Properties

Label 117.3.j.c.73.4
Level $117$
Weight $3$
Character 117.73
Analytic conductor $3.188$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(73,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.73");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.897122304.10
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 51x^{4} - 104x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.4
Root \(1.30421 + 0.752986i\) of defining polynomial
Character \(\chi\) \(=\) 117.73
Dual form 117.3.j.c.109.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.05719 + 2.05719i) q^{2} +4.46410i q^{4} +(3.01194 + 3.01194i) q^{5} +(-2.46410 + 2.46410i) q^{7} +(-0.954747 + 0.954747i) q^{8} +12.3923i q^{10} +(3.01194 - 3.01194i) q^{11} +(-12.3923 + 3.92820i) q^{13} -10.1383 q^{14} +13.9282 q^{16} -18.0717i q^{17} +(7.00000 + 7.00000i) q^{19} +(-13.4456 + 13.4456i) q^{20} +12.3923 q^{22} -20.8673i q^{23} -6.85641i q^{25} +(-33.5745 - 17.4123i) q^{26} +(-11.0000 - 11.0000i) q^{28} +26.8912 q^{29} +(-41.2487 - 41.2487i) q^{31} +(32.4720 + 32.4720i) q^{32} +(37.1769 - 37.1769i) q^{34} -14.8435 q^{35} +(-27.3923 + 27.3923i) q^{37} +28.8007i q^{38} -5.75129 q^{40} +(52.3846 + 52.3846i) q^{41} -31.4256i q^{43} +(13.4456 + 13.4456i) q^{44} +(42.9282 - 42.9282i) q^{46} +(34.3130 - 34.3130i) q^{47} +36.8564i q^{49} +(14.1050 - 14.1050i) q^{50} +(-17.5359 - 55.3205i) q^{52} -71.8541 q^{53} +18.1436 q^{55} -4.70519i q^{56} +(55.3205 + 55.3205i) q^{58} +(-74.8661 + 74.8661i) q^{59} -24.7846 q^{61} -169.713i q^{62} +77.8897i q^{64} +(-49.1564 - 25.4934i) q^{65} +(1.92820 + 1.92820i) q^{67} +80.6737 q^{68} +(-30.5359 - 30.5359i) q^{70} +(-22.6977 - 22.6977i) q^{71} +(-43.3538 + 43.3538i) q^{73} -112.703 q^{74} +(-31.2487 + 31.2487i) q^{76} +14.8435i q^{77} -79.2154 q^{79} +(41.9509 + 41.9509i) q^{80} +215.531i q^{82} +(23.8793 + 23.8793i) q^{83} +(54.4308 - 54.4308i) q^{85} +(64.6486 - 64.6486i) q^{86} +5.75129i q^{88} +(-40.7693 + 40.7693i) q^{89} +(20.8564 - 40.2154i) q^{91} +93.1540 q^{92} +141.177 q^{94} +42.1672i q^{95} +(54.0718 + 54.0718i) q^{97} +(-75.8208 + 75.8208i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} - 16 q^{13} + 56 q^{16} + 56 q^{19} + 16 q^{22} - 88 q^{28} - 136 q^{31} + 48 q^{34} - 136 q^{37} - 240 q^{40} + 288 q^{46} - 168 q^{52} + 256 q^{55} + 304 q^{58} - 32 q^{61} - 40 q^{67} - 272 q^{70}+ \cdots + 488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.05719 + 2.05719i 1.02860 + 1.02860i 0.999579 + 0.0290186i \(0.00923820\pi\)
0.0290186 + 0.999579i \(0.490762\pi\)
\(3\) 0 0
\(4\) 4.46410i 1.11603i
\(5\) 3.01194 + 3.01194i 0.602388 + 0.602388i 0.940946 0.338557i \(-0.109939\pi\)
−0.338557 + 0.940946i \(0.609939\pi\)
\(6\) 0 0
\(7\) −2.46410 + 2.46410i −0.352015 + 0.352015i −0.860859 0.508844i \(-0.830073\pi\)
0.508844 + 0.860859i \(0.330073\pi\)
\(8\) −0.954747 + 0.954747i −0.119343 + 0.119343i
\(9\) 0 0
\(10\) 12.3923i 1.23923i
\(11\) 3.01194 3.01194i 0.273813 0.273813i −0.556820 0.830633i \(-0.687979\pi\)
0.830633 + 0.556820i \(0.187979\pi\)
\(12\) 0 0
\(13\) −12.3923 + 3.92820i −0.953254 + 0.302169i
\(14\) −10.1383 −0.724162
\(15\) 0 0
\(16\) 13.9282 0.870513
\(17\) 18.0717i 1.06304i −0.847046 0.531519i \(-0.821621\pi\)
0.847046 0.531519i \(-0.178379\pi\)
\(18\) 0 0
\(19\) 7.00000 + 7.00000i 0.368421 + 0.368421i 0.866901 0.498480i \(-0.166108\pi\)
−0.498480 + 0.866901i \(0.666108\pi\)
\(20\) −13.4456 + 13.4456i −0.672281 + 0.672281i
\(21\) 0 0
\(22\) 12.3923 0.563287
\(23\) 20.8673i 0.907276i −0.891186 0.453638i \(-0.850126\pi\)
0.891186 0.453638i \(-0.149874\pi\)
\(24\) 0 0
\(25\) 6.85641i 0.274256i
\(26\) −33.5745 17.4123i −1.29133 0.669704i
\(27\) 0 0
\(28\) −11.0000 11.0000i −0.392857 0.392857i
\(29\) 26.8912 0.927284 0.463642 0.886023i \(-0.346542\pi\)
0.463642 + 0.886023i \(0.346542\pi\)
\(30\) 0 0
\(31\) −41.2487 41.2487i −1.33060 1.33060i −0.904829 0.425774i \(-0.860002\pi\)
−0.425774 0.904829i \(-0.639998\pi\)
\(32\) 32.4720 + 32.4720i 1.01475 + 1.01475i
\(33\) 0 0
\(34\) 37.1769 37.1769i 1.09344 1.09344i
\(35\) −14.8435 −0.424099
\(36\) 0 0
\(37\) −27.3923 + 27.3923i −0.740333 + 0.740333i −0.972642 0.232309i \(-0.925372\pi\)
0.232309 + 0.972642i \(0.425372\pi\)
\(38\) 28.8007i 0.757914i
\(39\) 0 0
\(40\) −5.75129 −0.143782
\(41\) 52.3846 + 52.3846i 1.27767 + 1.27767i 0.941966 + 0.335707i \(0.108975\pi\)
0.335707 + 0.941966i \(0.391025\pi\)
\(42\) 0 0
\(43\) 31.4256i 0.730829i −0.930845 0.365414i \(-0.880927\pi\)
0.930845 0.365414i \(-0.119073\pi\)
\(44\) 13.4456 + 13.4456i 0.305582 + 0.305582i
\(45\) 0 0
\(46\) 42.9282 42.9282i 0.933222 0.933222i
\(47\) 34.3130 34.3130i 0.730063 0.730063i −0.240569 0.970632i \(-0.577334\pi\)
0.970632 + 0.240569i \(0.0773340\pi\)
\(48\) 0 0
\(49\) 36.8564i 0.752172i
\(50\) 14.1050 14.1050i 0.282099 0.282099i
\(51\) 0 0
\(52\) −17.5359 55.3205i −0.337229 1.06386i
\(53\) −71.8541 −1.35574 −0.677869 0.735183i \(-0.737096\pi\)
−0.677869 + 0.735183i \(0.737096\pi\)
\(54\) 0 0
\(55\) 18.1436 0.329884
\(56\) 4.70519i 0.0840212i
\(57\) 0 0
\(58\) 55.3205 + 55.3205i 0.953802 + 0.953802i
\(59\) −74.8661 + 74.8661i −1.26892 + 1.26892i −0.322268 + 0.946649i \(0.604445\pi\)
−0.946649 + 0.322268i \(0.895555\pi\)
\(60\) 0 0
\(61\) −24.7846 −0.406305 −0.203153 0.979147i \(-0.565119\pi\)
−0.203153 + 0.979147i \(0.565119\pi\)
\(62\) 169.713i 2.73731i
\(63\) 0 0
\(64\) 77.8897i 1.21703i
\(65\) −49.1564 25.4934i −0.756253 0.392206i
\(66\) 0 0
\(67\) 1.92820 + 1.92820i 0.0287792 + 0.0287792i 0.721350 0.692571i \(-0.243522\pi\)
