502507i
\(707\) 37.2034 37.2034i 1.39918 1.39918i
\(708\) 0 0
\(709\) 4.10422 4.10422i 0.154137 0.154137i −0.625826 0.779963i \(-0.715238\pi\)
0.779963 + 0.625826i \(0.215238\pi\)
\(710\) 17.5901 + 17.5901i 0.660144 + 0.660144i
\(711\) 0 0
\(712\) 7.11905i 0.266798i
\(713\) 13.5482 + 13.5482i 0.507384 + 0.507384i
\(714\) 0 0
\(715\) 6.28390 + 1.98516i 0.235004 + 0.0742409i
\(716\) 19.9569i 0.745823i
\(717\) 0 0
\(718\) −23.8836 −0.891326
\(719\) 49.6239 1.85066 0.925329 0.379165i \(-0.123789\pi\)
0.925329 + 0.379165i \(0.123789\pi\)
\(720\) 0 0
\(721\) −48.0820 48.0820i −1.79067 1.79067i
\(722\) 10.4905 + 10.4905i 0.390416 + 0.390416i
\(723\) 0 0
\(724\) −19.0781 −0.709031
\(725\) −26.1114 −0.969754
\(726\) 0 0
\(727\) 26.1723i 0.970675i 0.874327 + 0.485338i \(0.161303\pi\)
−0.874327 + 0.485338i \(0.838697\pi\)
\(728\) 11.0167 + 3.48033i 0.408307 + 0.128990i
\(729\) 0 0
\(730\) 10.7745 + 10.7745i 0.398783 + 0.398783i
\(731\) 31.6857i 1.17194i
\(732\) 0 0
\(733\) 20.5094 + 20.5094i 0.757531 + 0.757531i 0.975872 0.218342i \(-0.0700648\pi\)
−0.218342 + 0.975872i \(0.570065\pi\)
\(734\) 20.1215 20.1215i 0.742700 0.742700i
\(735\) 0 0
\(736\) −44.6694 + 44.6694i −1.64654 + 1.64654i
\(737\) 5.57112i 0.205215i
\(738\) 0 0
\(739\) 20.7874 20.7874i 0.764677 0.764677i −0.212487 0.977164i \(-0.568156\pi\)
0.977164 + 0.212487i \(0.0681563\pi\)
\(740\) 4.49674 0.165304
\(741\) 0 0
\(742\) 49.9097 1.83224
\(743\) −16.7988 + 16.7988i −0.616288 + 0.616288i −0.944577 0.328289i \(-0.893528\pi\)
0.328289 + 0.944577i \(0.393528\pi\)
\(744\) 0 0
\(745\) 6.28390i 0.230224i
\(746\) 24.7296 24.7296i 0.905415 0.905415i
\(747\) 0 0
\(748\) −9.53904 + 9.53904i −0.348782 + 0.348782i
\(749\) 16.1330 + 16.1330i 0.589487 + 0.589487i
\(750\) 0 0
\(751\) 40.6136i 1.48201i 0.671499 + 0.741005i \(0.265651\pi\)
−0.671499 + 0.741005i \(0.734349\pi\)
\(752\) 3.03257 + 3.03257i 0.110586 + 0.110586i
\(753\) 0 0
\(754\) 28.5571 + 54.9326i 1.03999 + 2.00053i
\(755\) 9.14398i 0.332784i
\(756\) 0 0
\(757\) −13.9097 −0.505557 −0.252778 0.967524i \(-0.581344\pi\)
−0.252778 + 0.967524i \(0.581344\pi\)
\(758\) −33.3796 −1.21240
\(759\) 0 0
\(760\) −2.41998 2.41998i −0.0877820 0.0877820i
\(761\) 1.53942 + 1.53942i 0.0558039 + 0.0558039i 0.734458 0.678654i \(-0.237436\pi\)
−0.678654 + 0.734458i \(0.737436\pi\)
\(762\) 0 0
\(763\) 23.5800 0.853654
\(764\) 22.8710 0.827445
\(765\) 0 0
\(766\) 19.7422i 0.713316i
\(767\) 3.70545 + 7.12783i 0.133796 + 0.257371i
\(768\) 0 0
