Properties

Label 117.3.n.a.38.9
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.9
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.647986 + 1.12234i) q^{2} +(2.50362 - 1.65285i) q^{3} +(1.16023 + 2.00957i) q^{4} +(2.25417 + 3.90433i) q^{5} +(0.232759 + 3.88094i) q^{6} +(0.162124 + 0.0936021i) q^{7} -8.19114 q^{8} +(3.53618 - 8.27620i) q^{9} -5.84268 q^{10} +(-2.73142 + 4.73097i) q^{11} +(6.22629 + 3.11352i) q^{12} +(12.9829 - 0.666563i) q^{13} +(-0.210108 + 0.121306i) q^{14} +(12.0968 + 6.04915i) q^{15} +(0.666831 - 1.15499i) q^{16} +6.56267i q^{17} +(6.99735 + 9.33167i) q^{18} -9.33560i q^{19} +(-5.23069 + 9.05983i) q^{20} +(0.560605 - 0.0336222i) q^{21} +(-3.53985 - 6.13120i) q^{22} +(-15.5066 + 8.95272i) q^{23} +(-20.5075 + 13.5387i) q^{24} +(2.33746 - 4.04860i) q^{25} +(-7.66463 + 15.0032i) q^{26} +(-4.82607 - 26.5652i) q^{27} +0.434399i q^{28} +(2.86081 + 1.65169i) q^{29} +(-14.6278 + 9.65706i) q^{30} +(20.4651 - 11.8155i) q^{31} +(-15.5181 - 26.8781i) q^{32} +(0.981137 + 16.3592i) q^{33} +(-7.36558 - 4.25252i) q^{34} +0.843979i q^{35} +(20.7344 - 2.49606i) q^{36} -54.9508i q^{37} +(10.4778 + 6.04934i) q^{38} +(31.4025 - 23.1276i) q^{39} +(-18.4642 - 31.9809i) q^{40} +(-27.4123 - 47.4795i) q^{41} +(-0.325529 + 0.650979i) q^{42} +(-20.2961 + 35.1538i) q^{43} -12.6763 q^{44} +(40.2842 - 4.84951i) q^{45} -23.2050i q^{46} +(-16.2252 + 28.1029i) q^{47} +(-0.239528 - 3.99381i) q^{48} +(-24.4825 - 42.4049i) q^{49} +(3.02929 + 5.24688i) q^{50} +(10.8471 + 16.4304i) q^{51} +(16.4026 + 25.3167i) q^{52} -70.1519i q^{53} +(32.9425 + 11.7974i) q^{54} -24.6283 q^{55} +(-1.32798 - 0.766708i) q^{56} +(-15.4303 - 23.3727i) q^{57} +(-3.70753 + 2.14054i) q^{58} +(9.16783 + 15.8791i) q^{59} +(1.87888 + 31.3279i) q^{60} +(-16.7182 + 28.9569i) q^{61} +30.6252i q^{62} +(1.34797 - 1.01077i) q^{63} +45.5566 q^{64} +(31.8681 + 49.1870i) q^{65} +(-18.9964 - 9.49933i) q^{66} +(-73.0282 + 42.1629i) q^{67} +(-13.1882 + 7.61420i) q^{68} +(-24.0250 + 48.0442i) q^{69} +(-0.947236 - 0.546887i) q^{70} +52.1928 q^{71} +(-28.9653 + 67.7915i) q^{72} +88.7509i q^{73} +(61.6737 + 35.6073i) q^{74} +(-0.839625 - 13.9996i) q^{75} +(18.7606 - 10.8314i) q^{76} +(-0.885657 + 0.511334i) q^{77} +(5.60878 + 50.2308i) q^{78} +(22.4851 - 38.9453i) q^{79} +6.01260 q^{80} +(-55.9909 - 58.5322i) q^{81} +71.0512 q^{82} +(-43.9891 + 76.1913i) q^{83} +(0.717996 + 1.08757i) q^{84} +(-25.6229 + 14.7934i) q^{85} +(-26.3031 - 45.5584i) q^{86} +(9.89236 - 0.593292i) q^{87} +(22.3735 - 38.7520i) q^{88} +174.305 q^{89} +(-20.6608 + 48.3551i) q^{90} +(2.16723 + 1.10716i) q^{91} +(-35.9823 - 20.7744i) q^{92} +(31.7074 - 63.4072i) q^{93} +(-21.0275 - 36.4206i) q^{94} +(36.4493 - 21.0440i) q^{95} +(-83.2767 - 41.6434i) q^{96} +(-7.09093 - 4.09395i) q^{97} +63.4572 q^{98} +(29.4956 + 39.3354i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.647986 + 1.12234i −0.323993 + 0.561172i −0.981308 0.192443i \(-0.938359\pi\)
0.657315 + 0.753616i \(0.271692\pi\)
\(3\) 2.50362 1.65285i 0.834538 0.550950i
\(4\) 1.16023 + 2.00957i 0.290057 + 0.502393i
\(5\) 2.25417 + 3.90433i 0.450833 + 0.780866i 0.998438 0.0558709i \(-0.0177935\pi\)
−0.547605 + 0.836737i \(0.684460\pi\)
\(6\) 0.232759 + 3.88094i 0.0387931 + 0.646824i
\(7\) 0.162124 + 0.0936021i 0.0231605 + 0.0133717i 0.511536 0.859262i \(-0.329077\pi\)
−0.488375 + 0.872634i \(0.662410\pi\)
\(8\) −8.19114 −1.02389
\(9\) 3.53618 8.27620i 0.392909 0.919577i
\(10\) −5.84268 −0.584268
\(11\) −2.73142 + 4.73097i −0.248311 + 0.430088i −0.963057 0.269296i \(-0.913209\pi\)
0.714746 + 0.699384i \(0.246542\pi\)
\(12\) 6.22629 + 3.11352i 0.518857 + 0.259460i
\(13\) 12.9829 0.666563i 0.998685 0.0512741i
\(14\) −0.210108 + 0.121306i −0.0150077 + 0.00866470i
\(15\) 12.0968 + 6.04915i 0.806456 + 0.403276i
\(16\) 0.666831 1.15499i 0.0416770 0.0721866i
\(17\) 6.56267i 0.386040i 0.981195 + 0.193020i \(0.0618282\pi\)
−0.981195 + 0.193020i \(0.938172\pi\)
\(18\) 6.99735 + 9.33167i 0.388742 + 0.518426i
\(19\) 9.33560i 0.491347i −0.969353 0.245674i \(-0.920991\pi\)
0.969353 0.245674i \(-0.0790092\pi\)
\(20\) −5.23069 + 9.05983i −0.261535 + 0.452991i
\(21\) 0.560605 0.0336222i 0.0266955 0.00160106i
\(22\) −3.53985 6.13120i −0.160902 0.278691i
\(23\) −15.5066 + 8.95272i −0.674199 + 0.389249i −0.797666 0.603100i \(-0.793932\pi\)
0.123467 + 0.992349i \(0.460599\pi\)
\(24\) −20.5075 + 13.5387i −0.854477 + 0.564113i
\(25\) 2.33746 4.04860i 0.0934985 0.161944i
\(26\) −7.66463 + 15.0032i −0.294793 + 0.577047i
\(27\) −4.82607 26.5652i −0.178743 0.983896i
\(28\) 0.434399i 0.0155143i
\(29\) 2.86081 + 1.65169i 0.0986486 + 0.0569548i 0.548513 0.836142i \(-0.315194\pi\)
−0.449864 + 0.893097i \(0.648528\pi\)
\(30\) −14.6278 + 9.65706i −0.487594 + 0.321902i
\(31\) 20.4651 11.8155i 0.660164 0.381146i −0.132175 0.991226i \(-0.542196\pi\)
0.792339 + 0.610080i \(0.208863\pi\)
\(32\) −15.5181 26.8781i −0.484940 0.839941i
\(33\) 0.981137 + 16.3592i 0.0297314 + 0.495732i
\(34\) −7.36558 4.25252i −0.216635 0.125074i
\(35\) 0.843979i 0.0241137i
\(36\) 20.7344 2.49606i 0.575956 0.0693350i
\(37\) 54.9508i 1.48516i −0.669760 0.742578i \(-0.733603\pi\)
0.669760 0.742578i \(-0.266397\pi\)
\(38\) 10.4778 + 6.04934i 0.275731 + 0.159193i
\(39\) 31.4025 23.1276i 0.805191 0.593015i
\(40\) −18.4642 31.9809i −0.461605 0.799523i
\(41\) −27.4123 47.4795i −0.668593 1.15804i −0.978298 0.207205i \(-0.933563\pi\)
0.309704 0.950833i \(-0.399770\pi\)
\(42\) −0.325529 + 0.650979i −0.00775069 + 0.0154995i
\(43\) −20.2961 + 35.1538i −0.472001 + 0.817530i −0.999487 0.0320337i \(-0.989802\pi\)
0.527485 + 0.849564i \(0.323135\pi\)
\(44\) −12.6763 −0.288098
\(45\) 40.2842 4.84951i 0.895203 0.107767i
\(46\) 23.2050i 0.504456i
\(47\) −16.2252 + 28.1029i −0.345218 + 0.597935i −0.985393 0.170294i \(-0.945528\pi\)
0.640176 + 0.768229i \(0.278862\pi\)
\(48\) −0.239528 3.99381i −0.00499017 0.0832044i
\(49\) −24.4825 42.4049i −0.499642 0.865406i
\(50\) 3.02929 + 5.24688i 0.0605857 + 0.104938i
\(51\) 10.8471 + 16.4304i 0.212688 + 0.322165i
\(52\) 16.4026 + 25.3167i 0.315435 + 0.486860i
\(53\) 70.1519i 1.32362i −0.749671 0.661810i \(-0.769788\pi\)
0.749671 0.661810i \(-0.230212\pi\)
\(54\) 32.9425 + 11.7974i 0.610047 + 0.218470i
\(55\) −24.6283 −0.447788
\(56\) −1.32798 0.766708i −0.0237139 0.0136912i
\(57\) −15.4303 23.3727i −0.270708 0.410048i
\(58\) −3.70753 + 2.14054i −0.0639229 + 0.0369059i
\(59\) 9.16783 + 15.8791i 0.155387 + 0.269138i 0.933200 0.359358i \(-0.117004\pi\)
−0.777813 + 0.628496i \(0.783671\pi\)
\(60\) 1.87888 + 31.3279i 0.0313147 + 0.522131i
\(61\) −16.7182 + 28.9569i −0.274070 + 0.474703i −0.969900 0.243504i \(-0.921703\pi\)
0.695830 + 0.718206i \(0.255037\pi\)
\(62\) 30.6252i 0.493954i
\(63\) 1.34797 1.01077i 0.0213963 0.0160440i
\(64\) 45.5566 0.711823
\(65\) 31.8681 + 49.1870i 0.490279 + 0.756723i
\(66\) −18.9964 9.49933i −0.287824 0.143929i
\(67\) −73.0282 + 42.1629i −1.08997 + 0.629297i −0.933569 0.358396i \(-0.883324\pi\)
−0.156404 + 0.987693i \(0.549990\pi\)
\(68\) −13.1882 + 7.61420i −0.193944 + 0.111973i
\(69\) −24.0250 + 48.0442i −0.348188 + 0.696292i
\(70\) −0.947236 0.546887i −0.0135319 0.00781267i
\(71\) 52.1928 0.735110 0.367555 0.930002i \(-0.380195\pi\)
0.367555 + 0.930002i \(0.380195\pi\)
\(72\) −28.9653 + 67.7915i −0.402296 + 0.941548i
\(73\) 88.7509i 1.21577i 0.794026 + 0.607883i \(0.207981\pi\)
−0.794026 + 0.607883i \(0.792019\pi\)
\(74\) 61.6737 + 35.6073i 0.833429 + 0.481180i
