Properties

Label 117.3.n.a.77.9
Level $117$
Weight $3$
Character 117.77
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 77.9
Character \(\chi\) \(=\) 117.77
Dual form 117.3.n.a.38.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.647986 - 1.12234i) q^{2} +(2.50362 + 1.65285i) q^{3} +(1.16023 - 2.00957i) q^{4} +(2.25417 - 3.90433i) q^{5} +(0.232759 - 3.88094i) q^{6} +(0.162124 - 0.0936021i) q^{7} -8.19114 q^{8} +(3.53618 + 8.27620i) q^{9} -5.84268 q^{10} +(-2.73142 - 4.73097i) q^{11} +(6.22629 - 3.11352i) q^{12} +(12.9829 + 0.666563i) q^{13} +(-0.210108 - 0.121306i) q^{14} +(12.0968 - 6.04915i) q^{15} +(0.666831 + 1.15499i) q^{16} -6.56267i q^{17} +(6.99735 - 9.33167i) q^{18} +9.33560i q^{19} +(-5.23069 - 9.05983i) q^{20} +(0.560605 + 0.0336222i) q^{21} +(-3.53985 + 6.13120i) q^{22} +(-15.5066 - 8.95272i) q^{23} +(-20.5075 - 13.5387i) q^{24} +(2.33746 + 4.04860i) q^{25} +(-7.66463 - 15.0032i) q^{26} +(-4.82607 + 26.5652i) q^{27} -0.434399i q^{28} +(2.86081 - 1.65169i) q^{29} +(-14.6278 - 9.65706i) q^{30} +(20.4651 + 11.8155i) q^{31} +(-15.5181 + 26.8781i) q^{32} +(0.981137 - 16.3592i) q^{33} +(-7.36558 + 4.25252i) q^{34} -0.843979i q^{35} +(20.7344 + 2.49606i) q^{36} +54.9508i q^{37} +(10.4778 - 6.04934i) q^{38} +(31.4025 + 23.1276i) q^{39} +(-18.4642 + 31.9809i) q^{40} +(-27.4123 + 47.4795i) q^{41} +(-0.325529 - 0.650979i) q^{42} +(-20.2961 - 35.1538i) q^{43} -12.6763 q^{44} +(40.2842 + 4.84951i) q^{45} +23.2050i q^{46} +(-16.2252 - 28.1029i) q^{47} +(-0.239528 + 3.99381i) q^{48} +(-24.4825 + 42.4049i) q^{49} +(3.02929 - 5.24688i) q^{50} +(10.8471 - 16.4304i) q^{51} +(16.4026 - 25.3167i) q^{52} +70.1519i q^{53} +(32.9425 - 11.7974i) q^{54} -24.6283 q^{55} +(-1.32798 + 0.766708i) q^{56} +(-15.4303 + 23.3727i) q^{57} +(-3.70753 - 2.14054i) q^{58} +(9.16783 - 15.8791i) q^{59} +(1.87888 - 31.3279i) q^{60} +(-16.7182 - 28.9569i) q^{61} -30.6252i q^{62} +(1.34797 + 1.01077i) q^{63} +45.5566 q^{64} +(31.8681 - 49.1870i) q^{65} +(-18.9964 + 9.49933i) q^{66} +(-73.0282 - 42.1629i) q^{67} +(-13.1882 - 7.61420i) q^{68} +(-24.0250 - 48.0442i) q^{69} +(-0.947236 + 0.546887i) q^{70} +52.1928 q^{71} +(-28.9653 - 67.7915i) q^{72} -88.7509i q^{73} +(61.6737 - 35.6073i) q^{74} +(-0.839625 + 13.9996i) q^{75} +(18.7606 + 10.8314i) q^{76} +(-0.885657 - 0.511334i) q^{77} +(5.60878 - 50.2308i) q^{78} +(22.4851 + 38.9453i) q^{79} +6.01260 q^{80} +(-55.9909 + 58.5322i) q^{81} +71.0512 q^{82} +(-43.9891 - 76.1913i) q^{83} +(0.717996 - 1.08757i) q^{84} +(-25.6229 - 14.7934i) q^{85} +(-26.3031 + 45.5584i) q^{86} +(9.89236 + 0.593292i) q^{87} +(22.3735 + 38.7520i) q^{88} +174.305 q^{89} +(-20.6608 - 48.3551i) q^{90} +(2.16723 - 1.10716i) q^{91} +(-35.9823 + 20.7744i) q^{92} +(31.7074 + 63.4072i) q^{93} +(-21.0275 + 36.4206i) q^{94} +(36.4493 + 21.0440i) q^{95} +(-83.2767 + 41.6434i) q^{96} +(-7.09093 + 4.09395i) q^{97} +63.4572 q^{98} +(29.4956 - 39.3354i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.647986 1.12234i −0.323993 0.561172i 0.657315 0.753616i \(-0.271692\pi\)
−0.981308 + 0.192443i \(0.938359\pi\)
\(3\) 2.50362 + 1.65285i 0.834538 + 0.550950i
\(4\) 1.16023 2.00957i 0.290057 0.502393i
\(5\) 2.25417 3.90433i 0.450833 0.780866i −0.547605 0.836737i \(-0.684460\pi\)
0.998438 + 0.0558709i \(0.0177935\pi\)
\(6\) 0.232759 3.88094i 0.0387931 0.646824i
\(7\) 0.162124 0.0936021i 0.0231605 0.0133717i −0.488375 0.872634i \(-0.662410\pi\)
0.511536 + 0.859262i \(0.329077\pi\)
\(8\) −8.19114 −1.02389
\(9\) 3.53618 + 8.27620i 0.392909 + 0.919577i
\(10\) −5.84268 −0.584268
\(11\) −2.73142 4.73097i −0.248311 0.430088i 0.714746 0.699384i \(-0.246542\pi\)
−0.963057 + 0.269296i \(0.913209\pi\)
\(12\) 6.22629 3.11352i 0.518857 0.259460i
\(13\) 12.9829 + 0.666563i 0.998685 + 0.0512741i
\(14\) −0.210108 0.121306i −0.0150077 0.00866470i
\(15\) 12.0968 6.04915i 0.806456 0.403276i
\(16\) 0.666831 + 1.15499i 0.0416770 + 0.0721866i
\(17\) 6.56267i 0.386040i −0.981195 0.193020i \(-0.938172\pi\)
0.981195 0.193020i \(-0.0618282\pi\)
\(18\) 6.99735 9.33167i 0.388742 0.518426i
\(19\) 9.33560i 0.491347i 0.969353 + 0.245674i \(0.0790092\pi\)
−0.969353 + 0.245674i \(0.920991\pi\)
\(20\) −5.23069 9.05983i −0.261535 0.452991i
\(21\) 0.560605 + 0.0336222i 0.0266955 + 0.00160106i
\(22\) −3.53985 + 6.13120i −0.160902 + 0.278691i
\(23\) −15.5066 8.95272i −0.674199 0.389249i 0.123467 0.992349i \(-0.460599\pi\)
−0.797666 + 0.603100i \(0.793932\pi\)
\(24\) −20.5075 13.5387i −0.854477 0.564113i
\(25\) 2.33746 + 4.04860i 0.0934985 + 0.161944i
\(26\) −7.66463 15.0032i −0.294793 0.577047i
\(27\) −4.82607 + 26.5652i −0.178743 + 0.983896i
\(28\) 0.434399i 0.0155143i
\(29\) 2.86081 1.65169i 0.0986486 0.0569548i −0.449864 0.893097i \(-0.648528\pi\)
0.548513 + 0.836142i \(0.315194\pi\)
\(30\) −14.6278 9.65706i −0.487594 0.321902i
\(31\) 20.4651 + 11.8155i 0.660164 + 0.381146i 0.792339 0.610080i \(-0.208863\pi\)
−0.132175 + 0.991226i \(0.542196\pi\)
\(32\) −15.5181 + 26.8781i −0.484940 + 0.839941i
\(33\) 0.981137 16.3592i 0.0297314 0.495732i
\(34\) −7.36558 + 4.25252i −0.216635 + 0.125074i
\(35\) 0.843979i 0.0241137i
\(36\) 20.7344 + 2.49606i 0.575956 + 0.0693350i
\(37\) 54.9508i 1.48516i 0.669760 + 0.742578i \(0.266397\pi\)
−0.669760 + 0.742578i \(0.733603\pi\)
\(38\) 10.4778 6.04934i 0.275731 0.159193i
\(39\) 31.4025 + 23.1276i 0.805191 + 0.593015i
\(40\) −18.4642 + 31.9809i −0.461605 + 0.799523i
\(41\) −27.4123 + 47.4795i −0.668593 + 1.15804i 0.309704 + 0.950833i \(0.399770\pi\)
−0.978298 + 0.207205i \(0.933563\pi\)
\(42\) −0.325529 0.650979i −0.00775069 0.0154995i
\(43\) −20.2961 35.1538i −0.472001 0.817530i 0.527485 0.849564i \(-0.323135\pi\)
−0.999487 + 0.0320337i \(0.989802\pi\)
\(44\) −12.6763 −0.288098
\(45\) 40.2842 + 4.84951i 0.895203 + 0.107767i
\(46\) 23.2050i 0.504456i
\(47\) −16.2252 28.1029i −0.345218 0.597935i 0.640176 0.768229i \(-0.278862\pi\)
−0.985393 + 0.170294i \(0.945528\pi\)
\(48\) −0.239528 + 3.99381i −0.00499017 + 0.0832044i
\(49\) −24.4825 + 42.4049i −0.499642 + 0.865406i
\(50\) 3.02929 5.24688i 0.0605857 0.104938i
\(51\) 10.8471 16.4304i 0.212688 0.322165i
\(52\) 16.4026 25.3167i 0.315435 0.486860i
\(53\) 70.1519i 1.32362i 0.749671 + 0.661810i \(0.230212\pi\)
−0.749671 + 0.661810i \(0.769788\pi\)
\(54\) 32.9425 11.7974i 0.610047 0.218470i
\(55\) −24.6283 −0.447788
\(56\) −1.32798 + 0.766708i −0.0237139 + 0.0136912i
\(57\) −15.4303 + 23.3727i −0.270708 + 0.410048i
\(58\) −3.70753 2.14054i −0.0639229 0.0369059i
\(59\) 9.16783 15.8791i 0.155387 0.269138i −0.777813 0.628496i \(-0.783671\pi\)
0.933200 + 0.359358i \(0.117004\pi\)
\(60\) 1.87888 31.3279i 0.0313147 0.522131i
\(61\) −16.7182 28.9569i −0.274070 0.474703i 0.695830 0.718206i \(-0.255037\pi\)
−0.969900 + 0.243504i \(0.921703\pi\)
\(62\) 30.6252i 0.493954i
\(63\) 1.34797 + 1.01077i 0.0213963 + 0.0160440i
\(64\) 45.5566 0.711823
\(65\) 31.8681 49.1870i 0.490279 0.756723i
\(66\) −18.9964 + 9.49933i −0.287824 + 0.143929i
\(67\) −73.0282 42.1629i −1.08997 0.629297i −0.156404 0.987693i \(-0.549990\pi\)
−0.933569 + 0.358396i \(0.883324\pi\)
\(68\) −13.1882 7.61420i −0.193944 0.111973i
\(69\) −24.0250 48.0442i −0.348188 0.696292i
\(70\) −0.947236 + 0.546887i −0.0135319 + 0.00781267i
\(71\) 52.1928 0.735110 0.367555 0.930002i \(-0.380195\pi\)
0.367555 + 0.930002i \(0.380195\pi\)
\(72\) −28.9653 67.7915i −0.402296 0.941548i
\(73\) 88.7509i 1.21577i −0.794026 0.607883i \(-0.792019\pi\)
0.794026 0.607883i \(-0.207981\pi\)
