Properties

Label 1521.2.i.g.944.1
Level $1521$
Weight $2$
Character 1521.944
Analytic conductor $12.145$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(746,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.746");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.26525057735983104.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{10} + 103x^{8} - 260x^{6} + 259x^{4} + 356x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 944.1
Root \(-1.64111 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1521.944
Dual form 1521.2.i.g.746.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.77776 + 1.77776i) q^{2} -4.32088i q^{4} +(2.34822 - 2.34822i) q^{5} +(-1.51414 + 1.51414i) q^{7} +(4.12598 + 4.12598i) q^{8} +8.34916i q^{10} +(-2.34822 - 2.34822i) q^{11} -5.38355i q^{14} -6.02827 q^{16} -4.24264 q^{17} +(0.193252 + 0.193252i) q^{19} +(-10.1464 - 10.1464i) q^{20} +8.34916 q^{22} -2.41461 q^{23} -6.02827i q^{25} +(6.54241 + 6.54241i) q^{28} -7.56485i q^{29} +(4.83502 + 4.83502i) q^{31} +(2.46488 - 2.46488i) q^{32} +(7.54241 - 7.54241i) q^{34} +7.11105i q^{35} +(-1.00000 + 1.00000i) q^{37} -0.687114 q^{38} +19.3774 q^{40} +(-1.89442 + 1.89442i) q^{41} +5.67004i q^{43} +(-10.1464 + 10.1464i) q^{44} +(4.29261 - 4.29261i) q^{46} +(-2.34822 - 2.34822i) q^{47} +2.41478i q^{49} +(10.7168 + 10.7168i) q^{50} -1.96081i q^{53} -11.0283 q^{55} -12.4946 q^{56} +(13.4485 + 13.4485i) q^{58} +(-0.753507 - 0.753507i) q^{59} -1.61350 q^{61} -17.1910 q^{62} -3.29261i q^{64} +(-7.51414 - 7.51414i) q^{67} +18.3320i q^{68} +(-12.6418 - 12.6418i) q^{70} +(-1.66111 + 1.66111i) q^{71} +(-7.34916 + 7.34916i) q^{73} -3.55553i q^{74} +(0.835021 - 0.835021i) q^{76} +7.11105 q^{77} -16.6983 q^{79} +(-14.1557 + 14.1557i) q^{80} -6.73566i q^{82} +(-7.73177 + 7.73177i) q^{83} +(-9.96265 + 9.96265i) q^{85} +(-10.0800 - 10.0800i) q^{86} -19.3774i q^{88} +(-4.76283 - 4.76283i) q^{89} +10.4333i q^{92} +8.34916 q^{94} +0.907598 q^{95} +(0.707389 + 0.707389i) q^{97} +(-4.29290 - 4.29290i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{7} - 20 q^{16} + 8 q^{19} + 16 q^{22} + 12 q^{34} - 12 q^{37} + 96 q^{40} + 72 q^{46} - 80 q^{55} + 92 q^{58} - 8 q^{61} - 64 q^{67} - 88 q^{70} - 4 q^{73} - 48 q^{76} - 32 q^{79} - 24 q^{85}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.77776 + 1.77776i −1.25707 + 1.25707i −0.304583 + 0.952486i \(0.598517\pi\)
−0.952486 + 0.304583i \(0.901483\pi\)
\(3\) 0 0
\(4\) 4.32088i 2.16044i
\(5\) 2.34822 2.34822i 1.05016 1.05016i 0.0514820 0.998674i \(-0.483606\pi\)
0.998674 0.0514820i \(-0.0163945\pi\)
\(6\) 0 0
\(7\) −1.51414 + 1.51414i −0.572290 + 0.572290i −0.932768 0.360478i \(-0.882614\pi\)
0.360478 + 0.932768i \(0.382614\pi\)
\(8\) 4.12598 + 4.12598i 1.45876 + 1.45876i
\(9\) 0 0
\(10\) 8.34916i 2.64024i
\(11\) −2.34822 2.34822i −0.708015 0.708015i 0.258103 0.966118i \(-0.416903\pi\)
−0.966118 + 0.258103i \(0.916903\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 5.38355i 1.43882i
\(15\) 0 0
\(16\) −6.02827 −1.50707
\(17\) −4.24264 −1.02899 −0.514496 0.857493i \(-0.672021\pi\)
−0.514496 + 0.857493i \(0.672021\pi\)
\(18\) 0 0
\(19\) 0.193252 + 0.193252i 0.0443351 + 0.0443351i 0.728927 0.684592i \(-0.240019\pi\)
−0.684592 + 0.728927i \(0.740019\pi\)
\(20\) −10.1464 10.1464i −2.26880 2.26880i
\(21\) 0 0
\(22\) 8.34916 1.78005
\(23\) −2.41461 −0.503482 −0.251741 0.967795i \(-0.581003\pi\)
−0.251741 + 0.967795i \(0.581003\pi\)
\(24\) 0 0
\(25\) 6.02827i 1.20565i
\(26\) 0 0
\(27\) 0 0
\(28\) 6.54241 + 6.54241i 1.23640 + 1.23640i
\(29\) 7.56485i 1.40476i −0.711803 0.702379i \(-0.752121\pi\)
0.711803 0.702379i \(-0.247879\pi\)
\(30\) 0 0
\(31\) 4.83502 + 4.83502i 0.868395 + 0.868395i 0.992295 0.123899i \(-0.0395400\pi\)
−0.123899 + 0.992295i \(0.539540\pi\)
\(32\) 2.46488 2.46488i 0.435733 0.435733i
\(33\) 0 0
\(34\) 7.54241 7.54241i 1.29351 1.29351i
\(35\) 7.11105i 1.20199i
\(36\) 0 0
\(37\) −1.00000 + 1.00000i −0.164399 + 0.164399i −0.784512 0.620113i \(-0.787087\pi\)
0.620113 + 0.784512i \(0.287087\pi\)
\(38\) −0.687114 −0.111465
\(39\) 0 0
\(40\) 19.3774 3.06384
\(41\) −1.89442 + 1.89442i −0.295859 + 0.295859i −0.839389 0.543531i \(-0.817087\pi\)
0.543531 + 0.839389i \(0.317087\pi\)
\(42\) 0 0
\(43\) 5.67004i 0.864673i 0.901712 + 0.432337i \(0.142311\pi\)
−0.901712 + 0.432337i \(0.857689\pi\)
\(44\) −10.1464 + 10.1464i −1.52963 + 1.52963i
\(45\) 0 0
\(46\) 4.29261 4.29261i 0.632911 0.632911i
\(47\) −2.34822 2.34822i −0.342523 0.342523i 0.514792 0.857315i \(-0.327869\pi\)
−0.857315 + 0.514792i \(0.827869\pi\)
\(48\) 0 0
\(49\) 2.41478i 0.344968i
\(50\) 10.7168 + 10.7168i 1.51559 + 1.51559i
\(51\) 0 0
\(52\) 0 0
\(53\) 1.96081i 0.269339i −0.990891 0.134669i \(-0.957003\pi\)
0.990891 0.134669i \(-0.0429972\pi\)
\(54\) 0 0
\(55\) −11.0283 −1.48705
\(56\) −12.4946 −1.66966
\(57\) 0 0
\(58\) 13.4485 + 13.4485i 1.76588 + 1.76588i
\(59\) −0.753507 0.753507i −0.0980983 0.0980983i 0.656354 0.754453i \(-0.272098\pi\)
−0.754453 + 0.656354i \(0.772098\pi\)
\(60\) 0 0
\(61\) −1.61350 −0.206587 −0.103293 0.994651i \(-0.532938\pi\)
−0.103293 + 0.994651i \(0.532938\pi\)
\(62\) −17.1910 −2.18327
\(63\) 0 0
\(64\) 3.29261i 0.411576i
\(65\) 0 0
\(66\) 0 0
\(67\) −7.51414 7.51414i −0.917998 0.917998i 0.0788857 0.996884i \(-0.474864\pi\)
−0.996884 + 0.0788857i \(0.974864\pi\)
\(68\) 18.3320i 2.22308i
\(69\) 0 0
\(70\) −12.6418 12.6418i −1.51098 1.51098i
