Properties

Label 117.3.k.a.113.20
Level $117$
Weight $3$
Character 117.113
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 113.20
Character \(\chi\) \(=\) 117.113
Dual form 117.3.k.a.29.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.44466i q^{2} +(-2.12872 - 2.11389i) q^{3} -1.97636 q^{4} +(2.73246 + 1.57759i) q^{5} +(5.16775 - 5.20400i) q^{6} +(-3.82542 + 6.62581i) q^{7} +4.94710i q^{8} +(0.0628969 + 8.99978i) q^{9} +(-3.85666 + 6.67994i) q^{10} +6.15061i q^{11} +(4.20712 + 4.17782i) q^{12} +(-12.9012 - 1.59941i) q^{13} +(-16.1979 - 9.35184i) q^{14} +(-2.48179 - 9.13437i) q^{15} -19.9994 q^{16} +(18.6707 - 10.7795i) q^{17} +(-22.0014 + 0.153762i) q^{18} +(15.0726 + 26.1066i) q^{19} +(-5.40033 - 3.11788i) q^{20} +(22.1495 - 6.01798i) q^{21} -15.0362 q^{22} +(7.11157 - 4.10586i) q^{23} +(10.4577 - 10.5310i) q^{24} +(-7.52244 - 13.0293i) q^{25} +(3.91002 - 31.5391i) q^{26} +(18.8907 - 19.2910i) q^{27} +(7.56041 - 13.0950i) q^{28} +4.21916i q^{29} +(22.3304 - 6.06713i) q^{30} +(-25.9263 + 44.9057i) q^{31} -29.1034i q^{32} +(13.0017 - 13.0929i) q^{33} +(26.3523 + 45.6435i) q^{34} +(-20.9056 + 12.0698i) q^{35} +(-0.124307 - 17.7868i) q^{36} +(22.3585 - 38.7261i) q^{37} +(-63.8217 + 36.8475i) q^{38} +(24.0821 + 30.6766i) q^{39} +(-7.80448 + 13.5178i) q^{40} +(47.9389 - 27.6775i) q^{41} +(14.7119 + 54.1480i) q^{42} +(25.7507 - 44.6016i) q^{43} -12.1558i q^{44} +(-14.0261 + 24.6908i) q^{45} +(10.0374 + 17.3854i) q^{46} +(24.2699 - 14.0122i) q^{47} +(42.5732 + 42.2767i) q^{48} +(-4.76761 - 8.25775i) q^{49} +(31.8521 - 18.3898i) q^{50} +(-62.5314 - 16.5213i) q^{51} +(25.4975 + 3.16102i) q^{52} +0.382421i q^{53} +(47.1599 + 46.1813i) q^{54} +(-9.70312 + 16.8063i) q^{55} +(-32.7786 - 18.9247i) q^{56} +(23.1011 - 87.4356i) q^{57} -10.3144 q^{58} +47.9620i q^{59} +(4.90492 + 18.0528i) q^{60} +(25.6786 - 44.4766i) q^{61} +(-109.779 - 63.3811i) q^{62} +(-59.8715 - 34.0112i) q^{63} -8.84980 q^{64} +(-32.7289 - 24.7231i) q^{65} +(32.0078 + 31.7848i) q^{66} +(-12.9554 - 22.4394i) q^{67} +(-36.9001 + 21.3043i) q^{68} +(-23.8179 - 6.29287i) q^{69} +(-29.5067 - 51.1071i) q^{70} +(7.07732 - 4.08609i) q^{71} +(-44.5229 + 0.311158i) q^{72} -24.8357 q^{73} +(94.6722 + 54.6590i) q^{74} +(-11.5293 + 43.6373i) q^{75} +(-29.7890 - 51.5961i) q^{76} +(-40.7528 - 23.5286i) q^{77} +(-74.9938 + 58.8726i) q^{78} +(8.23711 + 14.2671i) q^{79} +(-54.6477 - 31.5508i) q^{80} +(-80.9921 + 1.13212i) q^{81} +(67.6622 + 117.194i) q^{82} +(-39.7129 + 22.9283i) q^{83} +(-43.7755 + 11.8937i) q^{84} +68.0225 q^{85} +(109.036 + 62.9518i) q^{86} +(8.91887 - 8.98142i) q^{87} -30.4277 q^{88} +(70.5240 + 40.7171i) q^{89} +(-60.3605 - 34.2890i) q^{90} +(59.9500 - 79.3628i) q^{91} +(-14.0550 + 8.11468i) q^{92} +(150.116 - 40.7862i) q^{93} +(34.2551 + 59.3316i) q^{94} +95.1136i q^{95} +(-61.5216 + 61.9530i) q^{96} +(-23.4733 + 40.6570i) q^{97} +(20.1874 - 11.6552i) q^{98} +(-55.3541 + 0.386854i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44466i 1.22233i 0.791503 + 0.611165i \(0.209299\pi\)
−0.791503 + 0.611165i \(0.790701\pi\)
\(3\) −2.12872 2.11389i −0.709573 0.704632i
\(4\) −1.97636 −0.494091
\(5\) 2.73246 + 1.57759i 0.546492 + 0.315517i 0.747706 0.664030i \(-0.231155\pi\)
−0.201214 + 0.979547i \(0.564489\pi\)
\(6\) 5.16775 5.20400i 0.861292 0.867333i
\(7\) −3.82542 + 6.62581i −0.546488 + 0.946545i 0.452024 + 0.892006i \(0.350702\pi\)
−0.998512 + 0.0545390i \(0.982631\pi\)
\(8\) 4.94710i 0.618388i
\(9\) 0.0628969 + 8.99978i 0.00698855 + 0.999976i
\(10\) −3.85666 + 6.67994i −0.385666 + 0.667994i
\(11\) 6.15061i 0.559146i 0.960124 + 0.279573i \(0.0901930\pi\)
−0.960124 + 0.279573i \(0.909807\pi\)
\(12\) 4.20712 + 4.17782i 0.350594 + 0.348152i
\(13\) −12.9012 1.59941i −0.992403 0.123032i
\(14\) −16.1979 9.35184i −1.15699 0.667989i
\(15\) −2.48179 9.13437i −0.165453 0.608958i
\(16\) −19.9994 −1.24997
\(17\) 18.6707 10.7795i 1.09828 0.634090i 0.162508 0.986707i \(-0.448042\pi\)
0.935768 + 0.352617i \(0.114708\pi\)
\(18\) −22.0014 + 0.153762i −1.22230 + 0.00854231i
\(19\) 15.0726 + 26.1066i 0.793297 + 1.37403i 0.923915 + 0.382598i \(0.124971\pi\)
−0.130618 + 0.991433i \(0.541696\pi\)
\(20\) −5.40033 3.11788i −0.270017 0.155894i
\(21\) 22.1495 6.01798i 1.05474 0.286570i
\(22\) −15.0362 −0.683461
\(23\) 7.11157 4.10586i 0.309199 0.178516i −0.337369 0.941372i \(-0.609537\pi\)
0.646568 + 0.762857i \(0.276204\pi\)
\(24\) 10.4577 10.5310i 0.435736 0.438792i
\(25\) −7.52244 13.0293i −0.300898 0.521170i
\(26\) 3.91002 31.5391i 0.150386 1.21304i
\(27\) 18.8907 19.2910i 0.699656 0.714480i
\(28\) 7.56041 13.0950i 0.270015 0.467679i
\(29\) 4.21916i 0.145488i 0.997351 + 0.0727442i \(0.0231757\pi\)
−0.997351 + 0.0727442i \(0.976824\pi\)
\(30\) 22.3304 6.06713i 0.744348 0.202238i
\(31\) −25.9263 + 44.9057i −0.836333 + 1.44857i 0.0566070 + 0.998397i \(0.481972\pi\)
−0.892940 + 0.450175i \(0.851362\pi\)
\(32\) 29.1034i 0.909482i
\(33\) 13.0017 13.0929i 0.393992 0.396755i
\(34\) 26.3523 + 45.6435i 0.775067 + 1.34246i
\(35\) −20.9056 + 12.0698i −0.597303 + 0.344853i
\(36\) −0.124307 17.7868i −0.00345298 0.494079i
\(37\) 22.3585 38.7261i 0.604285 1.04665i −0.387879 0.921710i \(-0.626792\pi\)
0.992164 0.124942i \(-0.0398744\pi\)
\(38\) −63.8217 + 36.8475i −1.67952 + 0.969671i
\(39\) 24.0821 + 30.6766i 0.617490 + 0.786578i
\(40\) −7.80448 + 13.5178i −0.195112 + 0.337944i
\(41\) 47.9389 27.6775i 1.16924 0.675062i 0.215740 0.976451i \(-0.430784\pi\)
0.953501 + 0.301389i \(0.0974502\pi\)
\(42\) 14.7119 + 54.1480i 0.350284 + 1.28924i
\(43\) 25.7507 44.6016i 0.598854 1.03725i −0.394137 0.919052i \(-0.628956\pi\)
0.992991 0.118194i \(-0.0377103\pi\)
\(44\) 12.1558i 0.276269i
\(45\) −14.0261 + 24.6908i −0.311690 + 0.548684i
\(46\) 10.0374 + 17.3854i 0.218205 + 0.377943i
\(47\) 24.2699 14.0122i 0.516380 0.298132i −0.219072 0.975709i \(-0.570303\pi\)
0.735452 + 0.677577i \(0.236970\pi\)
\(48\) 42.5732 + 42.2767i 0.886942 + 0.880765i
\(49\) −4.76761 8.25775i −0.0972982 0.168525i
\(50\) 31.8521 18.3898i 0.637042 0.367796i
\(51\) −62.5314 16.5213i −1.22611 0.323947i
\(52\) 25.4975 + 3.16102i 0.490337 + 0.0607889i
\(53\) 0.382421i 0.00721549i 0.999993 + 0.00360774i \(0.00114838\pi\)
−0.999993 + 0.00360774i \(0.998852\pi\)
\(54\) 47.1599 + 46.1813i 0.873331 + 0.855210i
\(55\) −9.70312 + 16.8063i −0.176420 + 0.305569i
\(56\) −32.7786 18.9247i −0.585332 0.337942i
\(57\) 23.1011 87.4356i 0.405283 1.53396i
\(58\) −10.3144 −0.177835
\(59\) 47.9620i 0.812914i 0.913670 + 0.406457i \(0.133236\pi\)
−0.913670 + 0.406457i \(0.866764\pi\)
\(60\) 4.90492 + 18.0528i 0.0817486 + 0.300881i
\(61\) 25.6786 44.4766i 0.420960 0.729124i −0.575074 0.818102i \(-0.695027\pi\)
0.996034 + 0.0889776i \(0.0283600\pi\)
\(62\) −109.779 63.3811i −1.77063 1.02228i
\(63\) −59.8715 34.0112i −0.950341 0.539860i
\(64\) −8.84980 −0.138278
\(65\) −32.7289 24.7231i −0.503521 0.380356i
\(66\) 32.0078 + 31.7848i 0.484966 + 0.481589i
\(67\) −12.9554 22.4394i −0.193364 0.334916i 0.752999 0.658022i \(-0.228606\pi\)
−0.946363 + 0.323105i \(0.895273\pi\)
\(68\) −36.9001 + 21.3043i −0.542648 + 0.313298i
\(69\) −23.8179 6.29287i −0.345187 0.0912010i
\(70\) −29.5067 51.1071i −0.421524 0.730101i
\(71\) 7.07732 4.08609i 0.0996806 0.0575506i −0.449331 0.893365i \(-0.648338\pi\)
0.549012 + 0.835815i \(0.315004\pi\)
\(72\) −44.5229 + 0.311158i −0.618373 + 0.00432163i
\(73\) −24.8357 −0.340215 −0.170107 0.985426i \(-0.554411\pi\)