−0.692571 + 0.721350i \(0.743522\pi\)
\(68\) 80.6737 1.18638
\(69\) 0 0
\(70\) −30.5359 30.5359i −0.436227 0.436227i
\(71\) −22.6977 22.6977i −0.319686 0.319686i 0.528961 0.848646i \(-0.322582\pi\)
−0.848646 + 0.528961i \(0.822582\pi\)
\(72\) 0 0
\(73\) −43.3538 + 43.3538i −0.593888 + 0.593888i −0.938679 0.344791i \(-0.887950\pi\)
0.344791 + 0.938679i \(0.387950\pi\)
\(74\) −112.703 −1.52301
\(75\) 0 0
\(76\) −31.2487 + 31.2487i −0.411167 + 0.411167i
\(77\) 14.8435i 0.192772i
\(78\) 0 0
\(79\) −79.2154 −1.00273 −0.501363 0.865237i \(-0.667168\pi\)
−0.501363 + 0.865237i \(0.667168\pi\)
\(80\) 41.9509 + 41.9509i 0.524387 + 0.524387i
\(81\) 0 0
\(82\) 215.531i 2.62842i
\(83\) 23.8793 + 23.8793i 0.287702 + 0.287702i 0.836171 0.548469i \(-0.184789\pi\)
−0.548469 + 0.836171i \(0.684789\pi\)
\(84\) 0 0
\(85\) 54.4308 54.4308i 0.640362 0.640362i
\(86\) 64.6486 64.6486i 0.751728 0.751728i
\(87\) 0 0
\(88\) 5.75129i 0.0653556i
\(89\) −40.7693 + 40.7693i −0.458083 + 0.458083i −0.898026 0.439943i \(-0.854999\pi\)
0.439943 + 0.898026i \(0.354999\pi\)
\(90\) 0 0
\(91\) 20.8564 40.2154i 0.229191 0.441927i
\(92\) 93.1540 1.01254
\(93\) 0 0
\(94\) 141.177 1.50188
\(95\) 42.1672i 0.443865i
\(96\) 0 0
\(97\) 54.0718 + 54.0718i 0.557441 + 0.557441i 0.928578 0.371137i \(-0.121032\pi\)
−0.371137 + 0.928578i \(0.621032\pi\)
\(98\) −75.8208 + 75.8208i −0.773682 + 0.773682i
\(99\) 0 0
\(100\) 30.6077 0.306077
\(101\) 5.59139i 0.0553603i −0.999617 0.0276801i \(-0.991188\pi\)
0.999617 0.0276801i \(-0.00881199\pi\)
\(102\) 0 0
\(103\) 11.5026i 0.111676i 0.998440 + 0.0558378i \(0.0177830\pi\)
−0.998440 + 0.0558378i \(0.982217\pi\)
\(104\) 8.08108 15.5820i 0.0777027 0.149827i
\(105\) 0 0
\(106\) −147.818 147.818i −1.39451 1.39451i
\(107\) 153.393 1.43358 0.716789 0.697290i \(-0.245611\pi\)
0.716789 + 0.697290i \(0.245611\pi\)
\(108\) 0 0
\(109\) 79.3154 + 79.3154i 0.727664 + 0.727664i 0.970154 0.242490i \(-0.0779642\pi\)
−0.242490 + 0.970154i \(0.577964\pi\)
\(110\) 37.3249 + 37.3249i 0.339317 + 0.339317i
\(111\) 0 0
\(112\) −34.3205 + 34.3205i −0.306433 + 0.306433i
\(113\) −27.3237 −0.241803 −0.120901 0.992665i \(-0.538579\pi\)
−0.120901 + 0.992665i \(0.538579\pi\)
\(114\) 0 0
\(115\) 62.8513 62.8513i 0.546533 0.546533i
\(116\) 120.045i 1.03487i
\(117\) 0 0
\(118\) −308.028 −2.61041
\(119\) 44.5304 + 44.5304i 0.374205 + 0.374205i
\(120\) 0 0
\(121\) 102.856i 0.850053i
\(122\) −50.9868 50.9868i −0.417924 0.417924i
\(123\) 0 0
\(124\) 184.138 184.138i 1.48499 1.48499i
\(125\) 95.9497 95.9497i 0.767597 0.767597i
\(126\) 0 0
\(127\) 154.708i 1.21817i −0.793105 0.609085i \(-0.791537\pi\)
0.793105 0.609085i \(-0.208463\pi\)
\(128\) −30.3463 + 30.3463i −0.237080 + 0.237080i
\(129\) 0 0
\(130\) −48.6795 153.569i −0.374458 1.18130i
\(131\) −188.671 −1.44024 −0.720119 0.693851i \(-0.755913\pi\)
−0.720119 + 0.693851i \(0.755913\pi\)
\(132\) 0 0
\(133\) −34.4974 −0.259379
\(134\) 7.93338i 0.0592043i
\(135\) 0 0
\(136\) 17.2539 + 17.2539i 0.126867 + 0.126867i
\(137\) 106.600 106.600i 0.778099 0.778099i −0.201408 0.979507i \(-0.564552\pi\)
0.979507 + 0.201408i \(0.0645518\pi\)
\(138\) 0 0
\(139\) 13.1384 0.0945211 0.0472606 0.998883i \(-0.484951\pi\)
0.0472606 + 0.998883i \(0.484951\pi\)
\(140\) 66.2627i 0.473305i
\(141\) 0 0
\(142\) 93.3872i 0.657656i
\(143\) −25.4934 + 49.1564i −0.178275 + 0.343751i
\(144\) 0 0
\(145\) 80.9948 + 80.9948i 0.558585 + 0.558585i
\(146\) −178.375 −1.22174
\(147\) 0 0
\(148\) −122.282 122.282i −0.826230 0.826230i
\(149\) −95.7334 95.7334i −0.642506 0.642506i 0.308665 0.951171i \(-0.400118\pi\)
−0.951171 + 0.308665i \(0.900118\pi\)
\(150\) 0 0
\(151\) 98.6743 98.6743i 0.653472 0.653472i −0.300355 0.953827i \(-0.597105\pi\)
0.953827 + 0.300355i \(0.0971052\pi\)
\(152\) −13.3665 −0.0879373
\(153\) 0 0
\(154\) −30.5359 + 30.5359i −0.198285 + 0.198285i
\(155\) 248.477i 1.60308i
\(156\) 0 0
\(157\) −106.000 −0.675159 −0.337580 0.941297i \(-0.609608\pi\)
−0.337580 + 0.941297i \(0.609608\pi\)
\(158\) −162.961 162.961i −1.03140 1.03140i
\(159\) 0 0
\(160\) 195.608i 1.22255i
\(161\) 51.4193 + 51.4193i 0.319374 + 0.319374i
\(162\) 0 0
\(163\) 186.569 186.569i 1.14460 1.14460i 0.156997 0.987599i \(-0.449819\pi\)
0.987599 0.156997i \(-0.0501814\pi\)
\(164\) −233.850 + 233.850i −1.42592 + 1.42592i
\(165\) 0 0
\(166\) 98.2487i 0.591860i
\(167\) 127.467 127.467i 0.763275 0.763275i −0.213638 0.976913i \(-0.568531\pi\)
0.976913 + 0.213638i \(0.0685313\pi\)
\(168\) 0 0
\(169\) 138.138 97.3590i 0.817387 0.576089i
\(170\) 223.949 1.31735
\(171\) 0 0
\(172\) 140.287 0.815623
\(173\) 47.3261i 0.273561i 0.990601 + 0.136781i \(0.0436755\pi\)
−0.990601 + 0.136781i \(0.956324\pi\)
\(174\) 0 0
\(175\) 16.8949 + 16.8949i 0.0965422 + 0.0965422i
\(176\) 41.9509 41.9509i 0.238358 0.238358i
\(177\) 0 0
\(178\) −167.741 −0.942365
\(179\) 278.164i 1.55399i 0.629506 + 0.776996i \(0.283257\pi\)
−0.629506 + 0.776996i \(0.716743\pi\)
\(180\) 0 0
\(181\) 277.492i 1.53311i 0.642181 + 0.766553i \(0.278030\pi\)
−0.642181 + 0.766553i \(0.721970\pi\)
\(182\) 125.637 39.8252i 0.690311 0.218820i
\(183\) 0 0
\(184\) 19.9230 + 19.9230i 0.108277 + 0.108277i
\(185\) −165.008 −0.891936
\(186\) 0 0
\(187\) −54.4308 54.4308i −0.291074 0.291074i
\(188\) 153.177 + 153.177i 0.814769 + 0.814769i
\(189\) 0 0
\(190\) −86.7461 + 86.7461i −0.456559 + 0.456559i
\(191\) 306.353 1.60394 0.801972 0.597362i \(-0.203785\pi\)
0.801972 + 0.597362i \(0.203785\pi\)
\(192\) 0 0
\(193\) −151.851 + 151.851i −0.786794 + 0.786794i −0.980967 0.194173i \(-0.937798\pi\)
0.194173 + 0.980967i \(0.437798\pi\)