\(71\) −1.66111 + 1.66111i −0.197137 + 0.197137i −0.798772 0.601635i \(-0.794516\pi\)
0.601635 + 0.798772i \(0.294516\pi\)
\(72\) 0 0
\(73\) −7.34916 + 7.34916i −0.860154 + 0.860154i −0.991356 0.131202i \(-0.958116\pi\)
0.131202 + 0.991356i \(0.458116\pi\)
\(74\) 3.55553i 0.413322i
\(75\) 0 0
\(76\) 0.835021 0.835021i 0.0957835 0.0957835i
\(77\) 7.11105 0.810380
\(78\) 0 0
\(79\) −16.6983 −1.87871 −0.939354 0.342950i \(-0.888574\pi\)
−0.939354 + 0.342950i \(0.888574\pi\)
\(80\) −14.1557 + 14.1557i −1.58266 + 1.58266i
\(81\) 0 0
\(82\) 6.73566i 0.743830i
\(83\) −7.73177 + 7.73177i −0.848672 + 0.848672i −0.989968 0.141295i \(-0.954873\pi\)
0.141295 + 0.989968i \(0.454873\pi\)
\(84\) 0 0
\(85\) −9.96265 + 9.96265i −1.08060 + 1.08060i
\(86\) −10.0800 10.0800i −1.08695 1.08695i
\(87\) 0 0
\(88\) 19.3774i 2.06564i
\(89\) −4.76283 4.76283i −0.504859 0.504859i 0.408085 0.912944i \(-0.366197\pi\)
−0.912944 + 0.408085i \(0.866197\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 10.4333i 1.08774i
\(93\) 0 0
\(94\) 8.34916 0.861150
\(95\) 0.907598 0.0931176
\(96\) 0 0
\(97\) 0.707389 + 0.707389i 0.0718245 + 0.0718245i 0.742106 0.670282i \(-0.233827\pi\)
−0.670282 + 0.742106i \(0.733827\pi\)
\(98\) −4.29290 4.29290i −0.433649 0.433649i
\(99\) 0 0
\(100\) −26.0475 −2.60475
\(101\) −1.82803 −0.181896 −0.0909478 0.995856i \(-0.528990\pi\)
−0.0909478 + 0.995856i \(0.528990\pi\)
\(102\) 0 0
\(103\) 14.2553i 1.40461i 0.711875 + 0.702306i \(0.247846\pi\)
−0.711875 + 0.702306i \(0.752154\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.48586 + 3.48586i 0.338577 + 0.338577i
\(107\) 18.0109i 1.74118i 0.492006 + 0.870592i \(0.336264\pi\)
−0.492006 + 0.870592i \(0.663736\pi\)
\(108\) 0 0
\(109\) −7.34916 7.34916i −0.703922 0.703922i 0.261328 0.965250i \(-0.415839\pi\)
−0.965250 + 0.261328i \(0.915839\pi\)
\(110\) 19.6057 19.6057i 1.86933 1.86933i
\(111\) 0 0
\(112\) 9.12763 9.12763i 0.862480 0.862480i
\(113\) 7.56485i 0.711641i −0.934554 0.355821i \(-0.884201\pi\)
0.934554 0.355821i \(-0.115799\pi\)
\(114\) 0 0
\(115\) −5.67004 + 5.67004i −0.528734 + 0.528734i
\(116\) −32.6869 −3.03490
\(117\) 0 0
\(118\) 2.67912 0.246633
\(119\) 6.42394 6.42394i 0.588882 0.588882i
\(120\) 0 0
\(121\) 0.0282739i 0.00257035i
\(122\) 2.86841 2.86841i 0.259694 0.259694i
\(123\) 0 0
\(124\) 20.8916 20.8916i 1.87612 1.87612i
\(125\) −2.41461 2.41461i −0.215970 0.215970i
\(126\) 0 0
\(127\) 3.61350i 0.320646i 0.987065 + 0.160323i \(0.0512536\pi\)
−0.987065 + 0.160323i \(0.948746\pi\)
\(128\) 10.7832 + 10.7832i 0.953113 + 0.953113i
\(129\) 0 0
\(130\) 0 0
\(131\) 11.8075i 1.03163i −0.856701 0.515813i \(-0.827490\pi\)
0.856701 0.515813i \(-0.172510\pi\)
\(132\) 0 0
\(133\) −0.585221 −0.0507451
\(134\) 26.7167 2.30797
\(135\) 0 0
\(136\) −17.5051 17.5051i −1.50105 1.50105i
\(137\) 1.89442 + 1.89442i 0.161851 + 0.161851i 0.783386 0.621535i \(-0.213491\pi\)
−0.621535 + 0.783386i \(0.713491\pi\)
\(138\) 0 0
\(139\) 15.9253 1.35077 0.675383 0.737467i \(-0.263978\pi\)
0.675383 + 0.737467i \(0.263978\pi\)
\(140\) 30.7260 2.59682
\(141\) 0 0
\(142\) 5.90611i 0.495629i
\(143\) 0 0
\(144\) 0 0
\(145\) −17.7639 17.7639i −1.47521 1.47521i
\(146\) 26.1301i 2.16254i
\(147\) 0 0
\(148\) 4.32088 + 4.32088i 0.355175 + 0.355175i
\(149\) −1.89442 + 1.89442i −0.155197 + 0.155197i −0.780435 0.625238i \(-0.785002\pi\)
0.625238 + 0.780435i \(0.285002\pi\)
\(150\) 0 0
\(151\) −16.2498 + 16.2498i −1.32239 + 1.32239i −0.410553 + 0.911837i \(0.634664\pi\)
−0.911837 + 0.410553i \(0.865336\pi\)
\(152\) 1.59471i 0.129348i
\(153\) 0 0
\(154\) −12.6418 + 12.6418i −1.01870 + 1.01870i
\(155\) 22.7074 1.82390
\(156\) 0 0
\(157\) −9.47133 −0.755894 −0.377947 0.925827i \(-0.623370\pi\)
−0.377947 + 0.925827i \(0.623370\pi\)
\(158\) 29.6857 29.6857i 2.36166 2.36166i
\(159\) 0 0
\(160\) 11.5761i 0.915175i
\(161\) 3.65605 3.65605i 0.288137 0.288137i
\(162\) 0 0
\(163\) 16.5051 16.5051i 1.29278 1.29278i 0.359714 0.933063i \(-0.382874\pi\)
0.933063 0.359714i \(-0.117126\pi\)
\(164\) 8.18557 + 8.18557i 0.639186 + 0.639186i
\(165\) 0 0
\(166\) 27.4905i 2.13368i
\(167\) −8.41889 8.41889i −0.651473 0.651473i 0.301875 0.953348i \(-0.402388\pi\)
−0.953348 + 0.301875i \(0.902388\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 35.4225i 2.71678i
\(171\) 0 0
\(172\) 24.4996 1.86808
\(173\) −23.1612 −1.76091 −0.880456 0.474127i \(-0.842764\pi\)
−0.880456 + 0.474127i \(0.842764\pi\)
\(174\) 0 0
\(175\) 9.12763 + 9.12763i 0.689984 + 0.689984i
\(176\) 14.1557 + 14.1557i 1.06703 + 1.06703i
\(177\) 0 0
\(178\) 16.9344 1.26929
\(179\) 8.48528 0.634220 0.317110 0.948389i \(-0.397288\pi\)
0.317110 + 0.948389i \(0.397288\pi\)
\(180\) 0 0
\(181\) 19.9253i 1.48104i −0.672036 0.740518i \(-0.734580\pi\)
0.672036 0.740518i \(-0.265420\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −9.96265 9.96265i −0.734457 0.734457i
\(185\) 4.69644i 0.345289i
\(186\) 0 0
\(187\) 9.96265 + 9.96265i 0.728541 + 0.728541i
\(188\) −10.1464 + 10.1464i −0.740001 + 0.740001i
\(189\) 0 0
\(190\) −1.61350 + 1.61350i −0.117055 + 0.117055i
\(191\) 2.28183i 0.165107i 0.996587 + 0.0825536i \(0.0263076\pi\)
−0.996587 + 0.0825536i \(0.973692\pi\)
\(192\) 0 0
\(193\) 14.2835 14.2835i 1.02815 1.02815i 0.0285595 0.999592i \(-0.490908\pi\)
0.999592 0.0285595i \(-0.00909200\pi\)
\(194\) −2.51514 −0.180577
\(195\) 0 0
\(196\) 10.4340 0.745284