−0.170107 + 0.985426i \(0.554411\pi\)
\(74\) 94.6722 + 54.6590i 1.27935 + 0.738635i
\(75\) −11.5293 + 43.6373i −0.153724 + 0.581830i
\(76\) −29.7890 51.5961i −0.391961 0.678896i
\(77\) −40.7528 23.5286i −0.529257 0.305567i
\(78\) −74.9938 + 58.8726i −0.961458 + 0.754777i
\(79\) 8.23711 + 14.2671i 0.104267 + 0.180596i 0.913439 0.406977i \(-0.133417\pi\)
−0.809171 + 0.587573i \(0.800084\pi\)
\(80\) −54.6477 31.5508i −0.683096 0.394386i
\(81\) −80.9921 + 1.13212i −0.999902 + 0.0139768i
\(82\) 67.6622 + 117.194i 0.825149 + 1.42920i
\(83\) −39.7129 + 22.9283i −0.478469 + 0.276244i −0.719778 0.694204i \(-0.755757\pi\)
0.241309 + 0.970448i \(0.422423\pi\)
\(84\) −43.7755 + 11.8937i −0.521137 + 0.141592i
\(85\) 68.0225 0.800265
\(86\) 109.036 + 62.9518i 1.26786 + 0.731997i
\(87\) 8.91887 8.98142i 0.102516 0.103235i
\(88\) −30.4277 −0.345769
\(89\) 70.5240 + 40.7171i 0.792405 + 0.457495i 0.840809 0.541333i \(-0.182080\pi\)
−0.0484035 + 0.998828i \(0.515413\pi\)
\(90\) −60.3605 34.2890i −0.670672 0.380989i
\(91\) 59.9500 79.3628i 0.658791 0.872118i
\(92\) −14.0550 + 8.11468i −0.152772 + 0.0882030i
\(93\) 150.116 40.7862i 1.61415 0.438561i
\(94\) 34.2551 + 59.3316i 0.364416 + 0.631187i
\(95\) 95.1136i 1.00120i
\(96\) −61.5216 + 61.9530i −0.640850 + 0.645344i
\(97\) −23.4733 + 40.6570i −0.241993 + 0.419144i −0.961282 0.275567i \(-0.911134\pi\)
0.719289 + 0.694711i \(0.244468\pi\)
\(98\) 20.1874 11.6552i 0.205994 0.118931i
\(99\) −55.3541 + 0.386854i −0.559133 + 0.00390762i
\(100\) 14.8671 + 25.7505i 0.148671 + 0.257505i
\(101\) 36.9184i 0.365529i 0.983157 + 0.182764i \(0.0585045\pi\)
−0.983157 + 0.182764i \(0.941495\pi\)
\(102\) 40.3889 152.868i 0.395970 1.49871i
\(103\) −34.9957 + 60.6143i −0.339764 + 0.588488i −0.984388 0.176011i \(-0.943680\pi\)
0.644624 + 0.764500i \(0.277014\pi\)
\(104\) 7.91247 63.8238i 0.0760814 0.613690i
\(105\) 70.0165 + 18.4989i 0.666824 + 0.176180i
\(106\) −0.934889 −0.00881971
\(107\) 97.4131 + 56.2415i 0.910403 + 0.525621i 0.880561 0.473933i \(-0.157166\pi\)
0.0298423 + 0.999555i \(0.490500\pi\)
\(108\) −37.3349 + 38.1260i −0.345693 + 0.353018i
\(109\) −206.693 −1.89627 −0.948133 0.317875i \(-0.897031\pi\)
−0.948133 + 0.317875i \(0.897031\pi\)
\(110\) −41.0857 23.7208i −0.373506 0.215644i
\(111\) −129.458 + 35.1735i −1.16629 + 0.316878i
\(112\) 76.5062 132.513i 0.683091 1.18315i
\(113\) 173.223i 1.53295i 0.642276 + 0.766473i \(0.277990\pi\)
−0.642276 + 0.766473i \(0.722010\pi\)
\(114\) 213.750 + 56.4744i 1.87500 + 0.495390i
\(115\) 25.9094 0.225299
\(116\) 8.33860i 0.0718845i
\(117\) 13.5829 116.209i 0.116093 0.993238i
\(118\) −117.251 −0.993650
\(119\) 164.945i 1.38609i
\(120\) 45.1887 12.2777i 0.376572 0.102314i
\(121\) 83.1700 0.687355
\(122\) 108.730 + 62.7753i 0.891230 + 0.514552i
\(123\) −160.556 42.4201i −1.30533 0.344879i
\(124\) 51.2398 88.7500i 0.413225 0.715726i
\(125\) 126.349i 1.01079i
\(126\) 83.1457 146.365i 0.659887 1.16163i
\(127\) 82.2784 142.510i 0.647862 1.12213i −0.335771 0.941944i \(-0.608997\pi\)
0.983633 0.180186i \(-0.0576699\pi\)
\(128\) 138.048i 1.07850i
\(129\) −149.099 + 40.5099i −1.15581 + 0.314030i
\(130\) 60.4397 80.0110i 0.464921 0.615469i
\(131\) 143.908 + 83.0856i 1.09854 + 0.634241i 0.935836 0.352435i \(-0.114646\pi\)
0.162701 + 0.986675i \(0.447979\pi\)
\(132\) −25.6962 + 25.8764i −0.194668 + 0.196033i
\(133\) −230.637 −1.73411
\(134\) 54.8567 31.6715i 0.409378 0.236355i
\(135\) 82.0512 22.9101i 0.607787 0.169704i
\(136\) 53.3274 + 92.3658i 0.392114 + 0.679161i
\(137\) 164.457 + 94.9496i 1.20042 + 0.693063i 0.960648 0.277767i \(-0.0895943\pi\)
0.239771 + 0.970829i \(0.422928\pi\)
\(138\) 15.3839 58.2267i 0.111478 0.421932i
\(139\) 3.92118 0.0282099 0.0141050 0.999901i \(-0.495510\pi\)
0.0141050 + 0.999901i \(0.495510\pi\)
\(140\) 41.3170 23.8544i 0.295122 0.170389i
\(141\) −81.2841 21.4759i −0.576483 0.152311i
\(142\) 9.98911 + 17.3016i 0.0703459 + 0.121843i
\(143\) 9.83737 79.3505i 0.0687928 0.554898i
\(144\) −1.25790 179.991i −0.00873544 1.24993i
\(145\) −6.65610 + 11.5287i −0.0459041 + 0.0795083i
\(146\) 60.7148i 0.415855i
\(147\) −7.30710 + 27.6567i −0.0497082 + 0.188141i
\(148\) −44.1886 + 76.5369i −0.298572 + 0.517141i
\(149\) 275.096i 1.84628i −0.384462 0.923141i \(-0.625613\pi\)
0.384462 0.923141i \(-0.374387\pi\)
\(150\) −106.678 28.1852i −0.711189 0.187901i
\(151\) −10.8588 18.8080i −0.0719127 0.124556i 0.827827 0.560984i \(-0.189577\pi\)
−0.899740 + 0.436427i \(0.856244\pi\)
\(152\) −129.152 + 74.5659i −0.849684 + 0.490565i
\(153\) 98.1877 + 167.354i 0.641750 + 1.09382i
\(154\) 57.5195 99.6268i 0.373503 0.646927i
\(155\) −141.685 + 81.8021i −0.914099 + 0.527755i
\(156\) −47.5950 60.6280i −0.305096 0.388641i
\(157\) 31.9519 55.3422i 0.203515 0.352498i −0.746144 0.665785i \(-0.768097\pi\)
0.949659 + 0.313287i \(0.101430\pi\)
\(158\) −34.8782 + 20.1369i −0.220748 + 0.127449i
\(159\) 0.808398 0.814067i 0.00508426 0.00511992i
\(160\) 45.9132 79.5239i 0.286957 0.497024i
\(161\) 62.8266i 0.390227i
\(162\) −2.76764 197.998i −0.0170842 1.22221i
\(163\) −88.7596 153.736i −0.544537 0.943166i −0.998636 0.0522150i \(-0.983372\pi\)
0.454098 0.890952i \(-0.349961\pi\)
\(164\) −94.7447 + 54.7009i −0.577712 + 0.333542i
\(165\) 56.1820 15.2645i 0.340497 0.0925123i
\(166\) −56.0518 97.0846i −0.337662 0.584847i
\(167\) −55.2953 + 31.9247i −0.331109 + 0.191166i −0.656334 0.754471i \(-0.727894\pi\)
0.325224 + 0.945637i \(0.394560\pi\)
\(168\) 29.7716 + 109.576i 0.177212 + 0.652238i
\(169\) 163.884 + 41.2688i 0.969726 + 0.244194i
\(170\) 166.292i 0.978188i
\(171\) −234.006 + 137.293i −1.36845 + 0.802880i
\(172\) −50.8928 + 88.1489i −0.295888 + 0.512493i
\(173\) 212.899 + 122.917i 1.23063 + 0.710505i 0.967161 0.254163i \(-0.0818001\pi\)
0.263469 + 0.964668i \(0.415133\pi\)
\(174\) 21.9565 + 21.8036i 0.126187 + 0.125308i
\(175\) 115.106 0.657748
\(176\) 123.009i 0.698913i
\(177\) 101.387 102.098i 0.572805 0.576822i
\(178\) −99.5394 + 172.407i −0.559210 + 0.968580i
\(179\) −101.540 58.6239i −0.567260 0.327508i 0.188794 0.982017i \(-0.439542\pi\)
−0.756054 + 0.654509i \(0.772876\pi\)
\(180\) 27.7206 48.7979i 0.154003 0.271100i
\(181\) 260.434 1.43886 0.719431 0.694564i \(-0.244403\pi\)
0.719431 + 0.694564i \(0.244403\pi\)
\(182\) 194.015 + 146.557i 1.06602 + 0.805260i
\(183\) −148.681 + 40.3964i −0.812466 + 0.220745i
\(184\) 20.3121 + 35.1817i 0.110392 + 0.191205i
\(185\) 122.188 70.5450i 0.660473 0.381325i
\(186\) 99.7083 + 366.982i 0.536066 + 1.97302i
\(187\) 66.3007 + 114.836i 0.354549 + 0.614097i
\(188\) −47.9661 + 27.6932i −0.255139 + 0.147304i
\(189\) 55.5536 + 198.962i 0.293934 + 1.05271i
\(190\) −232.520 −1.22379
\(191\) −302.794 174.818i −1.58531 0.915280i −0.994065 0.108789i \(-0.965303\pi\)
−0.591246 0.806491i \(-0.701364\pi\)
\(192\) 18.8387 + 18.7075i 0.0981184 + 0.0974351i
\(193\) 148.706 + 257.567i 0.770499 + 1.33454i 0.937290 + 0.348551i \(0.113326\pi\)
−0.166791 + 0.985992i \(0.553341\pi\)
\(194\) −99.3924 57.3843i −0.512332 0.295795i
\(195\) 17.4085 + 121.814i 0.0892744 + 0.624688i
\(196\) 9.42254 + 16.3203i 0.0480742 + 0.0832669i
\(197\) −301.201 173.899i −1.52894 0.882734i −0.999407 0.0344457i \(-0.989033\pi\)
−0.529534 0.848289i \(-0.677633\pi\)
\(198\) −0.945728 135.322i −0.00477640 0.683445i
\(199\) 32.5912 + 56.4496i 0.163775 + 0.283666i 0.936220 0.351416i \(-0.114300\pi\)
−0.772445 + 0.635082i \(0.780966\pi\)
