Properties

Label 117.8.q.b.10.6
Level $117$
Weight $8$
Character 117.10
Analytic conductor $36.549$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,8,Mod(10,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.10");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 117.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.5490479816\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{7}\cdot 13^{4} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 10.6
Root \(16.7213i\) of defining polynomial
Character \(\chi\) \(=\) 117.10
Dual form 117.8.q.b.82.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(14.4811 - 8.36065i) q^{2} +(75.8010 - 131.291i) q^{4} -94.5127i q^{5} +(1225.76 + 707.691i) q^{7} -394.655i q^{8} +(-790.187 - 1368.64i) q^{10} +(-1241.02 + 716.501i) q^{11} +(5632.23 - 5570.14i) q^{13} +23667.0 q^{14} +(6402.95 + 11090.2i) q^{16} +(1394.31 - 2415.02i) q^{17} +(24883.0 + 14366.2i) q^{19} +(-12408.7 - 7164.15i) q^{20} +(-11980.8 + 20751.4i) q^{22} +(25299.9 + 43820.7i) q^{23} +69192.4 q^{25} +(34990.7 - 127751. i) q^{26} +(185827. - 107287. i) q^{28} +(-114179. - 197763. i) q^{29} -154870. i q^{31} +(229191. + 132324. i) q^{32} -46629.4i q^{34} +(66885.8 - 115850. i) q^{35} +(-63637.4 + 36741.1i) q^{37} +480443. q^{38} -37299.9 q^{40} +(-593980. + 342934. i) q^{41} +(393865. - 682194. i) q^{43} +217246. i q^{44} +(732739. + 423047. i) q^{46} -690181. i q^{47} +(589882. + 1.02171e6i) q^{49} +(1.00198e6 - 578493. i) q^{50} +(-304382. - 1.16168e6i) q^{52} +1.69205e6 q^{53} +(67718.5 + 117292. i) q^{55} +(279294. - 483752. i) q^{56} +(-3.30686e6 - 1.90922e6i) q^{58} +(427536. + 246838. i) q^{59} +(-1.10386e6 + 1.91195e6i) q^{61} +(-1.29481e6 - 2.24268e6i) q^{62} +2.78609e6 q^{64} +(-526449. - 532317. i) q^{65} +(-1.95500e6 + 1.12872e6i) q^{67} +(-211380. - 366121. i) q^{68} -2.23683e6i q^{70} +(-349495. - 201781. i) q^{71} -509572. i q^{73} +(-614359. + 1.06410e6i) q^{74} +(3.77231e6 - 2.17795e6i) q^{76} -2.02825e6 q^{77} -1.91796e6 q^{79} +(1.04817e6 - 605160. i) q^{80} +(-5.73431e6 + 9.93212e6i) q^{82} +4.57733e6i q^{83} +(-228250. - 131780. i) q^{85} -1.31719e7i q^{86} +(282771. + 489774. i) q^{88} +(-3.05403e6 + 1.76324e6i) q^{89} +(1.08457e7 - 2.84176e6i) q^{91} +7.67102e6 q^{92} +(-5.77037e6 - 9.99457e6i) q^{94} +(1.35779e6 - 2.35176e6i) q^{95} +(4.21540e6 + 2.43376e6i) q^{97} +(1.70843e7 + 9.86360e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{2} + 383 q^{4} - 2772 q^{7} - 509 q^{10} - 6516 q^{11} + 5109 q^{13} + 47916 q^{14} - 633 q^{16} + 38403 q^{17} + 43254 q^{19} - 89409 q^{20} - 125882 q^{22} + 68550 q^{23} + 39380 q^{25} - 361959 q^{26}+ \cdots - 16173003 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 14.4811 8.36065i 1.27996 0.738984i 0.303118 0.952953i \(-0.401972\pi\)
0.976840 + 0.213969i \(0.0686392\pi\)
\(3\) 0 0
\(4\) 75.8010 131.291i 0.592195 1.02571i
\(5\) 94.5127i 0.338139i −0.985604 0.169069i \(-0.945924\pi\)
0.985604 0.169069i \(-0.0540762\pi\)
\(6\) 0 0
\(7\) 1225.76 + 707.691i 1.35071 + 0.779831i 0.988349 0.152207i \(-0.0486381\pi\)
0.362359 + 0.932039i \(0.381971\pi\)
\(8\) 394.655i 0.272523i
\(9\) 0 0
\(10\) −790.187 1368.64i −0.249879 0.432803i
\(11\) −1241.02 + 716.501i −0.281127 + 0.162309i −0.633934 0.773387i \(-0.718561\pi\)
0.352806 + 0.935696i \(0.385227\pi\)
\(12\) 0 0
\(13\) 5632.23 5570.14i 0.711015 0.703177i
\(14\) 23667.0 2.30513
\(15\) 0 0
\(16\) 6402.95 + 11090.2i 0.390805 + 0.676894i
\(17\) 1394.31 2415.02i 0.0688316 0.119220i −0.829556 0.558424i \(-0.811406\pi\)
0.898387 + 0.439204i \(0.144740\pi\)
\(18\) 0 0
\(19\) 24883.0 + 14366.2i 0.832272 + 0.480512i 0.854630 0.519238i \(-0.173784\pi\)
−0.0223580 + 0.999750i \(0.507117\pi\)
\(20\) −12408.7 7164.15i −0.346833 0.200244i
\(21\) 0 0
\(22\) −11980.8 + 20751.4i −0.239888 + 0.415497i
\(23\) 25299.9 + 43820.7i 0.433582 + 0.750986i 0.997179 0.0750644i \(-0.0239162\pi\)
−0.563597 + 0.826050i \(0.690583\pi\)
\(24\) 0 0
\(25\) 69192.4 0.885662
\(26\) 34990.7 127751.i 0.390433 1.42547i
\(27\) 0 0
\(28\) 185827. 107287.i 1.59976 0.923625i
\(29\) −114179. 197763.i −0.869344 1.50575i −0.862668 0.505771i \(-0.831208\pi\)
−0.00667640 0.999978i \(-0.502125\pi\)
\(30\) 0 0
\(31\) 154870.i 0.933686i −0.884340 0.466843i \(-0.845391\pi\)
0.884340 0.466843i \(-0.154609\pi\)
\(32\) 229191. + 132324.i 1.23644 + 0.713859i
\(33\) 0 0
\(34\) 46629.4i 0.203462i
\(35\) 66885.8 115850.i 0.263691 0.456727i
\(36\) 0 0
\(37\) −63637.4 + 36741.1i −0.206541 + 0.119247i −0.599703 0.800223i \(-0.704715\pi\)
0.393162 + 0.919469i \(0.371381\pi\)
\(38\) 480443. 1.42036
\(39\) 0 0
\(40\) −37299.9 −0.0921506
\(41\) −593980. + 342934.i −1.34595 + 0.777083i −0.987673 0.156533i \(-0.949968\pi\)
−0.358275 + 0.933616i \(0.616635\pi\)
\(42\) 0 0
\(43\) 393865. 682194.i 0.755454 1.30848i −0.189695 0.981843i \(-0.560750\pi\)
0.945148 0.326641i \(-0.105917\pi\)
\(44\) 217246.i 0.384474i
\(45\) 0 0
\(46\) 732739. + 423047.i 1.10993 + 0.640820i
\(47\) 690181.i 0.969663i −0.874608 0.484831i \(-0.838881\pi\)
0.874608 0.484831i \(-0.161119\pi\)
\(48\) 0 0
\(49\) 589882. + 1.02171e6i 0.716274 + 1.24062i
\(50\) 1.00198e6 578493.i 1.13361 0.654490i
\(51\) 0 0
\(52\) −304382. 1.16168e6i −0.300197 1.14571i