\(194\) 222.472i 1.14677i
\(195\) 0 0
\(196\) −164.531 −0.839443
\(197\) 72.5029 + 72.5029i 0.368035 + 0.368035i 0.866760 0.498725i \(-0.166198\pi\)
−0.498725 + 0.866760i \(0.666198\pi\)
\(198\) 0 0
\(199\) 119.569i 0.600850i −0.953805 0.300425i \(-0.902871\pi\)
0.953805 0.300425i \(-0.0971286\pi\)
\(200\) 6.54614 + 6.54614i 0.0327307 + 0.0327307i
\(201\) 0 0
\(202\) 11.5026 11.5026i 0.0569435 0.0569435i
\(203\) −66.2627 + 66.2627i −0.326417 + 0.326417i
\(204\) 0 0
\(205\) 315.559i 1.53931i
\(206\) −23.6630 + 23.6630i −0.114869 + 0.114869i
\(207\) 0 0
\(208\) −172.603 + 54.7128i −0.829820 + 0.263042i
\(209\) 42.1672 0.201757
\(210\) 0 0
\(211\) −99.1384 −0.469850 −0.234925 0.972013i \(-0.575485\pi\)
−0.234925 + 0.972013i \(0.575485\pi\)
\(212\) 320.764i 1.51304i
\(213\) 0 0
\(214\) 315.559 + 315.559i 1.47457 + 1.47457i
\(215\) 94.6522 94.6522i 0.440243 0.440243i
\(216\) 0 0
\(217\) 203.282 0.936784
\(218\) 326.334i 1.49695i
\(219\) 0 0
\(220\) 80.9948i 0.368158i
\(221\) 70.9891 + 223.949i 0.321218 + 1.01335i
\(222\) 0 0
\(223\) −12.2436 12.2436i −0.0549038 0.0549038i 0.679122 0.734026i \(-0.262361\pi\)
−0.734026 + 0.679122i \(0.762361\pi\)
\(224\) −160.029 −0.714414
\(225\) 0 0
\(226\) −56.2102 56.2102i −0.248718 0.248718i
\(227\) −137.468 137.468i −0.605586 0.605586i 0.336203 0.941790i \(-0.390857\pi\)
−0.941790 + 0.336203i \(0.890857\pi\)
\(228\) 0 0
\(229\) 154.033 154.033i 0.672635 0.672635i −0.285688 0.958323i \(-0.592222\pi\)
0.958323 + 0.285688i \(0.0922221\pi\)
\(230\) 258.595 1.12432
\(231\) 0 0
\(232\) −25.6743 + 25.6743i −0.110665 + 0.110665i
\(233\) 386.594i 1.65920i −0.558356 0.829602i \(-0.688568\pi\)
0.558356 0.829602i \(-0.311432\pi\)
\(234\) 0 0
\(235\) 206.697 0.879563
\(236\) −334.210 334.210i −1.41614 1.41614i
\(237\) 0 0
\(238\) 183.215i 0.769813i
\(239\) −199.321 199.321i −0.833979 0.833979i 0.154079 0.988058i \(-0.450759\pi\)
−0.988058 + 0.154079i \(0.950759\pi\)
\(240\) 0 0
\(241\) −196.703 + 196.703i −0.816193 + 0.816193i −0.985554 0.169361i \(-0.945830\pi\)
0.169361 + 0.985554i \(0.445830\pi\)
\(242\) −211.596 + 211.596i −0.874362 + 0.874362i
\(243\) 0 0
\(244\) 110.641i 0.453447i
\(245\) −111.009 + 111.009i −0.453099 + 0.453099i
\(246\) 0 0
\(247\) −114.244 59.2487i −0.462525 0.239873i
\(248\) 78.7642 0.317598
\(249\) 0 0
\(250\) 394.774 1.57910
\(251\) 107.132i 0.426822i 0.976962 + 0.213411i \(0.0684574\pi\)
−0.976962 + 0.213411i \(0.931543\pi\)
\(252\) 0 0
\(253\) −62.8513 62.8513i −0.248424 0.248424i
\(254\) 318.264 318.264i 1.25301 1.25301i
\(255\) 0 0
\(256\) 186.703 0.729307
\(257\) 445.103i 1.73192i 0.500114 + 0.865960i \(0.333291\pi\)
−0.500114 + 0.865960i \(0.666709\pi\)
\(258\) 0 0
\(259\) 134.995i 0.521216i
\(260\) 113.805 219.439i 0.437712 0.843997i
\(261\) 0 0
\(262\) −388.133 388.133i −1.48142 1.48142i
\(263\) −440.377 −1.67444 −0.837218 0.546869i \(-0.815820\pi\)
−0.837218 + 0.546869i \(0.815820\pi\)
\(264\) 0 0
\(265\) −216.420 216.420i −0.816681 0.816681i
\(266\) −70.9679 70.9679i −0.266797 0.266797i
\(267\) 0 0
\(268\) −8.60770 + 8.60770i −0.0321183 + 0.0321183i
\(269\) 43.6654 0.162325 0.0811625 0.996701i \(-0.474137\pi\)
0.0811625 + 0.996701i \(0.474137\pi\)
\(270\) 0 0
\(271\) −210.608 + 210.608i −0.777150 + 0.777150i −0.979345 0.202195i \(-0.935192\pi\)
0.202195 + 0.979345i \(0.435192\pi\)
\(272\) 251.706i 0.925388i
\(273\) 0 0
\(274\) 438.592 1.60070
\(275\) −20.6511 20.6511i −0.0750949 0.0750949i
\(276\) 0 0
\(277\) 214.641i 0.774877i −0.921895 0.387439i \(-0.873360\pi\)
0.921895 0.387439i \(-0.126640\pi\)
\(278\) 27.0283 + 27.0283i 0.0972242 + 0.0972242i
\(279\) 0 0
\(280\) 14.1718 14.1718i 0.0506134 0.0506134i
\(281\) 52.3846 52.3846i 0.186422 0.186422i −0.607725 0.794147i \(-0.707918\pi\)
0.794147 + 0.607725i \(0.207918\pi\)
\(282\) 0 0
\(283\) 2.42047i 0.00855290i −0.999991 0.00427645i \(-0.998639\pi\)
0.999991 0.00427645i \(-0.00136124\pi\)
\(284\) 101.325 101.325i 0.356777 0.356777i
\(285\) 0 0
\(286\) −153.569 + 48.6795i −0.536955 + 0.170208i
\(287\) −258.162 −0.899519
\(288\) 0 0
\(289\) −37.5847 −0.130051
\(290\) 333.244i 1.14912i
\(291\) 0 0
\(292\) −193.536 193.536i −0.662794 0.662794i
\(293\) 114.238 114.238i 0.389889 0.389889i −0.484759 0.874648i \(-0.661093\pi\)
0.874648 + 0.484759i \(0.161093\pi\)
\(294\) 0 0
\(295\) −450.985 −1.52876
\(296\) 52.3055i 0.176708i
\(297\) 0 0
\(298\) 393.885i 1.32176i
\(299\) 81.9712 + 258.595i 0.274151 + 0.864865i
\(300\) 0 0
\(301\) 77.4359 + 77.4359i 0.257262 + 0.257262i
\(302\) 405.985 1.34432
\(303\) 0 0
\(304\) 97.4974 + 97.4974i 0.320715 + 0.320715i
\(305\) −74.6498 74.6498i −0.244753 0.244753i
\(306\) 0 0
\(307\) 92.9230 92.9230i 0.302681 0.302681i −0.539381 0.842062i \(-0.681342\pi\)
0.842062 + 0.539381i \(0.181342\pi\)
\(308\) −66.2627 −0.215139
\(309\) 0 0
\(310\) 511.167 511.167i 1.64892 1.64892i
\(311\) 465.770i 1.49765i 0.662767 + 0.748826i \(0.269382\pi\)
−0.662767 + 0.748826i \(0.730618\pi\)
\(312\) 0 0
\(313\) −44.7077 −0.142836 −0.0714180 0.997446i \(-0.522752\pi\)
−0.0714180 + 0.997446i \(0.522752\pi\)
\(314\) −218.063 218.063i −0.694467 0.694467i
\(315\) 0 0
\(316\) 353.626i 1.11907i
\(317\) 158.768 + 158.768i 0.500845 + 0.500845i 0.911701 0.410855i \(-0.134770\pi\)
−0.410855 + 0.911701i \(0.634770\pi\)
\(318\) 0 0
\(319\) 80.9948 80.9948i 0.253902 0.253902i
\(320\) −234.599 + 234.599i −0.733123 + 0.733123i
\(321\) 0 0
\(322\) 211.559i 0.657015i
\(323\) 126.502 126.502i 0.391646 0.391646i
\(324\) 0 0
\(325\) 26.9334 + 84.9667i 0.0828719 + 0.261436i