\(200\) 64.4571 37.2143i 0.322285 0.186072i
\(201\) −19.8561 + 75.1535i −0.0987866 + 0.373898i
\(202\) −90.2529 −0.446797
\(203\) −27.9554 16.1401i −0.137711 0.0795077i
\(204\) 123.585 + 32.6520i 0.605808 + 0.160059i
\(205\) 174.655 0.851975
\(206\) −148.181 85.5525i −0.719327 0.415304i
\(207\) 37.3992 + 63.7443i 0.180672 + 0.307943i
\(208\) 258.018 + 31.9874i 1.24047 + 0.153786i
\(209\) −160.571 + 92.7060i −0.768284 + 0.443569i
\(210\) −45.2235 + 171.167i −0.215350 + 0.815079i
\(211\) 46.6252 + 80.7573i 0.220973 + 0.382736i 0.955104 0.296272i \(-0.0957435\pi\)
−0.734131 + 0.679008i \(0.762410\pi\)
\(212\) 0.755803i 0.00356511i
\(213\) −23.7032 6.26257i −0.111283 0.0294017i
\(214\) −137.491 + 238.142i −0.642483 + 1.11281i
\(215\) 140.726 81.2480i 0.654538 0.377898i
\(216\) 95.4344 + 93.4543i 0.441826 + 0.432659i
\(217\) −198.358 343.566i −0.914092 1.58325i
\(218\) 505.294i 2.31786i
\(219\) 52.8682 + 52.5000i 0.241407 + 0.239726i
\(220\) 19.1769 33.2153i 0.0871677 0.150979i
\(221\) −258.116 + 109.207i −1.16794 + 0.494150i
\(222\) −85.9872 316.481i −0.387330 1.42559i
\(223\) −246.243 −1.10423 −0.552115 0.833768i \(-0.686179\pi\)
−0.552115 + 0.833768i \(0.686179\pi\)
\(224\) 192.834 + 111.333i 0.860865 + 0.497021i
\(225\) 116.787 68.5198i 0.519055 0.304533i
\(226\) −423.471 −1.87377
\(227\) −164.409 94.9215i −0.724268 0.418156i 0.0920534 0.995754i \(-0.470657\pi\)
−0.816322 + 0.577598i \(0.803990\pi\)
\(228\) −45.6562 + 172.804i −0.200247 + 0.757914i
\(229\) 21.0010 36.3747i 0.0917072 0.158842i −0.816522 0.577314i \(-0.804101\pi\)
0.908230 + 0.418472i \(0.137434\pi\)
\(230\) 63.3397i 0.275390i
\(231\) 37.0142 + 136.233i 0.160235 + 0.589753i
\(232\) −20.8726 −0.0899683
\(233\) 151.808i 0.651536i −0.945450 0.325768i \(-0.894377\pi\)
0.945450 0.325768i \(-0.105623\pi\)
\(234\) 284.091 + 33.2056i 1.21407 + 0.141904i
\(235\) 88.4219 0.376263
\(236\) 94.7902i 0.401654i
\(237\) 12.6246 47.7830i 0.0532685 0.201616i
\(238\) −403.234 −1.69426
\(239\) 171.028 + 98.7429i 0.715597 + 0.413150i 0.813130 0.582082i \(-0.197762\pi\)
−0.0975330 + 0.995232i \(0.531095\pi\)
\(240\) 49.6344 + 182.682i 0.206810 + 0.761176i
\(241\) 4.05145 7.01731i 0.0168110 0.0291175i −0.857498 0.514488i \(-0.827982\pi\)
0.874309 + 0.485371i \(0.161315\pi\)
\(242\) 203.322i 0.840175i
\(243\) 174.803 + 168.799i 0.719352 + 0.694645i
\(244\) −50.7502 + 87.9018i −0.207992 + 0.360253i
\(245\) 30.0853i 0.122797i
\(246\) 103.703 392.505i 0.421556 1.59555i
\(247\) −152.700 360.915i −0.618221 1.46119i
\(248\) −222.153 128.260i −0.895779 0.517178i
\(249\) 133.006 + 35.1411i 0.534159 + 0.141129i
\(250\) 308.879 1.23552
\(251\) 95.8522 55.3403i 0.381881 0.220479i −0.296755 0.954954i \(-0.595905\pi\)
0.678636 + 0.734474i \(0.262571\pi\)
\(252\) 118.328 + 67.2184i 0.469555 + 0.266740i
\(253\) 25.2536 + 43.7405i 0.0998165 + 0.172887i
\(254\) 348.390 + 201.143i 1.37161 + 0.791901i
\(255\) −144.801 143.792i −0.567847 0.563892i
\(256\) 302.082 1.18001
\(257\) −435.380 + 251.367i −1.69408 + 0.978080i −0.742927 + 0.669372i \(0.766563\pi\)
−0.951157 + 0.308708i \(0.900103\pi\)
\(258\) −99.0329 364.497i −0.383849 1.41278i
\(259\) 171.061 + 296.287i 0.660469 + 1.14397i
\(260\) 64.6842 + 48.8619i 0.248785 + 0.187930i
\(261\) −37.9716 + 0.265372i −0.145485 + 0.00101675i
\(262\) −203.116 + 351.807i −0.775252 + 1.34278i
\(263\) 201.900i 0.767681i −0.923399 0.383840i \(-0.874601\pi\)
0.923399 0.383840i \(-0.125399\pi\)
\(264\) 64.7721 + 64.3210i 0.245349 + 0.243640i
\(265\) −0.603302 + 1.04495i −0.00227661 + 0.00394321i
\(266\) 563.828i 2.11965i
\(267\) −64.0543 235.756i −0.239904 0.882980i
\(268\) 25.6045 + 44.3484i 0.0955393 + 0.165479i
\(269\) 241.432 139.391i 0.897515 0.518180i 0.0211218 0.999777i \(-0.493276\pi\)
0.876393 + 0.481596i \(0.159943\pi\)
\(270\) 56.0074 + 200.587i 0.207435 + 0.742916i
\(271\) −58.8505 + 101.932i −0.217161 + 0.376133i −0.953939 0.300001i \(-0.903013\pi\)
0.736778 + 0.676135i \(0.236346\pi\)
\(272\) −373.403 + 215.584i −1.37281 + 0.792590i
\(273\) −295.381 + 42.2131i −1.08198 + 0.154627i
\(274\) −232.119 + 402.043i −0.847151 + 1.46731i
\(275\) 80.1379 46.2676i 0.291410 0.168246i
\(276\) 47.0728 + 12.4370i 0.170554 + 0.0450616i
\(277\) −55.1523 + 95.5265i −0.199106 + 0.344861i −0.948239 0.317558i \(-0.897137\pi\)
0.749133 + 0.662420i \(0.230470\pi\)
\(278\) 9.58595i 0.0344818i
\(279\) −405.772 230.507i −1.45438 0.826189i
\(280\) −59.7108 103.422i −0.213253 0.369365i
\(281\) −15.0724 + 8.70203i −0.0536383 + 0.0309681i −0.526579 0.850126i \(-0.676526\pi\)
0.472941 + 0.881094i \(0.343192\pi\)
\(282\) 52.5012 198.712i 0.186174 0.704652i
\(283\) −246.465 426.889i −0.870900 1.50844i −0.861067 0.508491i \(-0.830203\pi\)
−0.00983293 0.999952i \(-0.503130\pi\)
\(284\) −13.9874 + 8.07561i −0.0492513 + 0.0284352i
\(285\) 201.060 202.470i 0.705474 0.710422i
\(286\) 193.985 + 24.0490i 0.678269 + 0.0840875i
\(287\) 423.512i 1.47565i
\(288\) 261.924 1.83052i 0.909460 0.00635596i
\(289\) 87.8963 152.241i 0.304140 0.526785i
\(290\) −28.1837 16.2719i −0.0971853 0.0561100i
\(291\) 135.913 36.9272i 0.467054 0.126898i
\(292\) 49.0843 0.168097
\(293\) 346.112i 1.18127i −0.806938 0.590636i \(-0.798877\pi\)
0.806938 0.590636i \(-0.201123\pi\)
\(294\) −67.6112 17.8634i −0.229970 0.0607598i
\(295\) −75.6641 + 131.054i −0.256489 + 0.444251i
\(296\) 191.582 + 110.610i 0.647237 + 0.373682i
\(297\) 118.651 + 116.189i 0.399499 + 0.391210i
\(298\) 672.516 2.25677
\(299\) −98.3150 + 41.5964i −0.328813 + 0.139118i
\(300\) 22.7861 86.2431i 0.0759536 0.287477i
\(301\) 197.014 + 341.239i 0.654533 + 1.13368i
\(302\) 45.9792 26.5461i 0.152249 0.0879011i
\(303\) 78.0416 78.5889i 0.257563 0.259369i
\(304\) −301.444 522.117i −0.991594 1.71749i
\(305\) 140.331 81.0203i 0.460102 0.265640i
\(306\) −409.124 + 240.036i −1.33701 + 0.784430i
\(307\) 446.987 1.45598 0.727992 0.685586i \(-0.240454\pi\)
0.727992 + 0.685586i \(0.240454\pi\)
\(308\) 80.5423 + 46.5011i 0.261501 + 0.150978i
\(309\) 202.628 55.0537i 0.655755 0.178167i
\(310\) −199.978 346.372i −0.645091 1.11733i
\(311\) 76.2524 + 44.0243i 0.245184 + 0.141557i 0.617557 0.786526i \(-0.288122\pi\)
−0.372373 + 0.928083i \(0.621456\pi\)
\(312\) −151.760 + 119.137i −0.486411 + 0.381849i
\(313\) −171.445 296.951i −0.547747 0.948726i −0.998428 0.0560413i \(-0.982152\pi\)
0.450681 0.892685i \(-0.351181\pi\)
\(314\) 135.293 + 78.1114i 0.430869 + 0.248763i
\(315\) −109.941 187.387i −0.349019 0.594878i
\(316\) −16.2795 28.1969i −0.0515174 0.0892308i
\(317\) 290.108 167.494i 0.915166 0.528371i 0.0330763 0.999453i \(-0.489470\pi\)
0.882090 + 0.471081i \(0.156136\pi\)
\(318\) 1.99012 + 1.97626i 0.00625823 + 0.00621465i
\(319\) −25.9504 −0.0813493
\(320\) −24.1817 13.9613i −0.0755678 0.0436291i
\(321\) −88.4767 325.644i −0.275628 1.01447i
\(322\) −153.590 −0.476986
\(323\) 562.833 + 324.952i 1.74252 + 1.00604i
\(324\) 160.070 2.23747i 0.494043 0.00690578i
\(325\) 76.2096 + 180.125i 0.234491 + 0.554231i
\(326\) 375.833 216.987i 1.15286 0.665604i
\(327\) 439.991 + 436.927i 1.34554 + 1.33617i
\(328\) 136.924 + 237.159i 0.417450 + 0.723045i
\(329\) 214.410i 0.651702i
\(330\) 37.3166 + 137.346i 0.113081 + 0.416199i
\(331\) 27.4099 47.4753i 0.0828092 0.143430i −0.821646 0.569998i \(-0.806944\pi\)
0.904456 + 0.426568i \(0.140277\pi\)
\(332\) 78.4872 45.3146i 0.236407 0.136490i
\(333\) 349.933 + 198.786i 1.05085 + 0.596955i
\(334\) −78.0451 135.178i −0.233668 0.404725i
