Properties

Label 117.2.i.a.44.6
Level $117$
Weight $2$
Character 117.44
Analytic conductor $0.934$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,2,Mod(8,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.26525057735983104.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{10} + 103x^{8} - 260x^{6} + 259x^{4} + 356x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 44.6
Root \(1.64111 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 117.44
Dual form 117.2.i.a.8.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.77776 + 1.77776i) q^{2} +4.32088i q^{4} +(-2.34822 - 2.34822i) q^{5} +(1.51414 + 1.51414i) q^{7} +(-4.12598 + 4.12598i) q^{8} -8.34916i q^{10} +(2.34822 - 2.34822i) q^{11} +(-0.806748 - 3.51414i) q^{13} +5.38355i q^{14} -6.02827 q^{16} -4.24264 q^{17} +(-0.193252 + 0.193252i) q^{19} +(10.1464 - 10.1464i) q^{20} +8.34916 q^{22} -2.41461 q^{23} +6.02827i q^{25} +(4.81310 - 7.68151i) q^{26} +(-6.54241 + 6.54241i) q^{28} +7.56485i q^{29} +(-4.83502 + 4.83502i) q^{31} +(-2.46488 - 2.46488i) q^{32} +(-7.54241 - 7.54241i) q^{34} -7.11105i q^{35} +(1.00000 + 1.00000i) q^{37} -0.687114 q^{38} +19.3774 q^{40} +(1.89442 + 1.89442i) q^{41} -5.67004i q^{43} +(10.1464 + 10.1464i) q^{44} +(-4.29261 - 4.29261i) q^{46} +(2.34822 - 2.34822i) q^{47} -2.41478i q^{49} +(-10.7168 + 10.7168i) q^{50} +(15.1842 - 3.48586i) q^{52} +1.96081i q^{53} -11.0283 q^{55} -12.4946 q^{56} +(-13.4485 + 13.4485i) q^{58} +(0.753507 - 0.753507i) q^{59} -1.61350 q^{61} -17.1910 q^{62} +3.29261i q^{64} +(-6.35755 + 10.1464i) q^{65} +(7.51414 - 7.51414i) q^{67} -18.3320i q^{68} +(12.6418 - 12.6418i) q^{70} +(1.66111 + 1.66111i) q^{71} +(7.34916 + 7.34916i) q^{73} +3.55553i q^{74} +(-0.835021 - 0.835021i) q^{76} +7.11105 q^{77} -16.6983 q^{79} +(14.1557 + 14.1557i) q^{80} +6.73566i q^{82} +(7.73177 + 7.73177i) q^{83} +(9.96265 + 9.96265i) q^{85} +(10.0800 - 10.0800i) q^{86} +19.3774i q^{88} +(4.76283 - 4.76283i) q^{89} +(4.09936 - 6.54241i) q^{91} -10.4333i q^{92} +8.34916 q^{94} +0.907598 q^{95} +(-0.707389 + 0.707389i) q^{97} +(4.29290 - 4.29290i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{7} - 4 q^{13} - 20 q^{16} - 8 q^{19} + 16 q^{22} - 12 q^{34} + 12 q^{37} + 96 q^{40} - 72 q^{46} + 40 q^{52} - 80 q^{55} - 92 q^{58} - 8 q^{61} + 64 q^{67} + 88 q^{70} + 4 q^{73} + 48 q^{76}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.77776 + 1.77776i 1.25707 + 1.25707i 0.952486 + 0.304583i \(0.0985169\pi\)
0.304583 + 0.952486i \(0.401483\pi\)
\(3\) 0 0
\(4\) 4.32088i 2.16044i
\(5\) −2.34822 2.34822i −1.05016 1.05016i −0.998674 0.0514820i \(-0.983606\pi\)
−0.0514820 0.998674i \(-0.516394\pi\)
\(6\) 0 0
\(7\) 1.51414 + 1.51414i 0.572290 + 0.572290i 0.932768 0.360478i \(-0.117386\pi\)
−0.360478 + 0.932768i \(0.617386\pi\)
\(8\) −4.12598 + 4.12598i −1.45876 + 1.45876i
\(9\) 0 0
\(10\) 8.34916i 2.64024i
\(11\) 2.34822 2.34822i 0.708015 0.708015i −0.258103 0.966118i \(-0.583097\pi\)
0.966118 + 0.258103i \(0.0830972\pi\)
\(12\) 0 0
\(13\) −0.806748 3.51414i −0.223752 0.974646i
\(14\) 5.38355i 1.43882i
\(15\) 0 0
\(16\) −6.02827 −1.50707
\(17\) −4.24264 −1.02899 −0.514496 0.857493i \(-0.672021\pi\)
−0.514496 + 0.857493i \(0.672021\pi\)
\(18\) 0 0
\(19\) −0.193252 + 0.193252i −0.0443351 + 0.0443351i −0.728927 0.684592i \(-0.759981\pi\)
0.684592 + 0.728927i \(0.259981\pi\)
\(20\) 10.1464 10.1464i 2.26880 2.26880i
\(21\) 0 0
\(22\) 8.34916 1.78005
\(23\) −2.41461 −0.503482 −0.251741 0.967795i \(-0.581003\pi\)
−0.251741 + 0.967795i \(0.581003\pi\)
\(24\) 0 0
\(25\) 6.02827i 1.20565i
\(26\) 4.81310 7.68151i 0.943926 1.50647i
\(27\) 0 0
\(28\) −6.54241 + 6.54241i −1.23640 + 1.23640i
\(29\) 7.56485i 1.40476i 0.711803 + 0.702379i \(0.247879\pi\)
−0.711803 + 0.702379i \(0.752121\pi\)
\(30\) 0 0
\(31\) −4.83502 + 4.83502i −0.868395 + 0.868395i −0.992295 0.123899i \(-0.960460\pi\)
0.123899 + 0.992295i \(0.460460\pi\)
\(32\) −2.46488 2.46488i −0.435733 0.435733i
\(33\) 0 0
\(34\) −7.54241 7.54241i −1.29351 1.29351i
\(35\) 7.11105i 1.20199i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) −0.687114 −0.111465
\(39\) 0 0
\(40\) 19.3774 3.06384
\(41\) 1.89442 + 1.89442i 0.295859 + 0.295859i 0.839389 0.543531i \(-0.182913\pi\)
−0.543531 + 0.839389i \(0.682913\pi\)
\(42\) 0 0
\(43\) 5.67004i 0.864673i −0.901712 0.432337i \(-0.857689\pi\)
0.901712 0.432337i \(-0.142311\pi\)
\(44\) 10.1464 + 10.1464i 1.52963 + 1.52963i
\(45\) 0 0
\(46\) −4.29261 4.29261i −0.632911 0.632911i
\(47\) 2.34822 2.34822i 0.342523 0.342523i −0.514792 0.857315i \(-0.672131\pi\)
0.857315 + 0.514792i \(0.172131\pi\)
\(48\) 0 0
\(49\) 2.41478i 0.344968i
\(50\) −10.7168 + 10.7168i −1.51559 + 1.51559i
\(51\) 0 0
\(52\) 15.1842 3.48586i 2.10567 0.483402i
\(53\) 1.96081i 0.269339i 0.990891 + 0.134669i \(0.0429972\pi\)
−0.990891 + 0.134669i \(0.957003\pi\)
\(54\) 0 0
\(55\) −11.0283 −1.48705
\(56\) −12.4946 −1.66966
\(57\) 0 0
\(58\) −13.4485 + 13.4485i −1.76588 + 1.76588i
\(59\) 0.753507 0.753507i 0.0980983 0.0980983i −0.656354 0.754453i \(-0.727902\pi\)
0.754453 + 0.656354i \(0.227902\pi\)
\(60\) 0 0
\(61\) −1.61350 −0.206587 −0.103293 0.994651i \(-0.532938\pi\)
−0.103293 + 0.994651i \(0.532938\pi\)
\(62\) −17.1910 −2.18327
\(63\) 0 0
\(64\) 3.29261i 0.411576i
\(65\) −6.35755 + 10.1464i −0.788556 + 1.25850i
\(66\) 0 0
\(67\) 7.51414 7.51414i 0.917998 0.917998i −0.0788857 0.996884i \(-0.525136\pi\)
0.996884 + 0.0788857i \(0.0251362\pi\)
\(68\) 18.3320i 2.22308i
\(69\) 0 0
\(70\) 12.6418 12.6418i 1.51098 1.51098i
\(71\) 1.66111 + 1.66111i 0.197137 + 0.197137i 0.798772 0.601635i \(-0.205484\pi\)