\(769\) −8.58002 8.58002i −0.309403 0.309403i 0.535275 0.844678i \(-0.320208\pi\)
−0.844678 + 0.535275i \(0.820208\pi\)
\(770\) 16.6412i 0.599708i
\(771\) 0 0
\(772\) 15.0707 + 15.0707i 0.542405 + 0.542405i
\(773\) −20.8234 + 20.8234i −0.748966 + 0.748966i −0.974285 0.225319i \(-0.927657\pi\)
0.225319 + 0.974285i \(0.427657\pi\)
\(774\) 0 0
\(775\) −5.50131 + 5.50131i −0.197613 + 0.197613i
\(776\) 6.77410i 0.243176i
\(777\) 0 0
\(778\) 47.9500 47.9500i 1.71909 1.71909i
\(779\) 16.0263 0.574201
\(780\) 0 0
\(781\) −11.9245 −0.426694
\(782\) 48.8930 48.8930i 1.74841 1.74841i
\(783\) 0 0
\(784\) 38.2207i 1.36502i
\(785\) −22.3628 + 22.3628i −0.798163 + 0.798163i
\(786\) 0 0
\(787\) 2.72677 2.72677i 0.0971989 0.0971989i −0.656835 0.754034i \(-0.728105\pi\)
0.754034 + 0.656835i \(0.228105\pi\)
\(788\) −36.0828 36.0828i −1.28540 1.28540i
\(789\) 0 0
\(790\) 15.9084i 0.565996i
\(791\) −25.4025 25.4025i −0.903208 0.903208i
\(792\) 0 0
\(793\) 23.6406 + 7.46838i 0.839504 + 0.265210i
\(794\) 66.7952i 2.37047i
\(795\) 0 0
\(796\) 1.79807 0.0637308
\(797\) −8.39585 −0.297396 −0.148698 0.988883i \(-0.547508\pi\)
−0.148698 + 0.988883i \(0.547508\pi\)
\(798\) 0 0
\(799\) −4.05582 4.05582i −0.143485 0.143485i
\(800\) −18.1382 18.1382i −0.641283 0.641283i
\(801\) 0 0
\(802\) 43.2765 1.52815
\(803\) −7.30419 −0.257759
\(804\) 0 0
\(805\) 46.0968i 1.62470i
\(806\) 17.5901 + 5.55693i 0.619584 + 0.195735i
\(807\) 0 0
\(808\) −6.25839 6.25839i −0.220169 0.220169i
\(809\) 34.9261i 1.22794i −0.789331 0.613968i \(-0.789573\pi\)
0.789331 0.613968i \(-0.210427\pi\)
\(810\) 0 0
\(811\) 32.9549 + 32.9549i 1.15720 + 1.15720i 0.985075 + 0.172126i \(0.0550638\pi\)
0.172126 + 0.985075i \(0.444936\pi\)
\(812\) −59.7451 + 59.7451i −2.09664 + 2.09664i
\(813\) 0 0
\(814\) −2.82032 + 2.82032i −0.0988522 + 0.0988522i
\(815\) 6.12310i 0.214483i
\(816\) 0 0
\(817\) 18.2084 18.2084i 0.637032 0.637032i
\(818\) −39.0259 −1.36451
\(819\) 0 0
\(820\) 14.7793 0.516117
\(821\) 3.95956 3.95956i 0.138190 0.138190i −0.634628 0.772818i \(-0.718847\pi\)
0.772818 + 0.634628i \(0.218847\pi\)
\(822\) 0 0
\(823\) 32.5019i 1.13295i 0.824080 + 0.566473i \(0.191693\pi\)
−0.824080 + 0.566473i \(0.808307\pi\)
\(824\) −8.08839 + 8.08839i −0.281772 + 0.281772i
\(825\) 0 0
\(826\) −14.3445 + 14.3445i −0.499110 + 0.499110i
\(827\) −9.60592 9.60592i −0.334031 0.334031i 0.520084 0.854115i \(-0.325901\pi\)
−0.854115 + 0.520084i \(0.825901\pi\)
\(828\) 0 0
\(829\) 34.9878i 1.21518i −0.794253 0.607588i \(-0.792137\pi\)
0.794253 0.607588i \(-0.207863\pi\)