\(326\) 767.618 2.35466
\(327\) 0 0
\(328\) −100.028 −0.304964
\(329\) 169.101i 0.513986i
\(330\) 0 0
\(331\) 112.779 + 112.779i 0.340723 + 0.340723i 0.856639 0.515916i \(-0.172548\pi\)
−0.515916 + 0.856639i \(0.672548\pi\)
\(332\) −106.600 + 106.600i −0.321083 + 0.321083i
\(333\) 0 0
\(334\) 524.449 1.57021
\(335\) 11.6153i 0.0346725i
\(336\) 0 0
\(337\) 248.718i 0.738036i 0.929422 + 0.369018i \(0.120306\pi\)
−0.929422 + 0.369018i \(0.879694\pi\)
\(338\) 484.464 + 83.8913i 1.43333 + 0.248199i
\(339\) 0 0
\(340\) 242.985 + 242.985i 0.714660 + 0.714660i
\(341\) −248.477 −0.728673
\(342\) 0 0
\(343\) −211.559 211.559i −0.616790 0.616790i
\(344\) 30.0035 + 30.0035i 0.0872196 + 0.0872196i
\(345\) 0 0
\(346\) −97.3590 + 97.3590i −0.281384 + 0.281384i
\(347\) 88.1958 0.254167 0.127083 0.991892i \(-0.459438\pi\)
0.127083 + 0.991892i \(0.459438\pi\)
\(348\) 0 0
\(349\) −103.172 + 103.172i −0.295621 + 0.295621i −0.839296 0.543675i \(-0.817032\pi\)
0.543675 + 0.839296i \(0.317032\pi\)
\(350\) 69.5121i 0.198606i
\(351\) 0 0
\(352\) 195.608 0.555704
\(353\) 144.241 + 144.241i 0.408615 + 0.408615i 0.881255 0.472640i \(-0.156699\pi\)
−0.472640 + 0.881255i \(0.656699\pi\)
\(354\) 0 0
\(355\) 136.728i 0.385150i
\(356\) −181.999 181.999i −0.511232 0.511232i
\(357\) 0 0
\(358\) −572.238 + 572.238i −1.59843 + 1.59843i
\(359\) 383.266 383.266i 1.06759 1.06759i 0.0700492 0.997544i \(-0.477684\pi\)
0.997544 0.0700492i \(-0.0223156\pi\)
\(360\) 0 0
\(361\) 263.000i 0.728532i
\(362\) −570.856 + 570.856i −1.57695 + 1.57695i
\(363\) 0 0
\(364\) 179.526 + 93.1051i 0.493202 + 0.255783i
\(365\) −261.158 −0.715503
\(366\) 0 0
\(367\) −558.554 −1.52194 −0.760972 0.648784i \(-0.775278\pi\)
−0.760972 + 0.648784i \(0.775278\pi\)
\(368\) 290.645i 0.789795i
\(369\) 0 0
\(370\) −339.454 339.454i −0.917443 0.917443i
\(371\) 177.056 177.056i 0.477240 0.477240i
\(372\) 0 0
\(373\) −431.061 −1.15566 −0.577830 0.816157i \(-0.696100\pi\)
−0.577830 + 0.816157i \(0.696100\pi\)
\(374\) 223.949i 0.598795i
\(375\) 0 0
\(376\) 65.5204i 0.174256i
\(377\) −333.244 + 105.634i −0.883937 + 0.280197i
\(378\) 0 0
\(379\) 442.415 + 442.415i 1.16732 + 1.16732i 0.982835 + 0.184488i \(0.0590627\pi\)
0.184488 + 0.982835i \(0.440937\pi\)
\(380\) −188.239 −0.495365
\(381\) 0 0
\(382\) 630.228 + 630.228i 1.64981 + 1.64981i
\(383\) −108.963 108.963i −0.284498 0.284498i 0.550402 0.834900i \(-0.314475\pi\)
−0.834900 + 0.550402i \(0.814475\pi\)
\(384\) 0 0
\(385\) −44.7077 + 44.7077i −0.116124 + 0.116124i
\(386\) −624.775 −1.61859
\(387\) 0 0
\(388\) −241.382 + 241.382i −0.622119 + 0.622119i
\(389\) 643.891i 1.65525i −0.561283 0.827624i \(-0.689692\pi\)
0.561283 0.827624i \(-0.310308\pi\)
\(390\) 0 0
\(391\) −377.108 −0.964469
\(392\) −35.1886 35.1886i −0.0897667 0.0897667i
\(393\) 0 0
\(394\) 298.305i 0.757119i
\(395\) −238.592 238.592i −0.604031 0.604031i
\(396\) 0 0
\(397\) 197.592 197.592i 0.497713 0.497713i −0.413012 0.910726i \(-0.635523\pi\)
0.910726 + 0.413012i \(0.135523\pi\)
\(398\) 245.977 245.977i 0.618033 0.618033i
\(399\) 0 0
\(400\) 95.4974i 0.238744i
\(401\) 414.018 414.018i 1.03246 1.03246i 0.0330099 0.999455i \(-0.489491\pi\)
0.999455 0.0330099i \(-0.0105093\pi\)
\(402\) 0 0
\(403\) 673.200 + 349.133i 1.67047 + 0.866336i
\(404\) 24.9605 0.0617835
\(405\) 0 0
\(406\) −272.631 −0.671504
\(407\) 165.008i 0.405425i
\(408\) 0 0
\(409\) −207.641 207.641i −0.507680 0.507680i 0.406134 0.913814i \(-0.366877\pi\)
−0.913814 + 0.406134i \(0.866877\pi\)
\(410\) −649.166 + 649.166i −1.58333 + 1.58333i
\(411\) 0 0
\(412\) −51.3487 −0.124633
\(413\) 368.955i 0.893354i
\(414\) 0 0
\(415\) 143.846i 0.346617i
\(416\) −529.960 274.846i −1.27394 0.660689i
\(417\) 0 0
\(418\) 86.7461 + 86.7461i 0.207527 + 0.207527i
\(419\) 673.578 1.60759 0.803793 0.594909i \(-0.202812\pi\)
0.803793 + 0.594909i \(0.202812\pi\)
\(420\) 0 0
\(421\) 422.741 + 422.741i 1.00414 + 1.00414i 0.999991 + 0.00414393i \(0.00131906\pi\)
0.00414393 + 0.999991i \(0.498681\pi\)
\(422\) −203.947 203.947i −0.483287 0.483287i
\(423\) 0 0
\(424\) 68.6025 68.6025i 0.161798 0.161798i
\(425\) −123.907 −0.291545
\(426\) 0 0
\(427\) 61.0718 61.0718i 0.143025 0.143025i
\(428\) 684.761i 1.59991i
\(429\) 0 0
\(430\) 389.436 0.905665
\(431\) 327.753 + 327.753i 0.760449 + 0.760449i 0.976403 0.215955i \(-0.0692864\pi\)
−0.215955 + 0.976403i \(0.569286\pi\)
\(432\) 0 0
\(433\) 504.431i 1.16497i −0.812842 0.582484i \(-0.802081\pi\)
0.812842 0.582484i \(-0.197919\pi\)
\(434\) 418.191 + 418.191i 0.963573 + 0.963573i
\(435\) 0 0
\(436\) −354.072 + 354.072i −0.812091 + 0.812091i
\(437\) 146.071 146.071i 0.334260 0.334260i
\(438\) 0 0
\(439\) 160.210i 0.364944i −0.983211 0.182472i \(-0.941590\pi\)
0.983211 0.182472i \(-0.0584098\pi\)
\(440\) −17.3226 + 17.3226i −0.0393694 + 0.0393694i
\(441\) 0 0
\(442\) −314.669 + 606.746i −0.711921 + 1.37273i
\(443\) −244.184 −0.551204 −0.275602 0.961272i \(-0.588877\pi\)
−0.275602 + 0.961272i \(0.588877\pi\)
\(444\) 0 0
\(445\) −245.590 −0.551887
\(446\) 50.3748i 0.112948i
\(447\) 0 0
\(448\) −191.928 191.928i −0.428411 0.428411i
\(449\) −39.4719 + 39.4719i −0.0879106 + 0.0879106i −0.749695 0.661784i \(-0.769800\pi\)
0.661784 + 0.749695i \(0.269800\pi\)
\(450\) 0 0
\(451\) 315.559 0.699687
\(452\) 121.976i 0.269858i
\(453\) 0 0
\(454\) 565.597i 1.24581i
\(455\) 183.945 58.3081i 0.404274 0.128150i
\(456\) 0 0
\(457\) 210.933 + 210.933i 0.461561 + 0.461561i 0.899167 0.437606i \(-0.144173\pi\)
−0.437606 + 0.899167i \(0.644173\pi\)
\(458\) 633.753 1.38374
\(459\) 0 0