−0.601635 + 0.798772i \(0.705484\pi\)
\(72\) 0 0
\(73\) 7.34916 + 7.34916i 0.860154 + 0.860154i 0.991356 0.131202i \(-0.0418836\pi\)
−0.131202 + 0.991356i \(0.541884\pi\)
\(74\) 3.55553i 0.413322i
\(75\) 0 0
\(76\) −0.835021 0.835021i −0.0957835 0.0957835i
\(77\) 7.11105 0.810380
\(78\) 0 0
\(79\) −16.6983 −1.87871 −0.939354 0.342950i \(-0.888574\pi\)
−0.939354 + 0.342950i \(0.888574\pi\)
\(80\) 14.1557 + 14.1557i 1.58266 + 1.58266i
\(81\) 0 0
\(82\) 6.73566i 0.743830i
\(83\) 7.73177 + 7.73177i 0.848672 + 0.848672i 0.989968 0.141295i \(-0.0451266\pi\)
−0.141295 + 0.989968i \(0.545127\pi\)
\(84\) 0 0
\(85\) 9.96265 + 9.96265i 1.08060 + 1.08060i
\(86\) 10.0800 10.0800i 1.08695 1.08695i
\(87\) 0 0
\(88\) 19.3774i 2.06564i
\(89\) 4.76283 4.76283i 0.504859 0.504859i −0.408085 0.912944i \(-0.633803\pi\)
0.912944 + 0.408085i \(0.133803\pi\)
\(90\) 0 0
\(91\) 4.09936 6.54241i 0.429730 0.685831i
\(92\) 10.4333i 1.08774i
\(93\) 0 0
\(94\) 8.34916 0.861150
\(95\) 0.907598 0.0931176
\(96\) 0 0
\(97\) −0.707389 + 0.707389i −0.0718245 + 0.0718245i −0.742106 0.670282i \(-0.766173\pi\)
0.670282 + 0.742106i \(0.266173\pi\)
\(98\) 4.29290 4.29290i 0.433649 0.433649i
\(99\) 0 0
\(100\) −26.0475 −2.60475
\(101\) −1.82803 −0.181896 −0.0909478 0.995856i \(-0.528990\pi\)
−0.0909478 + 0.995856i \(0.528990\pi\)
\(102\) 0 0
\(103\) 14.2553i 1.40461i −0.711875 0.702306i \(-0.752154\pi\)
0.711875 0.702306i \(-0.247846\pi\)
\(104\) 17.8279 + 11.1706i 1.74817 + 1.09537i
\(105\) 0 0
\(106\) −3.48586 + 3.48586i −0.338577 + 0.338577i
\(107\) 18.0109i 1.74118i −0.492006 0.870592i \(-0.663736\pi\)
0.492006 0.870592i \(-0.336264\pi\)
\(108\) 0 0
\(109\) 7.34916 7.34916i 0.703922 0.703922i −0.261328 0.965250i \(-0.584161\pi\)
0.965250 + 0.261328i \(0.0841605\pi\)
\(110\) −19.6057 19.6057i −1.86933 1.86933i
\(111\) 0 0
\(112\) −9.12763 9.12763i −0.862480 0.862480i
\(113\) 7.56485i 0.711641i 0.934554 + 0.355821i \(0.115799\pi\)
−0.934554 + 0.355821i \(0.884201\pi\)
\(114\) 0 0
\(115\) 5.67004 + 5.67004i 0.528734 + 0.528734i
\(116\) −32.6869 −3.03490
\(117\) 0 0
\(118\) 2.67912 0.246633
\(119\) −6.42394 6.42394i −0.588882 0.588882i
\(120\) 0 0
\(121\) 0.0282739i 0.00257035i
\(122\) −2.86841 2.86841i −0.259694 0.259694i
\(123\) 0 0
\(124\) −20.8916 20.8916i −1.87612 1.87612i
\(125\) 2.41461 2.41461i 0.215970 0.215970i
\(126\) 0 0
\(127\) 3.61350i 0.320646i −0.987065 0.160323i \(-0.948746\pi\)
0.987065 0.160323i \(-0.0512536\pi\)
\(128\) −10.7832 + 10.7832i −0.953113 + 0.953113i
\(129\) 0 0
\(130\) −29.3401 + 6.73566i −2.57330 + 0.590757i
\(131\) 11.8075i 1.03163i 0.856701 + 0.515813i \(0.172510\pi\)
−0.856701 + 0.515813i \(0.827490\pi\)
\(132\) 0 0
\(133\) −0.585221 −0.0507451
\(134\) 26.7167 2.30797
\(135\) 0 0
\(136\) 17.5051 17.5051i 1.50105 1.50105i
\(137\) −1.89442 + 1.89442i −0.161851 + 0.161851i −0.783386 0.621535i \(-0.786509\pi\)
0.621535 + 0.783386i \(0.286509\pi\)
\(138\) 0 0
\(139\) 15.9253 1.35077 0.675383 0.737467i \(-0.263978\pi\)
0.675383 + 0.737467i \(0.263978\pi\)
\(140\) 30.7260 2.59682
\(141\) 0 0
\(142\) 5.90611i 0.495629i
\(143\) −10.1464 6.35755i −0.848484 0.531645i
\(144\) 0 0
\(145\) 17.7639 17.7639i 1.47521 1.47521i
\(146\) 26.1301i 2.16254i
\(147\) 0 0
\(148\) −4.32088 + 4.32088i −0.355175 + 0.355175i
\(149\) 1.89442 + 1.89442i 0.155197 + 0.155197i 0.780435 0.625238i \(-0.214998\pi\)
−0.625238 + 0.780435i \(0.714998\pi\)
\(150\) 0 0
\(151\) 16.2498 + 16.2498i 1.32239 + 1.32239i 0.911837 + 0.410553i \(0.134664\pi\)
0.410553 + 0.911837i \(0.365336\pi\)
\(152\) 1.59471i 0.129348i
\(153\) 0 0
\(154\) 12.6418 + 12.6418i 1.01870 + 1.01870i
\(155\) 22.7074 1.82390
\(156\) 0 0
\(157\) −9.47133 −0.755894 −0.377947 0.925827i \(-0.623370\pi\)
−0.377947 + 0.925827i \(0.623370\pi\)
\(158\) −29.6857 29.6857i −2.36166 2.36166i
\(159\) 0 0
\(160\) 11.5761i 0.915175i
\(161\) −3.65605 3.65605i −0.288137 0.288137i
\(162\) 0 0
\(163\) −16.5051 16.5051i −1.29278 1.29278i −0.933063 0.359714i \(-0.882874\pi\)
−0.359714 0.933063i \(-0.617126\pi\)
\(164\) −8.18557 + 8.18557i −0.639186 + 0.639186i
\(165\) 0 0
\(166\) 27.4905i 2.13368i
\(167\) 8.41889 8.41889i 0.651473 0.651473i −0.301875 0.953348i \(-0.597612\pi\)
0.953348 + 0.301875i \(0.0976124\pi\)
\(168\) 0 0
\(169\) −11.6983 + 5.67004i −0.899871 + 0.436157i
\(170\) 35.4225i 2.71678i
\(171\) 0 0
\(172\) 24.4996 1.86808
\(173\) −23.1612 −1.76091 −0.880456 0.474127i \(-0.842764\pi\)
−0.880456 + 0.474127i \(0.842764\pi\)
\(174\) 0 0
\(175\) −9.12763 + 9.12763i −0.689984 + 0.689984i
\(176\) −14.1557 + 14.1557i −1.06703 + 1.06703i
\(177\) 0 0
\(178\) 16.9344 1.26929
\(179\) 8.48528 0.634220 0.317110 0.948389i \(-0.397288\pi\)
0.317110 + 0.948389i \(0.397288\pi\)
\(180\) 0 0
\(181\) 19.9253i 1.48104i 0.672036 + 0.740518i \(0.265420\pi\)
−0.672036 + 0.740518i \(0.734580\pi\)
\(182\) 18.9185 4.34317i 1.40234 0.321937i
\(183\) 0 0
\(184\) 9.96265 9.96265i 0.734457 0.734457i
\(185\) 4.69644i 0.345289i
\(186\) 0 0
\(187\) −9.96265 + 9.96265i −0.728541 + 0.728541i
\(188\) 10.1464 + 10.1464i 0.740001 + 0.740001i
\(189\) 0 0
\(190\) 1.61350 + 1.61350i 0.117055 + 0.117055i
\(191\) 2.28183i 0.165107i −0.996587 0.0825536i \(-0.973692\pi\)
0.996587 0.0825536i \(-0.0263076\pi\)
\(192\) 0 0
\(193\) −14.2835 14.2835i −1.02815 1.02815i −0.999592 0.0285595i \(-0.990908\pi\)
−0.0285595 0.999592i \(-0.509092\pi\)
\(194\) −2.51514 −0.180577
\(195\) 0 0
\(196\) 10.4340 0.745284
\(197\) 3.72245 + 3.72245i 0.265213 + 0.265213i 0.827168 0.561955i \(-0.189950\pi\)
−0.561955 + 0.827168i \(0.689950\pi\)
\(198\) 0 0