\(74\) 61.6737 35.6073i 0.833429 0.481180i
\(75\) −0.839625 + 13.9996i −0.0111950 + 0.186662i
\(76\) 18.7606 + 10.8314i 0.246850 + 0.142519i
\(77\) −0.885657 0.511334i −0.0115020 0.00664071i
\(78\) 5.60878 50.2308i 0.0719074 0.643984i
\(79\) 22.4851 + 38.9453i 0.284622 + 0.492979i 0.972517 0.232830i \(-0.0747987\pi\)
−0.687896 + 0.725810i \(0.741465\pi\)
\(80\) 6.01260 0.0751574
\(81\) −55.9909 + 58.5322i −0.691245 + 0.722620i
\(82\) 71.0512 0.866478
\(83\) −43.9891 76.1913i −0.529989 0.917968i −0.999388 0.0349817i \(-0.988863\pi\)
0.469399 0.882986i \(-0.344471\pi\)
\(84\) 0.717996 1.08757i 0.00854758 0.0129472i
\(85\) −25.6229 14.7934i −0.301445 0.174040i
\(86\) −26.3031 + 45.5584i −0.305850 + 0.529748i
\(87\) 9.89236 + 0.593292i 0.113705 + 0.00681945i
\(88\) 22.3735 + 38.7520i 0.254244 + 0.440364i
\(89\) 174.305 1.95848 0.979241 0.202698i \(-0.0649711\pi\)
0.979241 + 0.202698i \(0.0649711\pi\)
\(90\) −20.6608 48.3551i −0.229564 0.537279i
\(91\) 2.16723 1.10716i 0.0238157 0.0121666i
\(92\) −35.9823 + 20.7744i −0.391112 + 0.225809i
\(93\) 31.7074 + 63.4072i 0.340940 + 0.681798i
\(94\) −21.0275 + 36.4206i −0.223696 + 0.387453i
\(95\) 36.4493 + 21.0440i 0.383677 + 0.221516i
\(96\) −83.2767 + 41.6434i −0.867466 + 0.433785i
\(97\) −7.09093 + 4.09395i −0.0731024 + 0.0422057i −0.536106 0.844151i \(-0.680105\pi\)
0.463003 + 0.886357i \(0.346772\pi\)
\(98\) 63.4572 0.647523
\(99\) 29.4956 39.3354i 0.297935 0.397327i
\(100\) 10.8480 0.108480
\(101\) −60.0429 + 34.6658i −0.594484 + 0.343226i −0.766869 0.641804i \(-0.778186\pi\)
0.172384 + 0.985030i \(0.444853\pi\)
\(102\) −25.4694 1.52752i −0.249700 0.0149757i
\(103\) 81.5907 141.319i 0.792143 1.37203i −0.132494 0.991184i \(-0.542299\pi\)
0.924637 0.380848i \(-0.124368\pi\)
\(104\) −106.345 5.45991i −1.02255 0.0524991i
\(105\) 1.39497 2.11300i 0.0132854 0.0201238i
\(106\) 78.7346 45.4574i 0.742779 0.428844i
\(107\) 180.476i 1.68669i 0.537373 + 0.843345i \(0.319417\pi\)
−0.537373 + 0.843345i \(0.680583\pi\)
\(108\) 47.7854 + 40.5200i 0.442457 + 0.375185i
\(109\) 149.717i 1.37355i −0.726870 0.686775i \(-0.759026\pi\)
0.726870 0.686775i \(-0.240974\pi\)
\(110\) 15.9588 + 27.6415i 0.145080 + 0.251286i
\(111\) −90.8253 + 137.576i −0.818246 + 1.23942i
\(112\) 0.216218 + 0.124834i 0.00193052 + 0.00111459i
\(113\) 53.6475 + 30.9734i 0.474757 + 0.274101i 0.718229 0.695807i \(-0.244953\pi\)
−0.243472 + 0.969908i \(0.578286\pi\)
\(114\) 36.2309 + 2.17294i 0.317815 + 0.0190609i
\(115\) −69.9088 + 40.3619i −0.607902 + 0.350973i
\(116\) 7.66534i 0.0660805i
\(117\) 40.3933 + 109.806i 0.345242 + 0.938514i
\(118\) −23.7625 −0.201377
\(119\) −0.614280 1.06396i −0.00516202 0.00894088i
\(120\) −99.0868 + 49.5494i −0.825724 + 0.412912i
\(121\) 45.5786 78.9445i 0.376683 0.652434i
\(122\) −21.6664 + 37.5273i −0.177593 + 0.307601i
\(123\) −147.106 + 73.5621i −1.19599 + 0.598066i
\(124\) 47.4883 27.4174i 0.382970 0.221108i
\(125\) 133.784 1.07028
\(126\) 0.260972 2.16785i 0.00207120 0.0172052i
\(127\) −60.3333 −0.475065 −0.237533 0.971380i \(-0.576339\pi\)
−0.237533 + 0.971380i \(0.576339\pi\)
\(128\) 32.5522 + 56.3821i 0.254314 + 0.440485i
\(129\) 7.29041 121.558i 0.0565148 0.942310i
\(130\) −75.8549 3.89451i −0.583499 0.0299578i
\(131\) −168.986 97.5640i −1.28997 0.744763i −0.311319 0.950305i \(-0.600771\pi\)
−0.978648 + 0.205542i \(0.934104\pi\)
\(132\) −31.7366 20.9520i −0.240429 0.158727i
\(133\) 0.873832 + 1.51352i 0.00657017 + 0.0113799i
\(134\) 109.284i 0.815551i
\(135\) 92.8405 + 78.7249i 0.687708 + 0.583148i
\(136\) 53.7557i 0.395263i
\(137\) −55.0447 95.3402i −0.401786 0.695914i 0.592155 0.805824i \(-0.298277\pi\)
−0.993942 + 0.109910i \(0.964944\pi\)
\(138\) −38.3543 + 58.0963i −0.277930 + 0.420988i
\(139\) 110.129 190.749i 0.792296 1.37230i −0.132246 0.991217i \(-0.542219\pi\)
0.924542 0.381080i \(-0.124448\pi\)
\(140\) −1.69604 0.979208i −0.0121146 0.00699435i
\(141\) 5.82816 97.1768i 0.0413345 0.689197i
\(142\) −33.8202 58.5784i −0.238171 0.412524i
\(143\) −32.3083 63.2423i −0.225932 0.442254i
\(144\) −7.20085 + 9.60306i −0.0500059 + 0.0666879i
\(145\) 14.8927i 0.102709i
\(146\) −99.6092 + 57.5094i −0.682255 + 0.393900i
\(147\) −131.384 + 65.6997i −0.893766 + 0.446937i
\(148\) 110.428 + 63.7554i 0.746133 + 0.430780i
\(149\) 39.0386 67.6168i 0.262004 0.453804i −0.704770 0.709436i \(-0.748950\pi\)
0.966774 + 0.255631i \(0.0822833\pi\)
\(150\) 16.2565 8.12921i 0.108376 0.0541948i
\(151\) −224.322 + 129.512i −1.48557 + 0.857696i −0.999865 0.0164251i \(-0.994772\pi\)
−0.485708 + 0.874121i \(0.661438\pi\)
\(152\) 76.4692i 0.503087i
\(153\) 54.3140 23.2068i 0.354993 0.151678i
\(154\) 1.32535i 0.00860617i
\(155\) 92.2634 53.2683i 0.595248 0.343667i
\(156\) 82.9106 36.2723i 0.531478 0.232515i
\(157\) −68.2125 + 118.148i −0.434475 + 0.752532i −0.997253 0.0740760i \(-0.976399\pi\)
0.562778 + 0.826608i \(0.309733\pi\)
\(158\) 29.1401 50.4721i 0.184431 0.319444i
\(159\) −115.950 + 175.633i −0.729248 + 1.10461i
\(160\) 69.9607 + 121.175i 0.437254 + 0.757346i
\(161\) −3.35197 −0.0208197
\(162\) 101.975 + 24.9130i 0.629473 + 0.153784i
\(163\) 44.8906i 0.275402i 0.990474 + 0.137701i \(0.0439714\pi\)
−0.990474 + 0.137701i \(0.956029\pi\)
\(164\) 63.6091 + 110.174i 0.387860 + 0.671794i
\(165\) −61.6599 40.7069i −0.373696 0.246709i
\(166\) −57.0086 + 98.7419i −0.343426 + 0.594831i
\(167\) −50.4995 + 87.4677i −0.302392 + 0.523759i −0.976677 0.214712i \(-0.931119\pi\)
0.674285 + 0.738471i \(0.264452\pi\)
\(168\) −4.59200 0.275404i −0.0273333 0.00163931i
\(169\) 168.111 + 17.3078i 0.994742 + 0.102413i
\(170\) 38.3436i 0.225550i
\(171\) −77.2633 + 33.0124i −0.451832 + 0.193055i
\(172\) −94.1922 −0.547629
\(173\) −15.2225 + 8.78871i −0.0879913 + 0.0508018i −0.543350 0.839506i \(-0.682844\pi\)
0.455359 + 0.890308i \(0.349511\pi\)
\(174\) −5.74423 11.4871i −0.0330128 0.0660177i
\(175\) 0.757916 + 0.437583i 0.00433095 + 0.00250047i
\(176\) 3.64280 6.30951i 0.0206977 0.0358495i
\(177\) 49.1985 24.6022i 0.277958 0.138996i
\(178\) −112.947 195.630i −0.634535 1.09905i
\(179\) 104.441i 0.583468i −0.956499 0.291734i \(-0.905768\pi\)
0.956499 0.291734i \(-0.0942322\pi\)
\(180\) 56.4843 75.3274i 0.313801 0.418486i
\(181\) 90.6107 0.500612 0.250306 0.968167i \(-0.419469\pi\)
0.250306 + 0.968167i \(0.419469\pi\)
\(182\) −2.64695 1.71495i −0.0145437 0.00942281i
\(183\) 6.00525 100.130i 0.0328156 0.547156i
\(184\) 127.016 + 73.3329i 0.690306 + 0.398549i
\(185\) 214.546 + 123.868i 1.15971 + 0.669558i
\(186\) 50.6188 76.6737i 0.272144 0.412224i
\(187\) −31.0478 + 17.9254i −0.166031 + 0.0958580i
\(188\) −75.2999 −0.400531
\(189\) 1.70414 + 4.75858i 0.00901660 + 0.0251776i
\(190\) 54.5449i 0.287078i
\(191\) 207.774 119.958i 1.08782 0.628054i 0.154825 0.987942i \(-0.450519\pi\)
0.932995 + 0.359888i \(0.117185\pi\)
\(192\) 114.056 + 75.2983i 0.594043 + 0.392178i
\(193\) −310.002 178.980i −1.60623 0.927357i −0.990203 0.139632i \(-0.955408\pi\)
−0.616027 0.787725i \(-0.711259\pi\)
\(194\) 9.18965 + 5.30564i 0.0473693 + 0.0273487i
\(195\) 161.084 70.4722i 0.826073 0.361396i
\(196\) 56.8105 + 98.3987i 0.289850 + 0.502034i
\(197\) 41.0547 0.208399 0.104200 0.994556i \(-0.466772\pi\)
0.104200 + 0.994556i \(0.466772\pi\)
\(198\) −63.2606 7.61547i −0.319498 0.0384620i
\(199\) −144.402 −0.725640 −0.362820 0.931859i \(-0.618186\pi\)
−0.362820 + 0.931859i \(0.618186\pi\)
\(200\) −19.1465 33.1627i −0.0957324 0.165813i
\(201\) −113.146 226.264i −0.562914 1.12569i