\(460\) 280.574 + 280.574i 0.609944 + 0.609944i
\(461\) 464.689 + 464.689i 1.00800 + 1.00800i 0.999968 + 0.00803355i \(0.00255718\pi\)
0.00803355 + 0.999968i \(0.497443\pi\)
\(462\) 0 0
\(463\) −636.443 + 636.443i −1.37461 + 1.37461i −0.521132 + 0.853476i \(0.674490\pi\)
−0.853476 + 0.521132i \(0.825510\pi\)
\(464\) 374.547 0.807212
\(465\) 0 0
\(466\) 795.300 795.300i 1.70665 1.70665i
\(467\) 271.075i 0.580460i 0.956957 + 0.290230i \(0.0937318\pi\)
−0.956957 + 0.290230i \(0.906268\pi\)
\(468\) 0 0
\(469\) −9.50258 −0.0202614
\(470\) 425.217 + 425.217i 0.904716 + 0.904716i
\(471\) 0 0
\(472\) 142.956i 0.302874i
\(473\) −94.6522 94.6522i −0.200110 0.200110i
\(474\) 0 0
\(475\) 47.9948 47.9948i 0.101042 0.101042i
\(476\) −198.788 + 198.788i −0.417622 + 0.417622i
\(477\) 0 0
\(478\) 820.084i 1.71566i
\(479\) −125.737 + 125.737i −0.262499 + 0.262499i −0.826069 0.563570i \(-0.809428\pi\)
0.563570 + 0.826069i \(0.309428\pi\)
\(480\) 0 0
\(481\) 231.851 447.056i 0.482019 0.929431i
\(482\) −809.311 −1.67907
\(483\) 0 0
\(484\) −459.161 −0.948681
\(485\) 325.722i 0.671592i
\(486\) 0 0
\(487\) −29.1154 29.1154i −0.0597853 0.0597853i 0.676582 0.736367i \(-0.263460\pi\)
−0.736367 + 0.676582i \(0.763460\pi\)
\(488\) 23.6630 23.6630i 0.0484898 0.0484898i
\(489\) 0 0
\(490\) −456.736 −0.932114
\(491\) 585.583i 1.19263i −0.802749 0.596317i \(-0.796630\pi\)
0.802749 0.596317i \(-0.203370\pi\)
\(492\) 0 0
\(493\) 485.969i 0.985738i
\(494\) −113.135 356.907i −0.229018 0.722485i
\(495\) 0 0
\(496\) −574.520 574.520i −1.15831 1.15831i
\(497\) 111.859 0.225068
\(498\) 0 0
\(499\) 35.7743 + 35.7743i 0.0716920 + 0.0716920i 0.742044 0.670352i \(-0.233857\pi\)
−0.670352 + 0.742044i \(0.733857\pi\)
\(500\) 428.329 + 428.329i 0.856658 + 0.856658i
\(501\) 0 0
\(502\) −220.392 + 220.392i −0.439028 + 0.439028i
\(503\) −131.861 −0.262149 −0.131075 0.991372i \(-0.541843\pi\)
−0.131075 + 0.991372i \(0.541843\pi\)
\(504\) 0 0
\(505\) 16.8409 16.8409i 0.0333484 0.0333484i
\(506\) 258.595i 0.511056i
\(507\) 0 0
\(508\) 690.631 1.35951
\(509\) 11.3990 + 11.3990i 0.0223949 + 0.0223949i 0.718216 0.695821i \(-0.244959\pi\)
−0.695821 + 0.718216i \(0.744959\pi\)
\(510\) 0 0
\(511\) 213.656i 0.418114i
\(512\) 505.469 + 505.469i 0.987243 + 0.987243i
\(513\) 0 0
\(514\) −915.664 + 915.664i −1.78145 + 1.78145i
\(515\) −34.6451 + 34.6451i −0.0672720 + 0.0672720i
\(516\) 0 0
\(517\) 206.697i 0.399801i
\(518\) 277.711 277.711i 0.536121 0.536121i
\(519\) 0 0
\(520\) 71.2717 22.5922i 0.137061 0.0434466i
\(521\) 81.1062 0.155674 0.0778370 0.996966i \(-0.475199\pi\)
0.0778370 + 0.996966i \(0.475199\pi\)
\(522\) 0 0
\(523\) 427.969 0.818297 0.409148 0.912468i \(-0.365826\pi\)
0.409148 + 0.912468i \(0.365826\pi\)
\(524\) 842.247i 1.60734i
\(525\) 0 0
\(526\) −905.941 905.941i −1.72232 1.72232i
\(527\) −745.432 + 745.432i −1.41448 + 1.41448i
\(528\) 0 0
\(529\) 93.5538 0.176850
\(530\) 890.438i 1.68007i
\(531\) 0 0
\(532\) 154.000i 0.289474i
\(533\) −854.944 443.389i −1.60402 0.831874i
\(534\) 0 0
\(535\) 462.010 + 462.010i 0.863571 + 0.863571i
\(536\) −3.68189 −0.00686921
\(537\) 0 0
\(538\) 89.8282 + 89.8282i 0.166967 + 0.166967i
\(539\) 111.009 + 111.009i 0.205954 + 0.205954i
\(540\) 0 0
\(541\) 583.315 583.315i 1.07822 1.07822i 0.0815475 0.996669i \(-0.474014\pi\)
0.996669 0.0815475i \(-0.0259862\pi\)
\(542\) −866.522 −1.59875
\(543\) 0 0
\(544\) 586.823 586.823i 1.07872 1.07872i
\(545\) 477.787i 0.876673i
\(546\) 0 0
\(547\) 502.554 0.918745 0.459373 0.888244i \(-0.348074\pi\)
0.459373 + 0.888244i \(0.348074\pi\)
\(548\) 475.871 + 475.871i 0.868378 + 0.868378i
\(549\) 0 0
\(550\) 84.9667i 0.154485i
\(551\) 188.239 + 188.239i 0.341631 + 0.341631i
\(552\) 0 0
\(553\) 195.195 195.195i 0.352974 0.352974i
\(554\) 441.558 441.558i 0.797037 0.797037i
\(555\) 0 0
\(556\) 58.6513i 0.105488i
\(557\) −259.877 + 259.877i −0.466565 + 0.466565i −0.900800 0.434235i \(-0.857019\pi\)
0.434235 + 0.900800i \(0.357019\pi\)
\(558\) 0 0
\(559\) 123.446 + 389.436i 0.220834 + 0.696665i
\(560\) −206.743 −0.369184
\(561\) 0 0
\(562\) 215.531 0.383507
\(563\) 887.009i 1.57550i −0.615992 0.787752i \(-0.711245\pi\)
0.615992 0.787752i \(-0.288755\pi\)
\(564\) 0 0
\(565\) −82.2975 82.2975i −0.145659 0.145659i
\(566\) 4.97938 4.97938i 0.00879749 0.00879749i
\(567\) 0 0
\(568\) 43.3411 0.0763048
\(569\) 408.960i 0.718734i −0.933196 0.359367i \(-0.882993\pi\)
0.933196 0.359367i \(-0.117007\pi\)
\(570\) 0 0
\(571\) 612.102i 1.07198i 0.844223 + 0.535992i \(0.180062\pi\)
−0.844223 + 0.535992i \(0.819938\pi\)
\(572\) −219.439 113.805i −0.383635 0.198960i
\(573\) 0 0
\(574\) −531.090 531.090i −0.925243 0.925243i
\(575\) −143.075 −0.248826
\(576\) 0 0
\(577\) 136.215 + 136.215i 0.236075 + 0.236075i 0.815223 0.579148i \(-0.196614\pi\)
−0.579148 + 0.815223i \(0.696614\pi\)
\(578\) −77.3190 77.3190i −0.133770 0.133770i
\(579\) 0 0
\(580\) −361.569 + 361.569i −0.623395 + 0.623395i
\(581\) −117.682 −0.202551
\(582\) 0 0
\(583\) −216.420 + 216.420i −0.371219 + 0.371219i
\(584\) 82.7839i 0.141753i
\(585\) 0 0
\(586\) 470.018 0.802078
\(587\) 302.044 + 302.044i 0.514555 + 0.514555i 0.915919 0.401364i \(-0.131464\pi\)
−0.401364 + 0.915919i \(0.631464\pi\)
\(588\) 0 0
\(589\) 577.482i 0.980445i
\(590\) −927.763 927.763i −1.57248 1.57248i
\(591\) 0 0
\(592\) −381.526 + 381.526i −0.644469 + 0.644469i
\(593\) 21.8327 21.8327i 0.0368174 0.0368174i −0.688458 0.725276i \(-0.741712\pi\)
0.725276 + 0.688458i \(0.241712\pi\)
\(594\) 0 0
\(595\) 268.246i 0.450834i
\(596\) 427.364 427.364i 0.717053 0.717053i