\(199\) 16.3118i 1.15631i 0.815926 + 0.578157i \(0.196228\pi\)
−0.815926 + 0.578157i \(0.803772\pi\)
\(200\) −24.8726 24.8726i −1.75876 1.75876i
\(201\) 0 0
\(202\) −3.24980 3.24980i −0.228655 0.228655i
\(203\) −11.4542 + 11.4542i −0.803929 + 0.803929i
\(204\) 0 0
\(205\) 8.89703i 0.621396i
\(206\) 25.3425 25.3425i 1.76569 1.76569i
\(207\) 0 0
\(208\) 4.86330 + 21.1842i 0.337209 + 1.46886i
\(209\) 0.907598i 0.0627799i
\(210\) 0 0
\(211\) 3.22699 0.222155 0.111078 0.993812i \(-0.464570\pi\)
0.111078 + 0.993812i \(0.464570\pi\)
\(212\) −8.47245 −0.581890
\(213\) 0 0
\(214\) 32.0192 32.0192i 2.18879 2.18879i
\(215\) −13.3145 + 13.3145i −0.908042 + 0.908042i
\(216\) 0 0
\(217\) −14.6418 −0.993948
\(218\) 26.1301 1.76976
\(219\) 0 0
\(220\) 47.6519i 3.21269i
\(221\) 3.42274 + 14.9092i 0.230238 + 1.00290i
\(222\) 0 0
\(223\) −2.77847 + 2.77847i −0.186060 + 0.186060i −0.793991 0.607930i \(-0.792000\pi\)
0.607930 + 0.793991i \(0.292000\pi\)
\(224\) 7.46432i 0.498731i
\(225\) 0 0
\(226\) −13.4485 + 13.4485i −0.894582 + 0.894582i
\(227\) 14.1557 + 14.1557i 0.939548 + 0.939548i 0.998274 0.0587264i \(-0.0187040\pi\)
−0.0587264 + 0.998274i \(0.518704\pi\)
\(228\) 0 0
\(229\) −4.32088 4.32088i −0.285532 0.285532i 0.549778 0.835311i \(-0.314712\pi\)
−0.835311 + 0.549778i \(0.814712\pi\)
\(230\) 20.1600i 1.32931i
\(231\) 0 0
\(232\) −31.2125 31.2125i −2.04920 2.04920i
\(233\) −3.00120 −0.196615 −0.0983075 0.995156i \(-0.531343\pi\)
−0.0983075 + 0.995156i \(0.531343\pi\)
\(234\) 0 0
\(235\) −11.0283 −0.719405
\(236\) 3.25582 + 3.25582i 0.211936 + 0.211936i
\(237\) 0 0
\(238\) 22.8405i 1.48053i
\(239\) −17.2574 17.2574i −1.11629 1.11629i −0.992281 0.124010i \(-0.960424\pi\)
−0.124010 0.992281i \(-0.539576\pi\)
\(240\) 0 0
\(241\) 8.70739 + 8.70739i 0.560892 + 0.560892i 0.929561 0.368669i \(-0.120186\pi\)
−0.368669 + 0.929561i \(0.620186\pi\)
\(242\) 0.0502642 0.0502642i 0.00323111 0.00323111i
\(243\) 0 0
\(244\) 6.97173i 0.446319i
\(245\) −5.67043 + 5.67043i −0.362271 + 0.362271i
\(246\) 0 0
\(247\) 0.835021 + 0.523210i 0.0531311 + 0.0332910i
\(248\) 39.8984i 2.53355i
\(249\) 0 0
\(250\) 8.58522 0.542977
\(251\) −14.0893 −0.889310 −0.444655 0.895702i \(-0.646674\pi\)
−0.444655 + 0.895702i \(0.646674\pi\)
\(252\) 0 0
\(253\) −5.67004 + 5.67004i −0.356473 + 0.356473i
\(254\) 6.42394 6.42394i 0.403074 0.403074i
\(255\) 0 0
\(256\) −31.7549 −1.98468
\(257\) −6.65725 −0.415268 −0.207634 0.978207i \(-0.566576\pi\)
−0.207634 + 0.978207i \(0.566576\pi\)
\(258\) 0 0
\(259\) 3.02827i 0.188168i
\(260\) −43.8414 27.4702i −2.71893 1.70363i
\(261\) 0 0
\(262\) −20.9909 + 20.9909i −1.29682 + 1.29682i
\(263\) 24.8564i 1.53271i −0.642416 0.766356i \(-0.722068\pi\)
0.642416 0.766356i \(-0.277932\pi\)
\(264\) 0 0
\(265\) 4.60442 4.60442i 0.282847 0.282847i
\(266\) −1.04038 1.04038i −0.0637901 0.0637901i
\(267\) 0 0
\(268\) 32.4677 + 32.4677i 1.98328 + 1.98328i
\(269\) 22.2536i 1.35683i −0.734681 0.678413i \(-0.762668\pi\)
0.734681 0.678413i \(-0.237332\pi\)
\(270\) 0 0
\(271\) 8.54241 + 8.54241i 0.518915 + 0.518915i 0.917243 0.398328i \(-0.130410\pi\)
−0.398328 + 0.917243i \(0.630410\pi\)
\(272\) 25.5758 1.55076
\(273\) 0 0
\(274\) −6.73566 −0.406916
\(275\) 14.1557 + 14.1557i 0.853622 + 0.853622i
\(276\) 0 0
\(277\) 9.41478i 0.565679i 0.959167 + 0.282840i \(0.0912764\pi\)
−0.959167 + 0.282840i \(0.908724\pi\)
\(278\) 28.3114 + 28.3114i 1.69801 + 1.69801i
\(279\) 0 0
\(280\) 29.3401 + 29.3401i 1.75341 + 1.75341i
\(281\) 20.6802 20.6802i 1.23368 1.23368i 0.271135 0.962541i \(-0.412601\pi\)
0.962541 0.271135i \(-0.0873989\pi\)
\(282\) 0 0
\(283\) 11.8013i 0.701513i −0.936467 0.350757i \(-0.885924\pi\)
0.936467 0.350757i \(-0.114076\pi\)
\(284\) −7.17745 + 7.17745i −0.425903 + 0.425903i
\(285\) 0 0
\(286\) −6.73566 29.3401i −0.398288 1.73492i
\(287\) 5.73682i 0.338634i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 63.1601 3.70889
\(291\) 0 0
\(292\) −31.7549 + 31.7549i −1.85831 + 1.85831i
\(293\) 8.53884 8.53884i 0.498845 0.498845i −0.412234 0.911078i \(-0.635251\pi\)
0.911078 + 0.412234i \(0.135251\pi\)
\(294\) 0 0
\(295\) −3.53880 −0.206037
\(296\) −8.25197 −0.479636
\(297\) 0 0
\(298\) 6.73566i 0.390186i
\(299\) 1.94798 + 8.48528i 0.112655 + 0.490716i
\(300\) 0 0
\(301\) 8.58522 8.58522i 0.494844 0.494844i
\(302\) 57.7766i 3.32467i
\(303\) 0 0
\(304\) 1.16498 1.16498i 0.0668161 0.0668161i
\(305\) 3.78884 + 3.78884i 0.216948 + 0.216948i
\(306\) 0 0
\(307\) −6.54241 6.54241i −0.373395 0.373395i 0.495317 0.868712i \(-0.335052\pi\)
−0.868712 + 0.495317i \(0.835052\pi\)
\(308\) 30.7260i 1.75078i
\(309\) 0 0
\(310\) 40.3684 + 40.3684i 2.29277 + 2.29277i
\(311\) −13.6227 −0.772472 −0.386236 0.922400i \(-0.626225\pi\)
−0.386236 + 0.922400i \(0.626225\pi\)
\(312\) 0 0
\(313\) 0.311812 0.0176246 0.00881232 0.999961i \(-0.497195\pi\)
0.00881232 + 0.999961i \(0.497195\pi\)
\(314\) −16.8378 16.8378i −0.950211 0.950211i
\(315\) 0 0
\(316\) 72.1515i 4.05884i
\(317\) −15.6627 15.6627i −0.879706 0.879706i 0.113798 0.993504i \(-0.463698\pi\)
−0.993504 + 0.113798i \(0.963698\pi\)
\(318\) 0 0
\(319\) 17.7639 + 17.7639i 0.994590 + 0.994590i
\(320\) 7.73177 7.73177i 0.432219 0.432219i
\(321\) 0 0
\(322\) 12.9992i 0.724417i
\(323\) 0.819901 0.819901i 0.0456205 0.0456205i
\(324\) 0 0
\(325\) 21.1842 4.86330i 1.17509 0.269767i
\(326\) 58.6842i 3.25022i
\(327\) 0 0
\(328\) −15.6327 −0.863171
\(329\) 7.11105 0.392045
\(330\) 0 0
\(331\) 5.25887 5.25887i 0.289054 0.289054i −0.547652 0.836706i \(-0.684478\pi\)
0.836706 + 0.547652i \(0.184478\pi\)