\(53\) 1.69205e6 1.56116 0.780579 0.625057i \(-0.214924\pi\)
0.780579 + 0.625057i \(0.214924\pi\)
\(54\) 0 0
\(55\) 67718.5 + 117292.i 0.0548830 + 0.0950601i
\(56\) 279294. 483752.i 0.212522 0.368099i
\(57\) 0 0
\(58\) −3.30686e6 1.90922e6i −2.22545 1.28486i
\(59\) 427536. + 246838.i 0.271013 + 0.156470i 0.629348 0.777124i \(-0.283322\pi\)
−0.358335 + 0.933593i \(0.616655\pi\)
\(60\) 0 0
\(61\) −1.10386e6 + 1.91195e6i −0.622674 + 1.07850i 0.366312 + 0.930492i \(0.380620\pi\)
−0.988986 + 0.148011i \(0.952713\pi\)
\(62\) −1.29481e6 2.24268e6i −0.689979 1.19508i
\(63\) 0 0
\(64\) 2.78609e6 1.32851
\(65\) −526449. 532317.i −0.237771 0.240422i
\(66\) 0 0
\(67\) −1.95500e6 + 1.12872e6i −0.794118 + 0.458484i −0.841410 0.540397i \(-0.818274\pi\)
0.0472923 + 0.998881i \(0.484941\pi\)
\(68\) −211380. 366121.i −0.0815235 0.141203i
\(69\) 0 0
\(70\) 2.23683e6i 0.779455i
\(71\) −349495. 201781.i −0.115888 0.0669077i 0.440936 0.897539i \(-0.354647\pi\)
−0.556823 + 0.830631i \(0.687980\pi\)
\(72\) 0 0
\(73\) 509572.i 0.153312i −0.997058 0.0766558i \(-0.975576\pi\)
0.997058 0.0766558i \(-0.0244243\pi\)
\(74\) −614359. + 1.06410e6i −0.176243 + 0.305261i
\(75\) 0 0
\(76\) 3.77231e6 2.17795e6i 0.985735 0.569114i
\(77\) −2.02825e6 −0.506295
\(78\) 0 0
\(79\) −1.91796e6 −0.437668 −0.218834 0.975762i \(-0.570225\pi\)
−0.218834 + 0.975762i \(0.570225\pi\)
\(80\) 1.04817e6 605160.i 0.228884 0.132146i
\(81\) 0 0
\(82\) −5.73431e6 + 9.93212e6i −1.14850 + 1.98927i
\(83\) 4.57733e6i 0.878697i 0.898317 + 0.439348i \(0.144791\pi\)
−0.898317 + 0.439348i \(0.855209\pi\)
\(84\) 0 0
\(85\) −228250. 131780.i −0.0403129 0.0232746i
\(86\) 1.31719e7i 2.23307i
\(87\) 0 0
\(88\) 282771. + 489774.i 0.0442329 + 0.0766137i
\(89\) −3.05403e6 + 1.76324e6i −0.459206 + 0.265123i −0.711710 0.702473i \(-0.752079\pi\)
0.252504 + 0.967596i \(0.418746\pi\)
\(90\) 0 0
\(91\) 1.08457e7 2.84176e6i 1.50873 0.395315i
\(92\) 7.67102e6 1.02706
\(93\) 0 0
\(94\) −5.77037e6 9.99457e6i −0.716565 1.24113i
\(95\) 1.35779e6 2.35176e6i 0.162480 0.281423i
\(96\) 0 0
\(97\) 4.21540e6 + 2.43376e6i 0.468962 + 0.270755i 0.715805 0.698300i \(-0.246060\pi\)
−0.246843 + 0.969055i \(0.579393\pi\)
\(98\) 1.70843e7 + 9.86360e6i 1.83360 + 1.05863i
\(99\) 0 0
\(100\) 5.24485e6 9.08434e6i 0.524485 0.908434i
\(101\) −698709. 1.21020e6i −0.0674795 0.116878i 0.830312 0.557299i \(-0.188162\pi\)
−0.897791 + 0.440421i \(0.854829\pi\)
\(102\) 0 0
\(103\) −6.54055e6 −0.589772 −0.294886 0.955533i \(-0.595282\pi\)
−0.294886 + 0.955533i \(0.595282\pi\)
\(104\) −2.19829e6 2.22279e6i −0.191632 0.193768i
\(105\) 0 0
\(106\) 2.45027e7 1.41466e7i 1.99822 1.15367i
\(107\) 3.30316e6 + 5.72123e6i 0.260667 + 0.451488i 0.966419 0.256970i \(-0.0827243\pi\)
−0.705752 + 0.708459i \(0.749391\pi\)
\(108\) 0 0
\(109\) 1.24329e7i 0.919561i 0.888033 + 0.459781i \(0.152072\pi\)
−0.888033 + 0.459781i \(0.847928\pi\)
\(110\) 1.96127e6 + 1.13234e6i 0.140496 + 0.0811153i
\(111\) 0 0
\(112\) 1.81252e7i 1.21905i
\(113\) −5.94659e6 + 1.02998e7i −0.387698 + 0.671513i −0.992140 0.125137i \(-0.960063\pi\)
0.604441 + 0.796650i \(0.293396\pi\)
\(114\) 0 0
\(115\) 4.14161e6 2.39116e6i 0.253937 0.146611i
\(116\) −3.46194e7 −2.05929
\(117\) 0 0
\(118\) 8.25491e6 0.462514
\(119\) 3.41817e6 1.97348e6i 0.185943 0.107354i
\(120\) 0 0
\(121\) −8.71684e6 + 1.50980e7i −0.447312 + 0.774766i
\(122\) 3.69161e7i 1.84059i
\(123\) 0 0
\(124\) −2.03330e7 1.17393e7i −0.957693 0.552924i
\(125\) 1.39234e7i 0.637616i
\(126\) 0 0
\(127\) −1.58001e7 2.73665e7i −0.684457 1.18551i −0.973607 0.228230i \(-0.926706\pi\)
0.289150 0.957284i \(-0.406627\pi\)
\(128\) 1.10091e7 6.35611e6i 0.463999 0.267890i
\(129\) 0 0
\(130\) −1.20741e7 3.30707e6i −0.482005 0.132020i
\(131\) 1.45168e7 0.564184 0.282092 0.959387i \(-0.408972\pi\)
0.282092 + 0.959387i \(0.408972\pi\)
\(132\) 0 0
\(133\) 2.03337e7 + 3.52190e7i 0.749437 + 1.29806i
\(134\) −1.88737e7 + 3.26901e7i −0.677625 + 1.17368i
\(135\) 0 0
\(136\) −953099. 550272.i −0.0324902 0.0187582i
\(137\) −4.58302e7 2.64601e7i −1.52276 0.879163i −0.999638 0.0269023i \(-0.991436\pi\)
−0.523117 0.852261i \(-0.675231\pi\)
\(138\) 0 0
\(139\) −2.74729e7 + 4.75844e7i −0.867666 + 1.50284i −0.00329010 + 0.999995i \(0.501047\pi\)
−0.864376 + 0.502847i \(0.832286\pi\)
\(140\) −1.01400e7 1.75630e7i −0.312313 0.540943i
\(141\) 0 0
\(142\) −6.74808e6 −0.197775
\(143\) −2.99868e6 + 1.09481e7i −0.0857539 + 0.313086i
\(144\) 0 0
\(145\) −1.86911e7 + 1.07913e7i −0.509152 + 0.293959i
\(146\) −4.26035e6 7.37914e6i −0.113295 0.196232i
\(147\) 0 0
\(148\) 1.11400e7i 0.282469i
\(149\) −3.93097e7 2.26955e7i −0.973527 0.562066i −0.0732176 0.997316i \(-0.523327\pi\)
−0.900310 + 0.435250i \(0.856660\pi\)
\(150\) 0 0
\(151\) 3.65804e7i 0.864627i −0.901723 0.432313i \(-0.857697\pi\)
0.901723 0.432313i \(-0.142303\pi\)
\(152\) 5.66970e6 9.82021e6i 0.130951 0.226813i
\(153\) 0 0
\(154\) −2.93712e7 + 1.69575e7i −0.648036 + 0.374144i
\(155\) −1.46372e7 −0.315716
\(156\) 0 0
\(157\) −6.28265e7 −1.29567 −0.647835 0.761781i \(-0.724325\pi\)
−0.647835 + 0.761781i \(0.724325\pi\)
\(158\) −2.77741e7 + 1.60354e7i −0.560197 + 0.323430i
\(159\) 0 0
\(160\) 1.25063e7 2.16615e7i 0.241383 0.418088i