\(75\) −0.839625 13.9996i −0.0111950 0.186662i
\(76\) 18.7606 10.8314i 0.246850 0.142519i
\(77\) −0.885657 + 0.511334i −0.0115020 + 0.00664071i
\(78\) 5.60878 + 50.2308i 0.0719074 + 0.643984i
\(79\) 22.4851 38.9453i 0.284622 0.492979i −0.687896 0.725810i \(-0.741465\pi\)
0.972517 + 0.232830i \(0.0747987\pi\)
\(80\) 6.01260 0.0751574
\(81\) −55.9909 58.5322i −0.691245 0.722620i
\(82\) 71.0512 0.866478
\(83\) −43.9891 + 76.1913i −0.529989 + 0.917968i 0.469399 + 0.882986i \(0.344471\pi\)
−0.999388 + 0.0349817i \(0.988863\pi\)
\(84\) 0.717996 + 1.08757i 0.00854758 + 0.0129472i
\(85\) −25.6229 + 14.7934i −0.301445 + 0.174040i
\(86\) −26.3031 45.5584i −0.305850 0.529748i
\(87\) 9.89236 0.593292i 0.113705 0.00681945i
\(88\) 22.3735 38.7520i 0.254244 0.440364i
\(89\) 174.305 1.95848 0.979241 0.202698i \(-0.0649711\pi\)
0.979241 + 0.202698i \(0.0649711\pi\)
\(90\) −20.6608 + 48.3551i −0.229564 + 0.537279i
\(91\) 2.16723 + 1.10716i 0.0238157 + 0.0121666i
\(92\) −35.9823 20.7744i −0.391112 0.225809i
\(93\) 31.7074 63.4072i 0.340940 0.681798i
\(94\) −21.0275 36.4206i −0.223696 0.387453i
\(95\) 36.4493 21.0440i 0.383677 0.221516i
\(96\) −83.2767 41.6434i −0.867466 0.433785i
\(97\) −7.09093 4.09395i −0.0731024 0.0422057i 0.463003 0.886357i \(-0.346772\pi\)
−0.536106 + 0.844151i \(0.680105\pi\)
\(98\) 63.4572 0.647523
\(99\) 29.4956 + 39.3354i 0.297935 + 0.397327i
\(100\) 10.8480 0.108480
\(101\) −60.0429 34.6658i −0.594484 0.343226i 0.172384 0.985030i \(-0.444853\pi\)
−0.766869 + 0.641804i \(0.778186\pi\)
\(102\) −25.4694 + 1.52752i −0.249700 + 0.0149757i
\(103\) 81.5907 + 141.319i 0.792143 + 1.37203i 0.924637 + 0.380848i \(0.124368\pi\)
−0.132494 + 0.991184i \(0.542299\pi\)
\(104\) −106.345 + 5.45991i −1.02255 + 0.0524991i
\(105\) 1.39497 + 2.11300i 0.0132854 + 0.0201238i
\(106\) 78.7346 + 45.4574i 0.742779 + 0.428844i
\(107\) 180.476i 1.68669i −0.537373 0.843345i \(-0.680583\pi\)
0.537373 0.843345i \(-0.319417\pi\)
\(108\) 47.7854 40.5200i 0.442457 0.375185i
\(109\) 149.717i 1.37355i 0.726870 + 0.686775i \(0.240974\pi\)
−0.726870 + 0.686775i \(0.759026\pi\)
\(110\) 15.9588 27.6415i 0.145080 0.251286i
\(111\) −90.8253 137.576i −0.818246 1.23942i
\(112\) 0.216218 0.124834i 0.00193052 0.00111459i
\(113\) 53.6475 30.9734i 0.474757 0.274101i −0.243472 0.969908i \(-0.578286\pi\)
0.718229 + 0.695807i \(0.244953\pi\)
\(114\) 36.2309 2.17294i 0.317815 0.0190609i
\(115\) −69.9088 40.3619i −0.607902 0.350973i
\(116\) 7.66534i 0.0660805i
\(117\) 40.3933 109.806i 0.345242 0.938514i
\(118\) −23.7625 −0.201377
\(119\) −0.614280 + 1.06396i −0.00516202 + 0.00894088i
\(120\) −99.0868 49.5494i −0.825724 0.412912i
\(121\) 45.5786 + 78.9445i 0.376683 + 0.652434i
\(122\) −21.6664 37.5273i −0.177593 0.307601i
\(123\) −147.106 73.5621i −1.19599 0.598066i
\(124\) 47.4883 + 27.4174i 0.382970 + 0.221108i
\(125\) 133.784 1.07028
\(126\) 0.260972 + 2.16785i 0.00207120 + 0.0172052i
\(127\) −60.3333 −0.475065 −0.237533 0.971380i \(-0.576339\pi\)
−0.237533 + 0.971380i \(0.576339\pi\)
\(128\) 32.5522 56.3821i 0.254314 0.440485i
\(129\) 7.29041 + 121.558i 0.0565148 + 0.942310i
\(130\) −75.8549 + 3.89451i −0.583499 + 0.0299578i
\(131\) −168.986 + 97.5640i −1.28997 + 0.744763i −0.978648 0.205542i \(-0.934104\pi\)
−0.311319 + 0.950305i \(0.600771\pi\)
\(132\) −31.7366 + 20.9520i −0.240429 + 0.158727i
\(133\) 0.873832 1.51352i 0.00657017 0.0113799i
\(134\) 109.284i 0.815551i
\(135\) 92.8405 78.7249i 0.687708 0.583148i
\(136\) 53.7557i 0.395263i
\(137\) −55.0447 + 95.3402i −0.401786 + 0.695914i −0.993942 0.109910i \(-0.964944\pi\)
0.592155 + 0.805824i \(0.298277\pi\)
\(138\) −38.3543 58.0963i −0.277930 0.420988i
\(139\) 110.129 + 190.749i 0.792296 + 1.37230i 0.924542 + 0.381080i \(0.124448\pi\)
−0.132246 + 0.991217i \(0.542219\pi\)
\(140\) −1.69604 + 0.979208i −0.0121146 + 0.00699435i
\(141\) 5.82816 + 97.1768i 0.0413345 + 0.689197i
\(142\) −33.8202 + 58.5784i −0.238171 + 0.412524i
\(143\) −32.3083 + 63.2423i −0.225932 + 0.442254i
\(144\) −7.20085 9.60306i −0.0500059 0.0666879i
\(145\) 14.8927i 0.102709i
\(146\) −99.6092 57.5094i −0.682255 0.393900i
\(147\) −131.384 65.6997i −0.893766 0.446937i
\(148\) 110.428 63.7554i 0.746133 0.430780i
\(149\) 39.0386 + 67.6168i 0.262004 + 0.453804i 0.966774 0.255631i \(-0.0822833\pi\)
−0.704770 + 0.709436i \(0.748950\pi\)
\(150\) 16.2565 + 8.12921i 0.108376 + 0.0541948i
\(151\) −224.322 129.512i −1.48557 0.857696i −0.485708 0.874121i \(-0.661438\pi\)
−0.999865 + 0.0164251i \(0.994772\pi\)
\(152\) 76.4692i 0.503087i
\(153\) 54.3140 + 23.2068i 0.354993 + 0.151678i
\(154\) 1.32535i 0.00860617i
\(155\) 92.2634 + 53.2683i 0.595248 + 0.343667i
\(156\) 82.9106 + 36.2723i 0.531478 + 0.232515i
\(157\) −68.2125 118.148i −0.434475 0.752532i 0.562778 0.826608i \(-0.309733\pi\)
−0.997253 + 0.0740760i \(0.976399\pi\)
\(158\) 29.1401 + 50.4721i 0.184431 + 0.319444i
\(159\) −115.950 175.633i −0.729248 1.10461i
\(160\) 69.9607 121.175i 0.437254 0.757346i
\(161\) −3.35197 −0.0208197
\(162\) 101.975 24.9130i 0.629473 0.153784i
\(163\) 44.8906i 0.275402i −0.990474 0.137701i \(-0.956029\pi\)
0.990474 0.137701i \(-0.0439714\pi\)
\(164\) 63.6091 110.174i 0.387860 0.671794i
\(165\) −61.6599 + 40.7069i −0.373696 + 0.246709i
\(166\) −57.0086 98.7419i −0.343426 0.594831i
\(167\) −50.4995 87.4677i −0.302392 0.523759i 0.674285 0.738471i \(-0.264452\pi\)
−0.976677 + 0.214712i \(0.931119\pi\)
\(168\) −4.59200 + 0.275404i −0.0273333 + 0.00163931i
\(169\) 168.111 17.3078i 0.994742 0.102413i
\(170\) 38.3436i 0.225550i
\(171\) −77.2633 33.0124i −0.451832 0.193055i
\(172\) −94.1922 −0.547629
\(173\) −15.2225 8.78871i −0.0879913 0.0508018i 0.455359 0.890308i \(-0.349511\pi\)
−0.543350 + 0.839506i \(0.682844\pi\)
\(174\) −5.74423 + 11.4871i −0.0330128 + 0.0660177i
\(175\) 0.757916 0.437583i 0.00433095 0.00250047i
\(176\) 3.64280 + 6.30951i 0.0206977 + 0.0358495i
\(177\) 49.1985 + 24.6022i 0.277958 + 0.138996i
\(178\) −112.947 + 195.630i −0.634535 + 1.09905i
\(179\) 104.441i 0.583468i 0.956499 + 0.291734i \(0.0942322\pi\)
−0.956499 + 0.291734i \(0.905768\pi\)
\(180\) 56.4843 + 75.3274i 0.313801 + 0.418486i
\(181\) 90.6107 0.500612 0.250306 0.968167i \(-0.419469\pi\)
0.250306 + 0.968167i \(0.419469\pi\)
\(182\) −2.64695 + 1.71495i −0.0145437 + 0.00942281i
\(183\) 6.00525 + 100.130i 0.0328156 + 0.547156i
\(184\) 127.016 73.3329i 0.690306 0.398549i
\(185\) 214.546 123.868i 1.15971 0.669558i
\(186\) 50.6188 + 76.6737i 0.272144 + 0.412224i
\(187\) −31.0478 17.9254i −0.166031 0.0958580i
\(188\) −75.2999 −0.400531
\(189\) 1.70414 4.75858i 0.00901660 0.0251776i
\(190\) 54.5449i 0.287078i
\(191\) 207.774 + 119.958i 1.08782 + 0.628054i 0.932995 0.359888i \(-0.117185\pi\)
0.154825 + 0.987942i \(0.450519\pi\)
\(192\) 114.056 75.2983i 0.594043 0.392178i
\(193\) −310.002 + 178.980i −1.60623 + 0.927357i −0.616027 + 0.787725i \(0.711259\pi\)
−0.990203 + 0.139632i \(0.955408\pi\)
\(194\) 9.18965 5.30564i 0.0473693 0.0273487i
\(195\) 161.084 + 70.4722i 0.826073 + 0.361396i
\(196\) 56.8105 98.3987i 0.289850 0.502034i
\(197\) 41.0547 0.208399 0.104200 0.994556i \(-0.466772\pi\)
0.104200 + 0.994556i \(0.466772\pi\)
\(198\) −63.2606 + 7.61547i −0.319498 + 0.0384620i
\(199\) −144.402 −0.725640 −0.362820 0.931859i \(-0.618186\pi\)
−0.362820 + 0.931859i \(0.618186\pi\)
\(200\) −19.1465 + 33.1627i −0.0957324 + 0.165813i
\(201\) −113.146 + 226.264i −0.562914 + 1.12569i
\(202\) 77.8139 44.9259i 0.385218 0.222405i
\(203\) 0.309203 + 0.535556i 0.00152317 + 0.00263821i