\(332\) −33.4081 + 33.4081i −1.83351 + 1.83351i
\(333\) 0 0
\(334\) 29.9336 1.63789
\(335\) −35.2897 −1.92808
\(336\) 0 0
\(337\) 18.3684i 1.00059i 0.865856 + 0.500294i \(0.166775\pi\)
−0.865856 + 0.500294i \(0.833225\pi\)
\(338\) −30.8768 10.7168i −1.67948 0.582919i
\(339\) 0 0
\(340\) −43.0475 + 43.0475i −2.33458 + 2.33458i
\(341\) 22.7074i 1.22967i
\(342\) 0 0
\(343\) 14.2553 14.2553i 0.769712 0.769712i
\(344\) 23.3945 + 23.3945i 1.26135 + 1.26135i
\(345\) 0 0
\(346\) −41.1751 41.1751i −2.21359 2.21359i
\(347\) 6.20345i 0.333019i 0.986040 + 0.166509i \(0.0532496\pi\)
−0.986040 + 0.166509i \(0.946750\pi\)
\(348\) 0 0
\(349\) −24.0283 24.0283i −1.28620 1.28620i −0.937074 0.349130i \(-0.886477\pi\)
−0.349130 0.937074i \(-0.613523\pi\)
\(350\) −32.4535 −1.73471
\(351\) 0 0
\(352\) −11.5761 −0.617011
\(353\) 4.30903 + 4.30903i 0.229347 + 0.229347i 0.812420 0.583073i \(-0.198150\pi\)
−0.583073 + 0.812420i \(0.698150\pi\)
\(354\) 0 0
\(355\) 7.80128i 0.414049i
\(356\) 20.5797 + 20.5797i 1.09072 + 1.09072i
\(357\) 0 0
\(358\) 15.0848 + 15.0848i 0.797258 + 0.797258i
\(359\) −10.9663 + 10.9663i −0.578779 + 0.578779i −0.934567 0.355788i \(-0.884212\pi\)
0.355788 + 0.934567i \(0.384212\pi\)
\(360\) 0 0
\(361\) 18.9253i 0.996069i
\(362\) −35.4225 + 35.4225i −1.86176 + 1.86176i
\(363\) 0 0
\(364\) 28.2690 + 17.7129i 1.48170 + 0.928406i
\(365\) 34.5149i 1.80659i
\(366\) 0 0
\(367\) 8.69832 0.454048 0.227024 0.973889i \(-0.427100\pi\)
0.227024 + 0.973889i \(0.427100\pi\)
\(368\) 14.5559 0.758781
\(369\) 0 0
\(370\) 8.34916 8.34916i 0.434052 0.434052i
\(371\) −2.96894 + 2.96894i −0.154140 + 0.154140i
\(372\) 0 0
\(373\) 0.311812 0.0161450 0.00807250 0.999967i \(-0.497430\pi\)
0.00807250 + 0.999967i \(0.497430\pi\)
\(374\) −35.4225 −1.83165
\(375\) 0 0
\(376\) 19.3774i 0.999315i
\(377\) 26.5839 6.10293i 1.36914 0.314317i
\(378\) 0 0
\(379\) 3.42024 3.42024i 0.175686 0.175686i −0.613786 0.789472i \(-0.710354\pi\)
0.789472 + 0.613786i \(0.210354\pi\)
\(380\) 3.92163i 0.201175i
\(381\) 0 0
\(382\) 4.05655 4.05655i 0.207551 0.207551i
\(383\) −16.4375 16.4375i −0.839919 0.839919i 0.148929 0.988848i \(-0.452417\pi\)
−0.988848 + 0.148929i \(0.952417\pi\)
\(384\) 0 0
\(385\) −16.6983 16.6983i −0.851025 0.851025i
\(386\) 50.7855i 2.58491i
\(387\) 0 0
\(388\) −3.05655 3.05655i −0.155173 0.155173i
\(389\) 25.1092 1.27309 0.636543 0.771241i \(-0.280364\pi\)
0.636543 + 0.771241i \(0.280364\pi\)
\(390\) 0 0
\(391\) 10.2443 0.518078
\(392\) 9.96334 + 9.96334i 0.503224 + 0.503224i
\(393\) 0 0
\(394\) 13.2353i 0.666783i
\(395\) 39.2113 + 39.2113i 1.97294 + 1.97294i
\(396\) 0 0
\(397\) 0.301683 + 0.301683i 0.0151410 + 0.0151410i 0.714637 0.699496i \(-0.246592\pi\)
−0.699496 + 0.714637i \(0.746592\pi\)
\(398\) −28.9985 + 28.9985i −1.45357 + 1.45357i
\(399\) 0 0
\(400\) 36.3401i 1.81700i
\(401\) 7.17745 7.17745i 0.358425 0.358425i −0.504807 0.863232i \(-0.668436\pi\)
0.863232 + 0.504807i \(0.168436\pi\)
\(402\) 0 0
\(403\) 20.8916 + 13.0903i 1.04068 + 0.652074i
\(404\) 7.89870i 0.392975i
\(405\) 0 0
\(406\) −40.7258 −2.02119
\(407\) 4.69644 0.232794
\(408\) 0 0
\(409\) 9.93438 9.93438i 0.491223 0.491223i −0.417468 0.908692i \(-0.637082\pi\)
0.908692 + 0.417468i \(0.137082\pi\)
\(410\) 15.8168 15.8168i 0.781137 0.781137i
\(411\) 0 0
\(412\) 61.5953 3.03459
\(413\) 2.28183 0.112281
\(414\) 0 0
\(415\) 36.3118i 1.78248i
\(416\) −6.67338 + 10.6505i −0.327190 + 0.522181i
\(417\) 0 0
\(418\) −1.61350 + 1.61350i −0.0789186 + 0.0789186i
\(419\) 5.16307i 0.252232i −0.992015 0.126116i \(-0.959749\pi\)
0.992015 0.126116i \(-0.0402512\pi\)
\(420\) 0 0
\(421\) −25.4057 + 25.4057i −1.23820 + 1.23820i −0.277462 + 0.960737i \(0.589493\pi\)
−0.960737 + 0.277462i \(0.910507\pi\)
\(422\) 5.73682 + 5.73682i 0.279264 + 0.279264i
\(423\) 0 0
\(424\) −8.09029 8.09029i −0.392899 0.392899i
\(425\) 25.5758i 1.24061i
\(426\) 0 0
\(427\) −2.44305 2.44305i −0.118228 0.118228i
\(428\) 77.8232 3.76173
\(429\) 0 0
\(430\) −47.3401 −2.28294
\(431\) 16.5703 + 16.5703i 0.798165 + 0.798165i 0.982806 0.184641i \(-0.0591124\pi\)
−0.184641 + 0.982806i \(0.559112\pi\)
\(432\) 0 0
\(433\) 3.61350i 0.173653i 0.996223 + 0.0868267i \(0.0276727\pi\)
−0.996223 + 0.0868267i \(0.972327\pi\)
\(434\) −26.0296 26.0296i −1.24946 1.24946i
\(435\) 0 0
\(436\) 31.7549 + 31.7549i 1.52078 + 1.52078i
\(437\) 0.466630 0.466630i 0.0223219 0.0223219i
\(438\) 0 0
\(439\) 5.67004i 0.270616i −0.990804 0.135308i \(-0.956798\pi\)
0.990804 0.135308i \(-0.0432025\pi\)
\(440\) 45.5025 45.5025i 2.16925 2.16925i
\(441\) 0 0
\(442\) −20.4202 + 32.5899i −0.971292 + 1.55014i
\(443\) 10.1677i 0.483082i 0.970391 + 0.241541i \(0.0776528\pi\)
−0.970391 + 0.241541i \(0.922347\pi\)
\(444\) 0 0
\(445\) −22.3684 −1.06036
\(446\) −9.87894 −0.467781
\(447\) 0 0
\(448\) −4.98546 + 4.98546i −0.235541 + 0.235541i
\(449\) −16.5703 + 16.5703i −0.782002 + 0.782002i −0.980168 0.198166i \(-0.936501\pi\)
0.198166 + 0.980168i \(0.436501\pi\)
\(450\) 0 0
\(451\) 8.89703 0.418945
\(452\) −32.6869 −1.53746
\(453\) 0 0
\(454\) 50.3310i 2.36215i
\(455\) −24.9892 + 5.73682i −1.17151 + 0.268946i
\(456\) 0 0
\(457\) 4.13310 4.13310i 0.193338 0.193338i −0.603799 0.797137i \(-0.706347\pi\)
0.797137 + 0.603799i \(0.206347\pi\)
\(458\) 15.3630i 0.717867i
\(459\) 0 0
\(460\) −24.4996 + 24.4996i −1.14230 + 1.14230i
\(461\) 1.30784 + 1.30784i 0.0609120 + 0.0609120i 0.736907 0.675995i \(-0.236286\pi\)
−0.675995 + 0.736907i \(0.736286\pi\)
\(462\) 0 0
\(463\) 13.7129 + 13.7129i 0.637290 + 0.637290i 0.949886 0.312596i \(-0.101199\pi\)
−0.312596 + 0.949886i \(0.601199\pi\)