\(197\) −3.72245 + 3.72245i −0.265213 + 0.265213i −0.827168 0.561955i \(-0.810050\pi\)
0.561955 + 0.827168i \(0.310050\pi\)
\(198\) 0 0
\(199\) 16.3118i 1.15631i −0.815926 0.578157i \(-0.803772\pi\)
0.815926 0.578157i \(-0.196228\pi\)
\(200\) 24.8726 24.8726i 1.75876 1.75876i
\(201\) 0 0
\(202\) 3.24980 3.24980i 0.228655 0.228655i
\(203\) 11.4542 + 11.4542i 0.803929 + 0.803929i
\(204\) 0 0
\(205\) 8.89703i 0.621396i
\(206\) −25.3425 25.3425i −1.76569 1.76569i
\(207\) 0 0
\(208\) 0 0
\(209\) 0.907598i 0.0627799i
\(210\) 0 0
\(211\) 3.22699 0.222155 0.111078 0.993812i \(-0.464570\pi\)
0.111078 + 0.993812i \(0.464570\pi\)
\(212\) −8.47245 −0.581890
\(213\) 0 0
\(214\) −32.0192 32.0192i −2.18879 2.18879i
\(215\) 13.3145 + 13.3145i 0.908042 + 0.908042i
\(216\) 0 0
\(217\) −14.6418 −0.993948
\(218\) 26.1301 1.76976
\(219\) 0 0
\(220\) 47.6519i 3.21269i
\(221\) 0 0
\(222\) 0 0
\(223\) 2.77847 + 2.77847i 0.186060 + 0.186060i 0.793991 0.607930i \(-0.208000\pi\)
−0.607930 + 0.793991i \(0.708000\pi\)
\(224\) 7.46432i 0.498731i
\(225\) 0 0
\(226\) 13.4485 + 13.4485i 0.894582 + 0.894582i
\(227\) −14.1557 + 14.1557i −0.939548 + 0.939548i −0.998274 0.0587264i \(-0.981296\pi\)
0.0587264 + 0.998274i \(0.481296\pi\)
\(228\) 0 0
\(229\) 4.32088 4.32088i 0.285532 0.285532i −0.549778 0.835311i \(-0.685288\pi\)
0.835311 + 0.549778i \(0.185288\pi\)
\(230\) 20.1600i 1.32931i
\(231\) 0 0
\(232\) 31.2125 31.2125i 2.04920 2.04920i
\(233\) −3.00120 −0.196615 −0.0983075 0.995156i \(-0.531343\pi\)
−0.0983075 + 0.995156i \(0.531343\pi\)
\(234\) 0 0
\(235\) −11.0283 −0.719405
\(236\) −3.25582 + 3.25582i −0.211936 + 0.211936i
\(237\) 0 0
\(238\) 22.8405i 1.48053i
\(239\) 17.2574 17.2574i 1.11629 1.11629i 0.124010 0.992281i \(-0.460424\pi\)
0.992281 0.124010i \(-0.0395755\pi\)
\(240\) 0 0
\(241\) −8.70739 + 8.70739i −0.560892 + 0.560892i −0.929561 0.368669i \(-0.879814\pi\)
0.368669 + 0.929561i \(0.379814\pi\)
\(242\) −0.0502642 0.0502642i −0.00323111 0.00323111i
\(243\) 0 0
\(244\) 6.97173i 0.446319i
\(245\) 5.67043 + 5.67043i 0.362271 + 0.362271i
\(246\) 0 0
\(247\) 0 0
\(248\) 39.8984i 2.53355i
\(249\) 0 0
\(250\) 8.58522 0.542977
\(251\) −14.0893 −0.889310 −0.444655 0.895702i \(-0.646674\pi\)
−0.444655 + 0.895702i \(0.646674\pi\)
\(252\) 0 0
\(253\) 5.67004 + 5.67004i 0.356473 + 0.356473i
\(254\) −6.42394 6.42394i −0.403074 0.403074i
\(255\) 0 0
\(256\) −31.7549 −1.98468
\(257\) −6.65725 −0.415268 −0.207634 0.978207i \(-0.566576\pi\)
−0.207634 + 0.978207i \(0.566576\pi\)
\(258\) 0 0
\(259\) 3.02827i 0.188168i
\(260\) 0 0
\(261\) 0 0
\(262\) 20.9909 + 20.9909i 1.29682 + 1.29682i
\(263\) 24.8564i 1.53271i 0.642416 + 0.766356i \(0.277932\pi\)
−0.642416 + 0.766356i \(0.722068\pi\)
\(264\) 0 0
\(265\) −4.60442 4.60442i −0.282847 0.282847i
\(266\) 1.04038 1.04038i 0.0637901 0.0637901i
\(267\) 0 0
\(268\) −32.4677 + 32.4677i −1.98328 + 1.98328i
\(269\) 22.2536i 1.35683i 0.734681 + 0.678413i \(0.237332\pi\)
−0.734681 + 0.678413i \(0.762668\pi\)
\(270\) 0 0
\(271\) −8.54241 + 8.54241i −0.518915 + 0.518915i −0.917243 0.398328i \(-0.869590\pi\)
0.398328 + 0.917243i \(0.369590\pi\)
\(272\) 25.5758 1.55076
\(273\) 0 0
\(274\) −6.73566 −0.406916
\(275\) −14.1557 + 14.1557i −0.853622 + 0.853622i
\(276\) 0 0
\(277\) 9.41478i 0.565679i −0.959167 0.282840i \(-0.908724\pi\)
0.959167 0.282840i \(-0.0912764\pi\)
\(278\) −28.3114 + 28.3114i −1.69801 + 1.69801i
\(279\) 0 0
\(280\) −29.3401 + 29.3401i −1.75341 + 1.75341i
\(281\) −20.6802 20.6802i −1.23368 1.23368i −0.962541 0.271135i \(-0.912601\pi\)
−0.271135 0.962541i \(-0.587399\pi\)
\(282\) 0 0
\(283\) 11.8013i 0.701513i 0.936467 + 0.350757i \(0.114076\pi\)
−0.936467 + 0.350757i \(0.885924\pi\)
\(284\) 7.17745 + 7.17745i 0.425903 + 0.425903i
\(285\) 0 0
\(286\) 0 0
\(287\) 5.73682i 0.338634i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 63.1601 3.70889
\(291\) 0 0
\(292\) 31.7549 + 31.7549i 1.85831 + 1.85831i
\(293\) −8.53884 8.53884i −0.498845 0.498845i 0.412234 0.911078i \(-0.364749\pi\)
−0.911078 + 0.412234i \(0.864749\pi\)
\(294\) 0 0
\(295\) −3.53880 −0.206037
\(296\) −8.25197 −0.479636
\(297\) 0 0
\(298\) 6.73566i 0.390186i
\(299\) 0 0
\(300\) 0 0
\(301\) −8.58522 8.58522i −0.494844 0.494844i
\(302\) 57.7766i 3.32467i
\(303\) 0 0
\(304\) −1.16498 1.16498i −0.0668161 0.0668161i
\(305\) −3.78884 + 3.78884i −0.216948 + 0.216948i
\(306\) 0 0
\(307\) 6.54241 6.54241i 0.373395 0.373395i −0.495317 0.868712i \(-0.664948\pi\)
0.868712 + 0.495317i \(0.164948\pi\)
\(308\) 30.7260i 1.75078i
\(309\) 0 0
\(310\) −40.3684 + 40.3684i −2.29277 + 2.29277i
\(311\) −13.6227 −0.772472 −0.386236 0.922400i \(-0.626225\pi\)
−0.386236 + 0.922400i \(0.626225\pi\)
\(312\) 0 0
\(313\) 0.311812 0.0176246 0.00881232 0.999961i \(-0.497195\pi\)
0.00881232 + 0.999961i \(0.497195\pi\)
\(314\) 16.8378 16.8378i 0.950211 0.950211i
\(315\) 0 0
\(316\) 72.1515i 4.05884i
\(317\) 15.6627 15.6627i 0.879706 0.879706i −0.113798 0.993504i \(-0.536302\pi\)
0.993504 + 0.113798i \(0.0363015\pi\)
\(318\) 0 0
\(319\) −17.7639 + 17.7639i −0.994590 + 0.994590i
\(320\) −7.73177 7.73177i −0.432219 0.432219i
\(321\) 0 0
\(322\) 12.9992i 0.724417i
\(323\) −0.819901 0.819901i −0.0456205 0.0456205i
\(324\) 0 0
\(325\) 0 0
\(326\) 58.6842i 3.25022i
\(327\) 0 0
\(328\) −15.6327 −0.863171
\(329\) 7.11105 0.392045
\(330\) 0 0
\(331\) −5.25887 5.25887i −0.289054 0.289054i 0.547652 0.836706i \(-0.315522\pi\)