\(204\) −20.4330 + 40.8611i −0.100162 + 0.200299i
\(205\) 123.584 214.054i 0.602848 1.04416i
\(206\) −211.479 −1.02660
\(207\) 19.2605 + 159.994i 0.0930458 + 0.772917i
\(208\) 7.88753 15.4395i 0.0379208 0.0742286i
\(209\) 44.1664 + 25.4995i 0.211323 + 0.122007i
\(210\) −3.27544 + 0.196444i −0.0155973 + 0.000935446i
\(211\) 8.28442 + 14.3490i 0.0392626 + 0.0680049i 0.884989 0.465612i \(-0.154166\pi\)
−0.845726 + 0.533617i \(0.820832\pi\)
\(212\) 140.975 81.3922i 0.664978 0.383925i
\(213\) 130.671 86.2669i 0.613478 0.405009i
\(214\) 202.556 + 116.946i 0.946524 + 0.546476i
\(215\) −183.003 −0.851176
\(216\) 39.5310 + 217.599i 0.183014 + 1.00740i
\(217\) 4.42383 0.0203863
\(218\) −168.034 97.0145i −0.770799 0.445021i
\(219\) 146.692 + 222.198i 0.669826 + 1.01460i
\(220\) −28.5745 49.4925i −0.129884 0.224966i
\(221\) 4.37444 + 85.2025i 0.0197938 + 0.385532i
\(222\) 213.261 12.7903i 0.960634 0.0576139i
\(223\) −250.650 144.713i −1.12399 0.648936i −0.181574 0.983377i \(-0.558119\pi\)
−0.942417 + 0.334441i \(0.891452\pi\)
\(224\) 5.81010i 0.0259379i
\(225\) −25.2414 33.6619i −0.112184 0.149608i
\(226\) 80.2813i 0.355227i
\(227\) −152.915 + 264.857i −0.673636 + 1.16677i 0.303230 + 0.952917i \(0.401935\pi\)
−0.976866 + 0.213854i \(0.931398\pi\)
\(228\) 29.0666 58.1261i 0.127485 0.254939i
\(229\) 240.075 138.607i 1.04836 0.605273i 0.126172 0.992008i \(-0.459731\pi\)
0.922191 + 0.386736i \(0.126397\pi\)
\(230\) 90.5998 52.3078i 0.393912 0.227425i
\(231\) −1.37219 + 2.74404i −0.00594020 + 0.0118790i
\(232\) −23.4333 13.5292i −0.101006 0.0583156i
\(233\) 203.054i 0.871476i 0.900073 + 0.435738i \(0.143513\pi\)
−0.900073 + 0.435738i \(0.856487\pi\)
\(234\) 97.0661 + 116.488i 0.414812 + 0.497812i
\(235\) −146.298 −0.622543
\(236\) −21.2735 + 36.8468i −0.0901421 + 0.156131i
\(237\) −8.07673 134.669i −0.0340790 0.568222i
\(238\) −0.796090 1.37887i −0.00334492 0.00579357i
\(239\) −18.5820 32.1850i −0.0777490 0.134665i 0.824529 0.565819i \(-0.191440\pi\)
−0.902278 + 0.431154i \(0.858107\pi\)
\(240\) 15.0532 9.93791i 0.0627218 0.0414080i
\(241\) 239.107 + 138.048i 0.992144 + 0.572814i 0.905914 0.423461i \(-0.139185\pi\)
0.0862292 + 0.996275i \(0.472518\pi\)
\(242\) −118.137 −0.488171
\(243\) −236.925 53.9977i −0.974998 0.222213i
\(244\) −77.5879 −0.317983
\(245\) 110.375 191.175i 0.450511 0.780308i
\(246\) 177.885 117.437i 0.723110 0.477386i
\(247\) −6.22277 121.203i −0.0251934 0.490701i
\(248\) −167.632 + 96.7825i −0.675937 + 0.390252i
\(249\) 15.8010 + 263.461i 0.0634579 + 1.05808i
\(250\) −86.6905 + 150.152i −0.346762 + 0.600609i
\(251\) 179.821i 0.716417i 0.933642 + 0.358209i \(0.116612\pi\)
−0.933642 + 0.358209i \(0.883388\pi\)
\(252\) 3.59517 + 1.53611i 0.0142666 + 0.00609569i
\(253\) 97.8147i 0.386619i
\(254\) 39.0951 67.7147i 0.153918 0.266593i
\(255\) −39.6986 + 79.3876i −0.155681 + 0.311324i
\(256\) 133.300 + 230.883i 0.520703 + 0.901885i
\(257\) −271.324 + 156.649i −1.05574 + 0.609530i −0.924250 0.381788i \(-0.875309\pi\)
−0.131487 + 0.991318i \(0.541975\pi\)
\(258\) −141.154 70.5855i −0.547109 0.273587i
\(259\) 5.14351 8.90882i 0.0198591 0.0343970i
\(260\) −61.8706 + 121.109i −0.237964 + 0.465806i
\(261\) 23.7860 17.8360i 0.0911343 0.0683370i
\(262\) 252.880i 0.965192i
\(263\) 43.6126 + 25.1797i 0.165827 + 0.0957404i 0.580617 0.814177i \(-0.302811\pi\)
−0.414790 + 0.909917i \(0.636145\pi\)
\(264\) −8.03663 134.000i −0.0304418 0.507576i
\(265\) 273.896 158.134i 1.03357 0.596732i
\(266\) 1.13246 + 1.96148i 0.00425738 + 0.00737399i
\(267\) 436.393 288.100i 1.63443 1.07903i
\(268\) −169.459 97.8371i −0.632309 0.365064i
\(269\) 501.502i 1.86432i −0.362047 0.932160i \(-0.617922\pi\)
0.362047 0.932160i \(-0.382078\pi\)
\(270\) 28.1972 + 155.212i 0.104434 + 0.574858i
\(271\) 229.102i 0.845396i −0.906270 0.422698i \(-0.861083\pi\)
0.906270 0.422698i \(-0.138917\pi\)
\(272\) 7.57979 + 4.37620i 0.0278669 + 0.0160890i
\(273\) 7.25587 0.810193i 0.0265783 0.00296774i
\(274\) −71.3364 123.558i −0.260352 0.450943i
\(275\) 12.7692 + 22.1169i 0.0464335 + 0.0804252i
\(276\) −124.423 + 7.46223i −0.450807 + 0.0270371i
\(277\) −198.883 + 344.476i −0.717990 + 1.24360i 0.243805 + 0.969824i \(0.421604\pi\)
−0.961795 + 0.273771i \(0.911729\pi\)
\(278\) −285.449 −1.02679
\(279\) −25.4194 211.155i −0.0911089 0.756827i
\(280\) 6.91315i 0.0246898i
\(281\) 97.3277 168.576i 0.346362 0.599916i −0.639238 0.769009i \(-0.720750\pi\)
0.985600 + 0.169092i \(0.0540836\pi\)
\(282\) −112.842 56.4280i −0.400151 0.200099i
\(283\) −208.024 360.308i −0.735067 1.27317i −0.954694 0.297589i \(-0.903817\pi\)
0.219627 0.975584i \(-0.429516\pi\)
\(284\) 60.5556 + 104.885i 0.213224 + 0.369315i
\(285\) 56.4724 112.931i 0.198149 0.396250i
\(286\) −50.0444 77.2412i −0.174980 0.270074i
\(287\) 10.2634i 0.0357610i
\(288\) −277.323 + 33.3849i −0.962928 + 0.115920i
\(289\) 245.931 0.850973
\(290\) −16.7148 9.65029i −0.0576372 0.0332768i
\(291\) −24.5196 + 1.47056i −0.0842599 + 0.00505347i
\(292\) −178.352 + 102.971i −0.610793 + 0.352642i
\(293\) −118.452 205.164i −0.404272 0.700219i 0.589965 0.807429i \(-0.299142\pi\)
−0.994236 + 0.107210i \(0.965808\pi\)
\(294\) 158.872 104.885i 0.540383 0.356752i
\(295\) −41.3316 + 71.5885i −0.140107 + 0.242673i
\(296\) 450.109i 1.52064i
\(297\) 138.861 + 49.7288i 0.467546 + 0.167437i
\(298\) −101.186 −0.339550
\(299\) −195.353 + 126.568i −0.653353 + 0.423306i
\(300\) 27.1591 17.9300i 0.0905304 0.0597668i
\(301\) −6.58094 + 3.79951i −0.0218636 + 0.0126230i
\(302\) 290.715 167.844i 0.962631 0.555775i
\(303\) −207.622 + 12.4521i −0.685220 + 0.0410959i
\(304\) −10.7825 6.22527i −0.0354687 0.0204779i
\(305\) −150.743 −0.494239
\(306\) −61.2407 + 45.9213i −0.200133 + 0.150070i
\(307\) 249.037i 0.811195i −0.914052 0.405598i \(-0.867063\pi\)
0.914052 0.405598i \(-0.132937\pi\)
\(308\) −2.05513 1.18653i −0.00667249 0.00385237i
\(309\) 437.851 + 218.952i 1.41699 + 0.708583i
\(310\) −119.571 + 69.0343i −0.385712 + 0.222691i
\(311\) −127.535 + 73.6323i −0.410080 + 0.236760i −0.690824 0.723023i \(-0.742752\pi\)
0.280744 + 0.959783i \(0.409419\pi\)
\(312\) −257.222 + 189.441i −0.824429 + 0.607184i
\(313\) 83.8809 145.286i 0.267990 0.464172i −0.700353 0.713797i \(-0.746974\pi\)
0.968343 + 0.249625i \(0.0803072\pi\)
\(314\) 176.803 0.563067
\(315\) 6.98494 + 2.98446i 0.0221744 + 0.00947448i
\(316\) 104.351 0.330226
\(317\) 20.0628 34.7498i 0.0632896 0.109621i −0.832644 0.553808i \(-0.813174\pi\)
0.895934 + 0.444187i \(0.146508\pi\)
\(318\) 272.255 16.3285i 0.856149 0.0513474i
\(319\) −15.6282 + 9.02293i −0.0489911 + 0.0282850i
\(320\) 102.692 + 177.868i 0.320913 + 0.555838i
\(321\) −298.299 451.842i −0.929281 1.40761i
\(322\) 2.17203 3.76207i 0.00674545 0.0116835i
\(323\) 61.2665 0.189680
\(324\) 52.6627 180.429i 0.162539 0.556878i
\(325\) 27.6484 54.1207i 0.0850720 0.166525i
\(326\) 50.3827 + 29.0885i 0.154548 + 0.0892285i
\(327\) 247.460 + 374.834i 0.756757 + 1.14628i
\(328\) 224.538 + 388.911i 0.684567 + 1.18571i
\(329\) −5.26099 + 3.03743i −0.0159908 + 0.00923232i
\(330\) −5.73247 95.5812i −0.0173711 0.289640i
\(331\) −10.1298 5.84845i −0.0306037 0.0176690i 0.484620 0.874725i \(-0.338958\pi\)
−0.515224 + 0.857056i \(0.672291\pi\)
\(332\) −204.149 −0.614908
\(333\) −454.783 194.316i −1.36572 0.583531i
\(334\) 130.892 0.391892
\(335\) −329.236 190.084i −0.982793 0.567416i
\(336\) 0.334996 0.669912i 0.000997012 0.00199378i
\(337\) −172.531 298.833i −0.511963 0.886745i −0.999904 0.0138688i \(-0.995585\pi\)