\(335\) 81.7530i 0.244039i
\(336\) −442.978 + 120.356i −1.31839 + 0.358203i
\(337\) −93.3550 + 161.696i −0.277018 + 0.479809i −0.970642 0.240528i \(-0.922679\pi\)
0.693624 + 0.720337i \(0.256013\pi\)
\(338\) −100.888 + 400.640i −0.298486 + 1.18533i
\(339\) 366.175 368.743i 1.08016 1.08774i
\(340\) −134.437 −0.395404
\(341\) −276.198 159.463i −0.809964 0.467633i
\(342\) −335.634 572.064i −0.981385 1.67270i
\(343\) −301.938 −0.880287
\(344\) 220.649 + 127.391i 0.641420 + 0.370324i
\(345\) −55.1539 54.7698i −0.159866 0.158753i
\(346\) −300.491 + 520.466i −0.868471 + 1.50424i
\(347\) 156.844i 0.452000i −0.974127 0.226000i \(-0.927435\pi\)
0.974127 0.226000i \(-0.0725650\pi\)
\(348\) −17.6269 + 17.7505i −0.0506521 + 0.0510073i
\(349\) −21.9346 −0.0628499 −0.0314250 0.999506i \(-0.510005\pi\)
−0.0314250 + 0.999506i \(0.510005\pi\)
\(350\) 281.395i 0.803985i
\(351\) −274.568 + 218.663i −0.782244 + 0.622972i
\(352\) 179.004 0.508534
\(353\) 535.408i 1.51674i −0.651827 0.758368i \(-0.725997\pi\)
0.651827 0.758368i \(-0.274003\pi\)
\(354\) 249.594 + 247.856i 0.705067 + 0.700157i
\(355\) 25.7847 0.0726329
\(356\) −139.381 80.4717i −0.391520 0.226044i
\(357\) 348.676 351.121i 0.976683 0.983532i
\(358\) 143.316 248.230i 0.400323 0.693380i
\(359\) 100.858i 0.280941i −0.990085 0.140471i \(-0.955138\pi\)
0.990085 0.140471i \(-0.0448615\pi\)
\(360\) −122.148 69.3884i −0.339299 0.192746i
\(361\) −273.869 + 474.355i −0.758641 + 1.31400i
\(362\) 636.673i 1.75876i
\(363\) −177.046 175.813i −0.487729 0.484332i
\(364\) −118.483 + 156.850i −0.325503 + 0.430906i
\(365\) −67.8625 39.1804i −0.185925 0.107344i
\(366\) −98.7554 363.475i −0.269824 0.993101i
\(367\) −573.781 −1.56344 −0.781718 0.623632i \(-0.785656\pi\)
−0.781718 + 0.623632i \(0.785656\pi\)
\(368\) −142.227 + 82.1150i −0.386487 + 0.223139i
\(369\) 252.107 + 429.699i 0.683217 + 1.16450i
\(370\) 172.459 + 298.707i 0.466104 + 0.807317i
\(371\) −2.53385 1.46292i −0.00682978 0.00394318i
\(372\) −296.683 + 80.6083i −0.797536 + 0.216689i
\(373\) −292.915 −0.785294 −0.392647 0.919689i \(-0.628441\pi\)
−0.392647 + 0.919689i \(0.628441\pi\)
\(374\) −280.735 + 162.083i −0.750629 + 0.433376i
\(375\) −267.088 + 268.961i −0.712233 + 0.717228i
\(376\) 69.3199 + 120.066i 0.184361 + 0.319323i
\(377\) 6.74819 54.4324i 0.0178997 0.144383i
\(378\) −486.395 + 135.810i −1.28676 + 0.359285i
\(379\) 111.262 192.712i 0.293568 0.508475i −0.681082 0.732207i \(-0.738491\pi\)
0.974651 + 0.223731i \(0.0718238\pi\)
\(380\) 187.979i 0.494682i
\(381\) −476.400 + 129.437i −1.25039 + 0.339729i
\(382\) 427.372 740.230i 1.11877 1.93777i
\(383\) 567.525i 1.48179i 0.671622 + 0.740894i \(0.265598\pi\)
−0.671622 + 0.740894i \(0.734402\pi\)
\(384\) −291.820 + 293.866i −0.759948 + 0.765277i
\(385\) −74.2369 128.582i −0.192823 0.333980i
\(386\) −629.663 + 363.536i −1.63125 + 0.941804i
\(387\) 403.024 + 228.946i 1.04141 + 0.591590i
\(388\) 46.3918 80.3529i 0.119566 0.207095i
\(389\) 192.834 111.333i 0.495718 0.286203i −0.231225 0.972900i \(-0.574273\pi\)
0.726944 + 0.686697i \(0.240940\pi\)
\(390\) −297.794 + 42.5579i −0.763574 + 0.109123i
\(391\) 88.5185 153.319i 0.226390 0.392119i
\(392\) 40.8519 23.5859i 0.104214 0.0601681i
\(393\) −130.707 481.073i −0.332587 1.22410i
\(394\) 425.123 736.335i 1.07899 1.86887i
\(395\) 51.9790i 0.131592i
\(396\) 109.400 0.764565i 0.276262 0.00193072i
\(397\) 54.6826 + 94.7131i 0.137740 + 0.238572i 0.926641 0.375948i \(-0.122683\pi\)
−0.788901 + 0.614520i \(0.789350\pi\)
\(398\) −138.000 + 79.6744i −0.346734 + 0.200187i
\(399\) 490.961 + 487.541i 1.23048 + 1.22191i
\(400\) 150.445 + 260.578i 0.376112 + 0.651444i
\(401\) 143.236 82.6971i 0.357196 0.206227i −0.310654 0.950523i \(-0.600548\pi\)
0.667850 + 0.744296i \(0.267215\pi\)
\(402\) −183.725 48.5415i −0.457027 0.120750i
\(403\) 406.305 537.872i 1.00820 1.33467i
\(404\) 72.9641i 0.180604i
\(405\) −223.094 124.679i −0.550848 0.307848i
\(406\) 39.4570 68.3415i 0.0971846 0.168329i
\(407\) 238.189 + 137.519i 0.585232 + 0.337884i
\(408\) 81.7325 309.350i 0.200325 0.758210i
\(409\) 45.5352 0.111333 0.0556665 0.998449i \(-0.482272\pi\)
0.0556665 + 0.998449i \(0.482272\pi\)
\(410\) 426.972i 1.04139i
\(411\) −149.370 549.767i −0.363432 1.33763i
\(412\) 69.1642 119.796i 0.167874 0.290767i
\(413\) −317.787 183.474i −0.769460 0.444248i
\(414\) −155.833 + 91.4283i −0.376408 + 0.220841i
\(415\) −144.685 −0.348639
\(416\) −46.5484 + 375.470i −0.111895 + 0.902572i
\(417\) −8.34709 8.28896i −0.0200170 0.0198776i
\(418\) −226.635 392.543i −0.542188 0.939097i
\(419\) −339.027 + 195.737i −0.809134 + 0.467154i −0.846655 0.532142i \(-0.821387\pi\)
0.0375209 + 0.999296i \(0.488054\pi\)
\(420\) −138.378 36.5605i −0.329472 0.0870489i
\(421\) 111.844 + 193.719i 0.265662 + 0.460140i 0.967737 0.251963i \(-0.0810762\pi\)
−0.702075 + 0.712103i \(0.747743\pi\)
\(422\) −197.424 + 113.983i −0.467830 + 0.270102i
\(423\) 127.633 + 217.542i 0.301734 + 0.514284i
\(424\) −1.89188 −0.00446197
\(425\) −280.898 162.177i −0.660937 0.381592i
\(426\) 15.3098 57.9463i 0.0359386 0.136024i
\(427\) 196.462 + 340.283i 0.460099 + 0.796915i
\(428\) −192.524 111.154i −0.449822 0.259705i
\(429\) −188.680 + 148.120i −0.439813 + 0.345268i
\(430\) 198.624 + 344.026i 0.461915 + 0.800061i
\(431\) −210.330 121.434i −0.488006 0.281750i 0.235741 0.971816i \(-0.424248\pi\)
−0.723747 + 0.690066i \(0.757582\pi\)
\(432\) −377.803 + 385.809i −0.874545 + 0.893075i
\(433\) −31.9975 55.4212i −0.0738972 0.127994i 0.826709 0.562630i \(-0.190210\pi\)
−0.900606 + 0.434636i \(0.856877\pi\)
\(434\) 839.902 484.918i 1.93526 1.11732i
\(435\) 38.5394 10.4711i 0.0885964 0.0240714i
\(436\) 408.500 0.936927
\(437\) 214.380 + 123.772i 0.490573 + 0.283232i
\(438\) −128.345 + 129.245i −0.293024 + 0.295079i
\(439\) −243.386 −0.554411 −0.277205 0.960811i \(-0.589408\pi\)
−0.277205 + 0.960811i \(0.589408\pi\)
\(440\) −83.1425 48.0023i −0.188960 0.109096i
\(441\) 74.0181 43.4269i 0.167841 0.0984736i
\(442\) −266.974 631.006i −0.604014 1.42761i
\(443\) −8.10700 + 4.68058i −0.0183002 + 0.0105656i −0.509122 0.860694i \(-0.670030\pi\)
0.490822 + 0.871260i \(0.336697\pi\)
\(444\) 255.856 69.5155i 0.576252 0.156567i
\(445\) 128.469 + 222.516i 0.288695 + 0.500035i
\(446\) 601.981i 1.34973i
\(447\) −581.524 + 585.602i −1.30095 + 1.31007i
\(448\) 33.8542 58.6371i 0.0755673 0.130886i
\(449\) −351.048 + 202.678i −0.781844 + 0.451398i −0.837083 0.547075i \(-0.815741\pi\)
0.0552392 + 0.998473i \(0.482408\pi\)
\(450\) 167.508 + 285.505i 0.372239 + 0.634456i
\(451\) 170.234 + 294.854i 0.377459 + 0.653777i
\(452\) 342.352i 0.757415i
\(453\) −16.6428 + 62.9914i −0.0367391 + 0.139054i
\(454\) 232.051 401.924i 0.511125 0.885295i
\(455\) 289.013 122.279i 0.635193 0.268746i
\(456\) 432.553 + 114.284i 0.948581 + 0.250622i
\(457\) 9.69301 0.0212101 0.0106050 0.999944i \(-0.496624\pi\)
0.0106050 + 0.999944i \(0.496624\pi\)
\(458\) 88.9238 + 51.3402i 0.194157 + 0.112097i
\(459\) 144.755 563.808i 0.315370 1.22834i
\(460\) −51.2064 −0.111318
\(461\) −295.284 170.483i −0.640530 0.369810i 0.144289 0.989536i \(-0.453911\pi\)
−0.784819 + 0.619725i \(0.787244\pi\)
\(462\) −333.043 + 90.4872i −0.720873 + 0.195860i
\(463\) 235.726 408.289i 0.509127 0.881834i −0.490817 0.871263i \(-0.663302\pi\)
0.999944 0.0105715i \(-0.00336507\pi\)
\(464\) 84.3809i 0.181855i
\(465\) 474.529 + 125.374i 1.02049 + 0.269622i
\(466\) 371.119 0.796392