\(202\) 77.8139 + 44.9259i 0.385218 + 0.222405i
\(203\) 0.309203 0.535556i 0.00152317 0.00263821i
\(204\) −20.4330 40.8611i −0.100162 0.200299i
\(205\) 123.584 + 214.054i 0.602848 + 1.04416i
\(206\) −211.479 −1.02660
\(207\) 19.2605 159.994i 0.0930458 0.772917i
\(208\) 7.88753 + 15.4395i 0.0379208 + 0.0742286i
\(209\) 44.1664 25.4995i 0.211323 0.122007i
\(210\) −3.27544 0.196444i −0.0155973 0.000935446i
\(211\) 8.28442 14.3490i 0.0392626 0.0680049i −0.845726 0.533617i \(-0.820832\pi\)
0.884989 + 0.465612i \(0.154166\pi\)
\(212\) 140.975 + 81.3922i 0.664978 + 0.383925i
\(213\) 130.671 + 86.2669i 0.613478 + 0.405009i
\(214\) 202.556 116.946i 0.946524 0.546476i
\(215\) −183.003 −0.851176
\(216\) 39.5310 217.599i 0.183014 1.00740i
\(217\) 4.42383 0.0203863
\(218\) −168.034 + 97.0145i −0.770799 + 0.445021i
\(219\) 146.692 222.198i 0.669826 1.01460i
\(220\) −28.5745 + 49.4925i −0.129884 + 0.224966i
\(221\) 4.37444 85.2025i 0.0197938 0.385532i
\(222\) 213.261 + 12.7903i 0.960634 + 0.0576139i
\(223\) −250.650 + 144.713i −1.12399 + 0.648936i −0.942417 0.334441i \(-0.891452\pi\)
−0.181574 + 0.983377i \(0.558119\pi\)
\(224\) 5.81010i 0.0259379i
\(225\) −25.2414 + 33.6619i −0.112184 + 0.149608i
\(226\) 80.2813i 0.355227i
\(227\) −152.915 264.857i −0.673636 1.16677i −0.976866 0.213854i \(-0.931398\pi\)
0.303230 0.952917i \(-0.401935\pi\)
\(228\) 29.0666 + 58.1261i 0.127485 + 0.254939i
\(229\) 240.075 + 138.607i 1.04836 + 0.605273i 0.922191 0.386736i \(-0.126397\pi\)
0.126172 + 0.992008i \(0.459731\pi\)
\(230\) 90.5998 + 52.3078i 0.393912 + 0.227425i
\(231\) −1.37219 2.74404i −0.00594020 0.0118790i
\(232\) −23.4333 + 13.5292i −0.101006 + 0.0583156i
\(233\) 203.054i 0.871476i −0.900073 0.435738i \(-0.856487\pi\)
0.900073 0.435738i \(-0.143513\pi\)
\(234\) 97.0661 116.488i 0.414812 0.497812i
\(235\) −146.298 −0.622543
\(236\) −21.2735 36.8468i −0.0901421 0.156131i
\(237\) −8.07673 + 134.669i −0.0340790 + 0.568222i
\(238\) −0.796090 + 1.37887i −0.00334492 + 0.00579357i
\(239\) −18.5820 + 32.1850i −0.0777490 + 0.134665i −0.902278 0.431154i \(-0.858107\pi\)
0.824529 + 0.565819i \(0.191440\pi\)
\(240\) 15.0532 + 9.93791i 0.0627218 + 0.0414080i
\(241\) 239.107 138.048i 0.992144 0.572814i 0.0862292 0.996275i \(-0.472518\pi\)
0.905914 + 0.423461i \(0.139185\pi\)
\(242\) −118.137 −0.488171
\(243\) −236.925 + 53.9977i −0.974998 + 0.222213i
\(244\) −77.5879 −0.317983
\(245\) 110.375 + 191.175i 0.450511 + 0.780308i
\(246\) 177.885 + 117.437i 0.723110 + 0.477386i
\(247\) −6.22277 + 121.203i −0.0251934 + 0.490701i
\(248\) −167.632 96.7825i −0.675937 0.390252i
\(249\) 15.8010 263.461i 0.0634579 1.05808i
\(250\) −86.6905 150.152i −0.346762 0.600609i
\(251\) 179.821i 0.716417i −0.933642 0.358209i \(-0.883388\pi\)
0.933642 0.358209i \(-0.116612\pi\)
\(252\) 3.59517 1.53611i 0.0142666 0.00609569i
\(253\) 97.8147i 0.386619i
\(254\) 39.0951 + 67.7147i 0.153918 + 0.266593i
\(255\) −39.6986 79.3876i −0.155681 0.311324i
\(256\) 133.300 230.883i 0.520703 0.901885i
\(257\) −271.324 156.649i −1.05574 0.609530i −0.131487 0.991318i \(-0.541975\pi\)
−0.924250 + 0.381788i \(0.875309\pi\)
\(258\) −141.154 + 70.5855i −0.547109 + 0.273587i
\(259\) 5.14351 + 8.90882i 0.0198591 + 0.0343970i
\(260\) −61.8706 121.109i −0.237964 0.465806i
\(261\) 23.7860 + 17.8360i 0.0911343 + 0.0683370i
\(262\) 252.880i 0.965192i
\(263\) 43.6126 25.1797i 0.165827 0.0957404i −0.414790 0.909917i \(-0.636145\pi\)
0.580617 + 0.814177i \(0.302811\pi\)
\(264\) −8.03663 + 134.000i −0.0304418 + 0.507576i
\(265\) 273.896 + 158.134i 1.03357 + 0.596732i
\(266\) 1.13246 1.96148i 0.00425738 0.00737399i
\(267\) 436.393 + 288.100i 1.63443 + 1.07903i
\(268\) −169.459 + 97.8371i −0.632309 + 0.365064i
\(269\) 501.502i 1.86432i 0.362047 + 0.932160i \(0.382078\pi\)
−0.362047 + 0.932160i \(0.617922\pi\)
\(270\) 28.1972 155.212i 0.104434 0.574858i
\(271\) 229.102i 0.845396i 0.906270 + 0.422698i \(0.138917\pi\)
−0.906270 + 0.422698i \(0.861083\pi\)
\(272\) 7.57979 4.37620i 0.0278669 0.0160890i
\(273\) 7.25587 + 0.810193i 0.0265783 + 0.00296774i
\(274\) −71.3364 + 123.558i −0.260352 + 0.450943i
\(275\) 12.7692 22.1169i 0.0464335 0.0804252i
\(276\) −124.423 7.46223i −0.450807 0.0270371i
\(277\) −198.883 344.476i −0.717990 1.24360i −0.961795 0.273771i \(-0.911729\pi\)
0.243805 0.969824i \(-0.421604\pi\)
\(278\) −285.449 −1.02679
\(279\) −25.4194 + 211.155i −0.0911089 + 0.756827i
\(280\) 6.91315i 0.0246898i
\(281\) 97.3277 + 168.576i 0.346362 + 0.599916i 0.985600 0.169092i \(-0.0540836\pi\)
−0.639238 + 0.769009i \(0.720750\pi\)
\(282\) −112.842 + 56.4280i −0.400151 + 0.200099i
\(283\) −208.024 + 360.308i −0.735067 + 1.27317i 0.219627 + 0.975584i \(0.429516\pi\)
−0.954694 + 0.297589i \(0.903817\pi\)
\(284\) 60.5556 104.885i 0.213224 0.369315i
\(285\) 56.4724 + 112.931i 0.198149 + 0.396250i
\(286\) −50.0444 + 77.2412i −0.174980 + 0.270074i
\(287\) 10.2634i 0.0357610i
\(288\) −277.323 33.3849i −0.962928 0.115920i
\(289\) 245.931 0.850973
\(290\) −16.7148 + 9.65029i −0.0576372 + 0.0332768i
\(291\) −24.5196 1.47056i −0.0842599 0.00505347i
\(292\) −178.352 102.971i −0.610793 0.352642i
\(293\) −118.452 + 205.164i −0.404272 + 0.700219i −0.994236 0.107210i \(-0.965808\pi\)
0.589965 + 0.807429i \(0.299142\pi\)
\(294\) 158.872 + 104.885i 0.540383 + 0.356752i
\(295\) −41.3316 71.5885i −0.140107 0.242673i
\(296\) 450.109i 1.52064i
\(297\) 138.861 49.7288i 0.467546 0.167437i
\(298\) −101.186 −0.339550
\(299\) −195.353 126.568i −0.653353 0.423306i
\(300\) 27.1591 + 17.9300i 0.0905304 + 0.0597668i
\(301\) −6.58094 3.79951i −0.0218636 0.0126230i
\(302\) 290.715 + 167.844i 0.962631 + 0.555775i
\(303\) −207.622 12.4521i −0.685220 0.0410959i
\(304\) −10.7825 + 6.22527i −0.0354687 + 0.0204779i
\(305\) −150.743 −0.494239
\(306\) −61.2407 45.9213i −0.200133 0.150070i
\(307\) 249.037i 0.811195i 0.914052 + 0.405598i \(0.132937\pi\)
−0.914052 + 0.405598i \(0.867063\pi\)
\(308\) −2.05513 + 1.18653i −0.00667249 + 0.00385237i
\(309\) 437.851 218.952i 1.41699 0.708583i
\(310\) −119.571 69.0343i −0.385712 0.222691i
\(311\) −127.535 73.6323i −0.410080 0.236760i 0.280744 0.959783i \(-0.409419\pi\)
−0.690824 + 0.723023i \(0.742752\pi\)
\(312\) −257.222 189.441i −0.824429 0.607184i
\(313\) 83.8809 + 145.286i 0.267990 + 0.464172i 0.968343 0.249625i \(-0.0803072\pi\)
−0.700353 + 0.713797i \(0.746974\pi\)
\(314\) 176.803 0.563067
\(315\) 6.98494 2.98446i 0.0221744 0.00947448i
\(316\) 104.351 0.330226
\(317\) 20.0628 + 34.7498i 0.0632896 + 0.109621i 0.895934 0.444187i \(-0.146508\pi\)
−0.832644 + 0.553808i \(0.813174\pi\)
\(318\) 272.255 + 16.3285i 0.856149 + 0.0513474i
\(319\) −15.6282 9.02293i −0.0489911 0.0282850i
\(320\) 102.692 177.868i 0.320913 0.555838i
\(321\) −298.299 + 451.842i −0.929281 + 1.40761i
\(322\) 2.17203 + 3.76207i 0.00674545 + 0.0116835i
\(323\) 61.2665 0.189680
\(324\) 52.6627 + 180.429i 0.162539 + 0.556878i
\(325\) 27.6484 + 54.1207i 0.0850720 + 0.166525i
\(326\) 50.3827 29.0885i 0.154548 0.0892285i
\(327\) 247.460 374.834i 0.756757 1.14628i
\(328\) 224.538 388.911i 0.684567 1.18571i
\(329\) −5.26099 3.03743i −0.0159908 0.00923232i
\(330\) −5.73247 + 95.5812i −0.0173711 + 0.289640i
\(331\) −10.1298 + 5.84845i −0.0306037 + 0.0176690i −0.515224 0.857056i \(-0.672291\pi\)
0.484620 + 0.874725i \(0.338958\pi\)
\(332\) −204.149 −0.614908
\(333\) −454.783 + 194.316i −1.36572 + 0.583531i
\(334\) 130.892 0.391892
\(335\) −329.236 + 190.084i −0.982793 + 0.567416i