\(464\) 45.6030i 2.11707i
\(465\) 0 0
\(466\) −5.33542 5.33542i −0.247159 0.247159i
\(467\) 2.88124 0.133328 0.0666640 0.997775i \(-0.478764\pi\)
0.0666640 + 0.997775i \(0.478764\pi\)
\(468\) 0 0
\(469\) 22.7549 1.05072
\(470\) −19.6057 19.6057i −0.904342 0.904342i
\(471\) 0 0
\(472\) 6.21792i 0.286203i
\(473\) −13.3145 13.3145i −0.612202 0.612202i
\(474\) 0 0
\(475\) −1.16498 1.16498i −0.0534529 0.0534529i
\(476\) 27.7571 27.7571i 1.27224 1.27224i
\(477\) 0 0
\(478\) 61.3593i 2.80651i
\(479\) 1.52832 1.52832i 0.0698307 0.0698307i −0.671329 0.741160i \(-0.734276\pi\)
0.741160 + 0.671329i \(0.234276\pi\)
\(480\) 0 0
\(481\) 2.70739 4.32088i 0.123446 0.197015i
\(482\) 30.9594i 1.41016i
\(483\) 0 0
\(484\) 0.122168 0.00555309
\(485\) 3.32221 0.150854
\(486\) 0 0
\(487\) −14.5798 + 14.5798i −0.660672 + 0.660672i −0.955538 0.294867i \(-0.904725\pi\)
0.294867 + 0.955538i \(0.404725\pi\)
\(488\) 6.65725 6.65725i 0.301360 0.301360i
\(489\) 0 0
\(490\) −20.1614 −0.910798
\(491\) 35.8891 1.61965 0.809826 0.586670i \(-0.199561\pi\)
0.809826 + 0.586670i \(0.199561\pi\)
\(492\) 0 0
\(493\) 32.0950i 1.44548i
\(494\) 0.554328 + 2.41461i 0.0249404 + 0.108639i
\(495\) 0 0
\(496\) 29.1468 29.1468i 1.30873 1.30873i
\(497\) 5.03028i 0.225639i
\(498\) 0 0
\(499\) 0.287147 0.287147i 0.0128544 0.0128544i −0.700650 0.713505i \(-0.747107\pi\)
0.713505 + 0.700650i \(0.247107\pi\)
\(500\) 10.4333 + 10.4333i 0.466590 + 0.466590i
\(501\) 0 0
\(502\) −25.0475 25.0475i −1.11792 1.11792i
\(503\) 35.6235i 1.58837i 0.607673 + 0.794187i \(0.292103\pi\)
−0.607673 + 0.794187i \(0.707897\pi\)
\(504\) 0 0
\(505\) 4.29261 + 4.29261i 0.191019 + 0.191019i
\(506\) −20.1600 −0.896221
\(507\) 0 0
\(508\) 15.6135 0.692737
\(509\) 20.2264 + 20.2264i 0.896519 + 0.896519i 0.995126 0.0986078i \(-0.0314389\pi\)
−0.0986078 + 0.995126i \(0.531439\pi\)
\(510\) 0 0
\(511\) 22.2553i 0.984515i
\(512\) −34.8862 34.8862i −1.54176 1.54176i
\(513\) 0 0
\(514\) −11.8350 11.8350i −0.522020 0.522020i
\(515\) −33.4745 + 33.4745i −1.47506 + 1.47506i
\(516\) 0 0
\(517\) 11.0283i 0.485023i
\(518\) −5.38355 + 5.38355i −0.236540 + 0.236540i
\(519\) 0 0
\(520\) −15.6327 68.0950i −0.685539 2.98616i
\(521\) 7.56485i 0.331422i 0.986174 + 0.165711i \(0.0529919\pi\)
−0.986174 + 0.165711i \(0.947008\pi\)
\(522\) 0 0
\(523\) −23.2270 −1.01565 −0.507823 0.861462i \(-0.669549\pi\)
−0.507823 + 0.861462i \(0.669549\pi\)
\(524\) −51.0188 −2.22877
\(525\) 0 0
\(526\) 44.1888 44.1888i 1.92673 1.92673i
\(527\) 20.5133 20.5133i 0.893572 0.893572i
\(528\) 0 0
\(529\) −17.1696 −0.746506
\(530\) 16.3711 0.711117
\(531\) 0 0
\(532\) 2.52867i 0.109632i
\(533\) 5.12893 8.18557i 0.222159 0.354557i
\(534\) 0 0
\(535\) −42.2937 + 42.2937i −1.82851 + 1.82851i
\(536\) 62.0064i 2.67827i
\(537\) 0 0
\(538\) 39.5616 39.5616i 1.70562 1.70562i
\(539\) −5.67043 5.67043i −0.244243 0.244243i
\(540\) 0 0
\(541\) −10.6508 10.6508i −0.457915 0.457915i 0.440055 0.897971i \(-0.354959\pi\)
−0.897971 + 0.440055i \(0.854959\pi\)
\(542\) 30.3728i 1.30462i
\(543\) 0 0
\(544\) 10.4576 + 10.4576i 0.448365 + 0.448365i
\(545\) −34.5149 −1.47846
\(546\) 0 0
\(547\) 27.9253 1.19400 0.597000 0.802241i \(-0.296359\pi\)
0.597000 + 0.802241i \(0.296359\pi\)
\(548\) −8.18557 8.18557i −0.349670 0.349670i
\(549\) 0 0
\(550\) 50.3310i 2.14612i
\(551\) −1.46193 1.46193i −0.0622801 0.0622801i
\(552\) 0 0
\(553\) −25.2835 25.2835i −1.07517 1.07517i
\(554\) −16.7372 + 16.7372i −0.711098 + 0.711098i
\(555\) 0 0
\(556\) 68.8114i 2.91825i
\(557\) 10.2469 10.2469i 0.434176 0.434176i −0.455870 0.890046i \(-0.650672\pi\)
0.890046 + 0.455870i \(0.150672\pi\)
\(558\) 0 0
\(559\) −19.9253 + 4.57429i −0.842751 + 0.193472i
\(560\) 42.8674i 1.81148i
\(561\) 0 0
\(562\) 73.5289 3.10163
\(563\) 26.1624 1.10261 0.551307 0.834303i \(-0.314129\pi\)
0.551307 + 0.834303i \(0.314129\pi\)
\(564\) 0 0
\(565\) 17.7639 17.7639i 0.747334 0.747334i
\(566\) 20.9799 20.9799i 0.881850 0.881850i
\(567\) 0 0
\(568\) −13.7074 −0.575149
\(569\) 34.8359 1.46040 0.730198 0.683235i \(-0.239428\pi\)
0.730198 + 0.683235i \(0.239428\pi\)
\(570\) 0 0
\(571\) 17.2726i 0.722836i −0.932404 0.361418i \(-0.882293\pi\)
0.932404 0.361418i \(-0.117707\pi\)
\(572\) 27.4702 43.8414i 1.14859 1.83310i
\(573\) 0 0
\(574\) −10.1987 + 10.1987i −0.425686 + 0.425686i
\(575\) 14.5559i 0.607025i
\(576\) 0 0
\(577\) −3.84049 + 3.84049i −0.159882 + 0.159882i −0.782514 0.622633i \(-0.786063\pi\)
0.622633 + 0.782514i \(0.286063\pi\)
\(578\) 1.77776 + 1.77776i 0.0739452 + 0.0739452i
\(579\) 0 0
\(580\) 76.7559 + 76.7559i 3.18712 + 3.18712i
\(581\) 23.4139i 0.971373i
\(582\) 0 0
\(583\) 4.60442 + 4.60442i 0.190696 + 0.190696i
\(584\) −60.6450 −2.50951
\(585\) 0 0
\(586\) 30.3601 1.25416
\(587\) −28.9321 28.9321i −1.19416 1.19416i −0.975889 0.218269i \(-0.929959\pi\)
−0.218269 0.975889i \(-0.570041\pi\)
\(588\) 0 0
\(589\) 1.86876i 0.0770009i
\(590\) −6.29115 6.29115i −0.259003 0.259003i
\(591\) 0 0
\(592\) −6.02827 6.02827i −0.247761 0.247761i
\(593\) −22.1744 + 22.1744i −0.910592 + 0.910592i −0.996319 0.0857267i \(-0.972679\pi\)
0.0857267 + 0.996319i \(0.472679\pi\)
\(594\) 0 0
\(595\) 30.1696i 1.23683i
\(596\) −8.18557 + 8.18557i −0.335294 + 0.335294i
\(597\) 0 0
\(598\) −11.6218 + 18.5479i −0.475249 + 0.758479i
\(599\) 20.7337i 0.847158i −0.905859 0.423579i \(-0.860774\pi\)
0.905859 0.423579i \(-0.139226\pi\)
\(600\) 0 0
\(601\) 6.14217 0.250544 0.125272 0.992122i \(-0.460020\pi\)
0.125272 + 0.992122i \(0.460020\pi\)
\(602\) 30.5250 1.24411
\(603\) 0 0
\(604\) −70.2135 + 70.2135i −2.85695 + 2.85695i