\(161\) 7.16180e7i 1.35248i
\(162\) 0 0
\(163\) 2.44610e7 + 1.41225e7i 0.442402 + 0.255421i 0.704616 0.709589i \(-0.251119\pi\)
−0.262214 + 0.965010i \(0.584453\pi\)
\(164\) 1.03979e8i 1.84074i
\(165\) 0 0
\(166\) 3.82695e7 + 6.62847e7i 0.649343 + 1.12470i
\(167\) 7.42098e7 4.28450e7i 1.23297 0.711857i 0.265324 0.964159i \(-0.414521\pi\)
0.967649 + 0.252302i \(0.0811877\pi\)
\(168\) 0 0
\(169\) 695541. 6.27447e7i 0.0110846 0.999939i
\(170\) −4.40707e6 −0.0687984
\(171\) 0 0
\(172\) −5.97107e7 1.03422e8i −0.894752 1.54976i
\(173\) 5.36018e6 9.28411e6i 0.0787079 0.136326i −0.823985 0.566612i \(-0.808254\pi\)
0.902693 + 0.430286i \(0.141587\pi\)
\(174\) 0 0
\(175\) 8.48130e7 + 4.89668e7i 1.19627 + 0.690667i
\(176\) −1.58923e7 9.17544e6i −0.219732 0.126862i
\(177\) 0 0
\(178\) −2.94837e7 + 5.10673e7i −0.391843 + 0.678692i
\(179\) 5.73747e7 + 9.93759e7i 0.747713 + 1.29508i 0.948916 + 0.315528i \(0.102181\pi\)
−0.201203 + 0.979549i \(0.564485\pi\)
\(180\) 0 0
\(181\) −7.50660e7 −0.940953 −0.470477 0.882412i \(-0.655918\pi\)
−0.470477 + 0.882412i \(0.655918\pi\)
\(182\) 1.33298e8 1.31829e8i 1.63898 1.62092i
\(183\) 0 0
\(184\) 1.72941e7 9.98473e6i 0.204661 0.118161i
\(185\) 3.47250e6 + 6.01454e6i 0.0403219 + 0.0698395i
\(186\) 0 0
\(187\) 3.99610e6i 0.0446880i
\(188\) −9.06147e7 5.23164e7i −0.994595 0.574230i
\(189\) 0 0
\(190\) 4.54080e7i 0.480280i
\(191\) −7.01190e6 + 1.21450e7i −0.0728147 + 0.126119i −0.900134 0.435613i \(-0.856532\pi\)
0.827319 + 0.561732i \(0.189865\pi\)
\(192\) 0 0
\(193\) 5.19935e7 3.00185e7i 0.520593 0.300565i −0.216584 0.976264i \(-0.569492\pi\)
0.737177 + 0.675699i \(0.236158\pi\)
\(194\) 8.13913e7 0.800336
\(195\) 0 0
\(196\) 1.78855e8 1.69670
\(197\) 3.93786e7 2.27353e7i 0.366968 0.211869i −0.305165 0.952300i \(-0.598712\pi\)
0.672133 + 0.740430i \(0.265378\pi\)
\(198\) 0 0
\(199\) 6.36201e7 1.10193e8i 0.572280 0.991218i −0.424052 0.905638i \(-0.639392\pi\)
0.996331 0.0855795i \(-0.0272742\pi\)
\(200\) 2.73071e7i 0.241363i
\(201\) 0 0
\(202\) −2.02361e7 1.16833e7i −0.172742 0.0997325i
\(203\) 3.23213e8i 2.71177i
\(204\) 0 0
\(205\) 3.24117e7 + 5.61386e7i 0.262762 + 0.455117i
\(206\) −9.47141e7 + 5.46832e7i −0.754883 + 0.435832i
\(207\) 0 0
\(208\) 9.78371e7 + 2.67974e7i 0.753845 + 0.206477i
\(209\) −4.11736e7 −0.311966
\(210\) 0 0
\(211\) −3.31029e7 5.73360e7i −0.242593 0.420183i 0.718859 0.695156i \(-0.244665\pi\)
−0.961452 + 0.274973i \(0.911331\pi\)
\(212\) 1.28259e8 2.22151e8i 0.924510 1.60130i
\(213\) 0 0
\(214\) 9.56665e7 + 5.52331e7i 0.667285 + 0.385257i
\(215\) −6.44760e7 3.72252e7i −0.442449 0.255448i
\(216\) 0 0
\(217\) 1.09600e8 1.89833e8i 0.728118 1.26114i
\(218\) 1.03947e8 + 1.80042e8i 0.679541 + 1.17700i
\(219\) 0 0
\(220\) 2.05325e7 0.130006
\(221\) −5.59891e6 2.13684e7i −0.0348924 0.133168i
\(222\) 0 0
\(223\) −1.66009e8 + 9.58456e7i −1.00246 + 0.578769i −0.908974 0.416852i \(-0.863133\pi\)
−0.0934824 + 0.995621i \(0.529800\pi\)
\(224\) 1.87288e8 + 3.24393e8i 1.11338 + 1.92843i
\(225\) 0 0
\(226\) 1.98870e8i 1.14601i
\(227\) −4.86806e7 2.81058e7i −0.276226 0.159479i 0.355487 0.934681i \(-0.384315\pi\)
−0.631714 + 0.775202i \(0.717648\pi\)
\(228\) 0 0
\(229\) 2.40345e8i 1.32255i −0.750145 0.661274i \(-0.770016\pi\)
0.750145 0.661274i \(-0.229984\pi\)
\(230\) 3.99833e7 6.92531e7i 0.216686 0.375311i
\(231\) 0 0
\(232\) −7.80483e7 + 4.50612e7i −0.410351 + 0.236916i
\(233\) 8.29632e7 0.429675 0.214837 0.976650i \(-0.431078\pi\)
0.214837 + 0.976650i \(0.431078\pi\)
\(234\) 0 0
\(235\) −6.52309e7 −0.327881
\(236\) 6.48153e7 3.74211e7i 0.320986 0.185321i
\(237\) 0 0
\(238\) 3.29992e7 5.71563e7i 0.158666 0.274818i
\(239\) 1.71336e8i 0.811812i −0.913915 0.405906i \(-0.866956\pi\)
0.913915 0.405906i \(-0.133044\pi\)
\(240\) 0 0
\(241\) −3.88143e7 2.24094e7i −0.178621 0.103127i 0.408024 0.912971i \(-0.366218\pi\)
−0.586644 + 0.809845i \(0.699551\pi\)
\(242\) 2.91514e8i 1.32222i
\(243\) 0 0
\(244\) 1.67348e8 + 2.89855e8i 0.737489 + 1.27737i
\(245\) 9.65642e7 5.57514e7i 0.419503 0.242200i
\(246\) 0 0
\(247\) 2.20169e8 5.76881e7i 0.929643 0.243583i
\(248\) −6.11202e7 −0.254451
\(249\) 0 0
\(250\) −1.16408e8 2.01625e8i −0.471188 0.816121i
\(251\) 1.23172e8 2.13340e8i 0.491647 0.851558i −0.508307 0.861176i \(-0.669728\pi\)
0.999954 + 0.00961855i \(0.00306173\pi\)
\(252\) 0 0
\(253\) −6.27951e7 3.62548e7i −0.243783 0.140748i
\(254\) −4.57604e8 2.64198e8i −1.75215 1.01161i
\(255\) 0 0
\(256\) −7.20273e7 + 1.24755e8i −0.268323 + 0.464749i
\(257\) −5.62993e7 9.75132e7i −0.206889 0.358342i 0.743844 0.668353i \(-0.233000\pi\)
−0.950733 + 0.310011i \(0.899667\pi\)
\(258\) 0 0
\(259\) −1.04005e8 −0.371969
\(260\) −1.09794e8 + 2.87679e7i −0.387411 + 0.101508i
\(261\) 0 0
\(262\) 2.10219e8 1.21370e8i 0.722132 0.416923i
\(263\) −1.74722e8 3.02628e8i −0.592247 1.02580i −0.993929 0.110022i \(-0.964908\pi\)
0.401682 0.915779i \(-0.368426\pi\)
\(264\) 0 0
\(265\) 1.59920e8i 0.527888i
\(266\) 5.88907e8 + 3.40006e8i 1.91850 + 1.10764i
\(267\) 0 0
\(268\) 3.42232e8i 1.08605i
\(269\) −1.70019e8 + 2.94481e8i −0.532554 + 0.922411i 0.466724 + 0.884403i \(0.345434\pi\)
−0.999277 + 0.0380072i \(0.987899\pi\)
\(270\) 0 0