\(336\) 0.334996 + 0.669912i 0.000997012 + 0.00199378i
\(337\) −172.531 + 298.833i −0.511963 + 0.886745i 0.487941 + 0.872876i \(0.337748\pi\)
−0.999904 + 0.0138688i \(0.995585\pi\)
\(338\) −89.5085 199.894i −0.264818 0.591403i
\(339\) 83.1183 + 166.217i 0.245187 + 0.490315i
\(340\) −59.4567 + 34.3273i −0.174873 + 0.100963i
\(341\) 129.093i 0.378571i
\(342\) 87.1168 + 65.3245i 0.254727 + 0.191007i
\(343\) 18.3395i 0.0534678i
\(344\) 166.248 + 287.950i 0.483278 + 0.837063i
\(345\) −241.737 14.4981i −0.700686 0.0420235i
\(346\) 19.7279 + 11.3899i 0.0570171 + 0.0329189i
\(347\) 508.170 + 293.392i 1.46447 + 0.845511i 0.999213 0.0396654i \(-0.0126292\pi\)
0.465255 + 0.885177i \(0.345963\pi\)
\(348\) 12.6697 19.1911i 0.0364071 0.0551468i
\(349\) 501.880 289.761i 1.43805 0.830260i 0.440338 0.897832i \(-0.354859\pi\)
0.997714 + 0.0675725i \(0.0215254\pi\)
\(350\) 1.13419i 0.00324055i
\(351\) −80.3638 + 341.676i −0.228957 + 0.973437i
\(352\) 169.546 0.481664
\(353\) 189.372 + 328.001i 0.536463 + 0.929182i 0.999091 + 0.0426291i \(0.0135734\pi\)
−0.462628 + 0.886553i \(0.653093\pi\)
\(354\) −59.4922 39.2758i −0.168057 0.110949i
\(355\) 117.651 203.778i 0.331412 0.574023i
\(356\) 202.233 350.279i 0.568071 0.983929i
\(357\) 0.220651 3.67907i 0.000618071 0.0103055i
\(358\) −117.219 + 67.6762i −0.327426 + 0.189040i
\(359\) 226.733 0.631569 0.315784 0.948831i \(-0.397732\pi\)
0.315784 + 0.948831i \(0.397732\pi\)
\(360\) −329.973 39.7230i −0.916592 0.110342i
\(361\) 273.847 0.758578
\(362\) −58.7145 101.696i −0.162195 0.280929i
\(363\) 244.595 122.312i 0.673815 0.336948i
\(364\) 0.289555 5.63976i 0.000795480 0.0154939i
\(365\) −346.513 200.059i −0.949351 0.548108i
\(366\) −116.271 + 58.1426i −0.317681 + 0.158860i
\(367\) −226.025 391.487i −0.615873 1.06672i −0.990231 0.139439i \(-0.955470\pi\)
0.374358 0.927284i \(-0.377863\pi\)
\(368\) 23.8798i 0.0648908i
\(369\) −489.885 58.9736i −1.32760 0.159820i
\(370\) 321.060i 0.867729i
\(371\) 6.56637 + 11.3733i 0.0176991 + 0.0306557i
\(372\) 164.209 + 9.84842i 0.441423 + 0.0264742i
\(373\) 78.8574 136.585i 0.211414 0.366180i −0.740743 0.671788i \(-0.765527\pi\)
0.952157 + 0.305609i \(0.0988599\pi\)
\(374\) 40.2371 + 23.2309i 0.107586 + 0.0621147i
\(375\) 334.945 + 221.126i 0.893186 + 0.589668i
\(376\) 132.903 + 230.195i 0.353466 + 0.612221i
\(377\) 38.2426 19.5368i 0.101439 0.0518218i
\(378\) 4.23651 4.99612i 0.0112077 0.0132173i
\(379\) 514.875i 1.35851i −0.733903 0.679255i \(-0.762303\pi\)
0.733903 0.679255i \(-0.237697\pi\)
\(380\) 84.5789 48.8317i 0.222576 0.128504i
\(381\) −151.051 99.7218i −0.396460 0.261737i
\(382\) −269.269 155.463i −0.704893 0.406970i
\(383\) −89.2179 + 154.530i −0.232945 + 0.403473i −0.958673 0.284509i \(-0.908170\pi\)
0.725728 + 0.687981i \(0.241503\pi\)
\(384\) −11.6929 + 194.963i −0.0304502 + 0.507716i
\(385\) −3.99284 + 2.30527i −0.0103710 + 0.00598770i
\(386\) 463.906i 1.20183i
\(387\) 219.169 292.284i 0.566329 0.755257i
\(388\) 18.9997i 0.0489682i
\(389\) −524.201 + 302.648i −1.34756 + 0.778014i −0.987903 0.155070i \(-0.950440\pi\)
−0.359657 + 0.933085i \(0.617106\pi\)
\(390\) −183.474 135.127i −0.470447 0.346480i
\(391\) −58.7538 + 101.765i −0.150265 + 0.260267i
\(392\) 200.539 347.344i 0.511580 0.886082i
\(393\) −261.817 523.571i −0.666200 1.33224i
\(394\) −26.6029 46.0775i −0.0675200 0.116948i
\(395\) 202.741 0.513268
\(396\) −44.8257 104.912i −0.113196 0.264928i
\(397\) 511.953i 1.28955i −0.764371 0.644777i \(-0.776950\pi\)
0.764371 0.644777i \(-0.223050\pi\)
\(398\) 93.5707 + 162.069i 0.235102 + 0.407209i
\(399\) −0.313883 + 5.23359i −0.000786675 + 0.0131168i
\(400\) −3.11739 + 5.39947i −0.00779347 + 0.0134987i
\(401\) 32.5050 56.3003i 0.0810599 0.140400i −0.822646 0.568555i \(-0.807503\pi\)
0.903705 + 0.428155i \(0.140836\pi\)
\(402\) −180.630 + 273.605i −0.449328 + 0.680609i
\(403\) 257.820 + 167.041i 0.639753 + 0.414494i
\(404\) 160.881i 0.398220i
\(405\) 102.316 + 350.548i 0.252633 + 0.865551i
\(406\) −0.801438 −0.00197398
\(407\) 259.970 150.094i 0.638748 0.368781i
\(408\) −88.8501 + 134.584i −0.217770 + 0.329862i
\(409\) −238.707 137.817i −0.583635 0.336962i 0.178942 0.983860i \(-0.442733\pi\)
−0.762577 + 0.646898i \(0.776066\pi\)
\(410\) 160.161 277.408i 0.390637 0.676604i
\(411\) 19.7722 329.676i 0.0481076 0.802131i
\(412\) −189.328 327.925i −0.459533 0.795935i
\(413\) 3.43251i 0.00831117i
\(414\) −192.049 + 82.0569i −0.463886 + 0.198205i
\(415\) −396.635 −0.955747
\(416\) −219.386 + 338.612i −0.527369 + 0.813971i
\(417\) 591.001 295.536i 1.41727 0.708719i
\(418\) −57.2384 33.0466i −0.136934 0.0790589i
\(419\) 405.554 + 234.147i 0.967910 + 0.558823i 0.898599 0.438772i \(-0.144586\pi\)
0.0693118 + 0.997595i \(0.477920\pi\)
\(420\) −2.62774 5.25486i −0.00625653 0.0125116i
\(421\) 123.688 71.4111i 0.293795 0.169623i −0.345857 0.938287i \(-0.612412\pi\)
0.639652 + 0.768665i \(0.279078\pi\)
\(422\) −21.4727 −0.0508833
\(423\) 175.210 233.660i 0.414208 0.552388i
\(424\) 574.624i 1.35524i
\(425\) 26.5697 15.3400i 0.0625169 0.0360941i
\(426\) 12.1483 202.557i 0.0285172 0.475487i
\(427\) −5.42085 3.12973i −0.0126952 0.00732957i
\(428\) 362.679 + 209.393i 0.847382 + 0.489236i
\(429\) 23.6424 211.735i 0.0551105 0.493555i
\(430\) 118.583 + 205.392i 0.275775 + 0.477657i
\(431\) −234.681 −0.544504 −0.272252 0.962226i \(-0.587768\pi\)
−0.272252 + 0.962226i \(0.587768\pi\)
\(432\) −33.9006 + 12.1405i −0.0784736 + 0.0281029i
\(433\) −15.5025 −0.0358026 −0.0179013 0.999840i \(-0.505698\pi\)
−0.0179013 + 0.999840i \(0.505698\pi\)
\(434\) −2.86658 4.96507i −0.00660503 0.0114402i
\(435\) 24.6154 37.2857i 0.0565872 0.0857142i
\(436\) −300.867 173.706i −0.690063 0.398408i
\(437\) 83.5790 144.763i 0.191256 0.331266i
\(438\) −344.437 20.6576i −0.786387 0.0471634i
\(439\) 313.874 + 543.645i 0.714974 + 1.23837i 0.962969 + 0.269611i \(0.0868950\pi\)
−0.247995 + 0.968761i \(0.579772\pi\)
\(440\) 201.734 0.458487
\(441\) −437.526 52.6705i −0.992122 0.119434i
\(442\) −98.4612 + 50.3004i −0.222763 + 0.113802i
\(443\) 495.766 286.231i 1.11911 0.646119i 0.177937 0.984042i \(-0.443058\pi\)
0.941174 + 0.337923i \(0.109724\pi\)
\(444\) 171.090 + 342.139i 0.385338 + 0.770584i
\(445\) 392.912 680.544i 0.882949 1.52931i
\(446\) 324.835 + 187.544i 0.728330 + 0.420502i
\(447\) 209.498 104.762i 0.468676 0.234366i
\(448\) 7.38581 4.26420i 0.0164862 0.00951830i
\(449\) −80.8219 −0.180004 −0.0900021 0.995942i \(-0.528687\pi\)
−0.0900021 + 0.995942i \(0.528687\pi\)
\(450\) 54.1363 + 6.51707i 0.120303 + 0.0144824i
\(451\) 299.499 0.664077
\(452\) 124.487 71.8724i 0.275413 0.159010i
\(453\) −775.679 46.5212i −1.71232 0.102696i
\(454\) −198.174 + 343.247i −0.436507 + 0.756051i
\(455\) 0.562566 10.9573i 0.00123641 0.0240820i
\(456\) 126.392 191.449i 0.277175 0.419845i
\(457\) −213.732 + 123.398i −0.467686 + 0.270019i −0.715270 0.698848i \(-0.753697\pi\)
0.247585 + 0.968866i \(0.420363\pi\)
\(458\) 359.263i 0.784416i
\(459\) 174.339 + 31.6719i 0.379823 + 0.0690020i
\(460\) 187.316i 0.407208i
\(461\) 262.211 + 454.162i 0.568787 + 0.985167i 0.996686 + 0.0813410i \(0.0259203\pi\)
−0.427900 + 0.903826i \(0.640746\pi\)
\(462\) −2.19060 + 3.31817i −0.00474157 + 0.00718218i
\(463\) −43.9680 25.3849i −0.0949632 0.0548270i 0.451766 0.892136i \(-0.350794\pi\)
−0.546730 + 0.837309i \(0.684127\pi\)
\(464\) 3.81535 + 2.20280i 0.00822275 + 0.00474741i
\(465\) 319.037 + 19.1342i 0.686100 + 0.0411487i
\(466\) −227.897 + 131.576i −0.489049 + 0.282352i