\(597\) 0 0
\(598\) −363.349 + 700.610i −0.607606 + 1.17159i
\(599\) −421.008 −0.702851 −0.351425 0.936216i \(-0.614303\pi\)
−0.351425 + 0.936216i \(0.614303\pi\)
\(600\) 0 0
\(601\) −926.277 −1.54123 −0.770613 0.637303i \(-0.780050\pi\)
−0.770613 + 0.637303i \(0.780050\pi\)
\(602\) 318.602i 0.529239i
\(603\) 0 0
\(604\) 440.492 + 440.492i 0.729292 + 0.729292i
\(605\) −309.798 + 309.798i −0.512062 + 0.512062i
\(606\) 0 0
\(607\) −226.000 −0.372323 −0.186161 0.982519i \(-0.559605\pi\)
−0.186161 + 0.982519i \(0.559605\pi\)
\(608\) 454.608i 0.747711i
\(609\) 0 0
\(610\) 307.138i 0.503506i
\(611\) −290.428 + 560.005i −0.475333 + 0.916539i
\(612\) 0 0
\(613\) 241.946 + 241.946i 0.394692 + 0.394692i 0.876356 0.481664i \(-0.159967\pi\)
−0.481664 + 0.876356i \(0.659967\pi\)
\(614\) 382.322 0.622674
\(615\) 0 0
\(616\) −14.1718 14.1718i −0.0230061 0.0230061i
\(617\) −243.851 243.851i −0.395221 0.395221i 0.481322 0.876544i \(-0.340157\pi\)
−0.876544 + 0.481322i \(0.840157\pi\)
\(618\) 0 0
\(619\) 222.636 222.636i 0.359670 0.359670i −0.504021 0.863691i \(-0.668147\pi\)
0.863691 + 0.504021i \(0.168147\pi\)
\(620\) 1109.23 1.78908
\(621\) 0 0
\(622\) −958.179 + 958.179i −1.54048 + 1.54048i
\(623\) 200.920i 0.322503i
\(624\) 0 0
\(625\) 406.580 0.650527
\(626\) −91.9724 91.9724i −0.146921 0.146921i
\(627\) 0 0
\(628\) 473.195i 0.753495i
\(629\) 495.024 + 495.024i 0.787002 + 0.787002i
\(630\) 0 0
\(631\) −382.654 + 382.654i −0.606424 + 0.606424i −0.942010 0.335585i \(-0.891066\pi\)
0.335585 + 0.942010i \(0.391066\pi\)
\(632\) 75.6307 75.6307i 0.119669 0.119669i
\(633\) 0 0
\(634\) 653.233i 1.03034i
\(635\) 465.971 465.971i 0.733812 0.733812i
\(636\) 0 0
\(637\) −144.779 456.736i −0.227283 0.717011i
\(638\) 333.244 0.522327
\(639\) 0 0
\(640\) −182.802 −0.285629
\(641\) 513.297i 0.800775i 0.916346 + 0.400387i \(0.131124\pi\)
−0.916346 + 0.400387i \(0.868876\pi\)
\(642\) 0 0
\(643\) 719.113 + 719.113i 1.11837 + 1.11837i 0.991981 + 0.126391i \(0.0403393\pi\)
0.126391 + 0.991981i \(0.459661\pi\)
\(644\) −229.541 + 229.541i −0.356430 + 0.356430i
\(645\) 0 0
\(646\) 520.477 0.805692
\(647\) 450.494i 0.696281i 0.937442 + 0.348141i \(0.113187\pi\)
−0.937442 + 0.348141i \(0.886813\pi\)
\(648\) 0 0
\(649\) 450.985i 0.694891i
\(650\) −119.386 + 230.200i −0.183671 + 0.354154i
\(651\) 0 0
\(652\) 832.864 + 832.864i 1.27740 + 1.27740i
\(653\) 494.159 0.756752 0.378376 0.925652i \(-0.376483\pi\)
0.378376 + 0.925652i \(0.376483\pi\)
\(654\) 0 0
\(655\) −568.267 568.267i −0.867583 0.867583i
\(656\) 729.624 + 729.624i 1.11223 + 1.11223i
\(657\) 0 0
\(658\) −347.874 + 347.874i −0.528684 + 0.528684i
\(659\) −668.219 −1.01399 −0.506994 0.861949i \(-0.669244\pi\)
−0.506994 + 0.861949i \(0.669244\pi\)
\(660\) 0 0
\(661\) −164.597 + 164.597i −0.249013 + 0.249013i −0.820565 0.571553i \(-0.806341\pi\)
0.571553 + 0.820565i \(0.306341\pi\)
\(662\) 464.019i 0.700934i
\(663\) 0 0
\(664\) −45.5974 −0.0686708
\(665\) −103.904 103.904i −0.156247 0.156247i
\(666\) 0 0
\(667\) 561.149i 0.841302i
\(668\) 569.025 + 569.025i 0.851834 + 0.851834i
\(669\) 0 0
\(670\) −23.8949 + 23.8949i −0.0356640 + 0.0356640i
\(671\) −74.6498 + 74.6498i −0.111252 + 0.111252i
\(672\) 0 0
\(673\) 320.420i 0.476108i 0.971252 + 0.238054i \(0.0765095\pi\)
−0.971252 + 0.238054i \(0.923491\pi\)
\(674\) −511.661 + 511.661i −0.759141 + 0.759141i
\(675\) 0 0
\(676\) 434.620 + 616.664i 0.642930 + 0.912225i
\(677\) 862.682 1.27427 0.637136 0.770752i \(-0.280119\pi\)
0.637136 + 0.770752i \(0.280119\pi\)
\(678\) 0 0
\(679\) −266.477 −0.392455
\(680\) 103.935i 0.152846i
\(681\) 0 0
\(682\) −511.167 511.167i −0.749511 0.749511i
\(683\) 351.965 351.965i 0.515322 0.515322i −0.400830 0.916152i \(-0.631278\pi\)
0.916152 + 0.400830i \(0.131278\pi\)
\(684\) 0 0
\(685\) 642.144 0.937436
\(686\) 870.436i 1.26886i
\(687\) 0 0
\(688\) 437.703i 0.636195i
\(689\) 890.438 282.258i 1.29236 0.409663i
\(690\) 0 0
\(691\) 433.995 + 433.995i 0.628068 + 0.628068i 0.947582 0.319514i \(-0.103520\pi\)
−0.319514 + 0.947582i \(0.603520\pi\)
\(692\) −211.268 −0.305301
\(693\) 0 0
\(694\) 181.436 + 181.436i 0.261435 + 0.261435i
\(695\) 39.5722 + 39.5722i 0.0569384 + 0.0569384i
\(696\) 0 0
\(697\) 946.677 946.677i 1.35822 1.35822i
\(698\) −424.489 −0.608150
\(699\) 0 0
\(700\) −75.4205 + 75.4205i −0.107744 + 0.107744i
\(701\) 23.8638i 0.0340425i 0.999855 + 0.0170212i \(0.00541829\pi\)
−0.999855 + 0.0170212i \(0.994582\pi\)
\(702\) 0 0
\(703\) −383.492 −0.545508
\(704\) 234.599 + 234.599i 0.333238 + 0.333238i
\(705\) 0 0
\(706\) 593.464i 0.840601i
\(707\) 13.7778 + 13.7778i 0.0194876 + 0.0194876i
\(708\) 0 0
\(709\) 29.0282 29.0282i 0.0409424 0.0409424i −0.686339 0.727282i \(-0.740783\pi\)
0.727282 + 0.686339i \(0.240783\pi\)
\(710\) 281.277 281.277i 0.396164 0.396164i
\(711\) 0 0
\(712\) 77.8489i 0.109338i
\(713\) −860.751 + 860.751i −1.20722 + 1.20722i
\(714\) 0 0
\(715\) −224.841 + 71.2717i −0.314463 + 0.0996807i
\(716\) −1241.75 −1.73429
\(717\) 0 0
\(718\) 1576.90 2.19625
\(719\) 365.928i 0.508940i −0.967081 0.254470i \(-0.918099\pi\)
0.967081 0.254470i \(-0.0819010\pi\)
\(720\) 0 0
\(721\) −28.3435 28.3435i −0.0393114 0.0393114i
\(722\) 541.042 541.042i 0.749366 0.749366i
\(723\) 0 0
\(724\) −1238.75 −1.71099
\(725\) 184.377i 0.254313i
\(726\) 0 0
\(727\) 294.728i 0.405403i 0.979241 + 0.202702i \(0.0649722\pi\)
−0.979241 + 0.202702i \(0.935028\pi\)
\(728\) 18.4829 + 58.3081i 0.0253887 + 0.0800936i
\(729\) 0 0
\(730\) −537.254 537.254i −0.735964 0.735964i
\(731\) −567.913 −0.776899