0.487941 0.872876i \(-0.337748\pi\)
\(338\) −89.5085 + 199.894i −0.264818 + 0.591403i
\(339\) 83.1183 166.217i 0.245187 0.490315i
\(340\) −59.4567 34.3273i −0.174873 0.100963i
\(341\) 129.093i 0.378571i
\(342\) 87.1168 65.3245i 0.254727 0.191007i
\(343\) 18.3395i 0.0534678i
\(344\) 166.248 287.950i 0.483278 0.837063i
\(345\) −241.737 + 14.4981i −0.700686 + 0.0420235i
\(346\) 19.7279 11.3899i 0.0570171 0.0329189i
\(347\) 508.170 293.392i 1.46447 0.845511i 0.465255 0.885177i \(-0.345963\pi\)
0.999213 + 0.0396654i \(0.0126292\pi\)
\(348\) 12.6697 + 19.1911i 0.0364071 + 0.0551468i
\(349\) 501.880 + 289.761i 1.43805 + 0.830260i 0.997714 0.0675725i \(-0.0215254\pi\)
0.440338 + 0.897832i \(0.354859\pi\)
\(350\) 1.13419i 0.00324055i
\(351\) −80.3638 341.676i −0.228957 0.973437i
\(352\) 169.546 0.481664
\(353\) 189.372 328.001i 0.536463 0.929182i −0.462628 0.886553i \(-0.653093\pi\)
0.999091 0.0426291i \(-0.0135734\pi\)
\(354\) −59.4922 + 39.2758i −0.168057 + 0.110949i
\(355\) 117.651 + 203.778i 0.331412 + 0.574023i
\(356\) 202.233 + 350.279i 0.568071 + 0.983929i
\(357\) 0.220651 + 3.67907i 0.000618071 + 0.0103055i
\(358\) −117.219 67.6762i −0.327426 0.189040i
\(359\) 226.733 0.631569 0.315784 0.948831i \(-0.397732\pi\)
0.315784 + 0.948831i \(0.397732\pi\)
\(360\) −329.973 + 39.7230i −0.916592 + 0.110342i
\(361\) 273.847 0.758578
\(362\) −58.7145 + 101.696i −0.162195 + 0.280929i
\(363\) 244.595 + 122.312i 0.673815 + 0.336948i
\(364\) 0.289555 + 5.63976i 0.000795480 + 0.0154939i
\(365\) −346.513 + 200.059i −0.949351 + 0.548108i
\(366\) −116.271 58.1426i −0.317681 0.158860i
\(367\) −226.025 + 391.487i −0.615873 + 1.06672i 0.374358 + 0.927284i \(0.377863\pi\)
−0.990231 + 0.139439i \(0.955470\pi\)
\(368\) 23.8798i 0.0648908i
\(369\) −489.885 + 58.9736i −1.32760 + 0.159820i
\(370\) 321.060i 0.867729i
\(371\) 6.56637 11.3733i 0.0176991 0.0306557i
\(372\) 164.209 9.84842i 0.441423 0.0264742i
\(373\) 78.8574 + 136.585i 0.211414 + 0.366180i 0.952157 0.305609i \(-0.0988599\pi\)
−0.740743 + 0.671788i \(0.765527\pi\)
\(374\) 40.2371 23.2309i 0.107586 0.0621147i
\(375\) 334.945 221.126i 0.893186 0.589668i
\(376\) 132.903 230.195i 0.353466 0.612221i
\(377\) 38.2426 + 19.5368i 0.101439 + 0.0518218i
\(378\) 4.23651 + 4.99612i 0.0112077 + 0.0132173i
\(379\) 514.875i 1.35851i 0.733903 + 0.679255i \(0.237697\pi\)
−0.733903 + 0.679255i \(0.762303\pi\)
\(380\) 84.5789 + 48.8317i 0.222576 + 0.128504i
\(381\) −151.051 + 99.7218i −0.396460 + 0.261737i
\(382\) −269.269 + 155.463i −0.704893 + 0.406970i
\(383\) −89.2179 154.530i −0.232945 0.403473i 0.725728 0.687981i \(-0.241503\pi\)
−0.958673 + 0.284509i \(0.908170\pi\)
\(384\) −11.6929 194.963i −0.0304502 0.507716i
\(385\) −3.99284 2.30527i −0.0103710 0.00598770i
\(386\) 463.906i 1.20183i
\(387\) 219.169 + 292.284i 0.566329 + 0.755257i
\(388\) 18.9997i 0.0489682i
\(389\) −524.201 302.648i −1.34756 0.778014i −0.359657 0.933085i \(-0.617106\pi\)
−0.987903 + 0.155070i \(0.950440\pi\)
\(390\) −183.474 + 135.127i −0.470447 + 0.346480i
\(391\) −58.7538 101.765i −0.150265 0.260267i
\(392\) 200.539 + 347.344i 0.511580 + 0.886082i
\(393\) −261.817 + 523.571i −0.666200 + 1.33224i
\(394\) −26.6029 + 46.0775i −0.0675200 + 0.116948i
\(395\) 202.741 0.513268
\(396\) −44.8257 + 104.912i −0.113196 + 0.264928i
\(397\) 511.953i 1.28955i 0.764371 + 0.644777i \(0.223050\pi\)
−0.764371 + 0.644777i \(0.776950\pi\)
\(398\) 93.5707 162.069i 0.235102 0.407209i
\(399\) −0.313883 5.23359i −0.000786675 0.0131168i
\(400\) −3.11739 5.39947i −0.00779347 0.0134987i
\(401\) 32.5050 + 56.3003i 0.0810599 + 0.140400i 0.903705 0.428155i \(-0.140836\pi\)
−0.822646 + 0.568555i \(0.807503\pi\)
\(402\) −180.630 273.605i −0.449328 0.680609i
\(403\) 257.820 167.041i 0.639753 0.414494i
\(404\) 160.881i 0.398220i
\(405\) 102.316 350.548i 0.252633 0.865551i
\(406\) −0.801438 −0.00197398
\(407\) 259.970 + 150.094i 0.638748 + 0.368781i
\(408\) −88.8501 134.584i −0.217770 0.329862i
\(409\) −238.707 + 137.817i −0.583635 + 0.336962i −0.762577 0.646898i \(-0.776066\pi\)
0.178942 + 0.983860i \(0.442733\pi\)
\(410\) 160.161 + 277.408i 0.390637 + 0.676604i
\(411\) 19.7722 + 329.676i 0.0481076 + 0.802131i
\(412\) −189.328 + 327.925i −0.459533 + 0.795935i
\(413\) 3.43251i 0.00831117i
\(414\) −192.049 82.0569i −0.463886 0.198205i
\(415\) −396.635 −0.955747
\(416\) −219.386 338.612i −0.527369 0.813971i
\(417\) 591.001 + 295.536i 1.41727 + 0.708719i
\(418\) −57.2384 + 33.0466i −0.136934 + 0.0790589i
\(419\) 405.554 234.147i 0.967910 0.558823i 0.0693118 0.997595i \(-0.477920\pi\)
0.898599 + 0.438772i \(0.144586\pi\)
\(420\) −2.62774 + 5.25486i −0.00625653 + 0.0125116i
\(421\) 123.688 + 71.4111i 0.293795 + 0.169623i 0.639652 0.768665i \(-0.279078\pi\)
−0.345857 + 0.938287i \(0.612412\pi\)
\(422\) −21.4727 −0.0508833
\(423\) 175.210 + 233.660i 0.414208 + 0.552388i
\(424\) 574.624i 1.35524i
\(425\) 26.5697 + 15.3400i 0.0625169 + 0.0360941i
\(426\) 12.1483 + 202.557i 0.0285172 + 0.475487i
\(427\) −5.42085 + 3.12973i −0.0126952 + 0.00732957i
\(428\) 362.679 209.393i 0.847382 0.489236i
\(429\) 23.6424 + 211.735i 0.0551105 + 0.493555i
\(430\) 118.583 205.392i 0.275775 0.477657i
\(431\) −234.681 −0.544504 −0.272252 0.962226i \(-0.587768\pi\)
−0.272252 + 0.962226i \(0.587768\pi\)
\(432\) −33.9006 12.1405i −0.0784736 0.0281029i
\(433\) −15.5025 −0.0358026 −0.0179013 0.999840i \(-0.505698\pi\)
−0.0179013 + 0.999840i \(0.505698\pi\)
\(434\) −2.86658 + 4.96507i −0.00660503 + 0.0114402i
\(435\) 24.6154 + 37.2857i 0.0565872 + 0.0857142i
\(436\) −300.867 + 173.706i −0.690063 + 0.398408i
\(437\) 83.5790 + 144.763i 0.191256 + 0.331266i
\(438\) −344.437 + 20.6576i −0.786387 + 0.0471634i
\(439\) 313.874 543.645i 0.714974 1.23837i −0.247995 0.968761i \(-0.579772\pi\)
0.962969 0.269611i \(-0.0868950\pi\)
\(440\) 201.734 0.458487
\(441\) −437.526 + 52.6705i −0.992122 + 0.119434i
\(442\) −98.4612 50.3004i −0.222763 0.113802i
\(443\) 495.766 + 286.231i 1.11911 + 0.646119i 0.941174 0.337923i \(-0.109724\pi\)
0.177937 + 0.984042i \(0.443058\pi\)
\(444\) 171.090 342.139i 0.385338 0.770584i
\(445\) 392.912 + 680.544i 0.882949 + 1.52931i
\(446\) 324.835 187.544i 0.728330 0.420502i
\(447\) 209.498 + 104.762i 0.468676 + 0.234366i
\(448\) 7.38581 + 4.26420i 0.0164862 + 0.00951830i
\(449\) −80.8219 −0.180004 −0.0900021 0.995942i \(-0.528687\pi\)
−0.0900021 + 0.995942i \(0.528687\pi\)
\(450\) 54.1363 6.51707i 0.120303 0.0144824i
\(451\) 299.499 0.664077
\(452\) 124.487 + 71.8724i 0.275413 + 0.159010i
\(453\) −775.679 + 46.5212i −1.71232 + 0.102696i
\(454\) −198.174 343.247i −0.436507 0.756051i
\(455\) 0.562566 + 10.9573i 0.00123641 + 0.0240820i
\(456\) 126.392 + 191.449i 0.277175 + 0.419845i
\(457\) −213.732 123.398i −0.467686 0.270019i 0.247585 0.968866i \(-0.420363\pi\)
−0.715270 + 0.698848i \(0.753697\pi\)
\(458\) 359.263i 0.784416i
\(459\) 174.339 31.6719i 0.379823 0.0690020i
\(460\) 187.316i 0.407208i
\(461\) 262.211 454.162i 0.568787 0.985167i −0.427900 0.903826i \(-0.640746\pi\)
0.996686 0.0813410i \(-0.0259203\pi\)
\(462\) −2.19060 3.31817i −0.00474157 0.00718218i
\(463\) −43.9680 + 25.3849i −0.0949632 + 0.0548270i −0.546730 0.837309i \(-0.684127\pi\)
0.451766 + 0.892136i \(0.350794\pi\)
\(464\) 3.81535 2.20280i 0.00822275 0.00474741i
\(465\) 319.037 19.1342i 0.686100 0.0411487i
\(466\) −227.897 131.576i −0.489049 0.282352i
\(467\) 101.615i 0.217592i 0.994064 + 0.108796i \(0.0346995\pi\)