\(467\) 101.615i 0.217592i −0.994064 0.108796i \(-0.965301\pi\)
0.994064 0.108796i \(-0.0346995\pi\)
\(468\) 267.529 + 46.2269i 0.571643 + 0.0987754i
\(469\) −15.7861 −0.0336591
\(470\) 94.7988 + 164.196i 0.201700 + 0.349354i
\(471\) −366.058 + 183.051i −0.777193 + 0.388643i
\(472\) −75.0949 + 130.068i −0.159099 + 0.275568i
\(473\) −110.874 + 192.040i −0.234407 + 0.406004i
\(474\) 156.378 78.1986i 0.329912 0.164976i
\(475\) −37.7962 + 21.8216i −0.0795708 + 0.0459402i
\(476\) −2.85082 −0.00598912
\(477\) −580.591 + 248.070i −1.21717 + 0.520062i
\(478\) 48.1635 0.100761
\(479\) −18.6148 32.2418i −0.0388618 0.0673106i 0.845940 0.533278i \(-0.179040\pi\)
−0.884802 + 0.465967i \(0.845707\pi\)
\(480\) −25.1301 + 419.011i −0.0523544 + 0.872940i
\(481\) −36.6282 + 713.420i −0.0761500 + 1.48320i
\(482\) −309.876 178.907i −0.642895 0.371176i
\(483\) −8.39206 5.54031i −0.0173749 0.0114706i
\(484\) −105.763 183.187i −0.218519 0.378486i
\(485\) 36.9138i 0.0761109i
\(486\) 214.128 + 230.921i 0.440592 + 0.475147i
\(487\) 540.371i 1.10959i 0.831987 + 0.554795i \(0.187203\pi\)
−0.831987 + 0.554795i \(0.812797\pi\)
\(488\) 136.941 + 237.190i 0.280618 + 0.486044i
\(489\) −74.1974 + 112.389i −0.151733 + 0.229834i
\(490\) 143.043 247.758i 0.291925 0.505629i
\(491\) −441.513 254.907i −0.899211 0.519160i −0.0222668 0.999752i \(-0.507088\pi\)
−0.876944 + 0.480592i \(0.840422\pi\)
\(492\) −22.8486 + 380.970i −0.0464402 + 0.774329i
\(493\) −10.8395 18.7746i −0.0219868 0.0380823i
\(494\) 140.064 71.5539i 0.283530 0.144846i
\(495\) −87.0903 203.829i −0.175940 0.411776i
\(496\) 31.5158i 0.0635400i
\(497\) 8.46169 4.88536i 0.0170255 0.00982970i
\(498\) −305.933 + 152.985i −0.614324 + 0.307199i
\(499\) −325.310 187.818i −0.651924 0.376389i 0.137269 0.990534i \(-0.456168\pi\)
−0.789193 + 0.614145i \(0.789501\pi\)
\(500\) 155.220 268.850i 0.310441 0.537699i
\(501\) −271.002 + 135.517i −0.540923 + 0.270494i
\(502\) −201.821 + 116.521i −0.402034 + 0.232114i
\(503\) 842.603i 1.67515i 0.546319 + 0.837577i \(0.316029\pi\)
−0.546319 + 0.837577i \(0.683971\pi\)
\(504\) −11.0414 8.27938i −0.0219075 0.0164273i
\(505\) 312.570i 0.618950i
\(506\) 109.782 63.3826i 0.216960 0.125262i
\(507\) 392.279 + 321.195i 0.773726 + 0.633521i
\(508\) −70.0003 + 121.244i −0.137796 + 0.238670i
\(509\) −365.564 + 633.175i −0.718200 + 1.24396i 0.243513 + 0.969898i \(0.421700\pi\)
−0.961712 + 0.274061i \(0.911633\pi\)
\(510\) −63.3761 + 95.9976i −0.124267 + 0.188230i
\(511\) −8.30728 14.3886i −0.0162569 0.0281578i
\(512\) −85.0886 −0.166189
\(513\) −248.002 45.0543i −0.483435 0.0878251i
\(514\) 406.026i 0.789934i
\(515\) −367.838 637.115i −0.714249 1.23712i
\(516\) −235.821 155.686i −0.457018 0.301716i
\(517\) −88.6360 + 153.522i −0.171443 + 0.296948i
\(518\) 6.66585 11.5456i 0.0128684 0.0222888i
\(519\) −52.6377 3.15693i −0.101421 0.00608272i
\(520\) −261.036 + 402.897i −0.501992 + 0.774803i
\(521\) 530.709i 1.01864i −0.860579 0.509318i \(-0.829898\pi\)
0.860579 0.509318i \(-0.170102\pi\)
\(522\) 4.60507 38.2536i 0.00882197 0.0732828i
\(523\) 108.736 0.207909 0.103955 0.994582i \(-0.466850\pi\)
0.103955 + 0.994582i \(0.466850\pi\)
\(524\) −392.124 + 226.393i −0.748328 + 0.432047i
\(525\) 1.17427 + 2.34826i 0.00223671 + 0.00447288i
\(526\) −56.5207 32.6322i −0.107454 0.0620385i
\(527\) 77.5414 134.306i 0.147137 0.254849i
\(528\) 19.5488 9.77560i 0.0370243 0.0185144i
\(529\) −104.198 180.476i −0.196971 0.341164i
\(530\) 409.875i 0.773348i
\(531\) 163.838 + 19.7232i 0.308546 + 0.0371436i
\(532\) 4.05538 0.00762289
\(533\) −387.540 + 598.150i −0.727091 + 1.12223i
\(534\) 40.5710 676.468i 0.0759757 1.26679i
\(535\) 704.637 + 406.823i 1.31708 + 0.760416i
\(536\) 598.184 + 345.362i 1.11602 + 0.644332i
\(537\) 172.625 261.480i 0.321462 0.486927i
\(538\) 562.858 324.966i 1.04620 0.604027i
\(539\) 267.488 0.496267
\(540\) 265.920 95.2310i 0.492444 0.176354i
\(541\) 199.865i 0.369436i −0.982792 0.184718i \(-0.940863\pi\)
0.982792 0.184718i \(-0.0591372\pi\)
\(542\) 257.132 148.455i 0.474413 0.273903i
\(543\) 226.854 + 149.766i 0.417780 + 0.275812i
\(544\) 176.392 + 101.840i 0.324250 + 0.187206i
\(545\) −584.545 337.487i −1.07256 0.619242i
\(546\) −3.79239 8.66859i −0.00694577 0.0158765i
\(547\) −282.244 488.862i −0.515986 0.893714i −0.999828 0.0185588i \(-0.994092\pi\)
0.483842 0.875156i \(-0.339241\pi\)
\(548\) −255.458 −0.466164
\(549\) 180.534 240.760i 0.328841 0.438543i
\(550\) −33.0971 −0.0601765
\(551\) 15.4195 + 26.7074i 0.0279846 + 0.0484707i
\(552\) 196.792 + 393.536i 0.356507 + 0.712928i
\(553\) 7.29074 + 4.20931i 0.0131840 + 0.00761177i
\(554\) −257.747 + 446.431i −0.465248 + 0.805833i
\(555\) 332.405 + 664.731i 0.598928 + 1.19771i
\(556\) −255.550 442.625i −0.459622 0.796089i
\(557\) −504.734 −0.906165 −0.453083 0.891469i \(-0.649676\pi\)
−0.453083 + 0.891469i \(0.649676\pi\)
\(558\) 253.460 108.296i 0.454229 0.194079i
\(559\) −240.069 469.927i −0.429462 0.840657i
\(560\) 0.974784 0.562792i 0.00174069 0.00100499i
\(561\) −107.360 6.43888i −0.191372 0.0114775i
\(562\) 126.134 218.470i 0.224438 0.388737i
\(563\) 273.837 + 158.100i 0.486389 + 0.280817i 0.723075 0.690769i \(-0.242728\pi\)
−0.236686 + 0.971586i \(0.576061\pi\)
\(564\) −188.522 124.459i −0.334259 0.220673i
\(565\) 241.861 139.638i 0.428072 0.247148i
\(566\) 539.186 0.952626
\(567\) −3.59870 + 14.7303i −0.00634692 + 0.0259794i
\(568\) −427.519 −0.752674
\(569\) 37.8576 21.8571i 0.0665336 0.0384132i −0.466364 0.884593i \(-0.654436\pi\)
0.532898 + 0.846180i \(0.321103\pi\)
\(570\) 90.1545 136.559i 0.158166 0.239578i
\(571\) 94.3613 163.439i 0.165256 0.286232i −0.771490 0.636241i \(-0.780488\pi\)
0.936746 + 0.350009i \(0.113822\pi\)
\(572\) −164.575 8.44956i −0.287719 0.0147720i
\(573\) 718.458 + 43.0894i 1.25385 + 0.0751996i
\(574\) 11.5191 6.65055i 0.0200681 0.0115863i
\(575\) 83.7066i 0.145577i
\(576\) 161.096 + 377.036i 0.279681 + 0.654576i
\(577\) 633.598i 1.09809i 0.835792 + 0.549045i \(0.185009\pi\)
−0.835792 + 0.549045i \(0.814991\pi\)
\(578\) −159.360 276.020i −0.275710 0.477543i
\(579\) −480.300 960.484i −0.829533 1.65887i
\(580\) −29.9280 17.2790i −0.0516001 0.0297913i
\(581\) −14.2633 8.23495i −0.0245496 0.0141737i
\(582\) 14.2379 + 28.4724i 0.0244638 + 0.0489216i
\(583\) 331.886 191.615i 0.569273 0.328670i
\(584\) 726.971i 1.24481i
\(585\) 519.773 + 89.8127i 0.888500 + 0.153526i
\(586\) 307.020 0.523925
\(587\) −525.602 910.370i −0.895404 1.55089i −0.833304 0.552816i \(-0.813553\pi\)
−0.0621006 0.998070i \(-0.519780\pi\)
\(588\) −20.4065 + 340.252i −0.0347050 + 0.578659i
\(589\) −110.305 + 191.054i −0.187275 + 0.324370i
\(590\) −53.5646 + 92.7767i −0.0907875 + 0.157249i
\(591\) 102.785 + 67.8572i 0.173917 + 0.114818i
\(592\) −63.4674 + 36.6429i −0.107208 + 0.0618968i
\(593\) −692.941 −1.16853 −0.584267 0.811562i \(-0.698618\pi\)
−0.584267 + 0.811562i \(0.698618\pi\)
\(594\) −145.793 123.626i −0.245443 0.208125i
\(595\) −5.53876 −0.00930884
\(596\) −90.5873 156.902i −0.151992 0.263258i
\(597\) −361.528 238.675i −0.605574 0.399791i
\(598\) −15.4676 + 301.268i −0.0258655 + 0.503792i
\(599\) −919.094 530.639i −1.53438 0.885875i −0.999152 0.0411670i \(-0.986892\pi\)
−0.535228 0.844708i \(-0.679774\pi\)
\(600\) 6.87748 114.673i 0.0114625 0.191121i
\(601\) −42.5965 73.7793i −0.0708760 0.122761i 0.828409 0.560123i \(-0.189246\pi\)
−0.899285 + 0.437362i \(0.855913\pi\)
\(602\) 9.84812i 0.0163590i
\(603\) 90.7073 753.492i 0.150427 1.24957i