\(732\) 0 0
\(733\) −650.664 650.664i −0.887673 0.887673i 0.106627 0.994299i \(-0.465995\pi\)
−0.994299 + 0.106627i \(0.965995\pi\)
\(734\) −1149.05 1149.05i −1.56547 1.56547i
\(735\) 0 0
\(736\) 677.605 677.605i 0.920659 0.920659i
\(737\) 11.6153 0.0157602
\(738\) 0 0
\(739\) −381.077 + 381.077i −0.515666 + 0.515666i −0.916257 0.400591i \(-0.868805\pi\)
0.400591 + 0.916257i \(0.368805\pi\)
\(740\) 736.613i 0.995423i
\(741\) 0 0
\(742\) 728.477 0.981775
\(743\) −908.610 908.610i −1.22289 1.22289i −0.966598 0.256295i \(-0.917498\pi\)
−0.256295 0.966598i \(-0.582502\pi\)
\(744\) 0 0
\(745\) 576.687i 0.774077i
\(746\) −886.777 886.777i −1.18871 1.18871i
\(747\) 0 0
\(748\) 242.985 242.985i 0.324846 0.324846i
\(749\) −377.975 + 377.975i −0.504640 + 0.504640i
\(750\) 0 0
\(751\) 1121.47i 1.49330i 0.665215 + 0.746652i \(0.268340\pi\)
−0.665215 + 0.746652i \(0.731660\pi\)
\(752\) 477.918 477.918i 0.635529 0.635529i
\(753\) 0 0
\(754\) −902.859 468.238i −1.19743 0.621006i
\(755\) 594.403 0.787289
\(756\) 0 0
\(757\) −1134.75 −1.49901 −0.749507 0.661996i \(-0.769709\pi\)
−0.749507 + 0.661996i \(0.769709\pi\)
\(758\) 1820.27i 2.40141i
\(759\) 0 0
\(760\) −40.2590 40.2590i −0.0529724 0.0529724i
\(761\) 486.305 486.305i 0.639034 0.639034i −0.311283 0.950317i \(-0.600759\pi\)
0.950317 + 0.311283i \(0.100759\pi\)
\(762\) 0 0
\(763\) −390.882 −0.512296
\(764\) 1367.59i 1.79004i
\(765\) 0 0
\(766\) 448.315i 0.585268i
\(767\) 633.674 1221.85i 0.826172 1.59303i
\(768\) 0 0
\(769\) −684.395 684.395i −0.889980 0.889980i 0.104541 0.994521i \(-0.466663\pi\)
−0.994521 + 0.104541i \(0.966663\pi\)
\(770\) −183.945 −0.238889
\(771\) 0 0
\(772\) −677.879 677.879i −0.878082 0.878082i
\(773\) −361.217 361.217i −0.467292 0.467292i 0.433744 0.901036i \(-0.357192\pi\)
−0.901036 + 0.433744i \(0.857192\pi\)
\(774\) 0 0
\(775\) −282.818 + 282.818i −0.364926 + 0.364926i
\(776\) −103.250 −0.133054
\(777\) 0 0
\(778\) 1324.61 1324.61i 1.70258 1.70258i
\(779\) 733.385i 0.941444i
\(780\) 0 0
\(781\) −136.728 −0.175068
\(782\) −775.784 775.784i −0.992051 0.992051i
\(783\) 0 0
\(784\) 513.344i 0.654775i
\(785\) −319.266 319.266i −0.406708 0.406708i
\(786\) 0 0
\(787\) 287.010 287.010i 0.364689 0.364689i −0.500847 0.865536i \(-0.666978\pi\)
0.865536 + 0.500847i \(0.166978\pi\)
\(788\) −323.660 + 323.660i −0.410736 + 0.410736i
\(789\) 0 0
\(790\) 981.661i 1.24261i
\(791\) 67.3284 67.3284i 0.0851181 0.0851181i
\(792\) 0 0
\(793\) 307.138 97.3590i 0.387312 0.122773i
\(794\) 812.971 1.02389
\(795\) 0 0
\(796\) 533.769 0.670564
\(797\) 899.891i 1.12910i −0.825400 0.564549i \(-0.809050\pi\)
0.825400 0.564549i \(-0.190950\pi\)
\(798\) 0 0
\(799\) −620.092 620.092i −0.776085 0.776085i
\(800\) 222.641 222.641i 0.278302 0.278302i
\(801\) 0 0
\(802\) 1703.43 2.12398
\(803\) 261.158i 0.325228i
\(804\) 0 0
\(805\) 309.744i 0.384775i
\(806\) 666.668 + 2103.14i 0.827132 + 2.60935i
\(807\) 0 0
\(808\) 5.33836 + 5.33836i 0.00660689 + 0.00660689i
\(809\) −116.385 −0.143862 −0.0719311 0.997410i \(-0.522916\pi\)
−0.0719311 + 0.997410i \(0.522916\pi\)
\(810\) 0 0
\(811\) 636.969 + 636.969i 0.785412 + 0.785412i 0.980738 0.195326i \(-0.0625766\pi\)
−0.195326 + 0.980738i \(0.562577\pi\)
\(812\) −295.804 295.804i −0.364290 0.364290i
\(813\) 0 0
\(814\) −339.454 + 339.454i −0.417019 + 0.417019i
\(815\) 1123.87 1.37898
\(816\) 0 0
\(817\) 219.979 219.979i 0.269253 0.269253i
\(818\) 854.316i 1.04440i
\(819\) 0 0
\(820\) −1408.69 −1.71791
\(821\) 36.1588 + 36.1588i 0.0440424 + 0.0440424i 0.728785 0.684743i \(-0.240085\pi\)
−0.684743 + 0.728785i \(0.740085\pi\)
\(822\) 0 0
\(823\) 120.364i 0.146250i 0.997323 + 0.0731252i \(0.0232973\pi\)
−0.997323 + 0.0731252i \(0.976703\pi\)
\(824\) −10.9821 10.9821i −0.0133277 0.0133277i
\(825\) 0 0
\(826\) 759.013 759.013i 0.918902 0.918902i
\(827\) −375.396 + 375.396i −0.453925 + 0.453925i −0.896655 0.442730i \(-0.854010\pi\)
0.442730 + 0.896655i \(0.354010\pi\)
\(828\) 0 0
\(829\) 425.538i 0.513315i −0.966502 0.256658i \(-0.917379\pi\)
0.966502 0.256658i \(-0.0826213\pi\)
\(830\) −295.919 + 295.919i −0.356529 + 0.356529i
\(831\) 0 0
\(832\) −305.967 965.233i −0.367748 1.16014i
\(833\) 666.056 0.799587
\(834\) 0 0
\(835\) 767.846 0.919576
\(836\) 188.239i 0.225166i
\(837\) 0 0
\(838\) 1385.68 + 1385.68i 1.65356 + 1.65356i
\(839\) −94.7836 + 94.7836i −0.112972 + 0.112972i −0.761333 0.648361i \(-0.775455\pi\)
0.648361 + 0.761333i \(0.275455\pi\)
\(840\) 0 0
\(841\) −117.862 −0.140145
\(842\) 1739.32i 2.06570i
\(843\) 0 0
\(844\) 442.564i 0.524365i
\(845\) 709.305 + 122.825i 0.839414 + 0.145355i
\(846\) 0 0
\(847\) −253.449 253.449i −0.299231 0.299231i
\(848\) −1000.80 −1.18019
\(849\) 0 0
\(850\) −254.900 254.900i −0.299882 0.299882i
\(851\) 571.605 + 571.605i 0.671686 + 0.671686i
\(852\) 0 0
\(853\) −481.572 + 481.572i −0.564562 + 0.564562i −0.930600 0.366038i \(-0.880714\pi\)
0.366038 + 0.930600i \(0.380714\pi\)
\(854\) 251.273 0.294231
\(855\) 0 0
\(856\) −146.451 + 146.451i −0.171088 + 0.171088i
\(857\) 639.999i 0.746790i −0.927672 0.373395i \(-0.878194\pi\)
0.927672 0.373395i \(-0.121806\pi\)
\(858\) 0 0
\(859\) −356.708 −0.415259 −0.207630 0.978208i \(-0.566575\pi\)
−0.207630 + 0.978208i \(0.566575\pi\)
\(860\) 422.537 + 422.537i 0.491322 + 0.491322i
\(861\) 0 0
\(862\) 1348.50i 1.56439i
\(863\) 3.76105 + 3.76105i 0.00435811 + 0.00435811i 0.709282 0.704924i \(-0.249019\pi\)
−0.704924 + 0.709282i \(0.749019\pi\)
\(864\) 0 0
\(865\) −142.543 + 142.543i −0.164790 + 0.164790i
\(866\) 1037.71 1037.71i 1.19828 1.19828i