−0.994064 + 0.108796i \(0.965301\pi\)
\(468\) 267.529 46.2269i 0.571643 0.0987754i
\(469\) −15.7861 −0.0336591
\(470\) 94.7988 164.196i 0.201700 0.349354i
\(471\) −366.058 183.051i −0.777193 0.388643i
\(472\) −75.0949 130.068i −0.159099 0.275568i
\(473\) −110.874 192.040i −0.234407 0.406004i
\(474\) 156.378 + 78.1986i 0.329912 + 0.164976i
\(475\) −37.7962 21.8216i −0.0795708 0.0459402i
\(476\) −2.85082 −0.00598912
\(477\) −580.591 248.070i −1.21717 0.520062i
\(478\) 48.1635 0.100761
\(479\) −18.6148 + 32.2418i −0.0388618 + 0.0673106i −0.884802 0.465967i \(-0.845707\pi\)
0.845940 + 0.533278i \(0.179040\pi\)
\(480\) −25.1301 419.011i −0.0523544 0.872940i
\(481\) −36.6282 713.420i −0.0761500 1.48320i
\(482\) −309.876 + 178.907i −0.642895 + 0.371176i
\(483\) −8.39206 + 5.54031i −0.0173749 + 0.0114706i
\(484\) −105.763 + 183.187i −0.218519 + 0.378486i
\(485\) 36.9138i 0.0761109i
\(486\) 214.128 230.921i 0.440592 0.475147i
\(487\) 540.371i 1.10959i −0.831987 0.554795i \(-0.812797\pi\)
0.831987 0.554795i \(-0.187203\pi\)
\(488\) 136.941 237.190i 0.280618 0.486044i
\(489\) −74.1974 112.389i −0.151733 0.229834i
\(490\) 143.043 + 247.758i 0.291925 + 0.505629i
\(491\) −441.513 + 254.907i −0.899211 + 0.519160i −0.876944 0.480592i \(-0.840422\pi\)
−0.0222668 + 0.999752i \(0.507088\pi\)
\(492\) −22.8486 380.970i −0.0464402 0.774329i
\(493\) −10.8395 + 18.7746i −0.0219868 + 0.0380823i
\(494\) 140.064 + 71.5539i 0.283530 + 0.144846i
\(495\) −87.0903 + 203.829i −0.175940 + 0.411776i
\(496\) 31.5158i 0.0635400i
\(497\) 8.46169 + 4.88536i 0.0170255 + 0.00982970i
\(498\) −305.933 152.985i −0.614324 0.307199i
\(499\) −325.310 + 187.818i −0.651924 + 0.376389i −0.789193 0.614145i \(-0.789501\pi\)
0.137269 + 0.990534i \(0.456168\pi\)
\(500\) 155.220 + 268.850i 0.310441 + 0.537699i
\(501\) −271.002 135.517i −0.540923 0.270494i
\(502\) −201.821 116.521i −0.402034 0.232114i
\(503\) 842.603i 1.67515i −0.546319 0.837577i \(-0.683971\pi\)
0.546319 0.837577i \(-0.316029\pi\)
\(504\) −11.0414 + 8.27938i −0.0219075 + 0.0164273i
\(505\) 312.570i 0.618950i
\(506\) 109.782 + 63.3826i 0.216960 + 0.125262i
\(507\) 392.279 321.195i 0.773726 0.633521i
\(508\) −70.0003 121.244i −0.137796 0.238670i
\(509\) −365.564 633.175i −0.718200 1.24396i −0.961712 0.274061i \(-0.911633\pi\)
0.243513 0.969898i \(-0.421700\pi\)
\(510\) −63.3761 95.9976i −0.124267 0.188230i
\(511\) −8.30728 + 14.3886i −0.0162569 + 0.0281578i
\(512\) −85.0886 −0.166189
\(513\) −248.002 + 45.0543i −0.483435 + 0.0878251i
\(514\) 406.026i 0.789934i
\(515\) −367.838 + 637.115i −0.714249 + 1.23712i
\(516\) −235.821 + 155.686i −0.457018 + 0.301716i
\(517\) −88.6360 153.522i −0.171443 0.296948i
\(518\) 6.66585 + 11.5456i 0.0128684 + 0.0222888i
\(519\) −52.6377 + 3.15693i −0.101421 + 0.00608272i
\(520\) −261.036 402.897i −0.501992 0.774803i
\(521\) 530.709i 1.01864i 0.860579 + 0.509318i \(0.170102\pi\)
−0.860579 + 0.509318i \(0.829898\pi\)
\(522\) 4.60507 + 38.2536i 0.00882197 + 0.0732828i
\(523\) 108.736 0.207909 0.103955 0.994582i \(-0.466850\pi\)
0.103955 + 0.994582i \(0.466850\pi\)
\(524\) −392.124 226.393i −0.748328 0.432047i
\(525\) 1.17427 2.34826i 0.00223671 0.00447288i
\(526\) −56.5207 + 32.6322i −0.107454 + 0.0620385i
\(527\) 77.5414 + 134.306i 0.147137 + 0.254849i
\(528\) 19.5488 + 9.77560i 0.0370243 + 0.0185144i
\(529\) −104.198 + 180.476i −0.196971 + 0.341164i
\(530\) 409.875i 0.773348i
\(531\) 163.838 19.7232i 0.308546 0.0371436i
\(532\) 4.05538 0.00762289
\(533\) −387.540 598.150i −0.727091 1.12223i
\(534\) 40.5710 + 676.468i 0.0759757 + 1.26679i
\(535\) 704.637 406.823i 1.31708 0.760416i
\(536\) 598.184 345.362i 1.11602 0.644332i
\(537\) 172.625 + 261.480i 0.321462 + 0.486927i
\(538\) 562.858 + 324.966i 1.04620 + 0.604027i
\(539\) 267.488 0.496267
\(540\) 265.920 + 95.2310i 0.492444 + 0.176354i
\(541\) 199.865i 0.369436i 0.982792 + 0.184718i \(0.0591372\pi\)
−0.982792 + 0.184718i \(0.940863\pi\)
\(542\) 257.132 + 148.455i 0.474413 + 0.273903i
\(543\) 226.854 149.766i 0.417780 0.275812i
\(544\) 176.392 101.840i 0.324250 0.187206i
\(545\) −584.545 + 337.487i −1.07256 + 0.619242i
\(546\) −3.79239 + 8.66859i −0.00694577 + 0.0158765i
\(547\) −282.244 + 488.862i −0.515986 + 0.893714i 0.483842 + 0.875156i \(0.339241\pi\)
−0.999828 + 0.0185588i \(0.994092\pi\)
\(548\) −255.458 −0.466164
\(549\) 180.534 + 240.760i 0.328841 + 0.438543i
\(550\) −33.0971 −0.0601765
\(551\) 15.4195 26.7074i 0.0279846 0.0484707i
\(552\) 196.792 393.536i 0.356507 0.712928i
\(553\) 7.29074 4.20931i 0.0131840 0.00761177i
\(554\) −257.747 446.431i −0.465248 0.805833i
\(555\) 332.405 664.731i 0.598928 1.19771i
\(556\) −255.550 + 442.625i −0.459622 + 0.796089i
\(557\) −504.734 −0.906165 −0.453083 0.891469i \(-0.649676\pi\)
−0.453083 + 0.891469i \(0.649676\pi\)
\(558\) 253.460 + 108.296i 0.454229 + 0.194079i
\(559\) −240.069 + 469.927i −0.429462 + 0.840657i
\(560\) 0.974784 + 0.562792i 0.00174069 + 0.00100499i
\(561\) −107.360 + 6.43888i −0.191372 + 0.0114775i
\(562\) 126.134 + 218.470i 0.224438 + 0.388737i
\(563\) 273.837 158.100i 0.486389 0.280817i −0.236686 0.971586i \(-0.576061\pi\)
0.723075 + 0.690769i \(0.242728\pi\)
\(564\) −188.522 + 124.459i −0.334259 + 0.220673i
\(565\) 241.861 + 139.638i 0.428072 + 0.247148i
\(566\) 539.186 0.952626
\(567\) −3.59870 14.7303i −0.00634692 0.0259794i
\(568\) −427.519 −0.752674
\(569\) 37.8576 + 21.8571i 0.0665336 + 0.0384132i 0.532898 0.846180i \(-0.321103\pi\)
−0.466364 + 0.884593i \(0.654436\pi\)
\(570\) 90.1545 + 136.559i 0.158166 + 0.239578i
\(571\) 94.3613 + 163.439i 0.165256 + 0.286232i 0.936746 0.350009i \(-0.113822\pi\)
−0.771490 + 0.636241i \(0.780488\pi\)
\(572\) −164.575 + 8.44956i −0.287719 + 0.0147720i
\(573\) 718.458 43.0894i 1.25385 0.0751996i
\(574\) 11.5191 + 6.65055i 0.0200681 + 0.0115863i
\(575\) 83.7066i 0.145577i
\(576\) 161.096 377.036i 0.279681 0.654576i
\(577\) 633.598i 1.09809i −0.835792 0.549045i \(-0.814991\pi\)
0.835792 0.549045i \(-0.185009\pi\)
\(578\) −159.360 + 276.020i −0.275710 + 0.477543i
\(579\) −480.300 + 960.484i −0.829533 + 1.65887i
\(580\) −29.9280 + 17.2790i −0.0516001 + 0.0297913i
\(581\) −14.2633 + 8.23495i −0.0245496 + 0.0141737i
\(582\) 14.2379 28.4724i 0.0244638 0.0489216i
\(583\) 331.886 + 191.615i 0.569273 + 0.328670i
\(584\) 726.971i 1.24481i
\(585\) 519.773 89.8127i 0.888500 0.153526i
\(586\) 307.020 0.523925
\(587\) −525.602 + 910.370i −0.895404 + 1.55089i −0.0621006 + 0.998070i \(0.519780\pi\)
−0.833304 + 0.552816i \(0.813553\pi\)
\(588\) −20.4065 340.252i −0.0347050 0.578659i
\(589\) −110.305 191.054i −0.187275 0.324370i
\(590\) −53.5646 92.7767i −0.0907875 0.157249i
\(591\) 102.785 67.8572i 0.173917 0.114818i
\(592\) −63.4674 36.6429i −0.107208 0.0618968i
\(593\) −692.941 −1.16853 −0.584267 0.811562i \(-0.698618\pi\)
−0.584267 + 0.811562i \(0.698618\pi\)
\(594\) −145.793 + 123.626i −0.245443 + 0.208125i
\(595\) −5.53876 −0.00930884
\(596\) −90.5873 + 156.902i −0.151992 + 0.263258i
\(597\) −361.528 + 238.675i −0.605574 + 0.399791i
\(598\) −15.4676 301.268i −0.0258655 0.503792i
\(599\) −919.094 + 530.639i −1.53438 + 0.885875i −0.535228 + 0.844708i \(0.679774\pi\)
−0.999152 + 0.0411670i \(0.986892\pi\)
\(600\) 6.87748 + 114.673i 0.0114625 + 0.191121i
\(601\) −42.5965 + 73.7793i −0.0708760 + 0.122761i −0.899285 0.437362i \(-0.855913\pi\)
0.828409 + 0.560123i \(0.189246\pi\)
\(602\) 9.84812i 0.0163590i
\(603\) 90.7073 + 753.492i 0.150427 + 1.24957i