\(467\) 766.744i 1.64185i 0.571036 + 0.820925i \(0.306542\pi\)
−0.571036 + 0.820925i \(0.693458\pi\)
\(468\) −26.8448 + 229.671i −0.0573607 + 0.490750i
\(469\) 198.239 0.422684
\(470\) 216.161i 0.459918i
\(471\) −185.004 + 50.2653i −0.392790 + 0.106720i
\(472\) −237.273 −0.502697
\(473\) 274.327 + 158.383i 0.579972 + 0.334847i
\(474\) 116.813 + 30.8629i 0.246441 + 0.0651117i
\(475\) 226.766 392.771i 0.477403 0.826885i
\(476\) 325.991i 0.684854i
\(477\) −3.44170 + 0.0240531i −0.00721531 + 5.04258e-5i
\(478\) −241.393 + 418.105i −0.505006 + 0.874696i
\(479\) 226.151i 0.472132i −0.971737 0.236066i \(-0.924142\pi\)
0.971737 0.236066i \(-0.0758581\pi\)
\(480\) −265.841 + 72.2286i −0.553836 + 0.150476i
\(481\) −350.392 + 463.854i −0.728465 + 0.964354i
\(482\) 17.1549 + 9.90441i 0.0355912 + 0.0205486i
\(483\) 132.809 133.740i 0.274966 0.276895i
\(484\) −164.374 −0.339616
\(485\) −128.280 + 74.0623i −0.264494 + 0.152706i
\(486\) −412.656 + 427.333i −0.849086 + 0.879286i
\(487\) 313.254 + 542.572i 0.643232 + 1.11411i 0.984707 + 0.174220i \(0.0557403\pi\)
−0.341475 + 0.939891i \(0.610926\pi\)
\(488\) 220.030 + 127.035i 0.450882 + 0.260317i
\(489\) −136.038 + 514.890i −0.278196 + 1.05294i
\(490\) 73.5483 0.150099
\(491\) 336.641 194.360i 0.685623 0.395845i −0.116347 0.993209i \(-0.537119\pi\)
0.801970 + 0.597364i \(0.203785\pi\)
\(492\) 317.317 + 83.8375i 0.644953 + 0.170401i
\(493\) 45.4806 + 78.7747i 0.0922527 + 0.159786i
\(494\) 882.314 373.301i 1.78606 0.755670i
\(495\) −151.863 86.2689i −0.306794 0.174281i
\(496\) 518.512 898.089i 1.04539 1.81066i
\(497\) 62.5240i 0.125803i
\(498\) −85.9080 + 325.154i −0.172506 + 0.652919i
\(499\) 16.1707 28.0084i 0.0324062 0.0561291i −0.849367 0.527802i \(-0.823016\pi\)
0.881774 + 0.471673i \(0.156350\pi\)
\(500\) 249.711i 0.499421i
\(501\) 185.194 + 48.9296i 0.369648 + 0.0976638i
\(502\) 135.288 + 234.326i 0.269498 + 0.466785i
\(503\) 431.726 249.257i 0.858302 0.495541i −0.00514126 0.999987i \(-0.501637\pi\)
0.863443 + 0.504446i \(0.168303\pi\)
\(504\) 168.257 296.190i 0.333843 0.587680i
\(505\) −58.2419 + 100.878i −0.115331 + 0.199758i
\(506\) −106.931 + 61.7364i −0.211325 + 0.122009i
\(507\) −261.625 434.283i −0.516025 0.856574i
\(508\) −162.612 + 281.652i −0.320102 + 0.554434i
\(509\) 793.208 457.959i 1.55837 0.899723i 0.560952 0.827849i \(-0.310435\pi\)
0.997414 0.0718741i \(-0.0228980\pi\)
\(510\) 351.524 353.989i 0.689262 0.694096i
\(511\) 95.0068 164.557i 0.185923 0.322029i
\(512\) 186.295i 0.363857i
\(513\) 788.354 + 202.406i 1.53675 + 0.394553i
\(514\) −614.506 1064.36i −1.19554 2.07073i
\(515\) −191.249 + 110.417i −0.371356 + 0.214403i
\(516\) 294.674 80.0623i 0.571073 0.155159i
\(517\) 86.1836 + 149.274i 0.166699 + 0.288732i
\(518\) −724.321 + 418.187i −1.39830 + 0.807311i
\(519\) −193.368 711.703i −0.372578 1.37130i
\(520\) 122.308 161.913i 0.235208 0.311372i
\(521\) 62.7872i 0.120513i 0.998183 + 0.0602564i \(0.0191918\pi\)
−0.998183 + 0.0602564i \(0.980808\pi\)
\(522\) −0.648746 92.8276i −0.00124281 0.177831i
\(523\) 77.4887 134.214i 0.148162 0.256624i −0.782386 0.622794i \(-0.785998\pi\)
0.930548 + 0.366169i \(0.119331\pi\)
\(524\) −284.415 164.207i −0.542777 0.313373i
\(525\) −245.028 243.322i −0.466720 0.463470i
\(526\) 493.577 0.938359
\(527\) 1117.89i 2.12124i
\(528\) −260.028 + 261.851i −0.492477 + 0.495930i
\(529\) −230.784 + 399.729i −0.436264 + 0.755632i
\(530\) −2.55455 1.47487i −0.00481990 0.00278277i
\(531\) −431.647 + 3.01666i −0.812895 + 0.00568109i
\(532\) 455.822 0.856807
\(533\) −662.739 + 280.400i −1.24341 + 0.526079i
\(534\) 576.343 156.591i 1.07929 0.293242i
\(535\) 177.452 + 307.355i 0.331685 + 0.574496i
\(536\) 111.010 64.0916i 0.207108 0.119574i
\(537\) 92.2246 + 339.438i 0.171740 + 0.632101i
\(538\) 340.763 + 590.218i 0.633388 + 1.09706i
\(539\) 50.7902 29.3237i 0.0942304 0.0544040i
\(540\) −162.163 + 45.2786i −0.300302 + 0.0838493i
\(541\) −849.273 −1.56982 −0.784910 0.619609i \(-0.787291\pi\)
−0.784910 + 0.619609i \(0.787291\pi\)
\(542\) −249.189 143.870i −0.459759 0.265442i
\(543\) −554.391 550.530i −1.02098 1.01387i
\(544\) −313.721 543.381i −0.576693 0.998862i
\(545\) −564.780 326.076i −1.03629 0.598304i
\(546\) −103.197 722.107i −0.189005 1.32254i
\(547\) −167.503 290.123i −0.306221 0.530390i 0.671312 0.741175i \(-0.265731\pi\)
−0.977532 + 0.210785i \(0.932398\pi\)
\(548\) −325.028 187.655i −0.593116 0.342436i
\(549\) 401.894 + 228.304i 0.732048 + 0.415854i
\(550\) 113.109 + 195.910i 0.205652 + 0.356200i
\(551\) −110.148 + 63.5940i −0.199906 + 0.115416i
\(552\) 31.1315 117.830i 0.0563976 0.213459i
\(553\) −126.041 −0.227923
\(554\) −233.530 134.829i −0.421534 0.243373i
\(555\) −409.228 108.121i −0.737348 0.194813i
\(556\) −7.74967 −0.0139383
\(557\) 291.748 + 168.441i 0.523785 + 0.302407i 0.738482 0.674273i \(-0.235543\pi\)
−0.214697 + 0.976681i \(0.568876\pi\)
\(558\) 563.511 991.975i 1.00988 1.77773i
\(559\) −403.552 + 534.229i −0.721919 + 0.955687i
\(560\) 418.100 241.390i 0.746607 0.431054i
\(561\) 101.616 384.607i 0.181134 0.685573i
\(562\) −21.2735 36.8468i −0.0378532 0.0655637i
\(563\) 911.694i 1.61935i −0.586878 0.809675i \(-0.699643\pi\)
0.586878 0.809675i \(-0.300357\pi\)
\(564\) 160.647 + 42.4441i 0.284835 + 0.0752555i
\(565\) −273.274 + 473.325i −0.483671 + 0.837743i
\(566\) 1043.60 602.522i 1.84382 1.06453i
\(567\) 302.327 540.969i 0.533205 0.954091i
\(568\) 20.2143 + 35.0123i 0.0355886 + 0.0616413i
\(569\) 425.960i 0.748611i −0.927305 0.374306i \(-0.877881\pi\)
0.927305 0.374306i \(-0.122119\pi\)
\(570\) 494.971 + 491.524i 0.868370 + 0.862322i
\(571\) 383.824 664.803i 0.672196 1.16428i −0.305084 0.952325i \(-0.598685\pi\)
0.977280 0.211952i \(-0.0679822\pi\)
\(572\) −19.4422 + 156.825i −0.0339899 + 0.274170i
\(573\) 275.017 + 1012.22i 0.479959 + 1.76652i
\(574\) −1035.34 −1.80374
\(575\) −106.993 61.7723i −0.186074 0.107430i
\(576\) −0.556625 79.6462i −0.000966363 0.138275i
\(577\) −535.973 −0.928895 −0.464448 0.885601i \(-0.653747\pi\)
−0.464448 + 0.885601i \(0.653747\pi\)
\(578\) 372.177 + 214.877i 0.643905 + 0.371759i
\(579\) 227.915 862.637i 0.393636 1.48987i
\(580\) 13.1549 22.7849i 0.0226808 0.0392843i
\(581\) 350.841i 0.603856i
\(582\) 90.2744 + 332.260i 0.155111 + 0.570894i
\(583\) −2.35212 −0.00403451
\(584\) 122.865i 0.210385i
\(585\) 220.444 296.108i 0.376828 0.506167i
\(586\) 846.127 1.44390
\(587\) 16.8090i 0.0286355i 0.999897 + 0.0143178i \(0.00455764\pi\)
−0.999897 + 0.0143178i \(0.995442\pi\)
\(588\) 14.4415 54.6596i 0.0245603 0.0929585i
\(589\) −1563.11 −2.65384
\(590\) −320.383 184.973i −0.543022 0.313514i
\(591\) 273.570 + 1006.89i 0.462893 + 1.70370i
\(592\) −447.158 + 774.501i −0.755335 + 1.30828i
\(593\) 363.547i 0.613065i −0.951860 0.306532i \(-0.900831\pi\)
0.951860 0.306532i \(-0.0991688\pi\)
\(594\) −284.043 + 290.062i −0.478188 + 0.488320i
\(595\) −260.214 + 450.705i −0.437335 + 0.757487i
\(596\) 543.690i 0.912231i
\(597\) 49.9510 189.060i 0.0836700 0.316683i
\(598\) −101.689 240.347i −0.170049 0.401918i
\(599\) −808.916 467.028i −1.35044 0.779679i −0.362132 0.932127i \(-0.617951\pi\)
−0.988312 + 0.152448i \(0.951284\pi\)
\(600\) −215.878 57.0366i −0.359797 0.0950611i
\(601\) −201.542 −0.335344 −0.167672 0.985843i \(-0.553625\pi\)
−0.167672 + 0.985843i \(0.553625\pi\)
\(602\) −834.213 + 481.633i −1.38574 + 0.800055i
\(603\) 201.135 118.007i 0.333557 0.195700i