−0.836706 + 0.547652i \(0.815522\pi\)
\(332\) 33.4081 + 33.4081i 1.83351 + 1.83351i
\(333\) 0 0
\(334\) 29.9336 1.63789
\(335\) −35.2897 −1.92808
\(336\) 0 0
\(337\) 18.3684i 1.00059i −0.865856 0.500294i \(-0.833225\pi\)
0.865856 0.500294i \(-0.166775\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 43.0475 + 43.0475i 2.33458 + 2.33458i
\(341\) 22.7074i 1.22967i
\(342\) 0 0
\(343\) −14.2553 14.2553i −0.769712 0.769712i
\(344\) −23.3945 + 23.3945i −1.26135 + 1.26135i
\(345\) 0 0
\(346\) 41.1751 41.1751i 2.21359 2.21359i
\(347\) 6.20345i 0.333019i −0.986040 0.166509i \(-0.946750\pi\)
0.986040 0.166509i \(-0.0532496\pi\)
\(348\) 0 0
\(349\) 24.0283 24.0283i 1.28620 1.28620i 0.349130 0.937074i \(-0.386477\pi\)
0.937074 0.349130i \(-0.113523\pi\)
\(350\) −32.4535 −1.73471
\(351\) 0 0
\(352\) −11.5761 −0.617011
\(353\) −4.30903 + 4.30903i −0.229347 + 0.229347i −0.812420 0.583073i \(-0.801850\pi\)
0.583073 + 0.812420i \(0.301850\pi\)
\(354\) 0 0
\(355\) 7.80128i 0.414049i
\(356\) −20.5797 + 20.5797i −1.09072 + 1.09072i
\(357\) 0 0
\(358\) −15.0848 + 15.0848i −0.797258 + 0.797258i
\(359\) 10.9663 + 10.9663i 0.578779 + 0.578779i 0.934567 0.355788i \(-0.115788\pi\)
−0.355788 + 0.934567i \(0.615788\pi\)
\(360\) 0 0
\(361\) 18.9253i 0.996069i
\(362\) 35.4225 + 35.4225i 1.86176 + 1.86176i
\(363\) 0 0
\(364\) 0 0
\(365\) 34.5149i 1.80659i
\(366\) 0 0
\(367\) 8.69832 0.454048 0.227024 0.973889i \(-0.427100\pi\)
0.227024 + 0.973889i \(0.427100\pi\)
\(368\) 14.5559 0.758781
\(369\) 0 0
\(370\) −8.34916 8.34916i −0.434052 0.434052i
\(371\) 2.96894 + 2.96894i 0.154140 + 0.154140i
\(372\) 0 0
\(373\) 0.311812 0.0161450 0.00807250 0.999967i \(-0.497430\pi\)
0.00807250 + 0.999967i \(0.497430\pi\)
\(374\) −35.4225 −1.83165
\(375\) 0 0
\(376\) 19.3774i 0.999315i
\(377\) 0 0
\(378\) 0 0
\(379\) −3.42024 3.42024i −0.175686 0.175686i 0.613786 0.789472i \(-0.289646\pi\)
−0.789472 + 0.613786i \(0.789646\pi\)
\(380\) 3.92163i 0.201175i
\(381\) 0 0
\(382\) −4.05655 4.05655i −0.207551 0.207551i
\(383\) 16.4375 16.4375i 0.839919 0.839919i −0.148929 0.988848i \(-0.547583\pi\)
0.988848 + 0.148929i \(0.0475825\pi\)
\(384\) 0 0
\(385\) 16.6983 16.6983i 0.851025 0.851025i
\(386\) 50.7855i 2.58491i
\(387\) 0 0
\(388\) 3.05655 3.05655i 0.155173 0.155173i
\(389\) 25.1092 1.27309 0.636543 0.771241i \(-0.280364\pi\)
0.636543 + 0.771241i \(0.280364\pi\)
\(390\) 0 0
\(391\) 10.2443 0.518078
\(392\) −9.96334 + 9.96334i −0.503224 + 0.503224i
\(393\) 0 0
\(394\) 13.2353i 0.666783i
\(395\) −39.2113 + 39.2113i −1.97294 + 1.97294i
\(396\) 0 0
\(397\) −0.301683 + 0.301683i −0.0151410 + 0.0151410i −0.714637 0.699496i \(-0.753408\pi\)
0.699496 + 0.714637i \(0.253408\pi\)
\(398\) 28.9985 + 28.9985i 1.45357 + 1.45357i
\(399\) 0 0
\(400\) 36.3401i 1.81700i
\(401\) −7.17745 7.17745i −0.358425 0.358425i 0.504807 0.863232i \(-0.331564\pi\)
−0.863232 + 0.504807i \(0.831564\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 7.89870i 0.392975i
\(405\) 0 0
\(406\) −40.7258 −2.02119
\(407\) 4.69644 0.232794
\(408\) 0 0
\(409\) −9.93438 9.93438i −0.491223 0.491223i 0.417468 0.908692i \(-0.362918\pi\)
−0.908692 + 0.417468i \(0.862918\pi\)
\(410\) −15.8168 15.8168i −0.781137 0.781137i
\(411\) 0 0
\(412\) 61.5953 3.03459
\(413\) 2.28183 0.112281
\(414\) 0 0
\(415\) 36.3118i 1.78248i
\(416\) 0 0
\(417\) 0 0
\(418\) 1.61350 + 1.61350i 0.0789186 + 0.0789186i
\(419\) 5.16307i 0.252232i 0.992015 + 0.126116i \(0.0402512\pi\)
−0.992015 + 0.126116i \(0.959749\pi\)
\(420\) 0 0
\(421\) 25.4057 + 25.4057i 1.23820 + 1.23820i 0.960737 + 0.277462i \(0.0894931\pi\)
0.277462 + 0.960737i \(0.410507\pi\)
\(422\) −5.73682 + 5.73682i −0.279264 + 0.279264i
\(423\) 0 0
\(424\) 8.09029 8.09029i 0.392899 0.392899i
\(425\) 25.5758i 1.24061i
\(426\) 0 0
\(427\) 2.44305 2.44305i 0.118228 0.118228i
\(428\) 77.8232 3.76173
\(429\) 0 0
\(430\) −47.3401 −2.28294
\(431\) −16.5703 + 16.5703i −0.798165 + 0.798165i −0.982806 0.184641i \(-0.940888\pi\)
0.184641 + 0.982806i \(0.440888\pi\)
\(432\) 0 0
\(433\) 3.61350i 0.173653i −0.996223 0.0868267i \(-0.972327\pi\)
0.996223 0.0868267i \(-0.0276727\pi\)
\(434\) 26.0296 26.0296i 1.24946 1.24946i
\(435\) 0 0
\(436\) −31.7549 + 31.7549i −1.52078 + 1.52078i
\(437\) −0.466630 0.466630i −0.0223219 0.0223219i
\(438\) 0 0
\(439\) 5.67004i 0.270616i 0.990804 + 0.135308i \(0.0432025\pi\)
−0.990804 + 0.135308i \(0.956798\pi\)
\(440\) −45.5025 45.5025i −2.16925 2.16925i
\(441\) 0 0
\(442\) 0 0
\(443\) 10.1677i 0.483082i −0.970391 0.241541i \(-0.922347\pi\)
0.970391 0.241541i \(-0.0776528\pi\)
\(444\) 0 0
\(445\) −22.3684 −1.06036
\(446\) −9.87894 −0.467781
\(447\) 0 0
\(448\) 4.98546 + 4.98546i 0.235541 + 0.235541i
\(449\) 16.5703 + 16.5703i 0.782002 + 0.782002i 0.980168 0.198166i \(-0.0634986\pi\)
−0.198166 + 0.980168i \(0.563499\pi\)
\(450\) 0 0
\(451\) 8.89703 0.418945
\(452\) −32.6869 −1.53746
\(453\) 0 0
\(454\) 50.3310i 2.36215i
\(455\) 0 0
\(456\) 0 0
\(457\) −4.13310 4.13310i −0.193338 0.193338i 0.603799 0.797137i \(-0.293653\pi\)
−0.797137 + 0.603799i \(0.793653\pi\)
\(458\) 15.3630i 0.717867i
\(459\) 0 0
\(460\) 24.4996 + 24.4996i 1.14230 + 1.14230i
\(461\) −1.30784 + 1.30784i −0.0609120 + 0.0609120i −0.736907 0.675995i \(-0.763714\pi\)
0.675995 + 0.736907i \(0.263714\pi\)
\(462\) 0 0
\(463\) −13.7129 + 13.7129i −0.637290 + 0.637290i −0.949886 0.312596i \(-0.898801\pi\)