\(604\) 601.054i 0.995123i
\(605\) −205.484 + 355.908i −0.339643 + 0.588278i
\(606\) 120.560 241.092i 0.198945 0.397841i
\(607\) 111.215 + 192.630i 0.183221 + 0.317348i 0.942976 0.332862i \(-0.108014\pi\)
−0.759755 + 0.650210i \(0.774681\pi\)
\(608\) −250.923 + 144.871i −0.412703 + 0.238274i
\(609\) 1.65932 + 0.829759i 0.00272466 + 0.00136249i
\(610\) 97.6793 169.186i 0.160130 0.277353i
\(611\) −191.918 + 375.673i −0.314105 + 0.614849i
\(612\) 16.3808 + 136.073i 0.0267661 + 0.222342i
\(613\) 1211.06i 1.97563i 0.155644 + 0.987813i \(0.450255\pi\)
−0.155644 + 0.987813i \(0.549745\pi\)
\(614\) 279.505 + 161.372i 0.455220 + 0.262822i
\(615\) −44.3918 740.173i −0.0721817 1.20353i
\(616\) 7.25454 4.18841i 0.0117768 0.00679937i
\(617\) −44.9906 77.9259i −0.0729182 0.126298i 0.827261 0.561818i \(-0.189898\pi\)
−0.900179 + 0.435520i \(0.856565\pi\)
\(618\) −529.461 + 349.542i −0.856734 + 0.565603i
\(619\) 467.089 + 269.674i 0.754586 + 0.435661i 0.827349 0.561689i \(-0.189848\pi\)
−0.0727624 + 0.997349i \(0.523181\pi\)
\(620\) 247.214i 0.398732i
\(621\) 312.666 + 368.728i 0.503489 + 0.593765i
\(622\) 190.851i 0.306834i
\(623\) 28.2590 + 16.3153i 0.0453595 + 0.0261883i
\(624\) −5.77190 51.6916i −0.00924983 0.0828391i
\(625\) 243.136 + 421.124i 0.389018 + 0.673798i
\(626\) 108.707 + 188.287i 0.173654 + 0.300777i
\(627\) 152.722 9.15950i 0.243577 0.0146085i
\(628\) 158.284 274.156i 0.252045 0.436554i
\(629\) 360.624 0.573329
\(630\) −7.87574 + 5.90562i −0.0125012 + 0.00937400i
\(631\) 1068.00i 1.69255i −0.532744 0.846276i \(-0.678839\pi\)
0.532744 0.846276i \(-0.321161\pi\)
\(632\) −184.179 + 319.007i −0.291422 + 0.504757i
\(633\) 44.4578 + 22.2316i 0.0702334 + 0.0351209i
\(634\) 26.0008 + 45.0347i 0.0410108 + 0.0710327i
\(635\) −136.001 235.561i −0.214175 0.370962i
\(636\) 218.419 436.786i 0.343426 0.686770i
\(637\) −346.119 534.219i −0.543358 0.838649i
\(638\) 23.3869i 0.0366566i
\(639\) 184.563 431.958i 0.288831 0.675991i
\(640\) 293.513 0.458614
\(641\) −356.116 205.604i −0.555564 0.320755i 0.195799 0.980644i \(-0.437270\pi\)
−0.751363 + 0.659889i \(0.770603\pi\)
\(642\) 700.416 42.0073i 1.09099 0.0654320i
\(643\) 776.631 448.388i 1.20782 0.697338i 0.245541 0.969386i \(-0.421034\pi\)
0.962284 + 0.272048i \(0.0877011\pi\)
\(644\) −3.88905 6.73604i −0.00603890 0.0104597i
\(645\) −458.169 + 302.476i −0.710339 + 0.468955i
\(646\) −39.6998 + 68.7621i −0.0614549 + 0.106443i
\(647\) 39.9656i 0.0617706i −0.999523 0.0308853i \(-0.990167\pi\)
0.999523 0.0308853i \(-0.00983266\pi\)
\(648\) 458.629 + 479.445i 0.707761 + 0.739885i
\(649\) −100.165 −0.154337
\(650\) 42.8263 + 66.1005i 0.0658866 + 0.101693i
\(651\) 11.0756 7.31193i 0.0170132 0.0112318i
\(652\) 90.2110 52.0833i 0.138360 0.0798824i
\(653\) 189.335 109.313i 0.289947 0.167401i −0.347971 0.937505i \(-0.613129\pi\)
0.637918 + 0.770104i \(0.279796\pi\)
\(654\) −581.043 + 34.8479i −0.888445 + 0.0532843i
\(655\) −761.844 439.851i −1.16312 0.671528i
\(656\) −73.1176 −0.111460
\(657\) 734.520 + 313.839i 1.11799 + 0.477685i
\(658\) 7.87286i 0.0119648i
\(659\) 839.444 + 484.653i 1.27382 + 0.735437i 0.975704 0.219094i \(-0.0703100\pi\)
0.298111 + 0.954531i \(0.403643\pi\)
\(660\) −153.343 76.6808i −0.232338 0.116183i
\(661\) −205.518 + 118.656i −0.310919 + 0.179509i −0.647338 0.762203i \(-0.724118\pi\)
0.336418 + 0.941713i \(0.390784\pi\)
\(662\) 13.1280 7.57943i 0.0198308 0.0114493i
\(663\) 151.779 + 206.084i 0.228927 + 0.310836i
\(664\) 360.321 624.094i 0.542652 0.939900i
\(665\) 7.87905 0.0118482
\(666\) 512.783 384.510i 0.769944 0.577342i
\(667\) −59.1484 −0.0886783
\(668\) 117.182 202.965i 0.175422 0.303840i
\(669\) −866.719 + 51.9813i −1.29554 + 0.0777000i
\(670\) 426.680 246.344i 0.636836 0.367678i
\(671\) −91.3293 158.187i −0.136109 0.235748i
\(672\) −9.60322 14.5463i −0.0142905 0.0216462i
\(673\) 545.331 944.541i 0.810299 1.40348i −0.102356 0.994748i \(-0.532638\pi\)
0.912655 0.408731i \(-0.134029\pi\)
\(674\) 447.192 0.663489
\(675\) −118.833 42.5563i −0.176048 0.0630463i
\(676\) 229.829 + 317.751i 0.339984 + 0.470046i
\(677\) 1125.33 + 649.709i 1.66223 + 0.959689i 0.971647 + 0.236435i \(0.0759790\pi\)
0.690582 + 0.723254i \(0.257354\pi\)
\(678\) 132.693 + 200.994i 0.195712 + 0.296451i
\(679\) −0.766405 1.32745i −0.00112873 0.00195501i
\(680\) 209.880 121.174i 0.308647 0.178198i
\(681\) 54.9277 + 915.846i 0.0806574 + 1.34485i
\(682\) −144.887 83.6504i −0.212444 0.122655i
\(683\) 703.770 1.03041 0.515205 0.857067i \(-0.327716\pi\)
0.515205 + 0.857067i \(0.327716\pi\)
\(684\) −23.3022 193.568i −0.0340676 0.282994i
\(685\) −496.320 −0.724554
\(686\) 20.5832 + 11.8837i 0.0300047 + 0.0173232i
\(687\) 371.958 743.827i 0.541424 1.08272i
\(688\) 27.0681 + 46.8833i 0.0393432 + 0.0681444i
\(689\) −46.7607 910.775i −0.0678674 1.32188i
\(690\) 140.370 280.707i 0.203435 0.406821i
\(691\) −267.940 154.695i −0.387757 0.223872i 0.293431 0.955980i \(-0.405203\pi\)
−0.681188 + 0.732109i \(0.738536\pi\)
\(692\) 40.7876i 0.0589417i
\(693\) 1.10006 + 9.13804i 0.00158739 + 0.0131862i
\(694\) 760.457i 1.09576i
\(695\) −496.499 + 859.961i −0.714387 + 1.23735i
\(696\) −81.0297 + 4.85974i −0.116422 + 0.00698238i
\(697\) 311.593 179.898i 0.447048 0.258103i
\(698\) −650.423 + 375.522i −0.931838 + 0.537997i
\(699\) 335.618 + 508.369i 0.480140 + 0.727280i
\(700\) 1.75871 + 1.01539i 0.00251244 + 0.00145056i
\(701\) 321.205i 0.458210i −0.973402 0.229105i \(-0.926420\pi\)
0.973402 0.229105i \(-0.0735799\pi\)
\(702\) 435.553 + 131.206i 0.620446 + 0.186903i
\(703\) −512.998 −0.729727
\(704\) −124.435 + 215.527i −0.176754 + 0.306146i
\(705\) −366.273 + 241.808i −0.519536 + 0.342990i
\(706\) 245.420 + 425.080i 0.347621 + 0.602097i
\(707\) −6.48958 11.2403i −0.00917904 0.0158986i
\(708\) 7.64152 + 127.412i 0.0107931 + 0.179961i
\(709\) 10.3769 + 5.99109i 0.0146359 + 0.00845006i 0.507300 0.861769i \(-0.330644\pi\)
−0.492664 + 0.870220i \(0.663977\pi\)
\(710\) −304.946 −0.429501
\(711\) −242.808 323.809i −0.341502 0.455427i
\(712\) −1427.76 −2.00527
\(713\) −211.562 + 366.436i −0.296721 + 0.513936i
\(714\) −4.27217 2.13634i −0.00598342 0.00299207i
\(715\) −319.747 + 16.4164i −0.447199 + 0.0229599i
\(716\) −209.881 + 121.175i −0.293131 + 0.169239i
\(717\) −99.7191 49.8656i −0.139078 0.0695475i
\(718\) −146.920 + 254.473i −0.204624 + 0.354419i
\(719\) 366.091i 0.509167i 0.967051 + 0.254584i \(0.0819384\pi\)
−0.967051 + 0.254584i \(0.918062\pi\)
\(720\) 21.2616 49.7614i 0.0295300 0.0691131i
\(721\) 30.5483i 0.0423693i
\(722\) −177.449 + 307.350i −0.245774 + 0.425693i
\(723\) 826.804 49.5874i 1.14357 0.0685856i
\(724\) 105.129 + 182.089i 0.145206 + 0.251504i
\(725\) 13.3741 7.72153i 0.0184470 0.0106504i
\(726\) −295.770 + 195.263i −0.407397 + 0.268957i
\(727\) −19.9404 + 34.5377i −0.0274283 + 0.0475072i −0.879414 0.476058i \(-0.842065\pi\)
0.851985 + 0.523565i \(0.175398\pi\)
\(728\) −17.7520 9.06891i −0.0243847 0.0124573i
\(729\) −682.418 + 256.411i −0.936102 + 0.351730i
\(730\) 518.543i 0.710333i
\(731\) −230.703 133.196i −0.315599 0.182211i
\(732\) −194.250 + 128.241i −0.265369 + 0.175193i
\(733\) −517.367 + 298.702i −0.705821 + 0.407506i −0.809512 0.587104i \(-0.800268\pi\)
0.103691 + 0.994610i \(0.466935\pi\)
\(734\) −292.923 507.357i −0.399077 0.691222i
\(735\) −39.6471 661.063i −0.0539417 0.899406i
\(736\) 481.264 + 277.858i 0.653892 + 0.377524i
\(737\) 460.659i 0.625046i
\(738\) 251.250 588.034i 0.340447 0.796794i