\(271\) −3.82994e8 + 2.21121e8i −1.16896 + 0.674898i −0.953434 0.301600i \(-0.902479\pi\)
−0.215524 + 0.976499i \(0.569146\pi\)
\(272\) 3.57108e7 0.107599
\(273\) 0 0
\(274\) −8.84895e8 −2.59875
\(275\) −8.58689e7 + 4.95764e7i −0.248984 + 0.143751i
\(276\) 0 0
\(277\) −5.03144e7 + 8.71472e7i −0.142237 + 0.246362i −0.928339 0.371735i \(-0.878763\pi\)
0.786102 + 0.618097i \(0.212096\pi\)
\(278\) 9.18765e8i 2.56476i
\(279\) 0 0
\(280\) −4.57207e7 2.63968e7i −0.124468 0.0718619i
\(281\) 2.13226e8i 0.573281i −0.958038 0.286640i \(-0.907462\pi\)
0.958038 0.286640i \(-0.0925385\pi\)
\(282\) 0 0
\(283\) −8.69416e7 1.50587e8i −0.228021 0.394944i 0.729200 0.684300i \(-0.239892\pi\)
−0.957222 + 0.289356i \(0.906559\pi\)
\(284\) −5.29841e7 + 3.05904e7i −0.137256 + 0.0792448i
\(285\) 0 0
\(286\) 4.81095e7 + 1.83612e8i 0.121605 + 0.464108i
\(287\) −9.70767e8 −2.42398
\(288\) 0 0
\(289\) 2.01281e8 + 3.48629e8i 0.490524 + 0.849613i
\(290\) −1.80445e8 + 3.12540e8i −0.434462 + 0.752510i
\(291\) 0 0
\(292\) −6.69022e7 3.86260e7i −0.157254 0.0907904i
\(293\) 1.13850e8 + 6.57312e7i 0.264421 + 0.152663i 0.626349 0.779542i \(-0.284548\pi\)
−0.361929 + 0.932206i \(0.617882\pi\)
\(294\) 0 0
\(295\) 2.33293e7 4.04076e7i 0.0529085 0.0916402i
\(296\) 1.45001e7 + 2.51148e7i 0.0324974 + 0.0562872i
\(297\) 0 0
\(298\) −7.58996e8 −1.66143
\(299\) 3.86582e8 + 1.05884e8i 0.836359 + 0.229077i
\(300\) 0 0
\(301\) 9.65566e8 5.57470e8i 2.04079 1.17825i
\(302\) −3.05836e8 5.29723e8i −0.638946 1.10669i
\(303\) 0 0
\(304\) 3.67944e8i 0.751147i
\(305\) 1.80703e8 + 1.04329e8i 0.364684 + 0.210550i
\(306\) 0 0
\(307\) 7.71793e8i 1.52236i −0.648542 0.761179i \(-0.724621\pi\)
0.648542 0.761179i \(-0.275379\pi\)
\(308\) −1.53743e8 + 2.66291e8i −0.299825 + 0.519312i
\(309\) 0 0
\(310\) −2.11962e8 + 1.22376e8i −0.404103 + 0.233309i
\(311\) −3.88587e8 −0.732533 −0.366267 0.930510i \(-0.619364\pi\)
−0.366267 + 0.930510i \(0.619364\pi\)
\(312\) 0 0
\(313\) −5.42552e8 −1.00008 −0.500042 0.866001i \(-0.666682\pi\)
−0.500042 + 0.866001i \(0.666682\pi\)
\(314\) −9.09796e8 + 5.25271e8i −1.65840 + 0.957479i
\(315\) 0 0
\(316\) −1.45383e8 + 2.51811e8i −0.259185 + 0.448922i
\(317\) 9.56858e7i 0.168710i 0.996436 + 0.0843549i \(0.0268829\pi\)
−0.996436 + 0.0843549i \(0.973117\pi\)
\(318\) 0 0
\(319\) 2.83395e8 + 1.63618e8i 0.488793 + 0.282205i
\(320\) 2.63321e8i 0.449221i
\(321\) 0 0
\(322\) 5.98773e8 + 1.03711e9i 0.999463 + 1.73112i
\(323\) 6.93892e7 4.00619e7i 0.114573 0.0661489i
\(324\) 0 0
\(325\) 3.89707e8 3.85411e8i 0.629719 0.622777i
\(326\) 4.72295e8 0.755008
\(327\) 0 0
\(328\) 1.35341e8 + 2.34417e8i 0.211773 + 0.366802i
\(329\) 4.88435e8 8.45995e8i 0.756173 1.30973i
\(330\) 0 0
\(331\) 1.93482e8 + 1.11707e8i 0.293253 + 0.169310i 0.639408 0.768868i \(-0.279179\pi\)
−0.346155 + 0.938177i \(0.612513\pi\)
\(332\) 6.00963e8 + 3.46966e8i 0.901290 + 0.520360i
\(333\) 0 0
\(334\) 7.16425e8 1.24088e9i 1.05210 1.82229i
\(335\) 1.06678e8 + 1.84772e8i 0.155031 + 0.268522i
\(336\) 0 0
\(337\) 5.78709e8 0.823674 0.411837 0.911257i \(-0.364887\pi\)
0.411837 + 0.911257i \(0.364887\pi\)
\(338\) −5.14514e8 9.14425e8i −0.724751 1.28807i
\(339\) 0 0
\(340\) −3.46031e7 + 1.99781e7i −0.0477462 + 0.0275663i
\(341\) 1.10964e8 + 1.92196e8i 0.151546 + 0.262485i
\(342\) 0 0
\(343\) 5.04190e8i 0.674629i
\(344\) −2.69232e8 1.55441e8i −0.356592 0.205878i
\(345\) 0 0
\(346\) 1.79259e8i 0.232656i
\(347\) 2.73783e8 4.74206e8i 0.351765 0.609275i −0.634794 0.772682i \(-0.718915\pi\)
0.986559 + 0.163407i \(0.0522482\pi\)
\(348\) 0 0
\(349\) −9.74125e8 + 5.62411e8i −1.22666 + 0.708215i −0.966331 0.257304i \(-0.917166\pi\)
−0.260333 + 0.965519i \(0.583833\pi\)
\(350\) 1.63758e9 2.04157
\(351\) 0 0
\(352\) −3.79240e8 −0.463463
\(353\) 8.05864e8 4.65266e8i 0.975102 0.562976i 0.0743143 0.997235i \(-0.476323\pi\)
0.900788 + 0.434259i \(0.142990\pi\)
\(354\) 0 0
\(355\) −1.90709e7 + 3.30317e7i −0.0226241 + 0.0391861i
\(356\) 5.34622e8i 0.628018i
\(357\) 0 0
\(358\) 1.66169e9 + 9.59380e8i 1.91408 + 1.10510i
\(359\) 8.37591e8i 0.955436i 0.878513 + 0.477718i \(0.158536\pi\)
−0.878513 + 0.477718i \(0.841464\pi\)
\(360\) 0 0
\(361\) −3.41599e7 5.91667e7i −0.0382157 0.0661915i
\(362\) −1.08704e9 + 6.27600e8i −1.20438 + 0.695349i
\(363\) 0 0
\(364\) 4.49016e8 1.63935e9i 0.487985 1.78163i
\(365\) −4.81610e7 −0.0518406
\(366\) 0 0
\(367\) −2.90619e8 5.03368e8i −0.306898 0.531562i 0.670784 0.741652i \(-0.265958\pi\)
−0.977682 + 0.210090i \(0.932624\pi\)
\(368\) −3.23988e8 + 5.61163e8i −0.338892 + 0.586978i
\(369\) 0 0
\(370\) 1.00571e8 + 5.80647e7i 0.103221 + 0.0595945i
\(371\) 2.07404e9 + 1.19745e9i 2.10867 + 1.21744i
\(372\) 0 0
\(373\) −1.23831e8 + 2.14481e8i −0.123551 + 0.213997i −0.921166 0.389170i \(-0.872762\pi\)
0.797614 + 0.603168i \(0.206095\pi\)
\(374\) 3.34100e7 + 5.78678e7i 0.0330237 + 0.0571987i
\(375\) 0 0
\(376\) −2.72384e8 −0.264255
\(377\) −1.74465e9 4.77857e8i −1.67692 0.459307i
\(378\) 0 0
\(379\) −1.23128e9 + 7.10878e8i −1.16177 + 0.670746i −0.951726 0.306947i \(-0.900692\pi\)
−0.210039 + 0.977693i \(0.567359\pi\)
\(380\) −2.05843e8 3.56531e8i −0.192440 0.333315i
\(381\) 0 0
\(382\) 2.34496e8i 0.215236i
\(383\) −9.66671e8 5.58108e8i −0.879190 0.507601i −0.00879891 0.999961i \(-0.502801\pi\)