0.312596 + 0.949886i \(0.398801\pi\)
\(464\) 45.6030i 2.11707i
\(465\) 0 0
\(466\) 5.33542 5.33542i 0.247159 0.247159i
\(467\) 2.88124 0.133328 0.0666640 0.997775i \(-0.478764\pi\)
0.0666640 + 0.997775i \(0.478764\pi\)
\(468\) 0 0
\(469\) 22.7549 1.05072
\(470\) 19.6057 19.6057i 0.904342 0.904342i
\(471\) 0 0
\(472\) 6.21792i 0.286203i
\(473\) 13.3145 13.3145i 0.612202 0.612202i
\(474\) 0 0
\(475\) 1.16498 1.16498i 0.0534529 0.0534529i
\(476\) −27.7571 27.7571i −1.27224 1.27224i
\(477\) 0 0
\(478\) 61.3593i 2.80651i
\(479\) −1.52832 1.52832i −0.0698307 0.0698307i 0.671329 0.741160i \(-0.265724\pi\)
−0.741160 + 0.671329i \(0.765724\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 30.9594i 1.41016i
\(483\) 0 0
\(484\) 0.122168 0.00555309
\(485\) 3.32221 0.150854
\(486\) 0 0
\(487\) 14.5798 + 14.5798i 0.660672 + 0.660672i 0.955538 0.294867i \(-0.0952752\pi\)
−0.294867 + 0.955538i \(0.595275\pi\)
\(488\) −6.65725 6.65725i −0.301360 0.301360i
\(489\) 0 0
\(490\) −20.1614 −0.910798
\(491\) 35.8891 1.61965 0.809826 0.586670i \(-0.199561\pi\)
0.809826 + 0.586670i \(0.199561\pi\)
\(492\) 0 0
\(493\) 32.0950i 1.44548i
\(494\) 0 0
\(495\) 0 0
\(496\) −29.1468 29.1468i −1.30873 1.30873i
\(497\) 5.03028i 0.225639i
\(498\) 0 0
\(499\) −0.287147 0.287147i −0.0128544 0.0128544i 0.700650 0.713505i \(-0.252893\pi\)
−0.713505 + 0.700650i \(0.752893\pi\)
\(500\) −10.4333 + 10.4333i −0.466590 + 0.466590i
\(501\) 0 0
\(502\) 25.0475 25.0475i 1.11792 1.11792i
\(503\) 35.6235i 1.58837i −0.607673 0.794187i \(-0.707897\pi\)
0.607673 0.794187i \(-0.292103\pi\)
\(504\) 0 0
\(505\) −4.29261 + 4.29261i −0.191019 + 0.191019i
\(506\) −20.1600 −0.896221
\(507\) 0 0
\(508\) 15.6135 0.692737
\(509\) −20.2264 + 20.2264i −0.896519 + 0.896519i −0.995126 0.0986078i \(-0.968561\pi\)
0.0986078 + 0.995126i \(0.468561\pi\)
\(510\) 0 0
\(511\) 22.2553i 0.984515i
\(512\) 34.8862 34.8862i 1.54176 1.54176i
\(513\) 0 0
\(514\) 11.8350 11.8350i 0.522020 0.522020i
\(515\) 33.4745 + 33.4745i 1.47506 + 1.47506i
\(516\) 0 0
\(517\) 11.0283i 0.485023i
\(518\) 5.38355 + 5.38355i 0.236540 + 0.236540i
\(519\) 0 0
\(520\) 0 0
\(521\) 7.56485i 0.331422i −0.986174 0.165711i \(-0.947008\pi\)
0.986174 0.165711i \(-0.0529919\pi\)
\(522\) 0 0
\(523\) −23.2270 −1.01565 −0.507823 0.861462i \(-0.669549\pi\)
−0.507823 + 0.861462i \(0.669549\pi\)
\(524\) −51.0188 −2.22877
\(525\) 0 0
\(526\) −44.1888 44.1888i −1.92673 1.92673i
\(527\) −20.5133 20.5133i −0.893572 0.893572i
\(528\) 0 0
\(529\) −17.1696 −0.746506
\(530\) 16.3711 0.711117
\(531\) 0 0
\(532\) 2.52867i 0.109632i
\(533\) 0 0
\(534\) 0 0
\(535\) 42.2937 + 42.2937i 1.82851 + 1.82851i
\(536\) 62.0064i 2.67827i
\(537\) 0 0
\(538\) −39.5616 39.5616i −1.70562 1.70562i
\(539\) 5.67043 5.67043i 0.244243 0.244243i
\(540\) 0 0
\(541\) 10.6508 10.6508i 0.457915 0.457915i −0.440055 0.897971i \(-0.645041\pi\)
0.897971 + 0.440055i \(0.145041\pi\)
\(542\) 30.3728i 1.30462i
\(543\) 0 0
\(544\) −10.4576 + 10.4576i −0.448365 + 0.448365i
\(545\) −34.5149 −1.47846
\(546\) 0 0
\(547\) 27.9253 1.19400 0.597000 0.802241i \(-0.296359\pi\)
0.597000 + 0.802241i \(0.296359\pi\)
\(548\) 8.18557 8.18557i 0.349670 0.349670i
\(549\) 0 0
\(550\) 50.3310i 2.14612i
\(551\) 1.46193 1.46193i 0.0622801 0.0622801i
\(552\) 0 0
\(553\) 25.2835 25.2835i 1.07517 1.07517i
\(554\) 16.7372 + 16.7372i 0.711098 + 0.711098i
\(555\) 0 0
\(556\) 68.8114i 2.91825i
\(557\) −10.2469 10.2469i −0.434176 0.434176i 0.455870 0.890046i \(-0.349328\pi\)
−0.890046 + 0.455870i \(0.849328\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 42.8674i 1.81148i
\(561\) 0 0
\(562\) 73.5289 3.10163
\(563\) 26.1624 1.10261 0.551307 0.834303i \(-0.314129\pi\)
0.551307 + 0.834303i \(0.314129\pi\)
\(564\) 0 0
\(565\) −17.7639 17.7639i −0.747334 0.747334i
\(566\) −20.9799 20.9799i −0.881850 0.881850i
\(567\) 0 0
\(568\) −13.7074 −0.575149
\(569\) 34.8359 1.46040 0.730198 0.683235i \(-0.239428\pi\)
0.730198 + 0.683235i \(0.239428\pi\)
\(570\) 0 0
\(571\) 17.2726i 0.722836i 0.932404 + 0.361418i \(0.117707\pi\)
−0.932404 + 0.361418i \(0.882293\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 10.1987 + 10.1987i 0.425686 + 0.425686i
\(575\) 14.5559i 0.607025i
\(576\) 0 0
\(577\) 3.84049 + 3.84049i 0.159882 + 0.159882i 0.782514 0.622633i \(-0.213937\pi\)
−0.622633 + 0.782514i \(0.713937\pi\)
\(578\) −1.77776 + 1.77776i −0.0739452 + 0.0739452i
\(579\) 0 0
\(580\) −76.7559 + 76.7559i −3.18712 + 3.18712i
\(581\) 23.4139i 0.971373i
\(582\) 0 0
\(583\) −4.60442 + 4.60442i −0.190696 + 0.190696i
\(584\) −60.6450 −2.50951
\(585\) 0 0
\(586\) 30.3601 1.25416
\(587\) 28.9321 28.9321i 1.19416 1.19416i 0.218269 0.975889i \(-0.429959\pi\)
0.975889 0.218269i \(-0.0700410\pi\)
\(588\) 0 0
\(589\) 1.86876i 0.0770009i
\(590\) 6.29115 6.29115i 0.259003 0.259003i
\(591\) 0 0
\(592\) 6.02827 6.02827i 0.247761 0.247761i
\(593\) 22.1744 + 22.1744i 0.910592 + 0.910592i 0.996319 0.0857267i \(-0.0273212\pi\)
−0.0857267 + 0.996319i \(0.527321\pi\)
\(594\) 0 0
\(595\) 30.1696i 1.23683i
\(596\) 8.18557 + 8.18557i 0.335294 + 0.335294i
\(597\) 0 0
\(598\) 0 0
\(599\) 20.7337i 0.847158i 0.905859 + 0.423579i \(0.139226\pi\)
−0.905859 + 0.423579i \(0.860774\pi\)
\(600\) 0 0
\(601\) 6.14217 0.250544 0.125272 0.992122i \(-0.460020\pi\)
0.125272 + 0.992122i \(0.460020\pi\)
\(602\) 30.5250 1.24411
\(603\) 0 0