\(739\) 36.3743i 0.0492209i −0.999697 0.0246105i \(-0.992165\pi\)
0.999697 0.0246105i \(-0.00783454\pi\)
\(740\) 497.845 + 287.431i 0.672763 + 0.388420i
\(741\) −215.910 293.161i −0.291376 0.395629i
\(742\) 8.50983 + 14.7395i 0.0114688 + 0.0198645i
\(743\) −117.915 204.235i −0.158702 0.274879i 0.775699 0.631103i \(-0.217397\pi\)
−0.934401 + 0.356224i \(0.884064\pi\)
\(744\) −259.720 + 519.377i −0.349086 + 0.698088i
\(745\) −175.999 + 304.839i −0.236240 + 0.409180i
\(746\) −204.394 −0.273987
\(747\) 475.021 + 633.489i 0.635905 + 0.848044i
\(748\) 83.1904i 0.111217i
\(749\) 16.8929 29.2594i 0.0225540 0.0390646i
\(750\) 31.1395 + 519.210i 0.0415194 + 0.692280i
\(751\) −290.048 502.377i −0.386215 0.668944i 0.605722 0.795677i \(-0.292884\pi\)
−0.991937 + 0.126732i \(0.959551\pi\)
\(752\) 21.6390 + 37.4798i 0.0287753 + 0.0498402i
\(753\) 297.217 + 450.202i 0.394710 + 0.597878i
\(754\) −46.7077 + 30.2618i −0.0619465 + 0.0401350i
\(755\) 1167.77i 1.54671i
\(756\) 11.5399 2.09644i 0.0152644 0.00277307i
\(757\) −177.728 −0.234779 −0.117389 0.993086i \(-0.537453\pi\)
−0.117389 + 0.993086i \(0.537453\pi\)
\(758\) −577.867 333.632i −0.762358 0.440148i
\(759\) −161.673 244.890i −0.213008 0.322649i
\(760\) −298.561 + 172.374i −0.392843 + 0.226808i
\(761\) −327.594 567.410i −0.430479 0.745611i 0.566436 0.824106i \(-0.308322\pi\)
−0.996915 + 0.0784949i \(0.974989\pi\)
\(762\) −14.0431 234.150i −0.0184293 0.307283i
\(763\) −14.0138 + 24.2727i −0.0183667 + 0.0318121i
\(764\) 556.716i 0.728685i
\(765\) 31.8258 + 264.372i 0.0416023 + 0.345584i
\(766\) 231.248 0.301890
\(767\) 129.609 + 200.046i 0.168982 + 0.260817i
\(768\) 715.346 + 357.716i 0.931440 + 0.465776i
\(769\) 500.571 289.005i 0.650938 0.375819i −0.137877 0.990449i \(-0.544028\pi\)
0.788816 + 0.614630i \(0.210695\pi\)
\(770\) 5.17461 2.98756i 0.00672027 0.00387995i
\(771\) −420.374 + 840.648i −0.545233 + 1.09033i
\(772\) −719.347 415.315i −0.931796 0.537973i
\(773\) 1155.12 1.49433 0.747166 0.664638i \(-0.231414\pi\)
0.747166 + 0.664638i \(0.231414\pi\)
\(774\) −470.063 + 56.5874i −0.607316 + 0.0731103i
\(775\) 110.473i 0.142546i
\(776\) 58.0828 + 33.5341i 0.0748489 + 0.0432140i
\(777\) −1.84757 30.8057i −0.00237782 0.0396470i
\(778\) 679.350 392.223i 0.873200 0.504142i
\(779\) −443.250 + 255.910i −0.568999 + 0.328512i
\(780\) 45.2754 + 405.474i 0.0580453 + 0.519839i
\(781\) −142.561 + 246.923i −0.182536 + 0.316162i
\(782\) 152.287 0.194740
\(783\) 30.0710 83.9691i 0.0384048 0.107240i
\(784\) −65.3027 −0.0832943
\(785\) 307.525 532.649i 0.391751 0.678533i
\(786\) −417.973 633.115i −0.531772 0.805490i
\(787\) −1117.20 + 645.018i −1.41957 + 0.819591i −0.996261 0.0863928i \(-0.972466\pi\)
−0.423312 + 0.905984i \(0.639133\pi\)
\(788\) 47.6328 + 82.5024i 0.0604477 + 0.104699i
\(789\) 150.807 9.04464i 0.191137 0.0114634i
\(790\) −131.373 + 227.545i −0.166295 + 0.288032i
\(791\) 11.5967 0.0146608
\(792\) −241.602 322.201i −0.305054 0.406820i
\(793\) −197.750 + 387.088i −0.249369 + 0.488131i
\(794\) −574.588 331.739i −0.723662 0.417807i
\(795\) 424.359 848.616i 0.533785 1.06744i
\(796\) −167.540 290.187i −0.210477 0.364557i
\(797\) 725.010 418.585i 0.909674 0.525200i 0.0293476 0.999569i \(-0.490657\pi\)
0.880326 + 0.474369i \(0.157324\pi\)
\(798\) 6.07728 + 3.03901i 0.00761564 + 0.00380828i
\(799\) −184.430 106.481i −0.230826 0.133268i
\(800\) −145.092 −0.181365
\(801\) 616.374 1442.58i 0.769505 1.80098i
\(802\) −84.2512 −0.105051
\(803\) −419.878 242.417i −0.522886 0.301889i
\(804\) −585.970 + 35.1434i −0.728818 + 0.0437107i
\(805\) −7.55591 13.0872i −0.00938622 0.0162574i
\(806\) 20.4136 + 397.604i 0.0253271 + 0.493305i
\(807\) −828.907 1255.57i −1.02715 1.55585i
\(808\) 491.820 + 283.952i 0.608688 + 0.351426i
\(809\) 93.7927i 0.115937i 0.998318 + 0.0579683i \(0.0184622\pi\)
−0.998318 + 0.0579683i \(0.981538\pi\)
\(810\) 327.137 + 341.985i 0.403872 + 0.422204i
\(811\) 551.690i 0.680259i −0.940379 0.340130i \(-0.889529\pi\)
0.940379 0.340130i \(-0.110471\pi\)
\(812\) −0.717493 + 1.24273i −0.000883611 + 0.00153046i
\(813\) −378.672 573.584i −0.465771 0.705516i
\(814\) −336.914 + 194.518i −0.413900 + 0.238965i
\(815\) 175.268 101.191i 0.215053 0.124161i
\(816\) 26.2101 1.57194i 0.0321202 0.00192640i
\(817\) 328.182 + 189.476i 0.401691 + 0.231917i
\(818\) 357.215i 0.436693i
\(819\) 16.8268 14.0213i 0.0205455 0.0171200i
\(820\) 573.542 0.699441
\(821\) 306.896 531.559i 0.373807 0.647454i −0.616340 0.787480i \(-0.711385\pi\)
0.990148 + 0.140026i \(0.0447187\pi\)
\(822\) −382.822 191.434i −0.465720 0.232888i
\(823\) 378.480 + 655.547i 0.459879 + 0.796534i 0.998954 0.0457239i \(-0.0145594\pi\)
−0.539075 + 0.842258i \(0.681226\pi\)
\(824\) −668.321 1157.57i −0.811069 1.40481i
\(825\) 68.5251 + 34.2667i 0.0830607 + 0.0415354i
\(826\) −3.85246 2.22422i −0.00466400 0.00269276i
\(827\) 884.560 1.06960 0.534800 0.844979i \(-0.320387\pi\)
0.534800 + 0.844979i \(0.320387\pi\)
\(828\) −299.173 + 224.335i −0.361320 + 0.270936i
\(829\) 1282.82 1.54743 0.773716 0.633532i \(-0.218396\pi\)
0.773716 + 0.633532i \(0.218396\pi\)
\(830\) 257.014 445.161i 0.309655 0.536339i
\(831\) 71.4395 + 1191.16i 0.0859682 + 1.43340i
\(832\) 591.457 30.3664i 0.710886 0.0364981i
\(833\) 278.289 160.670i 0.334081 0.192882i
\(834\) −714.654 + 471.804i −0.856899 + 0.565712i
\(835\) 227.669 394.334i 0.272657 0.472256i
\(836\) 118.341i 0.141556i
\(837\) −412.647 486.636i −0.493008 0.581405i
\(838\) 606.896i 0.724219i
\(839\) 555.459 962.083i 0.662049 1.14670i −0.318028 0.948081i \(-0.603020\pi\)
0.980076 0.198621i \(-0.0636462\pi\)
\(840\) −11.4264 17.3079i −0.0136028 0.0206046i
\(841\) −415.044 718.877i −0.493512 0.854788i
\(842\) −160.296 + 92.5469i −0.190375 + 0.109913i
\(843\) −34.9604 582.919i −0.0414714 0.691481i
\(844\) −19.2236 + 33.2963i −0.0227768 + 0.0394506i
\(845\) 446.527 + 617.348i 0.528434 + 0.730589i
\(846\) −375.781 + 45.2375i −0.444186 + 0.0534722i
\(847\) 17.0650i 0.0201476i
\(848\) −81.0244 46.7795i −0.0955477 0.0551645i
\(849\) −1116.35 558.240i −1.31490 0.657527i
\(850\) −34.4336 + 19.8802i −0.0405101 + 0.0233885i
\(851\) 491.959 + 852.098i 0.578095 + 1.00129i
\(852\) 324.968 + 162.503i 0.381417 + 0.190732i
\(853\) 735.083 + 424.401i 0.861762 + 0.497539i 0.864602 0.502457i \(-0.167571\pi\)
−0.00283972 + 0.999996i \(0.500904\pi\)
\(854\) 8.11208i 0.00949892i
\(855\) −45.2731 376.077i −0.0529510 0.439856i
\(856\) 1478.30i 1.72699i
\(857\) 56.1270 + 32.4049i 0.0654924 + 0.0378120i 0.532389 0.846500i \(-0.321295\pi\)
−0.466896 + 0.884312i \(0.654628\pi\)
\(858\) −252.960 110.667i −0.294825 0.128982i
\(859\) −431.846 747.980i −0.502732 0.870757i −0.999995 0.00315695i \(-0.998995\pi\)
0.497264 0.867600i \(-0.334338\pi\)
\(860\) −212.325 367.758i −0.246890 0.427625i
\(861\) −16.9639 25.6956i −0.0197025 0.0298439i
\(862\) 152.070 263.393i 0.176415 0.305561i
\(863\) 1287.21 1.49155 0.745776 0.666197i \(-0.232079\pi\)
0.745776 + 0.666197i \(0.232079\pi\)
\(864\) −639.130 + 541.956i −0.739734 + 0.627264i
\(865\) 79.2449i 0.0916126i
\(866\) 10.0454 17.3992i 0.0115998 0.0200914i
\(867\) 615.717 406.487i 0.710170 0.468844i
\(868\) 5.13265 + 8.89002i 0.00591320 + 0.0102420i
\(869\) 122.833 + 212.753i 0.141350 + 0.244825i
\(870\) −57.7979 + 3.46641i −0.0664343 + 0.00398438i
\(871\) −920.014 + 596.074i −1.05627 + 0.684356i
\(872\) 1226.35i 1.40637i
\(873\) −58.9571 + 44.2090i −0.0675339 + 0.0506403i
\(874\) −216.632 −0.247863
\(875\) 21.6896 + 12.5225i 0.0247881 + 0.0143114i