−0.870391 + 0.492361i \(0.836134\pi\)
\(384\) 0 0
\(385\) 1.91695e8i 0.171198i
\(386\) 5.01948e8 8.69399e8i 0.444225 0.769421i
\(387\) 0 0
\(388\) 6.39063e8 3.68963e8i 0.555434 0.320680i
\(389\) −2.16836e9 −1.86770 −0.933851 0.357661i \(-0.883574\pi\)
−0.933851 + 0.357661i \(0.883574\pi\)
\(390\) 0 0
\(391\) 1.41103e8 0.119377
\(392\) 4.03222e8 2.32800e8i 0.338098 0.195201i
\(393\) 0 0
\(394\) 3.80163e8 6.58462e8i 0.313136 0.542368i
\(395\) 1.81272e8i 0.147993i
\(396\) 0 0
\(397\) 2.54448e8 + 1.46906e8i 0.204095 + 0.117834i 0.598564 0.801075i \(-0.295738\pi\)
−0.394469 + 0.918909i \(0.629072\pi\)
\(398\) 2.12762e9i 1.69162i
\(399\) 0 0
\(400\) 4.43035e8 + 7.67359e8i 0.346121 + 0.599500i
\(401\) 4.32014e8 2.49424e8i 0.334574 0.193167i −0.323296 0.946298i \(-0.604791\pi\)
0.657870 + 0.753131i \(0.271458\pi\)
\(402\) 0 0
\(403\) −8.62647e8 8.72263e8i −0.656547 0.663865i
\(404\) −2.11851e8 −0.159844
\(405\) 0 0
\(406\) −2.70227e9 4.68047e9i −2.00395 3.47095i
\(407\) 5.26501e7 9.11926e7i 0.0387096 0.0670469i
\(408\) 0 0
\(409\) −7.68986e7 4.43974e7i −0.0555760 0.0320868i 0.471955 0.881623i \(-0.343549\pi\)
−0.527531 + 0.849536i \(0.676882\pi\)
\(410\) 9.38711e8 + 5.41965e8i 0.672649 + 0.388354i
\(411\) 0 0
\(412\) −4.95780e8 + 8.58716e8i −0.349260 + 0.604936i
\(413\) 3.49370e8 + 6.05127e8i 0.244040 + 0.422690i
\(414\) 0 0
\(415\) 4.32616e8 0.297121
\(416\) 2.02792e9 5.31350e8i 1.38110 0.361872i
\(417\) 0 0
\(418\) −5.96238e8 + 3.44238e8i −0.399303 + 0.230538i
\(419\) 7.78083e7 + 1.34768e8i 0.0516746 + 0.0895030i 0.890706 0.454580i \(-0.150211\pi\)
−0.839031 + 0.544083i \(0.816877\pi\)
\(420\) 0 0
\(421\) 2.18824e9i 1.42925i 0.699509 + 0.714624i \(0.253402\pi\)
−0.699509 + 0.714624i \(0.746598\pi\)
\(422\) −9.58732e8 5.53524e8i −0.621017 0.358545i
\(423\) 0 0
\(424\) 6.67775e8i 0.425451i
\(425\) 9.64756e7 1.67101e8i 0.0609616 0.105589i
\(426\) 0 0
\(427\) −2.70614e9 + 1.56239e9i −1.68210 + 0.971162i
\(428\) 1.00153e9 0.617462
\(429\) 0 0
\(430\) −1.24491e9 −0.755089
\(431\) 8.28504e7 4.78337e7i 0.0498453 0.0287782i −0.474870 0.880056i \(-0.657505\pi\)
0.524716 + 0.851278i \(0.324172\pi\)
\(432\) 0 0
\(433\) 4.81515e8 8.34009e8i 0.285038 0.493700i −0.687580 0.726108i \(-0.741327\pi\)
0.972618 + 0.232408i \(0.0746605\pi\)
\(434\) 3.66531e9i 2.15227i
\(435\) 0 0
\(436\) 1.63233e9 + 9.42428e8i 0.943205 + 0.544560i
\(437\) 1.45385e9i 0.833365i
\(438\) 0 0
\(439\) 1.02158e9 + 1.76942e9i 0.576296 + 0.998174i 0.995900 + 0.0904662i \(0.0288357\pi\)
−0.419604 + 0.907707i \(0.637831\pi\)
\(440\) 4.62898e7 2.67254e7i 0.0259061 0.0149569i
\(441\) 0 0
\(442\) −2.59732e8 2.62627e8i −0.143070 0.144665i
\(443\) −9.64971e8 −0.527353 −0.263676 0.964611i \(-0.584935\pi\)
−0.263676 + 0.964611i \(0.584935\pi\)
\(444\) 0 0
\(445\) 1.66649e8 + 2.88644e8i 0.0896483 + 0.155275i
\(446\) −1.60266e9 + 2.77589e9i −0.855402 + 1.48160i
\(447\) 0 0
\(448\) 3.41507e9 + 1.97169e9i 1.79443 + 1.03601i
\(449\) 1.74162e9 + 1.00552e9i 0.908010 + 0.524240i 0.879790 0.475362i \(-0.157683\pi\)
0.0282196 + 0.999602i \(0.491016\pi\)
\(450\) 0 0
\(451\) 4.91426e8 8.51175e8i 0.252255 0.436919i
\(452\) 9.01515e8 + 1.56147e9i 0.459186 + 0.795333i
\(453\) 0 0
\(454\) −9.39930e8 −0.471411
\(455\) −2.68582e8 1.02506e9i −0.133671 0.510161i
\(456\) 0 0
\(457\) 2.67986e9 1.54722e9i 1.31343 0.758307i 0.330764 0.943713i \(-0.392693\pi\)
0.982662 + 0.185406i \(0.0593601\pi\)
\(458\) −2.00944e9 3.48046e9i −0.977341 1.69280i
\(459\) 0 0
\(460\) 7.25009e8i 0.347289i
\(461\) 2.17221e9 + 1.25413e9i 1.03264 + 0.596194i 0.917740 0.397183i \(-0.130012\pi\)
0.114899 + 0.993377i \(0.463345\pi\)
\(462\) 0 0
\(463\) 8.14250e8i 0.381263i −0.981662 0.190631i \(-0.938947\pi\)
0.981662 0.190631i \(-0.0610535\pi\)
\(464\) 1.46216e9 2.53254e9i 0.679488 1.17691i
\(465\) 0 0
\(466\) 1.20140e9 6.93626e8i 0.549965 0.317523i
\(467\) 2.48449e9 1.12883 0.564413 0.825492i \(-0.309102\pi\)
0.564413 + 0.825492i \(0.309102\pi\)
\(468\) 0 0
\(469\) −3.19514e9 −1.43016
\(470\) −9.44613e8 + 5.45373e8i −0.419673 + 0.242299i
\(471\) 0 0
\(472\) 9.74160e7 1.68729e8i 0.0426416 0.0738574i
\(473\) 1.12882e9i 0.490468i
\(474\) 0 0
\(475\) 1.72171e9 + 9.94032e8i 0.737112 + 0.425572i
\(476\) 5.98367e8i 0.254298i
\(477\) 0 0
\(478\) −1.43248e9 2.48113e9i −0.599916 1.03909i
\(479\) −3.84575e9 + 2.22034e9i −1.59884 + 0.923094i −0.607135 + 0.794599i \(0.707681\pi\)
−0.991710 + 0.128495i \(0.958985\pi\)
\(480\) 0 0
\(481\) −1.53768e8 + 5.61404e8i −0.0630024 + 0.230021i
\(482\) −7.49430e8 −0.304836
\(483\) 0 0
\(484\) 1.32149e9 + 2.28889e9i 0.529791 + 0.917626i
\(485\) 2.30021e8 3.98409e8i 0.0915529 0.158574i
\(486\) 0 0
\(487\) 3.19931e9 + 1.84712e9i 1.25518 + 0.724677i 0.972133 0.234430i \(-0.0753224\pi\)
0.283044 + 0.959107i \(0.408656\pi\)
\(488\) 7.54560e8 + 4.35645e8i 0.293917 + 0.169693i
\(489\) 0 0
\(490\) 9.32235e8 1.61468e9i 0.357964 0.620012i
\(491\) 1.54685e9 + 2.67922e9i 0.589743 + 1.02147i 0.994266 + 0.106937i \(0.0341044\pi\)
−0.404523 + 0.914528i \(0.632562\pi\)
\(492\) 0 0
\(493\) −6.36802e8 −0.239354
\(494\) 2.70597e9 2.67614e9i 1.00990 0.998767i
\(495\) 0 0
\(496\) 1.71754e9 9.91624e8i 0.632007 0.364889i
\(497\) −2.85597e8 4.94669e8i −0.104353 0.180745i