\(604\) 70.2135 + 70.2135i 2.85695 + 2.85695i
\(605\) 0.0663932 + 0.0663932i 0.00269927 + 0.00269927i
\(606\) 0 0
\(607\) −19.1523 −0.777368 −0.388684 0.921371i \(-0.627070\pi\)
−0.388684 + 0.921371i \(0.627070\pi\)
\(608\) 0.952687 0.0386366
\(609\) 0 0
\(610\) 13.4713i 0.545438i
\(611\) 0 0
\(612\) 0 0
\(613\) 18.9253 + 18.9253i 0.764386 + 0.764386i 0.977112 0.212726i \(-0.0682342\pi\)
−0.212726 + 0.977112i \(0.568234\pi\)
\(614\) 23.2617i 0.938766i
\(615\) 0 0
\(616\) 29.3401 + 29.3401i 1.18215 + 1.18215i
\(617\) 0.986822 0.986822i 0.0397280 0.0397280i −0.686964 0.726692i \(-0.741057\pi\)
0.726692 + 0.686964i \(0.241057\pi\)
\(618\) 0 0
\(619\) −19.5141 + 19.5141i −0.784339 + 0.784339i −0.980560 0.196220i \(-0.937133\pi\)
0.196220 + 0.980560i \(0.437133\pi\)
\(620\) 98.1160i 3.94043i
\(621\) 0 0
\(622\) 24.2179 24.2179i 0.971050 0.971050i
\(623\) 14.4232 0.577852
\(624\) 0 0
\(625\) 18.8013 0.752051
\(626\) −0.554328 + 0.554328i −0.0221554 + 0.0221554i
\(627\) 0 0
\(628\) 40.9245i 1.63307i
\(629\) 4.24264 4.24264i 0.169165 0.169165i
\(630\) 0 0
\(631\) −4.64723 + 4.64723i −0.185003 + 0.185003i −0.793532 0.608529i \(-0.791760\pi\)
0.608529 + 0.793532i \(0.291760\pi\)
\(632\) −68.8970 68.8970i −2.74057 2.74057i
\(633\) 0 0
\(634\) 55.6892i 2.21170i
\(635\) 8.48528 + 8.48528i 0.336728 + 0.336728i
\(636\) 0 0
\(637\) 0 0
\(638\) 63.1601i 2.50053i
\(639\) 0 0
\(640\) 50.6428 2.00183
\(641\) −32.8879 −1.29899 −0.649497 0.760364i \(-0.725021\pi\)
−0.649497 + 0.760364i \(0.725021\pi\)
\(642\) 0 0
\(643\) −27.4394 27.4394i −1.08211 1.08211i −0.996313 0.0857931i \(-0.972658\pi\)
−0.0857931 0.996313i \(-0.527342\pi\)
\(644\) −15.7974 15.7974i −0.622504 0.622504i
\(645\) 0 0
\(646\) 2.91518 0.114696
\(647\) 24.0560 0.945737 0.472869 0.881133i \(-0.343219\pi\)
0.472869 + 0.881133i \(0.343219\pi\)
\(648\) 0 0
\(649\) 3.53880i 0.138910i
\(650\) 0 0
\(651\) 0 0
\(652\) −71.3165 71.3165i −2.79297 2.79297i
\(653\) 26.6162i 1.04157i 0.853687 + 0.520786i \(0.174361\pi\)
−0.853687 + 0.520786i \(0.825639\pi\)
\(654\) 0 0
\(655\) −27.7266 27.7266i −1.08337 1.08337i
\(656\) 11.4201 11.4201i 0.445879 0.445879i
\(657\) 0 0
\(658\) −12.6418 + 12.6418i −0.492827 + 0.492827i
\(659\) 10.7671i 0.419427i 0.977763 + 0.209713i \(0.0672531\pi\)
−0.977763 + 0.209713i \(0.932747\pi\)
\(660\) 0 0
\(661\) −31.4996 + 31.4996i −1.22519 + 1.22519i −0.259431 + 0.965762i \(0.583535\pi\)
−0.965762 + 0.259431i \(0.916465\pi\)
\(662\) 18.6981 0.726721
\(663\) 0 0
\(664\) −63.8023 −2.47601
\(665\) −1.37423 + 1.37423i −0.0532903 + 0.0532903i
\(666\) 0 0
\(667\) 18.2662i 0.707270i
\(668\) −36.3770 + 36.3770i −1.40747 + 1.40747i
\(669\) 0 0
\(670\) 62.7367 62.7367i 2.42373 2.42373i
\(671\) 3.78884 + 3.78884i 0.146267 + 0.146267i
\(672\) 0 0
\(673\) 39.5844i 1.52587i −0.646477 0.762934i \(-0.723758\pi\)
0.646477 0.762934i \(-0.276242\pi\)
\(674\) 32.6546 + 32.6546i 1.25781 + 1.25781i
\(675\) 0 0
\(676\) 0 0
\(677\) 2.40178i 0.0923080i 0.998934 + 0.0461540i \(0.0146965\pi\)
−0.998934 + 0.0461540i \(0.985304\pi\)
\(678\) 0 0
\(679\) −2.14217 −0.0822089
\(680\) −82.2115 −3.15267
\(681\) 0 0
\(682\) 40.3684 + 40.3684i 1.54578 + 1.54578i
\(683\) 5.20380 + 5.20380i 0.199118 + 0.199118i 0.799622 0.600504i \(-0.205033\pi\)
−0.600504 + 0.799622i \(0.705033\pi\)
\(684\) 0 0
\(685\) 8.89703 0.339938
\(686\) 50.6850 1.93516
\(687\) 0 0
\(688\) 34.1806i 1.30312i
\(689\) 0 0
\(690\) 0 0
\(691\) −13.8825 13.8825i −0.528115 0.528115i 0.391895 0.920010i \(-0.371820\pi\)
−0.920010 + 0.391895i \(0.871820\pi\)
\(692\) 100.077i 3.80435i
\(693\) 0 0
\(694\) 11.0283 + 11.0283i 0.418628 + 0.418628i
\(695\) 37.3961 37.3961i 1.41852 1.41852i
\(696\) 0 0
\(697\) 8.03735 8.03735i 0.304436 0.304436i
\(698\) 85.4332i 3.23369i
\(699\) 0 0
\(700\) 39.4394 39.4394i 1.49067 1.49067i
\(701\) −29.6985 −1.12170 −0.560848 0.827919i \(-0.689525\pi\)
−0.560848 + 0.827919i \(0.689525\pi\)
\(702\) 0 0
\(703\) −0.386505 −0.0145773
\(704\) −7.73177 + 7.73177i −0.291402 + 0.291402i
\(705\) 0 0
\(706\) 15.3209i 0.576609i
\(707\) 2.76788 2.76788i 0.104097 0.104097i
\(708\) 0 0
\(709\) 4.45213 4.45213i 0.167203 0.167203i −0.618546 0.785749i \(-0.712278\pi\)
0.785749 + 0.618546i \(0.212278\pi\)
\(710\) −13.8688 13.8688i −0.520488 0.520488i
\(711\) 0 0
\(712\) 39.3027i 1.47293i
\(713\) −11.6747 11.6747i −0.437221 0.437221i
\(714\) 0 0
\(715\) 0 0
\(716\) 36.6639i 1.37020i
\(717\) 0 0
\(718\) −38.9909 −1.45513
\(719\) −20.0917 −0.749295 −0.374647 0.927167i \(-0.622236\pi\)
−0.374647 + 0.927167i \(0.622236\pi\)
\(720\) 0 0
\(721\) −21.5844 21.5844i −0.803846 0.803846i
\(722\) 33.6447 + 33.6447i 1.25213 + 1.25213i
\(723\) 0 0
\(724\) −86.0950 −3.19969
\(725\) −45.6030 −1.69365
\(726\) 0 0
\(727\) 16.9717i 0.629446i 0.949183 + 0.314723i \(0.101912\pi\)
−0.949183 + 0.314723i \(0.898088\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −61.3593 61.3593i −2.27101 2.27101i
\(731\) 24.0560i 0.889742i
\(732\) 0 0
\(733\) 27.4623 + 27.4623i 1.01434 + 1.01434i 0.999896 + 0.0144458i \(0.00459841\pi\)
0.0144458 + 0.999896i \(0.495402\pi\)
\(734\) −15.4635 + 15.4635i −0.570770 + 0.570770i
\(735\) 0 0
\(736\) −5.95173 + 5.95173i −0.219384 + 0.219384i
\(737\) 35.2897i 1.29991i
\(738\) 0 0
\(739\) 27.1660 27.1660i 0.999319 0.999319i −0.000681035 1.00000i \(-0.500217\pi\)
1.00000 0.000681035i \(0.000216780\pi\)
\(740\) 20.2928 0.745977
\(741\) 0 0
\(742\) −10.5561 −0.387528