\(830\) −28.3746 28.3746i −0.984897 0.984897i
\(831\) 0 0
\(832\) −11.4307 + 36.1829i −0.396287 + 1.25442i
\(833\) 51.1170i 1.77110i
\(834\) 0 0
\(835\) −32.9878 −1.14159
\(836\) 10.9634 0.379176
\(837\) 0 0
\(838\) −30.9171 30.9171i −1.06801 1.06801i
\(839\) 31.0199 + 31.0199i 1.07092 + 1.07092i 0.997285 + 0.0736399i \(0.0234616\pi\)
0.0736399 + 0.997285i \(0.476538\pi\)
\(840\) 0 0
\(841\) −38.7523 −1.33629
\(842\) −12.2873 −0.423447
\(843\) 0 0
\(844\) 32.3445i 1.11334i
\(845\) −17.3116 + 3.03257i −0.595537 + 0.104324i
\(846\) 0 0
\(847\) 28.3068 + 28.3068i 0.972633 + 0.972633i
\(848\) 17.3893i 0.597152i
\(849\) 0 0
\(850\) 19.8532 + 19.8532i 0.680961 + 0.680961i
\(851\) 7.81240 7.81240i 0.267806 0.267806i
\(852\) 0 0
\(853\) 22.4535 22.4535i 0.768795 0.768795i −0.209100 0.977894i \(-0.567053\pi\)
0.977894 + 0.209100i \(0.0670533\pi\)
\(854\) 62.6059i 2.14233i
\(855\) 0 0
\(856\) 2.71391 2.71391i 0.0927595 0.0927595i
\(857\) −5.82522 −0.198986 −0.0994929 0.995038i \(-0.531722\pi\)
−0.0994929 + 0.995038i \(0.531722\pi\)
\(858\) 0 0
\(859\) −19.3929 −0.661678 −0.330839 0.943687i \(-0.607332\pi\)
−0.330839 + 0.943687i \(0.607332\pi\)
\(860\) 16.7917 16.7917i 0.572592 0.572592i
\(861\) 0 0
\(862\) 31.9952i 1.08976i
\(863\) 26.5765 26.5765i 0.904674 0.904674i −0.0911620 0.995836i \(-0.529058\pi\)
0.995836 + 0.0911620i \(0.0290581\pi\)
\(864\) 0 0
\(865\) −5.39773 + 5.39773i −0.183528 + 0.183528i
\(866\) 13.0933 + 13.0933i 0.444930 + 0.444930i
\(867\) 0 0
\(868\) 25.1749i 0.854491i
\(869\) 5.39226 + 5.39226i 0.182920 + 0.182920i
\(870\) 0 0
\(871\) −6.85324 13.1829i −0.232213 0.446686i
\(872\) 3.96665i 0.134328i
\(873\) 0 0
\(874\) −56.1936 −1.90078
\(875\) 48.2202 1.63014
\(876\) 0 0
\(877\) 2.16003 + 2.16003i 0.0729392 + 0.0729392i 0.742635 0.669696i \(-0.233576\pi\)
−0.669696 + 0.742635i \(0.733576\pi\)
\(878\) 11.0167 + 11.0167i 0.371797 + 0.371797i
\(879\) 0 0
\(880\) −5.79807 −0.195453
\(881\) −39.1514 −1.31904 −0.659522 0.751685i \(-0.729241\pi\)
−0.659522 + 0.751685i \(0.729241\pi\)
\(882\) 0 0
\(883\) 0.764504i 0.0257276i 0.999917 + 0.0128638i \(0.00409479\pi\)
−0.999917 + 0.0128638i \(0.995905\pi\)
\(884\) 10.8379 34.3065i 0.364517 1.15385i
\(885\) 0 0
\(886\) 24.6332 + 24.6332i 0.827569 + 0.827569i
\(887\) 10.9634i 0.368114i −0.982916 0.184057i \(-0.941077\pi\)
0.982916 0.184057i \(-0.0589231\pi\)
\(888\) 0 0
\(889\) −27.3929 27.3929i −0.918729 0.918729i
\(890\) −19.3373 + 19.3373i −0.648189 + 0.648189i
\(891\) 0 0
\(892\) −34.3626 + 34.3626i −1.15055 + 1.15055i