\(498\) 0 0
\(499\) 2.44557e9i 0.881107i 0.897726 + 0.440554i \(0.145218\pi\)
−0.897726 + 0.440554i \(0.854782\pi\)
\(500\) −1.82801e9 1.05540e9i −0.654010 0.377593i
\(501\) 0 0
\(502\) 4.11919e9i 1.45328i
\(503\) 1.72252e9 2.98349e9i 0.603498 1.04529i −0.388789 0.921327i \(-0.627107\pi\)
0.992287 0.123962i \(-0.0395602\pi\)
\(504\) 0 0
\(505\) −1.14379e8 + 6.60369e7i −0.0395209 + 0.0228174i
\(506\) −1.21245e9 −0.416043
\(507\) 0 0
\(508\) −4.79064e9 −1.62133
\(509\) −1.62877e9 + 9.40371e8i −0.547454 + 0.316073i −0.748095 0.663592i \(-0.769031\pi\)
0.200640 + 0.979665i \(0.435698\pi\)
\(510\) 0 0
\(511\) 3.60619e8 6.24611e8i 0.119557 0.207079i
\(512\) 4.03595e9i 1.32893i
\(513\) 0 0
\(514\) −1.63055e9 9.41397e8i −0.529618 0.305775i
\(515\) 6.18165e8i 0.199425i
\(516\) 0 0
\(517\) 4.94516e8 + 8.56527e8i 0.157385 + 0.272599i
\(518\) −1.50611e9 + 8.69552e8i −0.476104 + 0.274879i
\(519\) 0 0
\(520\) −2.10082e8 + 2.07766e8i −0.0655204 + 0.0647981i
\(521\) −7.91865e8 −0.245312 −0.122656 0.992449i \(-0.539141\pi\)
−0.122656 + 0.992449i \(0.539141\pi\)
\(522\) 0 0
\(523\) −1.03050e8 1.78488e8i −0.0314986 0.0545572i 0.849846 0.527030i \(-0.176695\pi\)
−0.881345 + 0.472473i \(0.843361\pi\)
\(524\) 1.10039e9 1.90592e9i 0.334107 0.578690i
\(525\) 0 0
\(526\) −5.06033e9 2.92158e9i −1.51610 0.875322i
\(527\) −3.74013e8 2.15937e8i −0.111314 0.0642672i
\(528\) 0 0
\(529\) 4.22245e8 7.31351e8i 0.124014 0.214798i
\(530\) −1.33703e9 2.31581e9i −0.390101 0.675675i
\(531\) 0 0
\(532\) 6.16525e9 1.77525
\(533\) −1.43524e9 + 5.24004e9i −0.410562 + 1.49896i
\(534\) 0 0
\(535\) 5.40729e8 3.12190e8i 0.152666 0.0881416i
\(536\) 4.45455e8 + 7.71551e8i 0.124947 + 0.216415i
\(537\) 0 0
\(538\) 5.68587e9i 1.57420i
\(539\) −1.46411e9 8.45303e8i −0.402729 0.232515i
\(540\) 0 0
\(541\) 5.13810e9i 1.39512i 0.716525 + 0.697561i \(0.245731\pi\)
−0.716525 + 0.697561i \(0.754269\pi\)
\(542\) −3.69744e9 + 6.40415e9i −0.997478 + 1.72768i
\(543\) 0 0
\(544\) 6.39127e8 3.69000e8i 0.170212 0.0982722i
\(545\) 1.17507e9 0.310939
\(546\) 0 0
\(547\) 3.45399e8 0.0902331 0.0451165 0.998982i \(-0.485634\pi\)
0.0451165 + 0.998982i \(0.485634\pi\)
\(548\) −6.94795e9 + 4.01140e9i −1.80354 + 1.04127i
\(549\) 0 0
\(550\) −8.28982e8 + 1.43584e9i −0.212459 + 0.367990i
\(551\) 6.56126e9i 1.67092i
\(552\) 0 0
\(553\) −2.35095e9 1.35732e9i −0.591162 0.341307i
\(554\) 1.68265e9i 0.420444i
\(555\) 0 0
\(556\) 4.16494e9 + 7.21389e9i 1.02765 + 1.77995i
\(557\) 3.11237e9 1.79693e9i 0.763128 0.440592i −0.0672895 0.997733i \(-0.521435\pi\)
0.830418 + 0.557141i \(0.188102\pi\)
\(558\) 0 0
\(559\) −1.58158e9 6.03616e9i −0.382957 1.46157i
\(560\) 1.71307e9 0.412207
\(561\) 0 0
\(562\) −1.78271e9 3.08774e9i −0.423645 0.733775i
\(563\) −6.38718e8 + 1.10629e9i −0.150845 + 0.261270i −0.931538 0.363644i \(-0.881533\pi\)
0.780694 + 0.624914i \(0.214866\pi\)
\(564\) 0 0
\(565\) 9.73462e8 + 5.62028e8i 0.227065 + 0.131096i
\(566\) −2.51801e9 1.45378e9i −0.583715 0.337008i
\(567\) 0 0
\(568\) −7.96339e7 + 1.37930e8i −0.0182339 + 0.0315820i
\(569\) 2.39425e9 + 4.14696e9i 0.544849 + 0.943705i 0.998616 + 0.0525855i \(0.0167462\pi\)
−0.453768 + 0.891120i \(0.649920\pi\)
\(570\) 0 0
\(571\) −1.93902e9 −0.435869 −0.217935 0.975963i \(-0.569932\pi\)
−0.217935 + 0.975963i \(0.569932\pi\)
\(572\) 1.21009e9 + 1.22358e9i 0.270354 + 0.273367i
\(573\) 0 0
\(574\) −1.40577e10 + 8.11624e9i −3.10259 + 1.79128i
\(575\) 1.75056e9 + 3.03206e9i 0.384007 + 0.665119i
\(576\) 0 0
\(577\) 6.58473e9i 1.42699i −0.700658 0.713497i \(-0.747110\pi\)
0.700658 0.713497i \(-0.252890\pi\)
\(578\) 5.82953e9 + 3.36568e9i 1.25570 + 0.724980i
\(579\) 0 0
\(580\) 3.27197e9i 0.696324i
\(581\) −3.23934e9 + 5.61070e9i −0.685235 + 1.18686i
\(582\) 0 0
\(583\) −2.09986e9 + 1.21235e9i −0.438884 + 0.253390i
\(584\) −2.01105e8 −0.0417809
\(585\) 0 0
\(586\) 2.19822e9 0.451263
\(587\) 1.06499e9 6.14875e8i 0.217327 0.125474i −0.387385 0.921918i \(-0.626622\pi\)
0.604712 + 0.796444i \(0.293288\pi\)
\(588\) 0 0
\(589\) 2.22489e9 3.85363e9i 0.448648 0.777081i
\(590\) 7.80193e8i 0.156394i
\(591\) 0 0
\(592\) −8.14934e8 4.70502e8i −0.161435 0.0932043i
\(593\) 8.85789e9i 1.74437i −0.489174 0.872186i \(-0.662702\pi\)
0.489174 0.872186i \(-0.337298\pi\)
\(594\) 0 0
\(595\) −1.86519e8 3.23060e8i −0.0363006 0.0628745i
\(596\) −5.95943e9 + 3.44068e9i −1.15304 + 0.665706i
\(597\) 0 0
\(598\) 6.48338e9 1.69876e9i 1.23979 0.324846i
\(599\) −3.97030e9 −0.754795 −0.377398 0.926051i \(-0.623181\pi\)
−0.377398 + 0.926051i \(0.623181\pi\)
\(600\) 0 0
\(601\) −2.97559e8 5.15388e8i −0.0559130 0.0968441i 0.836714 0.547640i \(-0.184474\pi\)
−0.892627 + 0.450796i \(0.851140\pi\)
\(602\) 9.32162e9 1.61455e10i 1.74142 3.01623i
\(603\) 0 0
\(604\) −4.80268e9 2.77283e9i −0.886858 0.512028i
\(605\) 1.42695e9 + 8.23852e8i 0.261979 + 0.151253i
\(606\) 0 0
\(607\) 9.78279e7 1.69443e8i 0.0177542 0.0307512i −0.857012 0.515297i \(-0.827682\pi\)
0.874766 + 0.484546i \(0.161015\pi\)
\(608\) 3.80198e9 + 6.58522e9i 0.686036 + 1.18825i
\(609\) 0 0
\(610\) 3.48904e9 0.622373
\(611\) −3.84441e9 3.88726e9i −0.681844 0.689445i
\(612\) 0 0
\(613\) −3.21156e9 + 1.85420e9i −0.563125 + 0.325120i −0.754399 0.656417i \(-0.772071\pi\)