\(604\) 21.4610 + 37.1715i 0.0355314 + 0.0615422i
\(605\) 227.259 + 131.208i 0.375634 + 0.216872i
\(606\) 192.123 + 190.785i 0.317035 + 0.314827i
\(607\) 677.821 1.11667 0.558337 0.829614i \(-0.311440\pi\)
0.558337 + 0.829614i \(0.311440\pi\)
\(608\) 759.791 438.665i 1.24966 0.721489i
\(609\) 25.3908 + 93.4525i 0.0416927 + 0.153452i
\(610\) 198.067 + 343.062i 0.324700 + 0.562397i
\(611\) −335.522 + 141.957i −0.549137 + 0.232336i
\(612\) −194.055 330.752i −0.317083 0.540445i
\(613\) −314.267 + 544.326i −0.512671 + 0.887971i 0.487222 + 0.873278i \(0.338010\pi\)
−0.999892 + 0.0146930i \(0.995323\pi\)
\(614\) 1092.73i 1.77969i
\(615\) −371.791 369.202i −0.604539 0.600328i
\(616\) 116.399 201.608i 0.188959 0.327286i
\(617\) 976.498i 1.58265i 0.611393 + 0.791327i \(0.290609\pi\)
−0.611393 + 0.791327i \(0.709391\pi\)
\(618\) 134.587 + 495.357i 0.217779 + 0.801549i
\(619\) 337.425 + 584.436i 0.545112 + 0.944162i 0.998600 + 0.0528997i \(0.0168464\pi\)
−0.453487 + 0.891263i \(0.649820\pi\)
\(620\) 280.022 161.671i 0.451648 0.260759i
\(621\) 55.1364 214.752i 0.0887864 0.345816i
\(622\) −107.625 + 186.411i −0.173030 + 0.299696i
\(623\) −539.568 + 311.520i −0.866080 + 0.500031i
\(624\) −481.629 613.514i −0.771841 0.983196i
\(625\) 11.2646 19.5109i 0.0180234 0.0312175i
\(626\) 725.945 419.125i 1.15966 0.669528i
\(627\) 537.782 + 142.086i 0.857707 + 0.226613i
\(628\) −63.1485 + 109.376i −0.100555 + 0.174166i
\(629\) 964.058i 1.53268i
\(630\) 458.096 268.768i 0.727137 0.426616i
\(631\) −425.578 737.123i −0.674451 1.16818i −0.976629 0.214932i \(-0.931047\pi\)
0.302178 0.953251i \(-0.402286\pi\)
\(632\) −70.5808 + 40.7498i −0.111678 + 0.0644776i
\(633\) 71.4603 270.471i 0.112892 0.427284i
\(634\) 409.465 + 709.215i 0.645844 + 1.11863i
\(635\) 449.645 259.603i 0.708102 0.408823i
\(636\) −1.59769 + 1.60889i −0.00251209 + 0.00252970i
\(637\) 48.3005 + 114.161i 0.0758250 + 0.179216i
\(638\) 63.4400i 0.0994357i
\(639\) 37.2191 + 63.4373i 0.0582458 + 0.0992760i
\(640\) 217.783 377.212i 0.340286 0.589393i
\(641\) 171.938 + 99.2685i 0.268234 + 0.154865i 0.628085 0.778145i \(-0.283839\pi\)
−0.359851 + 0.933010i \(0.617172\pi\)
\(642\) 796.088 216.295i 1.24001 0.336909i
\(643\) −1201.46 −1.86853 −0.934263 0.356585i \(-0.883941\pi\)
−0.934263 + 0.356585i \(0.883941\pi\)
\(644\) 124.168i 0.192808i
\(645\) −471.315 124.525i −0.730721 0.193062i
\(646\) −794.397 + 1375.94i −1.22972 + 2.12993i
\(647\) 951.412 + 549.298i 1.47050 + 0.848993i 0.999452 0.0331157i \(-0.0105430\pi\)
0.471047 + 0.882108i \(0.343876\pi\)
\(648\) −5.60070 400.676i −0.00864306 0.618328i
\(649\) −294.995 −0.454538
\(650\) −440.344 + 186.307i −0.677453 + 0.286626i
\(651\) −304.014 + 1150.66i −0.466995 + 1.76753i
\(652\) 175.421 + 303.838i 0.269051 + 0.466010i
\(653\) 80.1614 46.2812i 0.122759 0.0708747i −0.437363 0.899285i \(-0.644088\pi\)
0.560122 + 0.828410i \(0.310754\pi\)
\(654\) −1068.14 + 1075.63i −1.63324 + 1.64469i
\(655\) 262.149 + 454.056i 0.400228 + 0.693215i
\(656\) −958.751 + 553.535i −1.46151 + 0.843804i
\(657\) −1.56209 223.516i −0.00237761 0.340206i
\(658\) −524.160 −0.796595
\(659\) 529.611 + 305.771i 0.803659 + 0.463993i 0.844749 0.535163i \(-0.179750\pi\)
−0.0410900 + 0.999155i \(0.513083\pi\)
\(660\) −111.036 + 30.1682i −0.168236 + 0.0457095i
\(661\) 292.415 + 506.478i 0.442383 + 0.766229i 0.997866 0.0652985i \(-0.0208000\pi\)
−0.555483 + 0.831528i \(0.687467\pi\)
\(662\) 116.061 + 67.0078i 0.175319 + 0.101220i
\(663\) 780.309 + 313.159i 1.17694 + 0.472336i
\(664\) −113.429 196.464i −0.170826 0.295879i
\(665\) −630.205 363.849i −0.947677 0.547141i
\(666\) −485.965 + 855.467i −0.729677 + 1.28448i
\(667\) 17.3233 + 30.0049i 0.0259720 + 0.0449848i
\(668\) 109.284 63.0949i 0.163598 0.0944534i
\(669\) 524.183 + 520.532i 0.783532 + 0.778075i
\(670\) 199.858 0.298296
\(671\) 273.558 + 157.939i 0.407687 + 0.235378i
\(672\) −175.144 644.627i −0.260631 0.959266i
\(673\) −289.120 −0.429598 −0.214799 0.976658i \(-0.568910\pi\)
−0.214799 + 0.976658i \(0.568910\pi\)
\(674\) −395.291 228.221i −0.586485 0.338607i
\(675\) −393.451 101.016i −0.582891 0.149654i
\(676\) −323.894 81.5622i −0.479133 0.120654i
\(677\) −963.176 + 556.090i −1.42271 + 0.821403i −0.996530 0.0832338i \(-0.973475\pi\)
−0.426182 + 0.904637i \(0.640142\pi\)
\(678\) 901.452 + 895.174i 1.32958 + 1.32032i
\(679\) −179.590 311.060i −0.264492 0.458114i
\(680\) 336.515i 0.494874i
\(681\) 149.326 + 549.604i 0.219275 + 0.807055i
\(682\) 389.832 675.209i 0.571602 0.990043i
\(683\) 943.198 544.556i 1.38096 0.797300i 0.388690 0.921369i \(-0.372928\pi\)
0.992274 + 0.124069i \(0.0395944\pi\)
\(684\) 462.480 271.340i 0.676140 0.396696i
\(685\) 299.582 + 518.892i 0.437346 + 0.757506i
\(686\) 738.137i 1.07600i
\(687\) −121.598 + 33.0378i −0.176998 + 0.0480899i
\(688\) −515.000 + 892.006i −0.748547 + 1.29652i
\(689\) 0.611649 4.93370i 0.000887735 0.00716067i
\(690\) 133.894 134.833i 0.194049 0.195409i
\(691\) −133.449 −0.193124 −0.0965621 0.995327i \(-0.530785\pi\)
−0.0965621 + 0.995327i \(0.530785\pi\)
\(692\) −420.766 242.929i −0.608043 0.351054i
\(693\) 209.189 368.246i 0.301861 0.531380i
\(694\) 383.430 0.552493
\(695\) 10.7145 + 6.18600i 0.0154165 + 0.00890072i
\(696\) 44.4320 + 44.1226i 0.0638391 + 0.0633945i
\(697\) 596.702 1033.52i 0.856100 1.48281i
\(698\) 53.6227i 0.0768234i
\(699\) −320.906 + 323.156i −0.459093 + 0.462313i
\(700\) −227.491 −0.324987
\(701\) 693.561i 0.989388i −0.869067 0.494694i \(-0.835280\pi\)
0.869067 0.494694i \(-0.164720\pi\)
\(702\) −534.557 671.224i −0.761478 0.956160i
\(703\) 1348.01 1.91751
\(704\) 54.4317i 0.0773177i
\(705\) −188.225 186.915i −0.266986 0.265127i
\(706\) 1308.89 1.85395
\(707\) −244.614 141.228i −0.345989 0.199757i
\(708\) −200.377 + 201.782i −0.283018 + 0.285003i
\(709\) −78.2712 + 135.570i −0.110397 + 0.191212i −0.915930 0.401338i \(-0.868545\pi\)
0.805534 + 0.592550i \(0.201879\pi\)
\(710\) 63.0347i 0.0887813i
\(711\) −127.883 + 75.0295i −0.179863 + 0.105527i
\(712\) −201.432 + 348.890i −0.282910 + 0.490014i
\(713\) 425.800i 0.597195i
\(714\) 858.372 + 852.394i 1.20220 + 1.19383i
\(715\) 152.062 201.303i 0.212675 0.281542i
\(716\) 200.679 + 115.862i 0.280278 + 0.161819i
\(717\) −155.338 571.730i −0.216650 0.797393i
\(718\) 246.563 0.343403
\(719\) −105.238 + 60.7593i −0.146367 + 0.0845053i −0.571395 0.820675i \(-0.693598\pi\)
0.425028 + 0.905180i \(0.360264\pi\)
\(720\) 280.514 493.801i 0.389602 0.685835i
\(721\) −267.746 463.750i −0.371354 0.643204i
\(722\) −1159.64 669.517i −1.60615 0.927309i
\(723\) −23.4582 + 6.37356i −0.0324457 + 0.00881543i
\(724\) −514.712 −0.710929
\(725\) 54.9726 31.7384i 0.0758242 0.0437771i
\(726\) 429.802 432.816i 0.592014 0.596166i
\(727\) 343.562 + 595.068i 0.472576 + 0.818525i 0.999507 0.0313826i \(-0.00999103\pi\)
−0.526932 + 0.849908i \(0.676658\pi\)
\(728\) 392.616 + 296.579i 0.539308 + 0.407389i
\(729\) −15.2830 728.840i −0.0209643 0.999780i
\(730\) 95.7828 165.901i 0.131209 0.227261i
\(731\) 1110.32i 1.51891i
\(732\) 293.848 79.8379i 0.401432 0.109068i
\(733\) −17.5857 + 30.4593i −0.0239914 + 0.0415542i −0.877772 0.479079i \(-0.840971\pi\)
0.853780 + 0.520633i \(0.174304\pi\)
\(734\) 1402.70i 1.91103i
\(735\) −63.5971 + 64.0432i −0.0865267 + 0.0871335i
\(736\) −119.495 206.971i −0.162357 0.281210i
\(737\) 138.016 79.6835i 0.187267 0.108119i
\(738\) −1050.47 + 616.316i −1.42340 + 0.835116i
\(739\) 700.539 1213.37i 0.947956 1.64191i 0.198234 0.980155i \(-0.436479\pi\)