\(605\) −0.0663932 + 0.0663932i −0.00269927 + 0.00269927i
\(606\) 0 0
\(607\) −19.1523 −0.777368 −0.388684 0.921371i \(-0.627070\pi\)
−0.388684 + 0.921371i \(0.627070\pi\)
\(608\) 0.952687 0.0386366
\(609\) 0 0
\(610\) 13.4713i 0.545438i
\(611\) −10.1464 6.35755i −0.410479 0.257199i
\(612\) 0 0
\(613\) −18.9253 + 18.9253i −0.764386 + 0.764386i −0.977112 0.212726i \(-0.931766\pi\)
0.212726 + 0.977112i \(0.431766\pi\)
\(614\) 23.2617i 0.938766i
\(615\) 0 0
\(616\) −29.3401 + 29.3401i −1.18215 + 1.18215i
\(617\) −0.986822 0.986822i −0.0397280 0.0397280i 0.686964 0.726692i \(-0.258943\pi\)
−0.726692 + 0.686964i \(0.758943\pi\)
\(618\) 0 0
\(619\) 19.5141 + 19.5141i 0.784339 + 0.784339i 0.980560 0.196220i \(-0.0628668\pi\)
−0.196220 + 0.980560i \(0.562867\pi\)
\(620\) 98.1160i 3.94043i
\(621\) 0 0
\(622\) −24.2179 24.2179i −0.971050 0.971050i
\(623\) 14.4232 0.577852
\(624\) 0 0
\(625\) 18.8013 0.752051
\(626\) 0.554328 + 0.554328i 0.0221554 + 0.0221554i
\(627\) 0 0
\(628\) 40.9245i 1.63307i
\(629\) −4.24264 4.24264i −0.169165 0.169165i
\(630\) 0 0
\(631\) 4.64723 + 4.64723i 0.185003 + 0.185003i 0.793532 0.608529i \(-0.208240\pi\)
−0.608529 + 0.793532i \(0.708240\pi\)
\(632\) 68.8970 68.8970i 2.74057 2.74057i
\(633\) 0 0
\(634\) 55.6892i 2.21170i
\(635\) −8.48528 + 8.48528i −0.336728 + 0.336728i
\(636\) 0 0
\(637\) −8.48586 + 1.94812i −0.336222 + 0.0771872i
\(638\) 63.1601i 2.50053i
\(639\) 0 0
\(640\) 50.6428 2.00183
\(641\) −32.8879 −1.29899 −0.649497 0.760364i \(-0.725021\pi\)
−0.649497 + 0.760364i \(0.725021\pi\)
\(642\) 0 0
\(643\) 27.4394 27.4394i 1.08211 1.08211i 0.0857931 0.996313i \(-0.472658\pi\)
0.996313 0.0857931i \(-0.0273424\pi\)
\(644\) 15.7974 15.7974i 0.622504 0.622504i
\(645\) 0 0
\(646\) 2.91518 0.114696
\(647\) 24.0560 0.945737 0.472869 0.881133i \(-0.343219\pi\)
0.472869 + 0.881133i \(0.343219\pi\)
\(648\) 0 0
\(649\) 3.53880i 0.138910i
\(650\) 46.3062 + 29.0147i 1.81628 + 1.13805i
\(651\) 0 0
\(652\) 71.3165 71.3165i 2.79297 2.79297i
\(653\) 26.6162i 1.04157i −0.853687 0.520786i \(-0.825639\pi\)
0.853687 0.520786i \(-0.174361\pi\)
\(654\) 0 0
\(655\) 27.7266 27.7266i 1.08337 1.08337i
\(656\) −11.4201 11.4201i −0.445879 0.445879i
\(657\) 0 0
\(658\) 12.6418 + 12.6418i 0.492827 + 0.492827i
\(659\) 10.7671i 0.419427i −0.977763 0.209713i \(-0.932747\pi\)
0.977763 0.209713i \(-0.0672531\pi\)
\(660\) 0 0
\(661\) 31.4996 + 31.4996i 1.22519 + 1.22519i 0.965762 + 0.259431i \(0.0835349\pi\)
0.259431 + 0.965762i \(0.416465\pi\)
\(662\) 18.6981 0.726721
\(663\) 0 0
\(664\) −63.8023 −2.47601
\(665\) 1.37423 + 1.37423i 0.0532903 + 0.0532903i
\(666\) 0 0
\(667\) 18.2662i 0.707270i
\(668\) 36.3770 + 36.3770i 1.40747 + 1.40747i
\(669\) 0 0
\(670\) −62.7367 62.7367i −2.42373 2.42373i
\(671\) −3.78884 + 3.78884i −0.146267 + 0.146267i
\(672\) 0 0
\(673\) 39.5844i 1.52587i 0.646477 + 0.762934i \(0.276242\pi\)
−0.646477 + 0.762934i \(0.723758\pi\)
\(674\) −32.6546 + 32.6546i −1.25781 + 1.25781i
\(675\) 0 0
\(676\) −24.4996 50.5471i −0.942292 1.94412i
\(677\) 2.40178i 0.0923080i −0.998934 0.0461540i \(-0.985304\pi\)
0.998934 0.0461540i \(-0.0146965\pi\)
\(678\) 0 0
\(679\) −2.14217 −0.0822089
\(680\) −82.2115 −3.15267
\(681\) 0 0
\(682\) −40.3684 + 40.3684i −1.54578 + 1.54578i
\(683\) −5.20380 + 5.20380i −0.199118 + 0.199118i −0.799622 0.600504i \(-0.794967\pi\)
0.600504 + 0.799622i \(0.294967\pi\)
\(684\) 0 0
\(685\) 8.89703 0.339938
\(686\) 50.6850 1.93516
\(687\) 0 0
\(688\) 34.1806i 1.30312i
\(689\) 6.89057 1.58188i 0.262510 0.0602649i
\(690\) 0 0
\(691\) 13.8825 13.8825i 0.528115 0.528115i −0.391895 0.920010i \(-0.628180\pi\)
0.920010 + 0.391895i \(0.128180\pi\)
\(692\) 100.077i 3.80435i
\(693\) 0 0
\(694\) −11.0283 + 11.0283i −0.418628 + 0.418628i
\(695\) −37.3961 37.3961i −1.41852 1.41852i
\(696\) 0 0
\(697\) −8.03735 8.03735i −0.304436 0.304436i
\(698\) 85.4332i 3.23369i
\(699\) 0 0
\(700\) −39.4394 39.4394i −1.49067 1.49067i
\(701\) −29.6985 −1.12170 −0.560848 0.827919i \(-0.689525\pi\)
−0.560848 + 0.827919i \(0.689525\pi\)
\(702\) 0 0
\(703\) −0.386505 −0.0145773
\(704\) 7.73177 + 7.73177i 0.291402 + 0.291402i
\(705\) 0 0
\(706\) 15.3209i 0.576609i
\(707\) −2.76788 2.76788i −0.104097 0.104097i
\(708\) 0 0
\(709\) −4.45213 4.45213i −0.167203 0.167203i 0.618546 0.785749i \(-0.287722\pi\)
−0.785749 + 0.618546i \(0.787722\pi\)
\(710\) 13.8688 13.8688i 0.520488 0.520488i
\(711\) 0 0
\(712\) 39.3027i 1.47293i
\(713\) 11.6747 11.6747i 0.437221 0.437221i
\(714\) 0 0
\(715\) 8.89703 + 38.7549i 0.332730 + 1.44935i
\(716\) 36.6639i 1.37020i
\(717\) 0 0
\(718\) −38.9909 −1.45513
\(719\) −20.0917 −0.749295 −0.374647 0.927167i \(-0.622236\pi\)
−0.374647 + 0.927167i \(0.622236\pi\)
\(720\) 0 0
\(721\) 21.5844 21.5844i 0.803846 0.803846i
\(722\) −33.6447 + 33.6447i −1.25213 + 1.25213i
\(723\) 0 0
\(724\) −86.0950 −3.19969
\(725\) −45.6030 −1.69365
\(726\) 0 0
\(727\) 16.9717i 0.629446i −0.949183 0.314723i \(-0.898088\pi\)
0.949183 0.314723i \(-0.101912\pi\)
\(728\) 10.0800 + 43.9078i 0.373589 + 1.62733i
\(729\) 0 0
\(730\) 61.3593 61.3593i 2.27101 2.27101i
\(731\) 24.0560i 0.889742i
\(732\) 0 0
\(733\) −27.4623 + 27.4623i −1.01434 + 1.01434i −0.0144458 + 0.999896i \(0.504598\pi\)
−0.999896 + 0.0144458i \(0.995402\pi\)
\(734\) 15.4635 + 15.4635i 0.570770 + 0.570770i
\(735\) 0 0
\(736\) 5.95173 + 5.95173i 0.219384 + 0.219384i
\(737\) 35.2897i 1.29991i
\(738\) 0 0
\(739\) −27.1660 27.1660i −0.999319 0.999319i 0.000681035 1.00000i \(-0.499783\pi\)
−1.00000 0.000681035i \(0.999783\pi\)
\(740\) 20.2928 0.745977
\(741\) 0 0
\(742\) −10.5561 −0.387528