0.191274 + 0.981537i \(0.438738\pi\)
\(614\) −6.45269e9 1.11764e10i −1.12500 1.94855i
\(615\) 0 0
\(616\) 8.00458e8i 0.137977i
\(617\) 1.48566e8 + 8.57749e7i 0.0254638 + 0.0147015i 0.512678 0.858581i \(-0.328654\pi\)
−0.487214 + 0.873283i \(0.661987\pi\)
\(618\) 0 0
\(619\) 3.49467e9i 0.592228i 0.955153 + 0.296114i \(0.0956908\pi\)
−0.955153 + 0.296114i \(0.904309\pi\)
\(620\) −1.10951e9 + 1.92173e9i −0.186965 + 0.323833i
\(621\) 0 0
\(622\) −5.62716e9 + 3.24884e9i −0.937612 + 0.541330i
\(623\) −4.99133e9 −0.827004
\(624\) 0 0
\(625\) 4.08972e9 0.670060
\(626\) −7.85673e9 + 4.53609e9i −1.28006 + 0.739046i
\(627\) 0 0
\(628\) −4.76231e9 + 8.24857e9i −0.767289 + 1.32898i
\(629\) 2.04914e8i 0.0328317i
\(630\) 0 0
\(631\) 2.66315e9 + 1.53757e9i 0.421982 + 0.243631i 0.695925 0.718115i \(-0.254995\pi\)
−0.273943 + 0.961746i \(0.588328\pi\)
\(632\) 7.56933e8i 0.119275i
\(633\) 0 0
\(634\) 7.99996e8 + 1.38563e9i 0.124674 + 0.215941i
\(635\) −2.58648e9 + 1.49331e9i −0.400868 + 0.231441i
\(636\) 0 0
\(637\) 9.01340e9 + 2.46876e9i 1.38166 + 0.378434i
\(638\) 5.47182e9 0.834180
\(639\) 0 0
\(640\) −6.00733e8 1.04050e9i −0.0905840 0.156896i
\(641\) 6.26097e8 1.08443e9i 0.0938942 0.162629i −0.815252 0.579106i \(-0.803402\pi\)
0.909147 + 0.416476i \(0.136735\pi\)
\(642\) 0 0
\(643\) −9.07510e9 5.23951e9i −1.34621 0.777235i −0.358500 0.933530i \(-0.616712\pi\)
−0.987711 + 0.156294i \(0.950045\pi\)
\(644\) 9.40281e9 + 5.42871e9i 1.38726 + 0.800933i
\(645\) 0 0
\(646\) 6.69887e8 1.16028e9i 0.0977660 0.169336i
\(647\) 4.17465e9 + 7.23071e9i 0.605976 + 1.04958i 0.991896 + 0.127049i \(0.0405506\pi\)
−0.385920 + 0.922532i \(0.626116\pi\)
\(648\) 0 0
\(649\) −7.07439e8 −0.101586
\(650\) 2.42109e9 8.83938e9i 0.345792 1.26248i
\(651\) 0 0
\(652\) 3.70833e9 2.14101e9i 0.523977 0.302518i
\(653\) 1.23911e9 + 2.14620e9i 0.174146 + 0.301629i 0.939865 0.341545i \(-0.110950\pi\)
−0.765720 + 0.643175i \(0.777617\pi\)
\(654\) 0 0
\(655\) 1.37202e9i 0.190772i
\(656\) −7.60645e9 4.39158e9i −1.05201 0.607376i
\(657\) 0 0
\(658\) 1.63346e10i 2.23520i
\(659\) −3.03154e9 + 5.25078e9i −0.412633 + 0.714701i −0.995177 0.0980979i \(-0.968724\pi\)
0.582544 + 0.812799i \(0.302057\pi\)
\(660\) 0 0
\(661\) 4.58581e9 2.64762e9i 0.617606 0.356575i −0.158331 0.987386i \(-0.550611\pi\)
0.775936 + 0.630811i \(0.217278\pi\)
\(662\) 3.73577e9 0.500469
\(663\) 0 0
\(664\) 1.80647e9 0.239465
\(665\) 3.32864e9 1.92179e9i 0.438926 0.253414i
\(666\) 0 0
\(667\) 5.77741e9 1.00068e10i 0.753864 1.30573i
\(668\) 1.29908e10i 1.68623i
\(669\) 0 0
\(670\) 3.08963e9 + 1.78380e9i 0.396867 + 0.229131i
\(671\) 3.16368e9i 0.404263i
\(672\) 0 0
\(673\) 2.31409e9 + 4.00813e9i 0.292636 + 0.506861i 0.974432 0.224682i \(-0.0721342\pi\)
−0.681796 + 0.731542i \(0.738801\pi\)
\(674\) 8.38033e9 4.83838e9i 1.05427 0.608682i
\(675\) 0 0
\(676\) −8.18510e9 4.84742e9i −1.01908 0.603528i
\(677\) 1.40888e10 1.74507 0.872536 0.488550i \(-0.162474\pi\)
0.872536 + 0.488550i \(0.162474\pi\)
\(678\) 0 0
\(679\) 3.44470e9 + 5.96640e9i 0.422287 + 0.731422i
\(680\) −5.20077e7 + 9.00799e7i −0.00634287 + 0.0109862i
\(681\) 0 0
\(682\) 3.21377e9 + 1.85547e9i 0.387944 + 0.223980i
\(683\) −1.04457e10 6.03082e9i −1.25448 0.724276i −0.282486 0.959271i \(-0.591159\pi\)
−0.971996 + 0.234996i \(0.924492\pi\)
\(684\) 0 0
\(685\) −2.50081e9 + 4.33154e9i −0.297279 + 0.514903i
\(686\) 4.21536e9 + 7.30121e9i 0.498540 + 0.863496i
\(687\) 0 0
\(688\) 1.00876e10 1.18094
\(689\) 9.53000e9 9.42494e9i 1.11001 1.09777i
\(690\) 0 0
\(691\) 1.79208e9 1.03466e9i 0.206626 0.119296i −0.393116 0.919489i \(-0.628603\pi\)
0.599742 + 0.800193i \(0.295270\pi\)
\(692\) −8.12614e8 1.40749e9i −0.0932209 0.161463i
\(693\) 0 0
\(694\) 9.15601e9i 1.03980i
\(695\) 4.49733e9 + 2.59654e9i 0.508169 + 0.293391i
\(696\) 0 0
\(697\) 1.91263e9i 0.213952i
\(698\) −9.40425e9 + 1.62886e10i −1.04672 + 1.81297i
\(699\) 0 0
\(700\) 1.28578e10 7.42347e9i 1.41685 0.818019i
\(701\) 1.66276e10 1.82312 0.911561 0.411166i \(-0.134878\pi\)
0.911561 + 0.411166i \(0.134878\pi\)
\(702\) 0 0
\(703\) −2.11132e9 −0.229198
\(704\) −3.45759e9 + 1.99624e9i −0.373481 + 0.215629i
\(705\) 0 0
\(706\) 7.77985e9 1.34751e10i 0.832060 1.44117i
\(707\) 1.97788e9i 0.210490i
\(708\) 0 0
\(709\) −5.62006e8 3.24474e8i −0.0592214 0.0341915i 0.470097 0.882615i \(-0.344219\pi\)
−0.529318 + 0.848423i \(0.677552\pi\)
\(710\) 6.37779e8i 0.0668754i
\(711\) 0 0
\(712\) 6.95873e8 + 1.20529e9i 0.0722520 + 0.125144i
\(713\) 6.78650e9 3.91819e9i 0.701185 0.404829i
\(714\) 0 0
\(715\) 1.03474e9 + 2.83413e8i 0.105867 + 0.0289967i
\(716\) 1.73962e10 1.77117
\(717\) 0 0
\(718\) 7.00281e9 + 1.21292e10i 0.706052 + 1.22292i
\(719\) −3.15700e9 + 5.46809e9i −0.316755 + 0.548636i −0.979809 0.199936i \(-0.935927\pi\)
0.663054 + 0.748572i \(0.269260\pi\)
\(720\) 0 0
\(721\) −8.01712e9 4.62869e9i −0.796609 0.459922i
\(722\) −9.89345e8 5.71198e8i −0.0978290 0.0564816i
\(723\) 0 0
\(724\) −5.69007e9 + 9.85549e9i −0.557228 + 0.965147i
\(725\) −7.90029e9 1.36837e10i −0.769945 1.33358i
\(726\) 0 0
\(727\) −6.79560e9 −0.655930 −0.327965 0.944690i \(-0.606363\pi\)
−0.327965 + 0.944690i \(0.606363\pi\)
\(728\) −1.12152e9 4.28031e9i −0.107732 0.411164i
\(729\) 0 0