\(893\) 4.66142i 0.155988i
\(894\) 0 0
\(895\) −8.11164 + 8.11164i −0.271142 + 0.271142i
\(896\) −25.2378 −0.843136
\(897\) 0 0
\(898\) −31.9952 −1.06769
\(899\) −14.2744 + 14.2744i −0.476079 + 0.476079i
\(900\) 0 0
\(901\) 23.2568i 0.774797i
\(902\) −9.26948 + 9.26948i −0.308640 + 0.308640i
\(903\) 0 0
\(904\) −4.27323 + 4.27323i −0.142125 + 0.142125i
\(905\) 7.75444 + 7.75444i 0.257766 + 0.257766i
\(906\) 0 0
\(907\) 38.2542i 1.27021i −0.772426 0.635105i \(-0.780957\pi\)
0.772426 0.635105i \(-0.219043\pi\)
\(908\) 7.13242 + 7.13242i 0.236698 + 0.236698i
\(909\) 0 0
\(910\) −20.4710 39.3781i −0.678607 1.30537i
\(911\) 44.9045i 1.48775i −0.668317 0.743876i \(-0.732985\pi\)
0.668317 0.743876i \(-0.267015\pi\)
\(912\) 0 0
\(913\) 19.2355 0.636602
\(914\) −80.1066 −2.64969
\(915\) 0 0
\(916\) 5.53162 + 5.53162i 0.182770 + 0.182770i
\(917\) −12.3091 12.3091i −0.406484 0.406484i
\(918\) 0 0
\(919\) 30.6742 1.01185 0.505924 0.862578i \(-0.331151\pi\)
0.505924 + 0.862578i \(0.331151\pi\)
\(920\) −7.75444 −0.255656
\(921\) 0 0
\(922\) 68.3100i 2.24967i
\(923\) 28.2170 14.6688i 0.928775 0.482830i
\(924\) 0 0
\(925\) 3.17226 + 3.17226i 0.104303 + 0.104303i
\(926\) 85.0800i 2.79590i
\(927\) 0 0
\(928\) −47.0639 47.0639i −1.54495 1.54495i
\(929\) −13.7418 + 13.7418i −0.450855 + 0.450855i −0.895638 0.444783i \(-0.853281\pi\)
0.444783 + 0.895638i \(0.353281\pi\)
\(930\) 0 0
\(931\) 29.3748 29.3748i 0.962721 0.962721i
\(932\) 65.1013i 2.13246i
\(933\) 0 0
\(934\) −16.5726 + 16.5726i −0.542272 + 0.542272i
\(935\) 7.75444 0.253597
\(936\) 0 0
\(937\) −23.0994 −0.754625 −0.377312 0.926086i \(-0.623152\pi\)
−0.377312 + 0.926086i \(0.623152\pi\)
\(938\) 26.5302 26.5302i 0.866242 0.866242i
\(939\) 0 0
\(940\) 4.29873i 0.140209i
\(941\) 23.7376 23.7376i 0.773823 0.773823i −0.204950 0.978772i \(-0.565703\pi\)
0.978772 + 0.204950i \(0.0657032\pi\)
\(942\) 0 0
\(943\) 25.6768 25.6768i 0.836152 0.836152i
\(944\) −4.99786 4.99786i −0.162667 0.162667i
\(945\) 0 0
\(946\) 21.0632i 0.684825i
\(947\) −26.3584 26.3584i −0.856535 0.856535i 0.134394 0.990928i \(-0.457091\pi\)
−0.990928 + 0.134394i \(0.957091\pi\)
\(948\) 0 0
\(949\) 17.2839 8.98516i 0.561059 0.291671i
\(950\) 22.8177i 0.740303i
\(951\) 0 0
\(952\) 13.5949 0.440612
\(953\) 12.9647 0.419969 0.209984 0.977705i \(-0.432659\pi\)
0.209984 + 0.977705i \(0.432659\pi\)
\(954\) 0 0
\(955\) −9.29612 9.29612i −0.300815 0.300815i
\(956\) −8.58950 8.58950i −0.277804 0.277804i
\(957\) 0 0
\(958\) −33.3371 −1.07707