\(867\) 0 0
\(868\) 907.472i 1.04547i
\(869\) −238.592 + 238.592i −0.274559 + 0.274559i
\(870\) 0 0
\(871\) −31.4693 16.3205i −0.0361300 0.0187377i
\(872\) −151.452 −0.173684
\(873\) 0 0
\(874\) 600.995 0.687637
\(875\) 472.859i 0.540411i
\(876\) 0 0
\(877\) −521.249 521.249i −0.594354 0.594354i 0.344450 0.938805i \(-0.388065\pi\)
−0.938805 + 0.344450i \(0.888065\pi\)
\(878\) 329.584 329.584i 0.375380 0.375380i
\(879\) 0 0
\(880\) 252.708 0.287168
\(881\) 642.192i 0.728936i 0.931216 + 0.364468i \(0.118749\pi\)
−0.931216 + 0.364468i \(0.881251\pi\)
\(882\) 0 0
\(883\) 1327.26i 1.50313i −0.659661 0.751564i \(-0.729300\pi\)
0.659661 0.751564i \(-0.270700\pi\)
\(884\) −999.733 + 316.903i −1.13092 + 0.358487i
\(885\) 0 0
\(886\) −502.333 502.333i −0.566968 0.566968i
\(887\) 1060.17 1.19523 0.597617 0.801782i \(-0.296114\pi\)
0.597617 + 0.801782i \(0.296114\pi\)
\(888\) 0 0
\(889\) 381.215 + 381.215i 0.428814 + 0.428814i
\(890\) −505.226 505.226i −0.567670 0.567670i
\(891\) 0 0
\(892\) 54.6565 54.6565i 0.0612741 0.0612741i
\(893\) 480.382 0.537941
\(894\) 0 0
\(895\) −837.815 + 837.815i −0.936106 + 0.936106i
\(896\) 149.553i 0.166911i
\(897\) 0 0
\(898\) −162.403 −0.180849
\(899\) −1109.23 1109.23i −1.23385 1.23385i
\(900\) 0 0
\(901\) 1298.52i 1.44120i
\(902\) 649.166 + 649.166i 0.719696 + 0.719696i
\(903\) 0 0
\(904\) 26.0873 26.0873i 0.0288576 0.0288576i
\(905\) −835.791 + 835.791i −0.923526 + 0.923526i
\(906\) 0 0
\(907\) 1404.96i 1.54902i −0.632560 0.774512i \(-0.717996\pi\)
0.632560 0.774512i \(-0.282004\pi\)
\(908\) 613.672 613.672i 0.675850 0.675850i
\(909\) 0 0
\(910\) 498.361 + 258.459i 0.547650 + 0.284021i
\(911\) 1271.84 1.39610 0.698048 0.716051i \(-0.254052\pi\)
0.698048 + 0.716051i \(0.254052\pi\)
\(912\) 0 0
\(913\) 143.846 0.157553
\(914\) 867.862i 0.949521i
\(915\) 0 0
\(916\) 687.620 + 687.620i 0.750677 + 0.750677i
\(917\) 464.905 464.905i 0.506985 0.506985i
\(918\) 0 0
\(919\) −1645.98 −1.79106 −0.895530 0.445001i \(-0.853203\pi\)
−0.895530 + 0.445001i \(0.853203\pi\)
\(920\) 120.014i 0.130450i
\(921\) 0 0
\(922\) 1911.91i 2.07366i
\(923\) 370.438 + 192.116i 0.401341 + 0.208143i
\(924\) 0 0
\(925\) 187.813 + 187.813i 0.203041 + 0.203041i
\(926\) −2618.58 −2.82784
\(927\) 0 0
\(928\) 873.213 + 873.213i 0.940962 + 0.940962i
\(929\) 219.123 + 219.123i 0.235869 + 0.235869i 0.815137 0.579268i \(-0.196661\pi\)
−0.579268 + 0.815137i \(0.696661\pi\)
\(930\) 0 0
\(931\) −257.995 + 257.995i −0.277116 + 0.277116i
\(932\) 1725.80 1.85171
\(933\) 0 0
\(934\) −557.654 + 557.654i −0.597060 + 0.597060i
\(935\) 327.885i 0.350679i
\(936\) 0 0
\(937\) −1590.12 −1.69704 −0.848518 0.529166i \(-0.822505\pi\)
−0.848518 + 0.529166i \(0.822505\pi\)
\(938\) −19.5487 19.5487i −0.0208408 0.0208408i
\(939\) 0 0
\(940\) 922.718i 0.981615i
\(941\) −813.410 813.410i −0.864410 0.864410i 0.127437 0.991847i \(-0.459325\pi\)
−0.991847 + 0.127437i \(0.959325\pi\)
\(942\) 0 0
\(943\) 1093.13 1093.13i 1.15920 1.15920i
\(944\) −1042.75 + 1042.75i −1.10461 + 1.10461i
\(945\) 0 0
\(946\) 389.436i 0.411666i
\(947\) −712.069 + 712.069i −0.751921 + 0.751921i −0.974838 0.222916i \(-0.928442\pi\)
0.222916 + 0.974838i \(0.428442\pi\)
\(948\) 0 0
\(949\) 366.951 707.557i 0.386671 0.745581i
\(950\) 197.470 0.207863
\(951\) 0 0
\(952\) −85.0306 −0.0893178
\(953\) 873.232i 0.916297i −0.888876 0.458149i \(-0.848513\pi\)
0.888876 0.458149i \(-0.151487\pi\)
\(954\) 0 0
\(955\) 922.718 + 922.718i 0.966197 + 0.966197i
\(956\) 889.789 889.789i 0.930742 0.930742i
\(957\) 0 0
\(958\) −517.331 −0.540011
\(959\) 525.344i 0.547804i
\(960\) 0 0
\(961\) 2441.91i 2.54101i
\(962\) 1396.65 442.719i 1.45181 0.460207i
\(963\) 0 0
\(964\) −878.100 878.100i −0.910892 0.910892i
\(965\) −914.734 −0.947911
\(966\) 0 0
\(967\) −387.557 387.557i −0.400782 0.400782i 0.477726 0.878509i \(-0.341461\pi\)
−0.878509 + 0.477726i \(0.841461\pi\)
\(968\) −98.2019 98.2019i −0.101448 0.101448i
\(969\) 0 0
\(970\) −670.074 + 670.074i −0.690798 + 0.690798i
\(971\) −1330.38 −1.37012 −0.685058 0.728489i \(-0.740223\pi\)
−0.685058 + 0.728489i \(0.740223\pi\)
\(972\) 0 0
\(973\) −32.3744 + 32.3744i −0.0332728 + 0.0332728i
\(974\) 119.792i 0.122990i
\(975\) 0 0
\(976\) −345.205 −0.353694
\(977\) −855.693 855.693i −0.875837 0.875837i 0.117264 0.993101i \(-0.462588\pi\)
−0.993101 + 0.117264i \(0.962588\pi\)
\(978\) 0 0
\(979\) 245.590i 0.250858i
\(980\) −495.557 495.557i −0.505671 0.505671i
\(981\) 0 0
\(982\) 1204.66 1204.66i 1.22674 1.22674i
\(983\) −1062.87 + 1062.87i −1.08125 + 1.08125i −0.0848560 + 0.996393i \(0.527043\pi\)
−0.996393 + 0.0848560i \(0.972957\pi\)
\(984\) 0 0
\(985\) 436.749i 0.443400i
\(986\) 999.733 999.733i 1.01393 1.01393i
\(987\) 0 0
\(988\) 264.492 509.995i 0.267705 0.516189i
\(989\) −655.769 −0.663063
\(990\) 0 0
\(991\) −16.8306 −0.0169835 −0.00849174 0.999964i \(-0.502703\pi\)
−0.00849174 + 0.999964i \(0.502703\pi\)
\(992\) 2678.86i 2.70046i
\(993\) 0 0
\(994\) 230.115 + 230.115i 0.231504 + 0.231504i
\(995\) 360.136 360.136i 0.361945 0.361945i
\(996\) 0 0
\(997\) 927.723 0.930515 0.465257 0.885175i \(-0.345962\pi\)
0.465257 + 0.885175i \(0.345962\pi\)
\(998\) 147.189i 0.147484i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.j.c.73.4 yes 8
3.2 odd 2 inner 117.3.j.c.73.1 8
13.5 odd 4 inner 117.3.j.c.109.4 yes 8
39.5 even 4 inner 117.3.j.c.109.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.j.c.73.1 8 3.2 odd 2 inner
117.3.j.c.73.4 yes 8 1.1 even 1 trivial
117.3.j.c.109.1 yes 8 39.5 even 4 inner
117.3.j.c.109.4 yes 8 13.5 odd 4 inner