\(743\) 9.67976 + 9.67976i 0.355116 + 0.355116i 0.862009 0.506893i \(-0.169206\pi\)
−0.506893 + 0.862009i \(0.669206\pi\)
\(744\) 0 0
\(745\) 8.89703i 0.325962i
\(746\) 0.554328 + 0.554328i 0.0202954 + 0.0202954i
\(747\) 0 0
\(748\) −43.0475 43.0475i −1.57397 1.57397i
\(749\) 27.2710 27.2710i 0.996462 0.996462i
\(750\) 0 0
\(751\) 15.9144i 0.580724i 0.956917 + 0.290362i \(0.0937757\pi\)
−0.956917 + 0.290362i \(0.906224\pi\)
\(752\) −14.1557 + 14.1557i −0.516206 + 0.516206i
\(753\) 0 0
\(754\) 58.1095 + 36.4104i 2.11622 + 1.32599i
\(755\) 76.3162i 2.77743i
\(756\) 0 0
\(757\) 46.5561 1.69211 0.846056 0.533094i \(-0.178971\pi\)
0.846056 + 0.533094i \(0.178971\pi\)
\(758\) 12.1608 0.441699
\(759\) 0 0
\(760\) −3.74474 + 3.74474i −0.135836 + 0.135836i
\(761\) −24.0024 + 24.0024i −0.870086 + 0.870086i −0.992481 0.122395i \(-0.960942\pi\)
0.122395 + 0.992481i \(0.460942\pi\)
\(762\) 0 0
\(763\) 22.2553 0.805695
\(764\) 9.85951 0.356705
\(765\) 0 0
\(766\) 58.4441i 2.11167i
\(767\) −3.25582 2.04004i −0.117561 0.0736615i
\(768\) 0 0
\(769\) −7.25526 + 7.25526i −0.261632 + 0.261632i −0.825717 0.564085i \(-0.809229\pi\)
0.564085 + 0.825717i \(0.309229\pi\)
\(770\) 59.3713i 2.13959i
\(771\) 0 0
\(772\) 61.7175 61.7175i 2.22126 2.22126i
\(773\) −1.76163 1.76163i −0.0633616 0.0633616i 0.674716 0.738078i \(-0.264266\pi\)
−0.738078 + 0.674716i \(0.764266\pi\)
\(774\) 0 0
\(775\) −29.1468 29.1468i −1.04699 1.04699i
\(776\) 5.83735i 0.209549i
\(777\) 0 0
\(778\) 44.6382 + 44.6382i 1.60036 + 1.60036i
\(779\) −0.732203 −0.0262339
\(780\) 0 0
\(781\) 7.80128 0.279152
\(782\) 18.2120 + 18.2120i 0.651260 + 0.651260i
\(783\) 0 0
\(784\) 14.5569i 0.519891i
\(785\) 22.2408 + 22.2408i 0.793807 + 0.793807i
\(786\) 0 0
\(787\) −24.2125 24.2125i −0.863081 0.863081i 0.128614 0.991695i \(-0.458947\pi\)
−0.991695 + 0.128614i \(0.958947\pi\)
\(788\) −16.0843 + 16.0843i −0.572978 + 0.572978i
\(789\) 0 0
\(790\) 139.417i 4.96023i
\(791\) −11.4542 + 11.4542i −0.407265 + 0.407265i
\(792\) 0 0
\(793\) 1.30168 + 5.67004i 0.0462241 + 0.201349i
\(794\) 1.07264i 0.0380667i
\(795\) 0 0
\(796\) −70.4815 −2.49815
\(797\) 28.7652 1.01892 0.509458 0.860495i \(-0.329846\pi\)
0.509458 + 0.860495i \(0.329846\pi\)
\(798\) 0 0
\(799\) −9.96265 + 9.96265i −0.352453 + 0.352453i
\(800\) 14.8590 14.8590i 0.525343 0.525343i
\(801\) 0 0
\(802\) 25.5196 0.901128
\(803\) 34.5149 1.21800
\(804\) 0 0
\(805\) 17.1704i 0.605179i
\(806\) 13.8688 + 60.4117i 0.488509 + 2.12791i
\(807\) 0 0
\(808\) 7.54241 7.54241i 0.265341 0.265341i
\(809\) 11.6875i 0.410912i 0.978666 + 0.205456i \(0.0658677\pi\)
−0.978666 + 0.205456i \(0.934132\pi\)
\(810\) 0 0
\(811\) 2.72193 2.72193i 0.0955797 0.0955797i −0.657700 0.753280i \(-0.728471\pi\)
0.753280 + 0.657700i \(0.228471\pi\)
\(812\) −49.4924 49.4924i −1.73684 1.73684i
\(813\) 0 0
\(814\) 8.34916 + 8.34916i 0.292638 + 0.292638i
\(815\) 77.5150i 2.71523i
\(816\) 0 0
\(817\) 1.09575 + 1.09575i 0.0383354 + 0.0383354i
\(818\) 35.3220 1.23500
\(819\) 0 0
\(820\) 38.4431 1.34249
\(821\) 12.7943 + 12.7943i 0.446525 + 0.446525i 0.894197 0.447673i \(-0.147747\pi\)
−0.447673 + 0.894197i \(0.647747\pi\)
\(822\) 0 0
\(823\) 35.8397i 1.24929i 0.780908 + 0.624646i \(0.214757\pi\)
−0.780908 + 0.624646i \(0.785243\pi\)
\(824\) 58.8170 + 58.8170i 2.04899 + 2.04899i
\(825\) 0 0
\(826\) 4.05655 + 4.05655i 0.141145 + 0.141145i
\(827\) 10.3669 10.3669i 0.360491 0.360491i −0.503502 0.863994i \(-0.667955\pi\)
0.863994 + 0.503502i \(0.167955\pi\)
\(828\) 0 0
\(829\) 41.5388i 1.44270i 0.692570 + 0.721351i \(0.256479\pi\)
−0.692570 + 0.721351i \(0.743521\pi\)
\(830\) 64.5538 64.5538i 2.24070 2.24070i
\(831\) 0 0
\(832\) 11.5707 2.65631i 0.401141 0.0920908i
\(833\) 10.2450i 0.354970i
\(834\) 0 0
\(835\) −39.5388 −1.36830
\(836\) −3.92163 −0.135632
\(837\) 0 0
\(838\) 9.17872 9.17872i 0.317073 0.317073i
\(839\) 12.8948 12.8948i 0.445179 0.445179i −0.448569 0.893748i \(-0.648066\pi\)
0.893748 + 0.448569i \(0.148066\pi\)
\(840\) 0 0
\(841\) −28.2270 −0.973344
\(842\) −90.3307 −3.11300
\(843\) 0 0
\(844\) 13.9435i 0.479953i
\(845\) 40.7847 + 14.1557i 1.40304 + 0.486971i
\(846\) 0 0
\(847\) 0.0428105 0.0428105i 0.00147099 0.00147099i
\(848\) 11.8203i 0.405912i
\(849\) 0 0
\(850\) 45.4677 45.4677i 1.55953 1.55953i
\(851\) −2.41461 2.41461i −0.0827719 0.0827719i
\(852\) 0 0
\(853\) −31.4249 31.4249i −1.07597 1.07597i −0.996867 0.0791018i \(-0.974795\pi\)
−0.0791018 0.996867i \(-0.525205\pi\)
\(854\) 8.68634i 0.297240i
\(855\) 0 0
\(856\) 74.3129 + 74.3129i 2.53996 + 2.53996i
\(857\) −51.3398 −1.75374 −0.876868 0.480732i \(-0.840371\pi\)
−0.876868 + 0.480732i \(0.840371\pi\)
\(858\) 0 0
\(859\) 13.4713 0.459636 0.229818 0.973234i \(-0.426187\pi\)
0.229818 + 0.973234i \(0.426187\pi\)
\(860\) −57.5305 57.5305i −1.96177 1.96177i
\(861\) 0 0
\(862\) 58.9162i 2.00669i
\(863\) 6.60369 + 6.60369i 0.224792 + 0.224792i 0.810513 0.585721i \(-0.199188\pi\)
−0.585721 + 0.810513i \(0.699188\pi\)
\(864\) 0 0
\(865\) 54.3876 + 54.3876i 1.84923 + 1.84923i
\(866\) −6.42394 + 6.42394i −0.218294 + 0.218294i
\(867\) 0 0
\(868\) 63.2654i 2.14737i
\(869\) −39.2113 + 39.2113i −1.33015 + 1.33015i
\(870\) 0 0
\(871\) −32.4677 20.3437i −1.10013 0.689320i
\(872\) 60.6450i 2.05370i
\(873\) 0 0
\(874\) 1.65911 0.0561204
\(875\) 7.31211 0.247194
\(876\) 0 0
\(877\) −0.489472 + 0.489472i −0.0165283 + 0.0165283i −0.715323 0.698794i \(-0.753720\pi\)
0.698794 + 0.715323i \(0.253720\pi\)
\(878\) 10.0800 10.0800i 0.340183 0.340183i
\(879\) 0 0
\(880\) 66.4815 2.24109
\(881\) −25.1774 −0.848250 −0.424125 0.905604i \(-0.639418\pi\)