\(876\) −276.328 + 552.589i −0.315443 + 0.630809i
\(877\) −713.137 + 411.730i −0.813155 + 0.469475i −0.848050 0.529916i \(-0.822224\pi\)
0.0348953 + 0.999391i \(0.488890\pi\)
\(878\) 406.772 + 704.549i 0.463294 + 0.802448i
\(879\) −635.663 317.870i −0.723166 0.361627i
\(880\) −16.4230 + 28.4454i −0.0186624 + 0.0323243i
\(881\) 436.907i 0.495922i −0.968770 0.247961i \(-0.920240\pi\)
0.968770 0.247961i \(-0.0797604\pi\)
\(882\) 224.396 525.184i 0.254417 0.595447i
\(883\) 1620.87 1.83564 0.917819 0.397000i \(-0.129949\pi\)
0.917819 + 0.397000i \(0.129949\pi\)
\(884\) −166.145 + 107.645i −0.187947 + 0.121770i
\(885\) 14.8465 + 247.545i 0.0167757 + 0.279712i
\(886\) −642.499 + 370.947i −0.725168 + 0.418676i
\(887\) −344.471 + 198.880i −0.388355 + 0.224217i −0.681447 0.731867i \(-0.738649\pi\)
0.293092 + 0.956084i \(0.405316\pi\)
\(888\) 743.963 + 1126.90i 0.837796 + 1.26903i
\(889\) −9.78145 5.64732i −0.0110028 0.00635244i
\(890\) −1018.41 −1.14428
\(891\) 429.849 105.015i 0.482434 0.117861i
\(892\) 671.599i 0.752914i
\(893\) 262.358 + 151.472i 0.293794 + 0.169622i
\(894\) −253.331 + 167.245i −0.283367 + 0.187075i
\(895\) −407.771 + 235.427i −0.455611 + 0.263047i
\(896\) 10.5550 6.09392i 0.0117801 0.00680125i
\(897\) −279.889 + 639.767i −0.312028 + 0.713230i
\(898\) 52.3715 90.7101i 0.0583201 0.101013i
\(899\) 78.0623 0.0868324
\(900\) 38.3603 89.7798i 0.0426226 0.0997554i
\(901\) 460.384 0.510970
\(902\) −194.071 + 336.141i −0.215156 + 0.372662i
\(903\) −10.1961 + 20.3898i −0.0112914 + 0.0225801i
\(904\) −439.434 + 253.707i −0.486099 + 0.280650i
\(905\) 204.252 + 353.774i 0.225692 + 0.390911i
\(906\) 450.416 900.724i 0.497148 0.994177i
\(907\) −213.237 + 369.338i −0.235102 + 0.407208i −0.959302 0.282381i \(-0.908876\pi\)
0.724201 + 0.689589i \(0.242209\pi\)
\(908\) −709.666 −0.781571
\(909\) −499.223 + 374.342i −0.549201 + 0.411818i
\(910\) −12.6624 6.46879i −0.0139147 0.00710856i
\(911\) 110.172 + 63.6081i 0.120936 + 0.0698223i 0.559248 0.829001i \(-0.311090\pi\)
−0.438312 + 0.898823i \(0.644423\pi\)
\(912\) −37.2846 + 2.23614i −0.0408823 + 0.00245191i
\(913\) −240.306 416.222i −0.263205 0.455884i
\(914\) 276.991 159.921i 0.303054 0.174968i
\(915\) −377.402 + 249.155i −0.412461 + 0.272301i
\(916\) 557.084 + 321.632i 0.608170 + 0.351127i
\(917\) −36.5288 −0.0398351
\(918\) −77.4222 + 216.191i −0.0843379 + 0.235502i
\(919\) 1263.38 1.37474 0.687368 0.726309i \(-0.258766\pi\)
0.687368 + 0.726309i \(0.258766\pi\)
\(920\) 572.632 + 330.609i 0.622426 + 0.359358i
\(921\) −411.620 623.493i −0.446928 0.676973i
\(922\) 339.818 + 588.581i 0.368566 + 0.638375i
\(923\) 677.614 34.7898i 0.734143 0.0376921i
\(924\) −7.10640 + 0.426205i −0.00769091 + 0.000461261i
\(925\) −222.474 128.445i −0.240512 0.138860i
\(926\) 65.7963i 0.0710543i
\(927\) 1458.11 175.531i 1.57293 0.189353i
\(928\) 102.524i 0.110479i
\(929\) 463.793 803.312i 0.499239 0.864706i −0.500761 0.865586i \(-0.666946\pi\)
1.00000 0.000879046i \(0.000279809\pi\)
\(930\) −185.256 + 370.468i −0.199200 + 0.398352i
\(931\) −395.875 + 228.559i −0.425215 + 0.245498i
\(932\) −408.052 + 235.589i −0.437824 + 0.252778i
\(933\) −197.595 + 395.143i −0.211785 + 0.423519i
\(934\) −114.047 65.8453i −0.122106 0.0704982i
\(935\) 161.628i 0.172864i
\(936\) −330.867 + 899.437i −0.353490 + 0.960937i
\(937\) −249.827 −0.266625 −0.133312 0.991074i \(-0.542561\pi\)
−0.133312 + 0.991074i \(0.542561\pi\)
\(938\) 10.2292 17.7175i 0.0109053 0.0188886i
\(939\) −30.1303 502.383i −0.0320876 0.535019i
\(940\) −169.739 293.996i −0.180573 0.312761i
\(941\) 817.021 + 1415.12i 0.868247 + 1.50385i 0.863786 + 0.503858i \(0.168087\pi\)
0.00446066 + 0.999990i \(0.498580\pi\)
\(942\) 442.647 292.229i 0.469901 0.310222i
\(943\) 850.142 + 490.830i 0.901529 + 0.520498i
\(944\) 24.4536 0.0259042
\(945\) 22.4205 4.07310i 0.0237254 0.00431016i
\(946\) 287.380 0.303784
\(947\) −942.757 + 1632.90i −0.995520 + 1.72429i −0.415877 + 0.909421i \(0.636525\pi\)
−0.579643 + 0.814870i \(0.696808\pi\)
\(948\) 261.256 172.477i 0.275586 0.181938i
\(949\) 59.1581 + 1152.24i 0.0623373 + 1.21417i
\(950\) 48.9828 28.2802i 0.0515608 0.0297686i
\(951\) −7.20662 120.161i −0.00757794 0.126352i
\(952\) 5.03165 8.71508i 0.00528535 0.00915449i
\(953\) 1399.79i 1.46882i 0.678704 + 0.734412i \(0.262542\pi\)
−0.678704 + 0.734412i \(0.737458\pi\)
\(954\) 654.634 490.877i 0.686200 0.514547i
\(955\) 1081.62i 1.13259i
\(956\) 43.1187 74.6838i 0.0451033 0.0781212i
\(957\) −24.2134 + 48.4210i −0.0253014 + 0.0505966i
\(958\) −24.1243 41.7844i −0.0251819 0.0436163i
\(959\) −17.8481 + 10.3046i −0.0186112 + 0.0107452i
\(960\) 551.091 + 275.579i 0.574054 + 0.287061i
\(961\) −201.287 + 348.639i −0.209456 + 0.362788i
\(962\) 824.438 + 421.177i 0.857005 + 0.437814i
\(963\) −1493.65 638.195i −1.55104 0.662715i
\(964\) 640.670i 0.664595i
\(965\) −1397.59 806.901i −1.44828 0.836167i
\(966\) −0.780202 13.0088i −0.000807662 0.0134667i
\(967\) 486.020 280.604i 0.502606 0.290180i −0.227183 0.973852i \(-0.572952\pi\)
0.729789 + 0.683672i \(0.239618\pi\)
\(968\) −373.341 646.645i −0.385683 0.668022i
\(969\) 153.388 101.264i 0.158295 0.104504i
\(970\) 41.4300 + 23.9196i 0.0427113 + 0.0246594i
\(971\) 242.009i 0.249237i −0.992205 0.124619i \(-0.960229\pi\)
0.992205 0.124619i \(-0.0397707\pi\)
\(972\) −166.374 538.767i −0.171167 0.554287i
\(973\) 41.2333i 0.0423775i
\(974\) 606.482 + 350.153i 0.622672 + 0.359500i
\(975\) −20.2324 181.196i −0.0207512 0.185842i
\(976\) 22.2965 + 38.6187i 0.0228448 + 0.0395683i
\(977\) 799.206 + 1384.27i 0.818021 + 1.41685i 0.907139 + 0.420832i \(0.138262\pi\)
−0.0891180 + 0.996021i \(0.528405\pi\)
\(978\) 174.218 10.4487i 0.178137 0.0106837i
\(979\) −476.101 + 824.631i −0.486313 + 0.842320i
\(980\) 512.241 0.522695
\(981\) 1239.09 + 529.426i 1.26309 + 0.539680i
\(982\) 660.706i 0.672817i
\(983\) 330.372 572.221i 0.336086 0.582117i −0.647607 0.761974i \(-0.724230\pi\)
0.983693 + 0.179857i \(0.0575635\pi\)
\(984\) 1204.97 + 602.557i 1.22456 + 0.612355i
\(985\) 92.5441 + 160.291i 0.0939535 + 0.162732i
\(986\) −14.0477 24.3313i −0.0142471 0.0246768i
\(987\) −8.15107 + 16.3002i −0.00825843 + 0.0165149i
\(988\) 236.347 153.128i 0.239217 0.154988i
\(989\) 726.820i 0.734904i
\(990\) −172.333 229.824i −0.174074 0.232145i
\(991\) −146.509 −0.147839 −0.0739197 0.997264i \(-0.523551\pi\)
−0.0739197 + 0.997264i \(0.523551\pi\)
\(992\) −635.157 366.708i −0.640280 0.369666i
\(993\) −35.0278 + 2.10078i −0.0352747 + 0.00211559i
\(994\) −10.9661 + 6.33129i −0.0110323 + 0.00636951i
\(995\) −325.507 563.795i −0.327143 0.566628i
\(996\) −511.112 + 337.428i −0.513164 + 0.338783i
\(997\) 145.897 252.700i 0.146336 0.253461i −0.783535 0.621348i \(-0.786585\pi\)
0.929870 + 0.367887i \(0.119919\pi\)
\(998\) 486.814i 0.487789i
\(999\) −1459.78 + 265.196i −1.46124 + 0.265462i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.n.a.38.9 52
3.2 odd 2 351.3.n.a.116.18 52
9.4 even 3 351.3.n.a.233.9 52
9.5 odd 6 inner 117.3.n.a.77.18 yes 52
13.12 even 2 inner 117.3.n.a.38.18 yes 52
39.38 odd 2 351.3.n.a.116.9 52
117.77 odd 6 inner 117.3.n.a.77.9 yes 52
117.103 even 6 351.3.n.a.233.18 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.n.a.38.9 52 1.1 even 1 trivial
117.3.n.a.38.18 yes 52 13.12 even 2 inner
117.3.n.a.77.9 yes 52 117.77 odd 6 inner
117.3.n.a.77.18 yes 52 9.5 odd 6 inner
351.3.n.a.116.9 52 39.38 odd 2
351.3.n.a.116.18 52 3.2 odd 2
351.3.n.a.233.9 52 9.4 even 3
351.3.n.a.233.18 52 117.103 even 6