\(743\) −9.67976 + 9.67976i −0.355116 + 0.355116i −0.862009 0.506893i \(-0.830794\pi\)
0.506893 + 0.862009i \(0.330794\pi\)
\(744\) 0 0
\(745\) 8.89703i 0.325962i
\(746\) −0.554328 + 0.554328i −0.0202954 + 0.0202954i
\(747\) 0 0
\(748\) 43.0475 43.0475i 1.57397 1.57397i
\(749\) −27.2710 27.2710i −0.996462 0.996462i
\(750\) 0 0
\(751\) 15.9144i 0.580724i −0.956917 0.290362i \(-0.906224\pi\)
0.956917 0.290362i \(-0.0937757\pi\)
\(752\) 14.1557 + 14.1557i 0.516206 + 0.516206i
\(753\) 0 0
\(754\) 0 0
\(755\) 76.3162i 2.77743i
\(756\) 0 0
\(757\) 46.5561 1.69211 0.846056 0.533094i \(-0.178971\pi\)
0.846056 + 0.533094i \(0.178971\pi\)
\(758\) 12.1608 0.441699
\(759\) 0 0
\(760\) 3.74474 + 3.74474i 0.135836 + 0.135836i
\(761\) 24.0024 + 24.0024i 0.870086 + 0.870086i 0.992481 0.122395i \(-0.0390576\pi\)
−0.122395 + 0.992481i \(0.539058\pi\)
\(762\) 0 0
\(763\) 22.2553 0.805695
\(764\) 9.85951 0.356705
\(765\) 0 0
\(766\) 58.4441i 2.11167i
\(767\) 0 0
\(768\) 0 0
\(769\) 7.25526 + 7.25526i 0.261632 + 0.261632i 0.825717 0.564085i \(-0.190771\pi\)
−0.564085 + 0.825717i \(0.690771\pi\)
\(770\) 59.3713i 2.13959i
\(771\) 0 0
\(772\) −61.7175 61.7175i −2.22126 2.22126i
\(773\) 1.76163 1.76163i 0.0633616 0.0633616i −0.674716 0.738078i \(-0.735734\pi\)
0.738078 + 0.674716i \(0.235734\pi\)
\(774\) 0 0
\(775\) 29.1468 29.1468i 1.04699 1.04699i
\(776\) 5.83735i 0.209549i
\(777\) 0 0
\(778\) −44.6382 + 44.6382i −1.60036 + 1.60036i
\(779\) −0.732203 −0.0262339
\(780\) 0 0
\(781\) 7.80128 0.279152
\(782\) −18.2120 + 18.2120i −0.651260 + 0.651260i
\(783\) 0 0
\(784\) 14.5569i 0.519891i
\(785\) −22.2408 + 22.2408i −0.793807 + 0.793807i
\(786\) 0 0
\(787\) 24.2125 24.2125i 0.863081 0.863081i −0.128614 0.991695i \(-0.541053\pi\)
0.991695 + 0.128614i \(0.0410528\pi\)
\(788\) 16.0843 + 16.0843i 0.572978 + 0.572978i
\(789\) 0 0
\(790\) 139.417i 4.96023i
\(791\) 11.4542 + 11.4542i 0.407265 + 0.407265i
\(792\) 0 0
\(793\) 0 0
\(794\) 1.07264i 0.0380667i
\(795\) 0 0
\(796\) −70.4815 −2.49815
\(797\) 28.7652 1.01892 0.509458 0.860495i \(-0.329846\pi\)
0.509458 + 0.860495i \(0.329846\pi\)
\(798\) 0 0
\(799\) 9.96265 + 9.96265i 0.352453 + 0.352453i
\(800\) −14.8590 14.8590i −0.525343 0.525343i
\(801\) 0 0
\(802\) 25.5196 0.901128
\(803\) 34.5149 1.21800
\(804\) 0 0
\(805\) 17.1704i 0.605179i
\(806\) 0 0
\(807\) 0 0
\(808\) −7.54241 7.54241i −0.265341 0.265341i
\(809\) 11.6875i 0.410912i −0.978666 0.205456i \(-0.934132\pi\)
0.978666 0.205456i \(-0.0658677\pi\)
\(810\) 0 0
\(811\) −2.72193 2.72193i −0.0955797 0.0955797i 0.657700 0.753280i \(-0.271529\pi\)
−0.753280 + 0.657700i \(0.771529\pi\)
\(812\) 49.4924 49.4924i 1.73684 1.73684i
\(813\) 0 0
\(814\) −8.34916 + 8.34916i −0.292638 + 0.292638i
\(815\) 77.5150i 2.71523i
\(816\) 0 0
\(817\) −1.09575 + 1.09575i −0.0383354 + 0.0383354i
\(818\) 35.3220 1.23500
\(819\) 0 0
\(820\) 38.4431 1.34249
\(821\) −12.7943 + 12.7943i −0.446525 + 0.446525i −0.894197 0.447673i \(-0.852253\pi\)
0.447673 + 0.894197i \(0.352253\pi\)
\(822\) 0 0
\(823\) 35.8397i 1.24929i −0.780908 0.624646i \(-0.785243\pi\)
0.780908 0.624646i \(-0.214757\pi\)
\(824\) −58.8170 + 58.8170i −2.04899 + 2.04899i
\(825\) 0 0
\(826\) −4.05655 + 4.05655i −0.141145 + 0.141145i
\(827\) −10.3669 10.3669i −0.360491 0.360491i 0.503502 0.863994i \(-0.332045\pi\)
−0.863994 + 0.503502i \(0.832045\pi\)
\(828\) 0 0
\(829\) 41.5388i 1.44270i −0.692570 0.721351i \(-0.743521\pi\)
0.692570 0.721351i \(-0.256479\pi\)
\(830\) −64.5538 64.5538i −2.24070 2.24070i
\(831\) 0 0
\(832\) 0 0
\(833\) 10.2450i 0.354970i
\(834\) 0 0
\(835\) −39.5388 −1.36830
\(836\) −3.92163 −0.135632
\(837\) 0 0
\(838\) −9.17872 9.17872i −0.317073 0.317073i
\(839\) −12.8948 12.8948i −0.445179 0.445179i 0.448569 0.893748i \(-0.351934\pi\)
−0.893748 + 0.448569i \(0.851934\pi\)
\(840\) 0 0
\(841\) −28.2270 −0.973344
\(842\) −90.3307 −3.11300
\(843\) 0 0
\(844\) 13.9435i 0.479953i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.0428105 0.0428105i −0.00147099 0.00147099i
\(848\) 11.8203i 0.405912i
\(849\) 0 0
\(850\) −45.4677 45.4677i −1.55953 1.55953i
\(851\) 2.41461 2.41461i 0.0827719 0.0827719i
\(852\) 0 0
\(853\) 31.4249 31.4249i 1.07597 1.07597i 0.0791018 0.996867i \(-0.474795\pi\)
0.996867 0.0791018i \(-0.0252052\pi\)
\(854\) 8.68634i 0.297240i
\(855\) 0 0
\(856\) −74.3129 + 74.3129i −2.53996 + 2.53996i
\(857\) −51.3398 −1.75374 −0.876868 0.480732i \(-0.840371\pi\)
−0.876868 + 0.480732i \(0.840371\pi\)
\(858\) 0 0
\(859\) 13.4713 0.459636 0.229818 0.973234i \(-0.426187\pi\)
0.229818 + 0.973234i \(0.426187\pi\)
\(860\) 57.5305 57.5305i 1.96177 1.96177i
\(861\) 0 0
\(862\) 58.9162i 2.00669i
\(863\) −6.60369 + 6.60369i −0.224792 + 0.224792i −0.810513 0.585721i \(-0.800812\pi\)
0.585721 + 0.810513i \(0.300812\pi\)
\(864\) 0 0
\(865\) −54.3876 + 54.3876i −1.84923 + 1.84923i
\(866\) 6.42394 + 6.42394i 0.218294 + 0.218294i
\(867\) 0 0
\(868\) 63.2654i 2.14737i
\(869\) 39.2113 + 39.2113i 1.33015 + 1.33015i
\(870\) 0 0
\(871\) 0 0
\(872\) 60.6450i 2.05370i
\(873\) 0 0
\(874\) 1.65911 0.0561204
\(875\) 7.31211 0.247194
\(876\) 0 0
\(877\) 0.489472 + 0.489472i 0.0165283 + 0.0165283i 0.715323 0.698794i \(-0.246280\pi\)
−0.698794 + 0.715323i \(0.746280\pi\)
\(878\) −10.0800 10.0800i −0.340183 0.340183i
\(879\) 0 0
\(880\) 66.4815 2.24109
\(881\) −25.1774 −0.848250 −0.424125 0.905604i \(-0.639418\pi\)