\(959\) 20.2862 0.655076
\(960\) 0 0
\(961\) 24.9852i 0.805973i
\(962\) 3.20434 10.1431i 0.103312 0.327027i
\(963\) 0 0
\(964\) −3.47099 3.47099i −0.111793 0.111793i
\(965\) 12.2512i 0.394380i
\(966\) 0 0
\(967\) −2.91868 2.91868i −0.0938583 0.0938583i 0.658619 0.752477i \(-0.271141\pi\)
−0.752477 + 0.658619i \(0.771141\pi\)
\(968\) 4.76179 4.76179i 0.153050 0.153050i
\(969\) 0 0
\(970\) 18.4003 18.4003i 0.590799 0.590799i
\(971\) 17.1932i 0.551756i −0.961193 0.275878i \(-0.911031\pi\)
0.961193 0.275878i \(-0.0889685\pi\)
\(972\) 0 0
\(973\) −12.6890 + 12.6890i −0.406792 + 0.406792i
\(974\) 19.7246 0.632018
\(975\) 0 0
\(976\) −21.8129 −0.698214
\(977\) −36.3588 + 36.3588i −1.16322 + 1.16322i −0.179454 + 0.983766i \(0.557433\pi\)
−0.983766 + 0.179454i \(0.942567\pi\)
\(978\) 0 0
\(979\) 13.1090i 0.418966i
\(980\) 27.0893 27.0893i 0.865336 0.865336i
\(981\) 0 0
\(982\) −10.4461 + 10.4461i −0.333349 + 0.333349i
\(983\) −17.8732 17.8732i −0.570066 0.570066i 0.362081 0.932147i \(-0.382066\pi\)
−0.932147 + 0.362081i \(0.882066\pi\)
\(984\) 0 0
\(985\) 29.3323i 0.934605i
\(986\) 51.5139 + 51.5139i 1.64054 + 1.64054i
\(987\) 0 0
\(988\) −25.9426 + 13.4865i −0.825345 + 0.429062i
\(989\) 58.3460i 1.85529i
\(990\) 0 0
\(991\) 25.2568 0.802310 0.401155 0.916010i \(-0.368609\pi\)
0.401155 + 0.916010i \(0.368609\pi\)
\(992\) −19.8314 −0.629647
\(993\) 0 0
\(994\) 56.7858 + 56.7858i 1.80114 + 1.80114i
\(995\) −0.730839 0.730839i −0.0231692 0.0231692i
\(996\) 0 0
\(997\) −3.75228 −0.118836 −0.0594179 0.998233i \(-0.518924\pi\)
−0.0594179 + 0.998233i \(0.518924\pi\)
\(998\) 43.7768 1.38573
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.2.i.a.8.2 12
3.2 odd 2 inner 117.2.i.a.8.5 yes 12
4.3 odd 2 1872.2.bi.f.593.3 12
12.11 even 2 1872.2.bi.f.593.4 12
13.5 odd 4 inner 117.2.i.a.44.5 yes 12
13.8 odd 4 1521.2.i.g.746.2 12
13.12 even 2 1521.2.i.g.944.5 12
39.5 even 4 inner 117.2.i.a.44.2 yes 12
39.8 even 4 1521.2.i.g.746.5 12
39.38 odd 2 1521.2.i.g.944.2 12
52.31 even 4 1872.2.bi.f.161.4 12
156.83 odd 4 1872.2.bi.f.161.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.i.a.8.2 12 1.1 even 1 trivial
117.2.i.a.8.5 yes 12 3.2 odd 2 inner
117.2.i.a.44.2 yes 12 39.5 even 4 inner
117.2.i.a.44.5 yes 12 13.5 odd 4 inner
1521.2.i.g.746.2 12 13.8 odd 4
1521.2.i.g.746.5 12 39.8 even 4
1521.2.i.g.944.2 12 39.38 odd 2
1521.2.i.g.944.5 12 13.12 even 2
1872.2.bi.f.161.3 12 156.83 odd 4
1872.2.bi.f.161.4 12 52.31 even 4
1872.2.bi.f.593.3 12 4.3 odd 2
1872.2.bi.f.593.4 12 12.11 even 2