0.749722 0.661753i \(-0.230187\pi\)
\(740\) −241.487 + 139.423i −0.326334 + 0.188409i
\(741\) −437.879 + 1091.08i −0.590930 + 1.47244i
\(742\) 3.57634 6.19440i 0.00481987 0.00834825i
\(743\) −719.045 + 415.141i −0.967759 + 0.558736i −0.898552 0.438866i \(-0.855380\pi\)
−0.0692068 + 0.997602i \(0.522047\pi\)
\(744\) 201.773 + 742.639i 0.271201 + 0.998171i
\(745\) 433.988 751.689i 0.582534 1.00898i
\(746\) 716.077i 0.959889i
\(747\) −208.847 355.965i −0.279581 0.476527i
\(748\) −131.034 226.958i −0.175179 0.303420i
\(749\) −745.291 + 430.294i −0.995049 + 0.574492i
\(750\) −657.517 652.938i −0.876690 0.870584i
\(751\) −362.979 628.698i −0.483327 0.837147i 0.516489 0.856294i \(-0.327239\pi\)
−0.999817 + 0.0191462i \(0.993905\pi\)
\(752\) −485.384 + 280.236i −0.645457 + 0.372655i
\(753\) −321.026 84.8175i −0.426329 0.112639i
\(754\) 133.069 + 16.4970i 0.176484 + 0.0218794i
\(755\) 68.5229i 0.0907588i
\(756\) −109.794 393.222i −0.145230 0.520134i
\(757\) 455.691 789.279i 0.601969 1.04264i −0.390554 0.920580i \(-0.627716\pi\)
0.992523 0.122061i \(-0.0389503\pi\)
\(758\) 471.116 + 271.999i 0.621525 + 0.358837i
\(759\) 38.7050 146.495i 0.0509947 0.193010i
\(760\) −470.537 −0.619127
\(761\) 1155.39i 1.51825i 0.650943 + 0.759126i \(0.274374\pi\)
−0.650943 + 0.759126i \(0.725626\pi\)
\(762\) −316.429 1164.64i −0.415261 1.52839i
\(763\) 790.686 1369.51i 1.03629 1.79490i
\(764\) 598.432 + 345.505i 0.783288 + 0.452231i
\(765\) 4.27841 + 612.188i 0.00559269 + 0.800246i
\(766\) −1387.40 −1.81123
\(767\) 76.7110 618.768i 0.100014 0.806739i
\(768\) −643.049 638.570i −0.837303 0.831472i
\(769\) 275.054 + 476.408i 0.357678 + 0.619516i 0.987572 0.157165i \(-0.0502353\pi\)
−0.629895 + 0.776681i \(0.716902\pi\)
\(770\) 314.340 181.484i 0.408233 0.235694i
\(771\) 1458.16 + 385.258i 1.89126 + 0.499686i
\(772\) −293.898 509.045i −0.380696 0.659385i
\(773\) −507.118 + 292.785i −0.656039 + 0.378764i −0.790766 0.612118i \(-0.790318\pi\)
0.134727 + 0.990883i \(0.456984\pi\)
\(774\) −559.694 + 985.256i −0.723119 + 1.27294i
\(775\) 780.117 1.00660
\(776\) −201.134 116.125i −0.259194 0.149645i
\(777\) 262.178 992.318i 0.337423 1.27711i
\(778\) 272.171 + 471.415i 0.349835 + 0.605931i
\(779\) 1445.13 + 834.348i 1.85511 + 1.07105i
\(780\) −34.4055 240.749i −0.0441097 0.308652i
\(781\) 25.1320 + 43.5299i 0.0321792 + 0.0557360i
\(782\) 374.812 + 216.398i 0.479299 + 0.276723i
\(783\) 81.3918 + 79.7030i 0.103949 + 0.101792i
\(784\) 95.3496 + 165.150i 0.121619 + 0.210651i
\(785\) 174.614 100.814i 0.222439 0.128425i
\(786\) 1176.06 319.533i 1.49626 0.406531i
\(787\) 399.078 0.507087 0.253544 0.967324i \(-0.418404\pi\)
0.253544 + 0.967324i \(0.418404\pi\)
\(788\) 595.283 + 343.687i 0.755436 + 0.436151i
\(789\) −426.795 + 429.789i −0.540932 + 0.544726i
\(790\) −127.071 −0.160849
\(791\) −1147.74 662.650i −1.45100 0.837737i
\(792\) −1.91381 273.843i −0.00241643 0.345761i
\(793\) −402.422 + 532.732i −0.507467 + 0.671793i
\(794\) −231.541 + 133.680i −0.291614 + 0.168363i
\(795\) 3.49317 0.949088i 0.00439393 0.00119382i
\(796\) −64.4120 111.565i −0.0809196 0.140157i
\(797\) 482.781i 0.605748i −0.953031 0.302874i \(-0.902054\pi\)
0.953031 0.302874i \(-0.0979462\pi\)
\(798\) −1191.87 + 1200.23i −1.49358 + 1.50405i
\(799\) 302.090 523.235i 0.378085 0.654862i
\(800\) −379.196 + 218.929i −0.473995 + 0.273661i
\(801\) −362.009 + 637.262i −0.451946 + 0.795583i
\(802\) 202.166 + 350.162i 0.252078 + 0.436611i
\(803\) 152.755i 0.190230i
\(804\) 39.2429 148.531i 0.0488096 0.184740i
\(805\) −99.1143 + 171.671i −0.123123 + 0.213256i
\(806\) 1314.92 + 993.277i 1.63141 + 1.23235i
\(807\) −808.597 213.637i −1.00198 0.264730i
\(808\) −182.639 −0.226039
\(809\) −1069.07 617.227i −1.32147 0.762950i −0.337505 0.941324i \(-0.609583\pi\)
−0.983963 + 0.178374i \(0.942916\pi\)
\(810\) 304.797 545.388i 0.376292 0.673319i
\(811\) −169.669 −0.209209 −0.104605 0.994514i \(-0.533358\pi\)
−0.104605 + 0.994514i \(0.533358\pi\)
\(812\) 55.2500 + 31.8986i 0.0680419 + 0.0392840i
\(813\) 340.750 92.5810i 0.419127 0.113876i
\(814\) −336.186 + 582.292i −0.413005 + 0.715346i
\(815\) 560.104i 0.687244i
\(816\) 1250.59 + 330.416i 1.53259 + 0.404922i
\(817\) 1552.53 1.90028
\(818\) 111.318i 0.136086i
\(819\) 718.018 + 534.545i 0.876701 + 0.652680i
\(820\) −345.181 −0.420953
\(821\) 871.420i 1.06141i 0.847556 + 0.530706i \(0.178073\pi\)
−0.847556 + 0.530706i \(0.821927\pi\)
\(822\) 1343.99 365.160i 1.63503 0.444234i
\(823\) −454.811 −0.552625 −0.276313 0.961068i \(-0.589113\pi\)
−0.276313 + 0.961068i \(0.589113\pi\)
\(824\) −299.865 173.127i −0.363914 0.210106i
\(825\) −268.396 70.9122i −0.325328 0.0859542i
\(826\) 448.533 776.881i 0.543018 0.940534i
\(827\) 58.1961i 0.0703702i −0.999381 0.0351851i \(-0.988798\pi\)
0.999381 0.0351851i \(-0.0112021\pi\)
\(828\) −73.9144 125.982i −0.0892685 0.152152i
\(829\) 184.684 319.882i 0.222779 0.385865i −0.732872 0.680367i \(-0.761820\pi\)
0.955651 + 0.294502i \(0.0951537\pi\)
\(830\) 353.706i 0.426152i
\(831\) 319.337 86.7631i 0.384280 0.104408i
\(832\) 114.173 + 14.1545i 0.137228 + 0.0170126i
\(833\) −178.029 102.785i −0.213721 0.123392i
\(834\) 20.2637 20.4058i 0.0242970 0.0244674i
\(835\) −201.456 −0.241265
\(836\) 317.347 183.221i 0.379602 0.219163i
\(837\) 376.508 + 1348.44i 0.449831 + 1.61104i
\(838\) −478.512 828.806i −0.571016 0.989029i
\(839\) 377.989 + 218.232i 0.450523 + 0.260109i 0.708051 0.706161i \(-0.249575\pi\)
−0.257528 + 0.966271i \(0.582908\pi\)
\(840\) −91.5160 + 346.379i −0.108948 + 0.412356i
\(841\) 823.199 0.978833
\(842\) −473.577 + 273.420i −0.562443 + 0.324727i
\(843\) 50.4800 + 13.3372i 0.0598814 + 0.0158211i
\(844\) −92.1484 159.606i −0.109181 0.189106i
\(845\) 382.701 + 371.306i 0.452900 + 0.439416i
\(846\) −531.816 + 312.020i −0.628625 + 0.368818i
\(847\) −318.160 + 551.069i −0.375631 + 0.650613i
\(848\) 7.64820i 0.00901911i
\(849\) −377.745 + 1429.73i −0.444929 + 1.68401i
\(850\) 396.467 686.701i 0.466432 0.807883i
\(851\) 367.204i 0.431498i
\(852\) 46.8462 + 12.3771i 0.0549837 + 0.0145271i
\(853\) 4.91575 + 8.51433i 0.00576290 + 0.00998163i 0.868892 0.495001i \(-0.164832\pi\)
−0.863130 + 0.504983i \(0.831499\pi\)
\(854\) −831.876 + 480.284i −0.974093 + 0.562393i
\(855\) −856.001 + 5.98235i −1.00117 + 0.00699690i
\(856\) −278.233 + 481.913i −0.325038 + 0.562982i
\(857\) 1224.81 707.143i 1.42918 0.825138i 0.432125 0.901814i \(-0.357764\pi\)
0.997056 + 0.0766755i \(0.0244305\pi\)
\(858\) −362.102 461.257i −0.422031 0.537596i
\(859\) 97.9732 169.694i 0.114055 0.197549i −0.803347 0.595512i \(-0.796949\pi\)
0.917402 + 0.397963i \(0.130283\pi\)
\(860\) −278.125 + 160.575i −0.323401 + 0.186716i
\(861\) 895.261 901.539i 1.03979 1.04708i
\(862\) 296.866 514.186i 0.344392 0.596504i
\(863\) 414.684i 0.480514i 0.970709 + 0.240257i \(0.0772318\pi\)
−0.970709 + 0.240257i \(0.922768\pi\)
\(864\) −561.433 549.784i −0.649807 0.636324i
\(865\) 387.825 + 671.733i 0.448353 + 0.776570i
\(866\) 135.486 78.2229i 0.156450 0.0903267i
\(867\) −508.928 + 138.275i −0.586999 + 0.159486i
\(868\) 392.027 + 679.011i 0.451645 + 0.782271i
\(869\) −87.7513 + 50.6632i −0.100980 + 0.0583006i
\(870\) 25.5982 + 94.2158i 0.0294233 + 0.108294i
\(871\) 131.251 + 310.217i 0.150690 + 0.356162i
\(872\) 1022.53i 1.17263i
\(873\) −367.380 208.697i −0.420825 0.239058i
\(874\) −302.582 + 524.087i −0.346203 + 0.599642i