\(604\) 601.054i 0.995123i
\(605\) −205.484 355.908i −0.339643 0.588278i
\(606\) 120.560 + 241.092i 0.198945 + 0.397841i
\(607\) 111.215 192.630i 0.183221 0.317348i −0.759755 0.650210i \(-0.774681\pi\)
0.942976 + 0.332862i \(0.108014\pi\)
\(608\) −250.923 144.871i −0.412703 0.238274i
\(609\) 1.65932 0.829759i 0.00272466 0.00136249i
\(610\) 97.6793 + 169.186i 0.160130 + 0.277353i
\(611\) −191.918 375.673i −0.314105 0.614849i
\(612\) 16.3808 136.073i 0.0267661 0.222342i
\(613\) 1211.06i 1.97563i −0.155644 0.987813i \(-0.549745\pi\)
0.155644 0.987813i \(-0.450255\pi\)
\(614\) 279.505 161.372i 0.455220 0.262822i
\(615\) −44.3918 + 740.173i −0.0721817 + 1.20353i
\(616\) 7.25454 + 4.18841i 0.0117768 + 0.00679937i
\(617\) −44.9906 + 77.9259i −0.0729182 + 0.126298i −0.900179 0.435520i \(-0.856565\pi\)
0.827261 + 0.561818i \(0.189898\pi\)
\(618\) −529.461 349.542i −0.856734 0.565603i
\(619\) 467.089 269.674i 0.754586 0.435661i −0.0727624 0.997349i \(-0.523181\pi\)
0.827349 + 0.561689i \(0.189848\pi\)
\(620\) 247.214i 0.398732i
\(621\) 312.666 368.728i 0.503489 0.593765i
\(622\) 190.851i 0.306834i
\(623\) 28.2590 16.3153i 0.0453595 0.0261883i
\(624\) −5.77190 + 51.6916i −0.00924983 + 0.0828391i
\(625\) 243.136 421.124i 0.389018 0.673798i
\(626\) 108.707 188.287i 0.173654 0.300777i
\(627\) 152.722 + 9.15950i 0.243577 + 0.0146085i
\(628\) 158.284 + 274.156i 0.252045 + 0.436554i
\(629\) 360.624 0.573329
\(630\) −7.87574 5.90562i −0.0125012 0.00937400i
\(631\) 1068.00i 1.69255i 0.532744 + 0.846276i \(0.321161\pi\)
−0.532744 + 0.846276i \(0.678839\pi\)
\(632\) −184.179 319.007i −0.291422 0.504757i
\(633\) 44.4578 22.2316i 0.0702334 0.0351209i
\(634\) 26.0008 45.0347i 0.0410108 0.0710327i
\(635\) −136.001 + 235.561i −0.214175 + 0.370962i
\(636\) 218.419 + 436.786i 0.343426 + 0.686770i
\(637\) −346.119 + 534.219i −0.543358 + 0.838649i
\(638\) 23.3869i 0.0366566i
\(639\) 184.563 + 431.958i 0.288831 + 0.675991i
\(640\) 293.513 0.458614
\(641\) −356.116 + 205.604i −0.555564 + 0.320755i −0.751363 0.659889i \(-0.770603\pi\)
0.195799 + 0.980644i \(0.437270\pi\)
\(642\) 700.416 + 42.0073i 1.09099 + 0.0654320i
\(643\) 776.631 + 448.388i 1.20782 + 0.697338i 0.962284 0.272048i \(-0.0877011\pi\)
0.245541 + 0.969386i \(0.421034\pi\)
\(644\) −3.88905 + 6.73604i −0.00603890 + 0.0104597i
\(645\) −458.169 302.476i −0.710339 0.468955i
\(646\) −39.6998 68.7621i −0.0614549 0.106443i
\(647\) 39.9656i 0.0617706i 0.999523 + 0.0308853i \(0.00983266\pi\)
−0.999523 + 0.0308853i \(0.990167\pi\)
\(648\) 458.629 479.445i 0.707761 0.739885i
\(649\) −100.165 −0.154337
\(650\) 42.8263 66.1005i 0.0658866 0.101693i
\(651\) 11.0756 + 7.31193i 0.0170132 + 0.0112318i
\(652\) 90.2110 + 52.0833i 0.138360 + 0.0798824i
\(653\) 189.335 + 109.313i 0.289947 + 0.167401i 0.637918 0.770104i \(-0.279796\pi\)
−0.347971 + 0.937505i \(0.613129\pi\)
\(654\) −581.043 34.8479i −0.888445 0.0532843i
\(655\) −761.844 + 439.851i −1.16312 + 0.671528i
\(656\) −73.1176 −0.111460
\(657\) 734.520 313.839i 1.11799 0.477685i
\(658\) 7.87286i 0.0119648i
\(659\) 839.444 484.653i 1.27382 0.735437i 0.298111 0.954531i \(-0.403643\pi\)
0.975704 + 0.219094i \(0.0703100\pi\)
\(660\) −153.343 + 76.6808i −0.232338 + 0.116183i
\(661\) −205.518 118.656i −0.310919 0.179509i 0.336418 0.941713i \(-0.390784\pi\)
−0.647338 + 0.762203i \(0.724118\pi\)
\(662\) 13.1280 + 7.57943i 0.0198308 + 0.0114493i
\(663\) 151.779 206.084i 0.228927 0.310836i
\(664\) 360.321 + 624.094i 0.542652 + 0.939900i
\(665\) 7.87905 0.0118482
\(666\) 512.783 + 384.510i 0.769944 + 0.577342i
\(667\) −59.1484 −0.0886783
\(668\) 117.182 + 202.965i 0.175422 + 0.303840i
\(669\) −866.719 51.9813i −1.29554 0.0777000i
\(670\) 426.680 + 246.344i 0.636836 + 0.367678i
\(671\) −91.3293 + 158.187i −0.136109 + 0.235748i
\(672\) −9.60322 + 14.5463i −0.0142905 + 0.0216462i
\(673\) 545.331 + 944.541i 0.810299 + 1.40348i 0.912655 + 0.408731i \(0.134029\pi\)
−0.102356 + 0.994748i \(0.532638\pi\)
\(674\) 447.192 0.663489
\(675\) −118.833 + 42.5563i −0.176048 + 0.0630463i
\(676\) 229.829 317.751i 0.339984 0.470046i
\(677\) 1125.33 649.709i 1.66223 0.959689i 0.690582 0.723254i \(-0.257354\pi\)
0.971647 0.236435i \(-0.0759790\pi\)
\(678\) 132.693 200.994i 0.195712 0.296451i
\(679\) −0.766405 + 1.32745i −0.00112873 + 0.00195501i
\(680\) 209.880 + 121.174i 0.308647 + 0.178198i
\(681\) 54.9277 915.846i 0.0806574 1.34485i
\(682\) −144.887 + 83.6504i −0.212444 + 0.122655i
\(683\) 703.770 1.03041 0.515205 0.857067i \(-0.327716\pi\)
0.515205 + 0.857067i \(0.327716\pi\)
\(684\) −23.3022 + 193.568i −0.0340676 + 0.282994i
\(685\) −496.320 −0.724554
\(686\) 20.5832 11.8837i 0.0300047 0.0173232i
\(687\) 371.958 + 743.827i 0.541424 + 1.08272i
\(688\) 27.0681 46.8833i 0.0393432 0.0681444i
\(689\) −46.7607 + 910.775i −0.0678674 + 1.32188i
\(690\) 140.370 + 280.707i 0.203435 + 0.406821i
\(691\) −267.940 + 154.695i −0.387757 + 0.223872i −0.681188 0.732109i \(-0.738536\pi\)
0.293431 + 0.955980i \(0.405203\pi\)
\(692\) 40.7876i 0.0589417i
\(693\) 1.10006 9.13804i 0.00158739 0.0131862i
\(694\) 760.457i 1.09576i
\(695\) −496.499 859.961i −0.714387 1.23735i
\(696\) −81.0297 4.85974i −0.116422 0.00698238i
\(697\) 311.593 + 179.898i 0.447048 + 0.258103i
\(698\) −650.423 375.522i −0.931838 0.537997i
\(699\) 335.618 508.369i 0.480140 0.727280i
\(700\) 1.75871 1.01539i 0.00251244 0.00145056i
\(701\) 321.205i 0.458210i 0.973402 + 0.229105i \(0.0735799\pi\)
−0.973402 + 0.229105i \(0.926420\pi\)
\(702\) 435.553 131.206i 0.620446 0.186903i
\(703\) −512.998 −0.729727
\(704\) −124.435 215.527i −0.176754 0.306146i
\(705\) −366.273 241.808i −0.519536 0.342990i
\(706\) 245.420 425.080i 0.347621 0.602097i
\(707\) −6.48958 + 11.2403i −0.00917904 + 0.0158986i
\(708\) 7.64152 127.412i 0.0107931 0.179961i
\(709\) 10.3769 5.99109i 0.0146359 0.00845006i −0.492664 0.870220i \(-0.663977\pi\)
0.507300 + 0.861769i \(0.330644\pi\)
\(710\) −304.946 −0.429501
\(711\) −242.808 + 323.809i −0.341502 + 0.455427i
\(712\) −1427.76 −2.00527
\(713\) −211.562 366.436i −0.296721 0.513936i
\(714\) −4.27217 + 2.13634i −0.00598342 + 0.00299207i
\(715\) −319.747 16.4164i −0.447199 0.0229599i
\(716\) −209.881 121.175i −0.293131 0.169239i
\(717\) −99.7191 + 49.8656i −0.139078 + 0.0695475i
\(718\) −146.920 254.473i −0.204624 0.354419i
\(719\) 366.091i 0.509167i −0.967051 0.254584i \(-0.918062\pi\)
0.967051 0.254584i \(-0.0819384\pi\)
\(720\) 21.2616 + 49.7614i 0.0295300 + 0.0691131i
\(721\) 30.5483i 0.0423693i
\(722\) −177.449 307.350i −0.245774 0.425693i
\(723\) 826.804 + 49.5874i 1.14357 + 0.0685856i
\(724\) 105.129 182.089i 0.145206 0.251504i
\(725\) 13.3741 + 7.72153i 0.0184470 + 0.0106504i
\(726\) −295.770 195.263i −0.407397 0.268957i
\(727\) −19.9404 34.5377i −0.0274283 0.0475072i 0.851985 0.523565i \(-0.175398\pi\)
−0.879414 + 0.476058i \(0.842065\pi\)
\(728\) −17.7520 + 9.06891i −0.0243847 + 0.0124573i
\(729\) −682.418 256.411i −0.936102 0.351730i
\(730\) 518.543i 0.710333i
\(731\) −230.703 + 133.196i −0.315599 + 0.182211i
\(732\) −194.250 128.241i −0.265369 0.175193i
\(733\) −517.367 298.702i −0.705821 0.407506i 0.103691 0.994610i \(-0.466935\pi\)
−0.809512 + 0.587104i \(0.800268\pi\)
\(734\) −292.923 + 507.357i −0.399077 + 0.691222i
\(735\) −39.6471 + 661.063i −0.0539417 + 0.899406i
\(736\) 481.264 277.858i 0.653892 0.377524i
\(737\) 460.659i 0.625046i
\(738\) 251.250 + 588.034i 0.340447 + 0.796794i