−0.424125 + 0.905604i \(0.639418\pi\)
\(882\) 0 0
\(883\) 16.3118i 0.548936i 0.961596 + 0.274468i \(0.0885018\pi\)
−0.961596 + 0.274468i \(0.911498\pi\)
\(884\) −64.4210 + 14.7893i −2.16671 + 0.497417i
\(885\) 0 0
\(886\) −18.0757 + 18.0757i −0.607267 + 0.607267i
\(887\) 3.92163i 0.131675i −0.997830 0.0658377i \(-0.979028\pi\)
0.997830 0.0658377i \(-0.0209720\pi\)
\(888\) 0 0
\(889\) 5.47133 5.47133i 0.183502 0.183502i
\(890\) −39.7656 39.7656i −1.33295 1.33295i
\(891\) 0 0
\(892\) −12.0055 12.0055i −0.401973 0.401973i
\(893\) 0.907598i 0.0303716i
\(894\) 0 0
\(895\) −19.9253 19.9253i −0.666030 0.666030i
\(896\) −32.6546 −1.09091
\(897\) 0 0
\(898\) −58.9162 −1.96606
\(899\) −36.5762 36.5762i −1.21989 1.21989i
\(900\) 0 0
\(901\) 8.31903i 0.277147i
\(902\) 15.8168 + 15.8168i 0.526642 + 0.526642i
\(903\) 0 0
\(904\) −31.2125 31.2125i −1.03811 1.03811i
\(905\) 46.7890 46.7890i 1.55532 1.55532i
\(906\) 0 0
\(907\) 40.6127i 1.34852i −0.738493 0.674261i \(-0.764462\pi\)
0.738493 0.674261i \(-0.235538\pi\)
\(908\) −61.1652 + 61.1652i −2.02984 + 2.02984i
\(909\) 0 0
\(910\) −54.6236 34.2262i −1.81076 1.13459i
\(911\) 30.0195i 0.994590i 0.867581 + 0.497295i \(0.165673\pi\)
−0.867581 + 0.497295i \(0.834327\pi\)
\(912\) 0 0
\(913\) 36.3118 1.20175
\(914\) 14.6953 0.486078
\(915\) 0 0
\(916\) 18.6700 18.6700i 0.616876 0.616876i
\(917\) −17.8782 + 17.8782i −0.590389 + 0.590389i
\(918\) 0 0
\(919\) −46.8680 −1.54603 −0.773016 0.634387i \(-0.781253\pi\)
−0.773016 + 0.634387i \(0.781253\pi\)
\(920\) −46.7890 −1.54259
\(921\) 0 0
\(922\) 4.65004i 0.153141i
\(923\) 4.49726 7.17745i 0.148029 0.236249i
\(924\) 0 0
\(925\) −6.02827 + 6.02827i −0.198208 + 0.198208i
\(926\) 48.7564i 1.60224i
\(927\) 0 0
\(928\) 18.6464 18.6464i 0.612099 0.612099i
\(929\) 34.1275 + 34.1275i 1.11969 + 1.11969i 0.991787 + 0.127899i \(0.0408233\pi\)
0.127899 + 0.991787i \(0.459177\pi\)
\(930\) 0 0
\(931\) 0.466662 + 0.466662i 0.0152942 + 0.0152942i
\(932\) 12.9678i 0.424776i
\(933\) 0 0
\(934\) 5.12217 + 5.12217i 0.167602 + 0.167602i
\(935\) 46.7890 1.53016
\(936\) 0 0
\(937\) −41.4641 −1.35457 −0.677287 0.735719i \(-0.736844\pi\)
−0.677287 + 0.735719i \(0.736844\pi\)
\(938\) 40.4528 + 40.4528i 1.32083 + 1.32083i
\(939\) 0 0
\(940\) 47.6519i 1.55423i
\(941\) −25.0428 25.0428i −0.816371 0.816371i 0.169209 0.985580i \(-0.445879\pi\)
−0.985580 + 0.169209i \(0.945879\pi\)
\(942\) 0 0
\(943\) −4.57429 4.57429i −0.148959 0.148959i
\(944\) −4.54235 + 4.54235i −0.147841 + 0.147841i
\(945\) 0 0
\(946\) 47.3401i 1.53916i
\(947\) −13.8024 + 13.8024i −0.448519 + 0.448519i −0.894862 0.446343i \(-0.852726\pi\)
0.446343 + 0.894862i \(0.352726\pi\)
\(948\) 0 0
\(949\) 19.8970 31.7549i 0.645885 1.03081i
\(950\) 4.14211i 0.134388i
\(951\) 0 0
\(952\) 53.0101 1.71807
\(953\) 38.0253 1.23176 0.615880 0.787840i \(-0.288800\pi\)
0.615880 + 0.787840i \(0.288800\pi\)
\(954\) 0 0
\(955\) −5.35823 + 5.35823i −0.173388 + 0.173388i
\(956\) 74.5674 74.5674i 2.41168 2.41168i
\(957\) 0 0
\(958\) 5.43398 0.175564
\(959\) −5.73682 −0.185252
\(960\) 0 0
\(961\) 15.7549i 0.508221i
\(962\) 12.4946 2.86841i 0.402842 0.0924813i
\(963\) 0 0
\(964\) −37.6236 + 37.6236i −1.21178 + 1.21178i
\(965\) 67.0818i 2.15944i
\(966\) 0 0
\(967\) 19.4021 19.4021i 0.623929 0.623929i −0.322604 0.946534i \(-0.604558\pi\)
0.946534 + 0.322604i \(0.104558\pi\)
\(968\) 0.116657 + 0.116657i 0.00374951 + 0.00374951i
\(969\) 0 0
\(970\) 5.90611 + 5.90611i 0.189634 + 0.189634i
\(971\) 53.4334i 1.71476i −0.514684 0.857380i \(-0.672091\pi\)
0.514684 0.857380i \(-0.327909\pi\)
\(972\) 0 0
\(973\) 24.1131 + 24.1131i 0.773030 + 0.773030i
\(974\) −51.8387 −1.66102
\(975\) 0 0
\(976\) 9.72659 0.311341
\(977\) 40.3181 + 40.3181i 1.28989 + 1.28989i 0.934852 + 0.355039i \(0.115532\pi\)
0.355039 + 0.934852i \(0.384468\pi\)
\(978\) 0 0
\(979\) 22.3684i 0.714896i
\(980\) −24.5013 24.5013i −0.782665 0.782665i
\(981\) 0 0
\(982\) 63.8023 + 63.8023i 2.03601 + 2.03601i
\(983\) −5.31716 + 5.31716i −0.169591 + 0.169591i −0.786800 0.617209i \(-0.788263\pi\)
0.617209 + 0.786800i \(0.288263\pi\)
\(984\) 0 0
\(985\) 17.4823i 0.557031i
\(986\) 57.0572 57.0572i 1.81707 1.81707i
\(987\) 0 0
\(988\) −2.26073 + 3.60803i −0.0719233 + 0.114787i
\(989\) 13.6910i 0.435347i
\(990\) 0 0
\(991\) −6.31903 −0.200731 −0.100365 0.994951i \(-0.532001\pi\)
−0.100365 + 0.994951i \(0.532001\pi\)
\(992\) 23.8355 0.756777
\(993\) 0 0
\(994\) −8.94265 + 8.94265i −0.283644 + 0.283644i
\(995\) 38.3037 38.3037i 1.21431 1.21431i
\(996\) 0 0
\(997\) 6.77301 0.214503 0.107252 0.994232i \(-0.465795\pi\)
0.107252 + 0.994232i \(0.465795\pi\)
\(998\) 1.02096 0.0323178
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.2.i.a.44.6 yes 12
3.2 odd 2 inner 117.2.i.a.44.1 yes 12
4.3 odd 2 1872.2.bi.f.161.1 12
12.11 even 2 1872.2.bi.f.161.6 12
13.5 odd 4 1521.2.i.g.944.6 12
13.8 odd 4 inner 117.2.i.a.8.1 12
13.12 even 2 1521.2.i.g.746.1 12
39.5 even 4 1521.2.i.g.944.1 12
39.8 even 4 inner 117.2.i.a.8.6 yes 12
39.38 odd 2 1521.2.i.g.746.6 12
52.47 even 4 1872.2.bi.f.593.6 12
156.47 odd 4 1872.2.bi.f.593.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.i.a.8.1 12 13.8 odd 4 inner
117.2.i.a.8.6 yes 12 39.8 even 4 inner
117.2.i.a.44.1 yes 12 3.2 odd 2 inner
117.2.i.a.44.6 yes 12 1.1 even 1 trivial
1521.2.i.g.746.1 12 13.12 even 2
1521.2.i.g.746.6 12 39.38 odd 2
1521.2.i.g.944.1 12 39.5 even 4
1521.2.i.g.944.6 12 13.5 odd 4
1872.2.bi.f.161.1 12 4.3 odd 2
1872.2.bi.f.161.6 12 12.11 even 2
1872.2.bi.f.593.1 12 156.47 odd 4
1872.2.bi.f.593.6 12 52.47 even 4