\(875\) 837.162 + 483.336i 0.956756 + 0.552384i
\(876\) −104.487 103.759i −0.119277 0.118446i
\(877\) −471.095 −0.537166 −0.268583 0.963257i \(-0.586555\pi\)
−0.268583 + 0.963257i \(0.586555\pi\)
\(878\) 594.997i 0.677673i
\(879\) −731.645 + 736.776i −0.832361 + 0.838198i
\(880\) 194.057 336.117i 0.220519 0.381951i
\(881\) 1476.32 + 852.355i 1.67574 + 0.967486i 0.964329 + 0.264705i \(0.0852747\pi\)
0.711406 + 0.702781i \(0.248059\pi\)
\(882\) 106.164 + 180.949i 0.120367 + 0.205158i
\(883\) 650.040 0.736172 0.368086 0.929792i \(-0.380013\pi\)
0.368086 + 0.929792i \(0.380013\pi\)
\(884\) 510.131 215.833i 0.577071 0.244155i
\(885\) 438.102 119.031i 0.495031 0.134499i
\(886\) −11.4424 19.8189i −0.0129147 0.0223689i
\(887\) −293.506 + 169.456i −0.330898 + 0.191044i −0.656240 0.754553i \(-0.727854\pi\)
0.325342 + 0.945596i \(0.394521\pi\)
\(888\) −174.007 640.442i −0.195954 0.721219i
\(889\) 629.498 + 1090.32i 0.708097 + 1.22646i
\(890\) −543.975 + 314.064i −0.611208 + 0.352881i
\(891\) −6.96321 498.151i −0.00781505 0.559092i
\(892\) 486.666 0.545590
\(893\) 731.622 + 422.402i 0.819285 + 0.473015i
\(894\) −1431.60 1421.63i −1.60134 1.59019i
\(895\) −184.969 320.375i −0.206669 0.357961i
\(896\) 914.683 + 528.093i 1.02085 + 0.589389i
\(897\) 297.215 + 119.280i 0.331344 + 0.132977i
\(898\) −495.478 858.193i −0.551757 0.955672i
\(899\) −189.465 109.387i −0.210750 0.121677i
\(900\) −230.814 + 135.420i −0.256460 + 0.150467i
\(901\) 4.12232 + 7.14006i 0.00457527 + 0.00792460i
\(902\) −720.817 + 416.164i −0.799132 + 0.461379i
\(903\) 301.955 1142.87i 0.334391 1.26564i
\(904\) −856.952 −0.947956
\(905\) 711.626 + 410.857i 0.786327 + 0.453986i
\(906\) −153.993 40.6860i −0.169970 0.0449073i
\(907\) −1091.67 −1.20361 −0.601803 0.798645i \(-0.705551\pi\)
−0.601803 + 0.798645i \(0.705551\pi\)
\(908\) 324.932 + 187.599i 0.357854 + 0.206607i
\(909\) −332.257 + 2.32205i −0.365520 + 0.00255451i
\(910\) 298.931 + 706.538i 0.328496 + 0.776415i
\(911\) −680.446 + 392.856i −0.746922 + 0.431236i −0.824581 0.565744i \(-0.808589\pi\)
0.0776587 + 0.996980i \(0.475256\pi\)
\(912\) −462.010 + 1748.66i −0.506590 + 1.91739i
\(913\) −141.023 244.259i −0.154461 0.267534i
\(914\) 23.6961i 0.0259257i
\(915\) −469.994 124.176i −0.513655 0.135711i
\(916\) −41.5055 + 71.8897i −0.0453117 + 0.0784822i
\(917\) −1101.02 + 635.674i −1.20068 + 0.693210i
\(918\) 1378.32 + 353.876i 1.50144 + 0.385486i
\(919\) 0.983854 + 1.70409i 0.00107057 + 0.00185428i 0.866560 0.499073i \(-0.166326\pi\)
−0.865490 + 0.500927i \(0.832993\pi\)
\(920\) 128.177i 0.139322i
\(921\) −951.510 944.883i −1.03313 1.02593i
\(922\) 416.772 721.870i 0.452030 0.782939i
\(923\) −97.8416 + 41.3961i −0.106004 + 0.0448495i
\(924\) −73.1536 269.246i −0.0791705 0.291392i
\(925\) −672.763 −0.727312
\(926\) 998.128 + 576.270i 1.07789 + 0.622322i
\(927\) −547.716 311.141i −0.590848 0.335643i
\(928\) 122.792 0.132319
\(929\) 472.351 + 272.712i 0.508451 + 0.293555i 0.732197 0.681093i \(-0.238495\pi\)
−0.223745 + 0.974648i \(0.571828\pi\)
\(930\) −306.497 + 1160.06i −0.329567 + 1.24738i
\(931\) 143.721 248.932i 0.154373 0.267382i
\(932\) 300.028i 0.321918i
\(933\) −69.2571 254.905i −0.0742306 0.273210i
\(934\) −1874.43 −2.00688
\(935\) 418.380i 0.447465i
\(936\) 574.897 + 67.1962i 0.614207 + 0.0717908i
\(937\) 1697.45 1.81158 0.905790 0.423726i \(-0.139278\pi\)
0.905790 + 0.423726i \(0.139278\pi\)
\(938\) 484.627i 0.516660i
\(939\) −262.766 + 994.543i −0.279836 + 1.05915i
\(940\) −174.754 −0.185908
\(941\) −886.312 511.713i −0.941884 0.543797i −0.0513333 0.998682i \(-0.516347\pi\)
−0.890550 + 0.454885i \(0.849680\pi\)
\(942\) −122.881 452.272i −0.130447 0.480119i
\(943\) 227.280 393.661i 0.241019 0.417456i
\(944\) 959.212i 1.01611i
\(945\) −162.082 + 631.297i −0.171516 + 0.668039i
\(946\) −387.192 + 670.636i −0.409294 + 0.708917i
\(947\) 427.519i 0.451445i −0.974192 0.225723i \(-0.927526\pi\)
0.974192 0.225723i \(-0.0724743\pi\)
\(948\) −24.9508 + 94.4366i −0.0263195 + 0.0996166i
\(949\) 320.411 + 39.7225i 0.337630 + 0.0418572i
\(950\) 960.191 + 554.366i 1.01073 + 0.583543i
\(951\) −971.622 256.710i −1.02168 0.269937i
\(952\) −815.999 −0.857141
\(953\) 124.120 71.6609i 0.130242 0.0751951i −0.433464 0.901171i \(-0.642709\pi\)
0.563705 + 0.825976i \(0.309375\pi\)
\(954\) −0.0588016 8.41380i −6.16369e−5 0.00881949i
\(955\) −551.582 955.369i −0.577573 1.00039i
\(956\) −338.013 195.152i −0.353570 0.204134i
\(957\) 55.2412 + 54.8565i 0.0577233 + 0.0573213i
\(958\) 552.862 0.577101
\(959\) −1258.24 + 726.443i −1.31203 + 0.757501i
\(960\) 21.9633 + 80.8373i 0.0228785 + 0.0842056i
\(961\) −863.849 1496.23i −0.898907 1.55695i
\(962\) −1133.97 856.589i −1.17876 0.890425i
\(963\) −500.034 + 880.234i −0.519246 + 0.914054i
\(964\) −8.00713 + 13.8687i −0.00830615 + 0.0143867i
\(965\) 938.388i 0.972422i
\(966\) 326.949 + 324.672i 0.338457 + 0.336100i
\(967\) 208.251 360.702i 0.215358 0.373011i −0.738025 0.674773i \(-0.764242\pi\)
0.953383 + 0.301762i \(0.0975748\pi\)
\(968\) 411.451i 0.425052i
\(969\) −511.200 1881.50i −0.527554 1.94169i
\(970\) −181.057 313.600i −0.186657 0.323299i
\(971\) 940.061 542.744i 0.968136 0.558954i 0.0694689 0.997584i \(-0.477870\pi\)
0.898668 + 0.438630i \(0.144536\pi\)
\(972\) −345.474 333.608i −0.355425 0.343218i
\(973\) −15.0001 + 25.9810i −0.0154164 + 0.0267020i
\(974\) −1326.40 + 765.800i −1.36181 + 0.786242i
\(975\) 218.536 544.535i 0.224140 0.558497i
\(976\) −513.557 + 889.506i −0.526185 + 0.911380i
\(977\) 707.037 408.208i 0.723682 0.417818i −0.0924244 0.995720i \(-0.529462\pi\)
0.816106 + 0.577902i \(0.196128\pi\)
\(978\) −1258.73 332.566i −1.28705 0.340047i
\(979\) −250.435 + 433.766i −0.255807 + 0.443070i
\(980\) 59.4595i 0.0606729i
\(981\) −13.0003 1860.19i −0.0132521 1.89622i
\(982\) 475.144 + 822.973i 0.483853 + 0.838058i
\(983\) −492.034 + 284.076i −0.500543 + 0.288989i −0.728938 0.684580i \(-0.759986\pi\)
0.228395 + 0.973569i \(0.426652\pi\)
\(984\) 209.857 794.287i 0.213269 0.807202i
\(985\) −548.680 950.342i −0.557036 0.964814i
\(986\) −192.577 + 111.185i −0.195312 + 0.112763i
\(987\) 453.240 456.419i 0.459210 0.462431i
\(988\) 301.792 + 713.298i 0.305457 + 0.721962i
\(989\) 422.916i 0.427620i
\(990\) 210.898 371.254i 0.213028 0.375004i
\(991\) −110.273 + 190.998i −0.111274 + 0.192732i −0.916284 0.400529i \(-0.868826\pi\)
0.805010 + 0.593261i \(0.202160\pi\)
\(992\) 1306.91 + 754.545i 1.31745 + 0.760630i
\(993\) −158.706 + 43.1200i −0.159824 + 0.0434239i
\(994\) −152.850 −0.153773
\(995\) 205.662i 0.206695i
\(996\) −262.867 69.4515i −0.263923 0.0697305i
\(997\) 305.126 528.493i 0.306044 0.530083i −0.671449 0.741050i \(-0.734328\pi\)
0.977493 + 0.210967i \(0.0676613\pi\)
\(998\) 68.4711 + 39.5318i 0.0686083 + 0.0396110i
\(999\) −324.696 1162.88i −0.325021 1.16405i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.k.a.113.20 yes 52
3.2 odd 2 351.3.k.a.152.7 52
9.2 odd 6 117.3.u.a.74.7 yes 52
9.7 even 3 351.3.u.a.35.20 52
13.3 even 3 117.3.u.a.68.7 yes 52
39.29 odd 6 351.3.u.a.341.20 52
117.16 even 3 351.3.k.a.224.20 52
117.29 odd 6 inner 117.3.k.a.29.7 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.k.a.29.7 52 117.29 odd 6 inner
117.3.k.a.113.20 yes 52 1.1 even 1 trivial
117.3.u.a.68.7 yes 52 13.3 even 3
117.3.u.a.74.7 yes 52 9.2 odd 6
351.3.k.a.152.7 52 3.2 odd 2
351.3.k.a.224.20 52 117.16 even 3
351.3.u.a.35.20 52 9.7 even 3
351.3.u.a.341.20 52 39.29 odd 6