\(739\) 36.3743i 0.0492209i 0.999697 + 0.0246105i \(0.00783454\pi\)
−0.999697 + 0.0246105i \(0.992165\pi\)
\(740\) 497.845 287.431i 0.672763 0.388420i
\(741\) −215.910 + 293.161i −0.291376 + 0.395629i
\(742\) 8.50983 14.7395i 0.0114688 0.0198645i
\(743\) −117.915 + 204.235i −0.158702 + 0.274879i −0.934401 0.356224i \(-0.884064\pi\)
0.775699 + 0.631103i \(0.217397\pi\)
\(744\) −259.720 519.377i −0.349086 0.698088i
\(745\) −175.999 304.839i −0.236240 0.409180i
\(746\) −204.394 −0.273987
\(747\) 475.021 633.489i 0.635905 0.848044i
\(748\) 83.1904i 0.111217i
\(749\) 16.8929 + 29.2594i 0.0225540 + 0.0390646i
\(750\) 31.1395 519.210i 0.0415194 0.692280i
\(751\) −290.048 + 502.377i −0.386215 + 0.668944i −0.991937 0.126732i \(-0.959551\pi\)
0.605722 + 0.795677i \(0.292884\pi\)
\(752\) 21.6390 37.4798i 0.0287753 0.0498402i
\(753\) 297.217 450.202i 0.394710 0.597878i
\(754\) −46.7077 30.2618i −0.0619465 0.0401350i
\(755\) 1167.77i 1.54671i
\(756\) 11.5399 + 2.09644i 0.0152644 + 0.00277307i
\(757\) −177.728 −0.234779 −0.117389 0.993086i \(-0.537453\pi\)
−0.117389 + 0.993086i \(0.537453\pi\)
\(758\) −577.867 + 333.632i −0.762358 + 0.440148i
\(759\) −161.673 + 244.890i −0.213008 + 0.322649i
\(760\) −298.561 172.374i −0.392843 0.226808i
\(761\) −327.594 + 567.410i −0.430479 + 0.745611i −0.996915 0.0784949i \(-0.974989\pi\)
0.566436 + 0.824106i \(0.308322\pi\)
\(762\) −14.0431 + 234.150i −0.0184293 + 0.307283i
\(763\) −14.0138 24.2727i −0.0183667 0.0318121i
\(764\) 556.716i 0.728685i
\(765\) 31.8258 264.372i 0.0416023 0.345584i
\(766\) 231.248 0.301890
\(767\) 129.609 200.046i 0.168982 0.260817i
\(768\) 715.346 357.716i 0.931440 0.465776i
\(769\) 500.571 + 289.005i 0.650938 + 0.375819i 0.788816 0.614630i \(-0.210695\pi\)
−0.137877 + 0.990449i \(0.544028\pi\)
\(770\) 5.17461 + 2.98756i 0.00672027 + 0.00387995i
\(771\) −420.374 840.648i −0.545233 1.09033i
\(772\) −719.347 + 415.315i −0.931796 + 0.537973i
\(773\) 1155.12 1.49433 0.747166 0.664638i \(-0.231414\pi\)
0.747166 + 0.664638i \(0.231414\pi\)
\(774\) −470.063 56.5874i −0.607316 0.0731103i
\(775\) 110.473i 0.142546i
\(776\) 58.0828 33.5341i 0.0748489 0.0432140i
\(777\) −1.84757 + 30.8057i −0.00237782 + 0.0396470i
\(778\) 679.350 + 392.223i 0.873200 + 0.504142i
\(779\) −443.250 255.910i −0.568999 0.328512i
\(780\) 45.2754 405.474i 0.0580453 0.519839i
\(781\) −142.561 246.923i −0.182536 0.316162i
\(782\) 152.287 0.194740
\(783\) 30.0710 + 83.9691i 0.0384048 + 0.107240i
\(784\) −65.3027 −0.0832943
\(785\) 307.525 + 532.649i 0.391751 + 0.678533i
\(786\) −417.973 + 633.115i −0.531772 + 0.805490i
\(787\) −1117.20 645.018i −1.41957 0.819591i −0.423312 0.905984i \(-0.639133\pi\)
−0.996261 + 0.0863928i \(0.972466\pi\)
\(788\) 47.6328 82.5024i 0.0604477 0.104699i
\(789\) 150.807 + 9.04464i 0.191137 + 0.0114634i
\(790\) −131.373 227.545i −0.166295 0.288032i
\(791\) 11.5967 0.0146608
\(792\) −241.602 + 322.201i −0.305054 + 0.406820i
\(793\) −197.750 387.088i −0.249369 0.488131i
\(794\) −574.588 + 331.739i −0.723662 + 0.417807i
\(795\) 424.359 + 848.616i 0.533785 + 1.06744i
\(796\) −167.540 + 290.187i −0.210477 + 0.364557i
\(797\) 725.010 + 418.585i 0.909674 + 0.525200i 0.880326 0.474369i \(-0.157324\pi\)
0.0293476 + 0.999569i \(0.490657\pi\)
\(798\) 6.07728 3.03901i 0.00761564 0.00380828i
\(799\) −184.430 + 106.481i −0.230826 + 0.133268i
\(800\) −145.092 −0.181365
\(801\) 616.374 + 1442.58i 0.769505 + 1.80098i
\(802\) −84.2512 −0.105051
\(803\) −419.878 + 242.417i −0.522886 + 0.301889i
\(804\) −585.970 35.1434i −0.728818 0.0437107i
\(805\) −7.55591 + 13.0872i −0.00938622 + 0.0162574i
\(806\) 20.4136 397.604i 0.0253271 0.493305i
\(807\) −828.907 + 1255.57i −1.02715 + 1.55585i
\(808\) 491.820 283.952i 0.608688 0.351426i
\(809\) 93.7927i 0.115937i −0.998318 0.0579683i \(-0.981538\pi\)
0.998318 0.0579683i \(-0.0184622\pi\)
\(810\) 327.137 341.985i 0.403872 0.422204i
\(811\) 551.690i 0.680259i 0.940379 + 0.340130i \(0.110471\pi\)
−0.940379 + 0.340130i \(0.889529\pi\)
\(812\) −0.717493 1.24273i −0.000883611 0.00153046i
\(813\) −378.672 + 573.584i −0.465771 + 0.705516i
\(814\) −336.914 194.518i −0.413900 0.238965i
\(815\) 175.268 + 101.191i 0.215053 + 0.124161i
\(816\) 26.2101 + 1.57194i 0.0321202 + 0.00192640i
\(817\) 328.182 189.476i 0.401691 0.231917i
\(818\) 357.215i 0.436693i
\(819\) 16.8268 + 14.0213i 0.0205455 + 0.0171200i
\(820\) 573.542 0.699441
\(821\) 306.896 + 531.559i 0.373807 + 0.647454i 0.990148 0.140026i \(-0.0447187\pi\)
−0.616340 + 0.787480i \(0.711385\pi\)
\(822\) −382.822 + 191.434i −0.465720 + 0.232888i
\(823\) 378.480 655.547i 0.459879 0.796534i −0.539075 0.842258i \(-0.681226\pi\)
0.998954 + 0.0457239i \(0.0145594\pi\)
\(824\) −668.321 + 1157.57i −0.811069 + 1.40481i
\(825\) 68.5251 34.2667i 0.0830607 0.0415354i
\(826\) −3.85246 + 2.22422i −0.00466400 + 0.00269276i
\(827\) 884.560 1.06960 0.534800 0.844979i \(-0.320387\pi\)
0.534800 + 0.844979i \(0.320387\pi\)
\(828\) −299.173 224.335i −0.361320 0.270936i
\(829\) 1282.82 1.54743 0.773716 0.633532i \(-0.218396\pi\)
0.773716 + 0.633532i \(0.218396\pi\)
\(830\) 257.014 + 445.161i 0.309655 + 0.536339i
\(831\) 71.4395 1191.16i 0.0859682 1.43340i
\(832\) 591.457 + 30.3664i 0.710886 + 0.0364981i
\(833\) 278.289 + 160.670i 0.334081 + 0.192882i
\(834\) −714.654 471.804i −0.856899 0.565712i
\(835\) 227.669 + 394.334i 0.272657 + 0.472256i
\(836\) 118.341i 0.141556i
\(837\) −412.647 + 486.636i −0.493008 + 0.581405i
\(838\) 606.896i 0.724219i
\(839\) 555.459 + 962.083i 0.662049 + 1.14670i 0.980076 + 0.198621i \(0.0636462\pi\)
−0.318028 + 0.948081i \(0.603020\pi\)
\(840\) −11.4264 + 17.3079i −0.0136028 + 0.0206046i
\(841\) −415.044 + 718.877i −0.493512 + 0.854788i
\(842\) −160.296 92.5469i −0.190375 0.109913i
\(843\) −34.9604 + 582.919i −0.0414714 + 0.691481i
\(844\) −19.2236 33.2963i −0.0227768 0.0394506i
\(845\) 446.527 617.348i 0.528434 0.730589i
\(846\) −375.781 45.2375i −0.444186 0.0534722i
\(847\) 17.0650i 0.0201476i
\(848\) −81.0244 + 46.7795i −0.0955477 + 0.0551645i
\(849\) −1116.35 + 558.240i −1.31490 + 0.657527i
\(850\) −34.4336 19.8802i −0.0405101 0.0233885i
\(851\) 491.959 852.098i 0.578095 1.00129i
\(852\) 324.968 162.503i 0.381417 0.190732i
\(853\) 735.083 424.401i 0.861762 0.497539i −0.00283972 0.999996i \(-0.500904\pi\)
0.864602 + 0.502457i \(0.167571\pi\)
\(854\) 8.11208i 0.00949892i
\(855\) −45.2731 + 376.077i −0.0529510 + 0.439856i
\(856\) 1478.30i 1.72699i
\(857\) 56.1270 32.4049i 0.0654924 0.0378120i −0.466896 0.884312i \(-0.654628\pi\)
0.532389 + 0.846500i \(0.321295\pi\)
\(858\) −252.960 + 110.667i −0.294825 + 0.128982i
\(859\) −431.846 + 747.980i −0.502732 + 0.870757i 0.497264 + 0.867600i \(0.334338\pi\)
−0.999995 + 0.00315695i \(0.998995\pi\)
\(860\) −212.325 + 367.758i −0.246890 + 0.427625i
\(861\) −16.9639 + 25.6956i −0.0197025 + 0.0298439i
\(862\) 152.070 + 263.393i 0.176415 + 0.305561i
\(863\) 1287.21 1.49155 0.745776 0.666197i \(-0.232079\pi\)
0.745776 + 0.666197i \(0.232079\pi\)
\(864\) −639.130 541.956i −0.739734 0.627264i
\(865\) 79.2449i 0.0916126i
\(866\) 10.0454 + 17.3992i 0.0115998 + 0.0200914i
\(867\) 615.717 + 406.487i 0.710170 + 0.468844i
\(868\) 5.13265 8.89002i 0.00591320 0.0102420i
\(869\) 122.833 212.753i 0.141350 0.244825i
\(870\) −57.7979 3.46641i −0.0664343 0.00398438i
\(871\) −920.014 596.074i −1.05627 0.684356i
\(872\) 1226.35i 1.40637i
\(873\) −58.9571 44.2090i −0.0675339 0.0506403i
\(874\) −216.632 −0.247863
\(875\) 21.6896 12.5225i 0.0247881 0.0143114i