−0.424125 + 0.905604i \(0.639418\pi\)
\(882\) 0 0
\(883\) 16.3118i 0.548936i −0.961596 0.274468i \(-0.911498\pi\)
0.961596 0.274468i \(-0.0885018\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 18.0757 + 18.0757i 0.607267 + 0.607267i
\(887\) 3.92163i 0.131675i 0.997830 + 0.0658377i \(0.0209720\pi\)
−0.997830 + 0.0658377i \(0.979028\pi\)
\(888\) 0 0
\(889\) −5.47133 5.47133i −0.183502 0.183502i
\(890\) 39.7656 39.7656i 1.33295 1.33295i
\(891\) 0 0
\(892\) 12.0055 12.0055i 0.401973 0.401973i
\(893\) 0.907598i 0.0303716i
\(894\) 0 0
\(895\) 19.9253 19.9253i 0.666030 0.666030i
\(896\) −32.6546 −1.09091
\(897\) 0 0
\(898\) −58.9162 −1.96606
\(899\) 36.5762 36.5762i 1.21989 1.21989i
\(900\) 0 0
\(901\) 8.31903i 0.277147i
\(902\) −15.8168 + 15.8168i −0.526642 + 0.526642i
\(903\) 0 0
\(904\) 31.2125 31.2125i 1.03811 1.03811i
\(905\) −46.7890 46.7890i −1.55532 1.55532i
\(906\) 0 0
\(907\) 40.6127i 1.34852i 0.738493 + 0.674261i \(0.235538\pi\)
−0.738493 + 0.674261i \(0.764462\pi\)
\(908\) 61.1652 + 61.1652i 2.02984 + 2.02984i
\(909\) 0 0
\(910\) 0 0
\(911\) 30.0195i 0.994590i −0.867581 0.497295i \(-0.834327\pi\)
0.867581 0.497295i \(-0.165673\pi\)
\(912\) 0 0
\(913\) 36.3118 1.20175
\(914\) 14.6953 0.486078
\(915\) 0 0
\(916\) −18.6700 18.6700i −0.616876 0.616876i
\(917\) 17.8782 + 17.8782i 0.590389 + 0.590389i
\(918\) 0 0
\(919\) −46.8680 −1.54603 −0.773016 0.634387i \(-0.781253\pi\)
−0.773016 + 0.634387i \(0.781253\pi\)
\(920\) −46.7890 −1.54259
\(921\) 0 0
\(922\) 4.65004i 0.153141i
\(923\) 0 0
\(924\) 0 0
\(925\) 6.02827 + 6.02827i 0.198208 + 0.198208i
\(926\) 48.7564i 1.60224i
\(927\) 0 0
\(928\) −18.6464 18.6464i −0.612099 0.612099i
\(929\) −34.1275 + 34.1275i −1.11969 + 1.11969i −0.127899 + 0.991787i \(0.540823\pi\)
−0.991787 + 0.127899i \(0.959177\pi\)
\(930\) 0 0
\(931\) −0.466662 + 0.466662i −0.0152942 + 0.0152942i
\(932\) 12.9678i 0.424776i
\(933\) 0 0
\(934\) −5.12217 + 5.12217i −0.167602 + 0.167602i
\(935\) 46.7890 1.53016
\(936\) 0 0
\(937\) −41.4641 −1.35457 −0.677287 0.735719i \(-0.736844\pi\)
−0.677287 + 0.735719i \(0.736844\pi\)
\(938\) −40.4528 + 40.4528i −1.32083 + 1.32083i
\(939\) 0 0
\(940\) 47.6519i 1.55423i
\(941\) 25.0428 25.0428i 0.816371 0.816371i −0.169209 0.985580i \(-0.554121\pi\)
0.985580 + 0.169209i \(0.0541213\pi\)
\(942\) 0 0
\(943\) 4.57429 4.57429i 0.148959 0.148959i
\(944\) 4.54235 + 4.54235i 0.147841 + 0.147841i
\(945\) 0 0
\(946\) 47.3401i 1.53916i
\(947\) 13.8024 + 13.8024i 0.448519 + 0.448519i 0.894862 0.446343i \(-0.147274\pi\)
−0.446343 + 0.894862i \(0.647274\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 4.14211i 0.134388i
\(951\) 0 0
\(952\) 53.0101 1.71807
\(953\) 38.0253 1.23176 0.615880 0.787840i \(-0.288800\pi\)
0.615880 + 0.787840i \(0.288800\pi\)
\(954\) 0 0
\(955\) 5.35823 + 5.35823i 0.173388 + 0.173388i
\(956\) −74.5674 74.5674i −2.41168 2.41168i
\(957\) 0 0
\(958\) 5.43398 0.175564
\(959\) −5.73682 −0.185252
\(960\) 0 0
\(961\) 15.7549i 0.508221i
\(962\) 0 0
\(963\) 0 0
\(964\) 37.6236 + 37.6236i 1.21178 + 1.21178i
\(965\) 67.0818i 2.15944i
\(966\) 0 0
\(967\) −19.4021 19.4021i −0.623929 0.623929i 0.322604 0.946534i \(-0.395442\pi\)
−0.946534 + 0.322604i \(0.895442\pi\)
\(968\) −0.116657 + 0.116657i −0.00374951 + 0.00374951i
\(969\) 0 0
\(970\) −5.90611 + 5.90611i −0.189634 + 0.189634i
\(971\) 53.4334i 1.71476i 0.514684 + 0.857380i \(0.327909\pi\)
−0.514684 + 0.857380i \(0.672091\pi\)
\(972\) 0 0
\(973\) −24.1131 + 24.1131i −0.773030 + 0.773030i
\(974\) −51.8387 −1.66102
\(975\) 0 0
\(976\) 9.72659 0.311341
\(977\) −40.3181 + 40.3181i −1.28989 + 1.28989i −0.355039 + 0.934852i \(0.615532\pi\)
−0.934852 + 0.355039i \(0.884468\pi\)
\(978\) 0 0
\(979\) 22.3684i 0.714896i
\(980\) 24.5013 24.5013i 0.782665 0.782665i
\(981\) 0 0
\(982\) −63.8023 + 63.8023i −2.03601 + 2.03601i
\(983\) 5.31716 + 5.31716i 0.169591 + 0.169591i 0.786800 0.617209i \(-0.211737\pi\)
−0.617209 + 0.786800i \(0.711737\pi\)
\(984\) 0 0
\(985\) 17.4823i 0.557031i
\(986\) −57.0572 57.0572i −1.81707 1.81707i
\(987\) 0 0
\(988\) 0 0
\(989\) 13.6910i 0.435347i
\(990\) 0 0
\(991\) −6.31903 −0.200731 −0.100365 0.994951i \(-0.532001\pi\)
−0.100365 + 0.994951i \(0.532001\pi\)
\(992\) 23.8355 0.756777
\(993\) 0 0
\(994\) 8.94265 + 8.94265i 0.283644 + 0.283644i
\(995\) −38.3037 38.3037i −1.21431 1.21431i
\(996\) 0 0
\(997\) 6.77301 0.214503 0.107252 0.994232i \(-0.465795\pi\)
0.107252 + 0.994232i \(0.465795\pi\)
\(998\) 1.02096 0.0323178
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.i.g.944.1 12
3.2 odd 2 inner 1521.2.i.g.944.6 12
13.5 odd 4 inner 1521.2.i.g.746.6 12
13.8 odd 4 117.2.i.a.44.1 yes 12
13.12 even 2 117.2.i.a.8.6 yes 12
39.5 even 4 inner 1521.2.i.g.746.1 12
39.8 even 4 117.2.i.a.44.6 yes 12
39.38 odd 2 117.2.i.a.8.1 12
52.47 even 4 1872.2.bi.f.161.6 12
52.51 odd 2 1872.2.bi.f.593.1 12
156.47 odd 4 1872.2.bi.f.161.1 12
156.155 even 2 1872.2.bi.f.593.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.i.a.8.1 12 39.38 odd 2
117.2.i.a.8.6 yes 12 13.12 even 2
117.2.i.a.44.1 yes 12 13.8 odd 4
117.2.i.a.44.6 yes 12 39.8 even 4
1521.2.i.g.746.1 12 39.5 even 4 inner
1521.2.i.g.746.6 12 13.5 odd 4 inner
1521.2.i.g.944.1 12 1.1 even 1 trivial
1521.2.i.g.944.6 12 3.2 odd 2 inner
1872.2.bi.f.161.1 12 156.47 odd 4
1872.2.bi.f.161.6 12 52.47 even 4
1872.2.bi.f.593.1 12 52.51 odd 2
1872.2.bi.f.593.6 12 156.155 even 2