\(876\) −276.328 552.589i −0.315443 0.630809i
\(877\) −713.137 411.730i −0.813155 0.469475i 0.0348953 0.999391i \(-0.488890\pi\)
−0.848050 + 0.529916i \(0.822224\pi\)
\(878\) 406.772 704.549i 0.463294 0.802448i
\(879\) −635.663 + 317.870i −0.723166 + 0.361627i
\(880\) −16.4230 28.4454i −0.0186624 0.0323243i
\(881\) 436.907i 0.495922i 0.968770 + 0.247961i \(0.0797604\pi\)
−0.968770 + 0.247961i \(0.920240\pi\)
\(882\) 224.396 + 525.184i 0.254417 + 0.595447i
\(883\) 1620.87 1.83564 0.917819 0.397000i \(-0.129949\pi\)
0.917819 + 0.397000i \(0.129949\pi\)
\(884\) −166.145 107.645i −0.187947 0.121770i
\(885\) 14.8465 247.545i 0.0167757 0.279712i
\(886\) −642.499 370.947i −0.725168 0.418676i
\(887\) −344.471 198.880i −0.388355 0.224217i 0.293092 0.956084i \(-0.405316\pi\)
−0.681447 + 0.731867i \(0.738649\pi\)
\(888\) 743.963 1126.90i 0.837796 1.26903i
\(889\) −9.78145 + 5.64732i −0.0110028 + 0.00635244i
\(890\) −1018.41 −1.14428
\(891\) 429.849 + 105.015i 0.482434 + 0.117861i
\(892\) 671.599i 0.752914i
\(893\) 262.358 151.472i 0.293794 0.169622i
\(894\) −253.331 167.245i −0.283367 0.187075i
\(895\) −407.771 235.427i −0.455611 0.263047i
\(896\) 10.5550 + 6.09392i 0.0117801 + 0.00680125i
\(897\) −279.889 639.767i −0.312028 0.713230i
\(898\) 52.3715 + 90.7101i 0.0583201 + 0.101013i
\(899\) 78.0623 0.0868324
\(900\) 38.3603 + 89.7798i 0.0426226 + 0.0997554i
\(901\) 460.384 0.510970
\(902\) −194.071 336.141i −0.215156 0.372662i
\(903\) −10.1961 20.3898i −0.0112914 0.0225801i
\(904\) −439.434 253.707i −0.486099 0.280650i
\(905\) 204.252 353.774i 0.225692 0.390911i
\(906\) 450.416 + 900.724i 0.497148 + 0.994177i
\(907\) −213.237 369.338i −0.235102 0.407208i 0.724201 0.689589i \(-0.242209\pi\)
−0.959302 + 0.282381i \(0.908876\pi\)
\(908\) −709.666 −0.781571
\(909\) −499.223 374.342i −0.549201 0.411818i
\(910\) −12.6624 + 6.46879i −0.0139147 + 0.00710856i
\(911\) 110.172 63.6081i 0.120936 0.0698223i −0.438312 0.898823i \(-0.644423\pi\)
0.559248 + 0.829001i \(0.311090\pi\)
\(912\) −37.2846 2.23614i −0.0408823 0.00245191i
\(913\) −240.306 + 416.222i −0.263205 + 0.455884i
\(914\) 276.991 + 159.921i 0.303054 + 0.174968i
\(915\) −377.402 249.155i −0.412461 0.272301i
\(916\) 557.084 321.632i 0.608170 0.351127i
\(917\) −36.5288 −0.0398351
\(918\) −77.4222 216.191i −0.0843379 0.235502i
\(919\) 1263.38 1.37474 0.687368 0.726309i \(-0.258766\pi\)
0.687368 + 0.726309i \(0.258766\pi\)
\(920\) 572.632 330.609i 0.622426 0.359358i
\(921\) −411.620 + 623.493i −0.446928 + 0.676973i
\(922\) 339.818 588.581i 0.368566 0.638375i
\(923\) 677.614 + 34.7898i 0.734143 + 0.0376921i
\(924\) −7.10640 0.426205i −0.00769091 0.000461261i
\(925\) −222.474 + 128.445i −0.240512 + 0.138860i
\(926\) 65.7963i 0.0710543i
\(927\) 1458.11 + 175.531i 1.57293 + 0.189353i
\(928\) 102.524i 0.110479i
\(929\) 463.793 + 803.312i 0.499239 + 0.864706i 1.00000 0.000879046i \(-0.000279809\pi\)
−0.500761 + 0.865586i \(0.666946\pi\)
\(930\) −185.256 370.468i −0.199200 0.398352i
\(931\) −395.875 228.559i −0.425215 0.245498i
\(932\) −408.052 235.589i −0.437824 0.252778i
\(933\) −197.595 395.143i −0.211785 0.423519i
\(934\) −114.047 + 65.8453i −0.122106 + 0.0704982i
\(935\) 161.628i 0.172864i
\(936\) −330.867 899.437i −0.353490 0.960937i
\(937\) −249.827 −0.266625 −0.133312 0.991074i \(-0.542561\pi\)
−0.133312 + 0.991074i \(0.542561\pi\)
\(938\) 10.2292 + 17.7175i 0.0109053 + 0.0188886i
\(939\) −30.1303 + 502.383i −0.0320876 + 0.535019i
\(940\) −169.739 + 293.996i −0.180573 + 0.312761i
\(941\) 817.021 1415.12i 0.868247 1.50385i 0.00446066 0.999990i \(-0.498580\pi\)
0.863786 0.503858i \(-0.168087\pi\)
\(942\) 442.647 + 292.229i 0.469901 + 0.310222i
\(943\) 850.142 490.830i 0.901529 0.520498i
\(944\) 24.4536 0.0259042
\(945\) 22.4205 + 4.07310i 0.0237254 + 0.00431016i
\(946\) 287.380 0.303784
\(947\) −942.757 1632.90i −0.995520 1.72429i −0.579643 0.814870i \(-0.696808\pi\)
−0.415877 0.909421i \(-0.636525\pi\)
\(948\) 261.256 + 172.477i 0.275586 + 0.181938i
\(949\) 59.1581 1152.24i 0.0623373 1.21417i
\(950\) 48.9828 + 28.2802i 0.0515608 + 0.0297686i
\(951\) −7.20662 + 120.161i −0.00757794 + 0.126352i
\(952\) 5.03165 + 8.71508i 0.00528535 + 0.00915449i
\(953\) 1399.79i 1.46882i −0.678704 0.734412i \(-0.737458\pi\)
0.678704 0.734412i \(-0.262542\pi\)
\(954\) 654.634 + 490.877i 0.686200 + 0.514547i
\(955\) 1081.62i 1.13259i
\(956\) 43.1187 + 74.6838i 0.0451033 + 0.0781212i
\(957\) −24.2134 48.4210i −0.0253014 0.0505966i
\(958\) −24.1243 + 41.7844i −0.0251819 + 0.0436163i
\(959\) −17.8481 10.3046i −0.0186112 0.0107452i
\(960\) 551.091 275.579i 0.574054 0.287061i
\(961\) −201.287 348.639i −0.209456 0.362788i
\(962\) 824.438 421.177i 0.857005 0.437814i
\(963\) −1493.65 + 638.195i −1.55104 + 0.662715i
\(964\) 640.670i 0.664595i
\(965\) −1397.59 + 806.901i −1.44828 + 0.836167i
\(966\) −0.780202 + 13.0088i −0.000807662 + 0.0134667i
\(967\) 486.020 + 280.604i 0.502606 + 0.290180i 0.729789 0.683672i \(-0.239618\pi\)
−0.227183 + 0.973852i \(0.572952\pi\)
\(968\) −373.341 + 646.645i −0.385683 + 0.668022i
\(969\) 153.388 + 101.264i 0.158295 + 0.104504i
\(970\) 41.4300 23.9196i 0.0427113 0.0246594i
\(971\) 242.009i 0.249237i 0.992205 + 0.124619i \(0.0397707\pi\)
−0.992205 + 0.124619i \(0.960229\pi\)
\(972\) −166.374 + 538.767i −0.171167 + 0.554287i
\(973\) 41.2333i 0.0423775i
\(974\) 606.482 350.153i 0.622672 0.359500i
\(975\) −20.2324 + 181.196i −0.0207512 + 0.185842i
\(976\) 22.2965 38.6187i 0.0228448 0.0395683i
\(977\) 799.206 1384.27i 0.818021 1.41685i −0.0891180 0.996021i \(-0.528405\pi\)
0.907139 0.420832i \(-0.138262\pi\)
\(978\) 174.218 + 10.4487i 0.178137 + 0.0106837i
\(979\) −476.101 824.631i −0.486313 0.842320i
\(980\) 512.241 0.522695
\(981\) 1239.09 529.426i 1.26309 0.539680i
\(982\) 660.706i 0.672817i
\(983\) 330.372 + 572.221i 0.336086 + 0.582117i 0.983693 0.179857i \(-0.0575635\pi\)
−0.647607 + 0.761974i \(0.724230\pi\)
\(984\) 1204.97 602.557i 1.22456 0.612355i
\(985\) 92.5441 160.291i 0.0939535 0.162732i
\(986\) −14.0477 + 24.3313i −0.0142471 + 0.0246768i
\(987\) −8.15107 16.3002i −0.00825843 0.0165149i
\(988\) 236.347 + 153.128i 0.239217 + 0.154988i
\(989\) 726.820i 0.734904i
\(990\) −172.333 + 229.824i −0.174074 + 0.232145i
\(991\) −146.509 −0.147839 −0.0739197 0.997264i \(-0.523551\pi\)
−0.0739197 + 0.997264i \(0.523551\pi\)
\(992\) −635.157 + 366.708i −0.640280 + 0.369666i
\(993\) −35.0278 2.10078i −0.0352747 0.00211559i
\(994\) −10.9661 6.33129i −0.0110323 0.00636951i
\(995\) −325.507 + 563.795i −0.327143 + 0.566628i
\(996\) −511.112 337.428i −0.513164 0.338783i
\(997\) 145.897 + 252.700i 0.146336 + 0.253461i 0.929870 0.367887i \(-0.119919\pi\)
−0.783535 + 0.621348i \(0.786585\pi\)
\(998\) 486.814i 0.487789i
\(999\) −1459.78 265.196i −1.46124 0.265462i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.n.a.77.9 yes 52
3.2 odd 2 351.3.n.a.233.18 52
9.2 odd 6 inner 117.3.n.a.38.18 yes 52
9.7 even 3 351.3.n.a.116.9 52
13.12 even 2 inner 117.3.n.a.77.18 yes 52
39.38 odd 2 351.3.n.a.233.9 52
117.25 even 6 351.3.n.a.116.18 52
117.38 odd 6 inner 117.3.n.a.38.9 52
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.n.a.38.9 52 117.38 odd 6 inner
117.3.n.a.38.18 yes 52 9.2 odd 6 inner
117.3.n.a.77.9 yes 52 1.1 even 1 trivial
117.3.n.a.77.18 yes 52 13.12 even 2 inner
351.3.n.a.116.9 52 9.7 even 3
351.3.n.a.116.18 52 117.25 even 6
351.3.n.a.233.9 52 39.38 odd 2
351.3.n.a.233.18 52 3.2 odd 2