\(730\) −6.97422e8 + 4.02657e8i −0.0663538 + 0.0383094i
\(731\) −1.09834e9 1.90238e9i −0.103998 0.180130i
\(732\) 0 0
\(733\) 2.19137e9i 0.205519i 0.994706 + 0.102760i \(0.0327672\pi\)
−0.994706 + 0.102760i \(0.967233\pi\)
\(734\) −8.41696e9 4.85953e9i −0.785632 0.453585i
\(735\) 0 0
\(736\) 1.33911e10i 1.23806i
\(737\) 1.61746e9 2.80152e9i 0.148832 0.257785i
\(738\) 0 0
\(739\) 1.15158e10 6.64866e9i 1.04964 0.606008i 0.127089 0.991891i \(-0.459437\pi\)
0.922548 + 0.385883i \(0.126103\pi\)
\(740\) 1.05287e9 0.0955137
\(741\) 0 0
\(742\) 4.00457e10 3.59867
\(743\) −6.00811e9 + 3.46878e9i −0.537374 + 0.310253i −0.744014 0.668164i \(-0.767080\pi\)
0.206640 + 0.978417i \(0.433747\pi\)
\(744\) 0 0
\(745\) −2.14501e9 + 3.71527e9i −0.190056 + 0.329187i
\(746\) 4.14122e9i 0.365210i
\(747\) 0 0
\(748\) 5.24653e8 + 3.02908e8i 0.0458370 + 0.0264640i
\(749\) 9.35046e9i 0.813105i
\(750\) 0 0
\(751\) −1.07805e10 1.86724e10i −0.928753 1.60865i −0.785412 0.618973i \(-0.787549\pi\)
−0.143340 0.989673i \(-0.545784\pi\)
\(752\) 7.65427e9 4.41920e9i 0.656359 0.378949i
\(753\) 0 0
\(754\) −2.92596e10 + 7.66653e9i −2.48581 + 0.651327i
\(755\) −3.45731e9 −0.292364
\(756\) 0 0
\(757\) 1.81786e9 + 3.14862e9i 0.152309 + 0.263806i 0.932076 0.362263i \(-0.117996\pi\)
−0.779767 + 0.626070i \(0.784663\pi\)
\(758\) −1.18868e10 + 2.05886e10i −0.991341 + 1.71705i
\(759\) 0 0
\(760\) −9.28134e8 5.35859e8i −0.0766943 0.0442795i
\(761\) −7.31336e9 4.22237e9i −0.601548 0.347304i 0.168102 0.985770i \(-0.446236\pi\)
−0.769650 + 0.638466i \(0.779569\pi\)
\(762\) 0 0
\(763\) −8.79867e9 + 1.52397e10i −0.717103 + 1.24206i
\(764\) 1.06302e9 + 1.84120e9i 0.0862410 + 0.149374i
\(765\) 0 0
\(766\) −1.86646e10 −1.50044
\(767\) 3.78291e9 9.91188e8i 0.302720 0.0793181i
\(768\) 0 0
\(769\) −8.00338e9 + 4.62075e9i −0.634645 + 0.366413i −0.782549 0.622589i \(-0.786081\pi\)
0.147903 + 0.989002i \(0.452748\pi\)
\(770\) 1.60270e9 + 2.77595e9i 0.126512 + 0.219126i
\(771\) 0 0
\(772\) 9.10172e9i 0.711972i
\(773\) −1.01460e10 5.85780e9i −0.790072 0.456149i 0.0499156 0.998753i \(-0.484105\pi\)
−0.839988 + 0.542605i \(0.817438\pi\)
\(774\) 0 0
\(775\) 1.07158e10i 0.826931i
\(776\) 9.60497e8 1.66363e9i 0.0737870 0.127803i
\(777\) 0 0
\(778\) −3.14002e10 + 1.81289e10i −2.39058 + 1.38020i
\(779\) −1.97067e10 −1.49359
\(780\) 0 0
\(781\) 5.78305e8 0.0434389
\(782\) 2.04333e9 1.17972e9i 0.152797 0.0882174i
\(783\) 0 0
\(784\) −7.55397e9 + 1.30839e10i −0.559847 + 0.969683i
\(785\) 5.93790e9i 0.438116i
\(786\) 0 0
\(787\) −1.12399e10 6.48938e9i −0.821962 0.474560i 0.0291303 0.999576i \(-0.490726\pi\)
−0.851093 + 0.525015i \(0.824060\pi\)
\(788\) 6.89342e9i 0.501872i
\(789\) 0 0
\(790\) 1.51555e9 + 2.62501e9i 0.109364 + 0.189424i
\(791\) −1.45782e10 + 8.41671e9i −1.04733 + 0.604678i
\(792\) 0 0
\(793\) 4.43261e9 + 1.69172e10i 0.315648 + 1.20468i
\(794\) 4.91291e9 0.348311
\(795\) 0 0
\(796\) −9.64493e9 1.67055e10i −0.677802 1.17399i
\(797\) 3.11864e9 5.40164e9i 0.218203 0.377939i −0.736056 0.676921i \(-0.763314\pi\)
0.954259 + 0.298982i \(0.0966471\pi\)
\(798\) 0 0
\(799\) −1.66680e9 9.62327e8i −0.115603 0.0667435i
\(800\) 1.58583e10 + 9.15578e9i 1.09507 + 0.632238i
\(801\) 0 0
\(802\) 4.17069e9 7.22384e9i 0.285494 0.494490i
\(803\) 3.65109e8 + 6.32387e8i 0.0248839 + 0.0431001i
\(804\) 0 0
\(805\) 6.76881e9 0.457327
\(806\) −1.97847e10 5.41901e9i −1.33094 0.364542i
\(807\) 0 0
\(808\) −4.77612e8 + 2.75749e8i −0.0318519 + 0.0183897i
\(809\) 6.80989e9 + 1.17951e10i 0.452189 + 0.783215i 0.998522 0.0543535i \(-0.0173098\pi\)
−0.546332 + 0.837568i \(0.683976\pi\)
\(810\) 0 0
\(811\) 3.36478e9i 0.221505i 0.993848 + 0.110752i \(0.0353261\pi\)
−0.993848 + 0.110752i \(0.964674\pi\)
\(812\) −4.24350e10 2.44998e10i −2.78149 1.60590i
\(813\) 0 0
\(814\) 1.76075e9i 0.114423i
\(815\) 1.33476e9 2.31187e9i 0.0863677 0.149593i
\(816\) 0 0
\(817\) 1.96011e10 1.13167e10i 1.25749 0.726010i
\(818\) −1.48477e9 −0.0948465
\(819\) 0 0
\(820\) 9.82734e9 0.622426
\(821\) −1.79276e10 + 1.03505e10i −1.13063 + 0.652771i −0.944094 0.329676i \(-0.893060\pi\)
−0.186539 + 0.982448i \(0.559727\pi\)
\(822\) 0 0
\(823\) −3.94697e9 + 6.83635e9i −0.246811 + 0.427489i −0.962639 0.270787i \(-0.912716\pi\)
0.715828 + 0.698276i \(0.246049\pi\)
\(824\) 2.58126e9i 0.160726i
\(825\) 0 0
\(826\) 1.01185e10 + 5.84193e9i 0.624722 + 0.360683i
\(827\) 2.15815e9i 0.132682i 0.997797 + 0.0663411i \(0.0211325\pi\)
−0.997797 + 0.0663411i \(0.978867\pi\)
\(828\) 0 0
\(829\) 3.47257e9 + 6.01468e9i 0.211695 + 0.366667i 0.952245 0.305335i \(-0.0987683\pi\)
−0.740550 + 0.672001i \(0.765435\pi\)
\(830\) 6.26474e9 3.61695e9i 0.380303 0.219568i
\(831\) 0 0
\(832\) 1.56919e10 1.55189e10i 0.944592 0.934179i
\(833\) 3.28992e9 0.197209
\(834\) 0 0
\(835\) −4.04940e9 7.01376e9i −0.240707 0.416916i
\(836\) −3.12100e9 + 5.40573e9i −0.184745 + 0.319987i
\(837\) 0 0
\(838\) 2.25350e9 + 1.30106e9i 0.132283 + 0.0763734i
\(839\) 8.97596e9 + 5.18227e9i 0.524704 + 0.302938i 0.738857 0.673862i \(-0.235366\pi\)
−0.214153 + 0.976800i \(0.568699\pi\)
\(840\) 0 0
\(841\) −1.74486e10 + 3.02218e10i −1.01152 + 1.75200i
\(842\) 1.82951e10 + 3.16881e10i 1.05619 + 1.82938i
\(843\) 0 0
\(844\) −1.00369e10 −0.574649
\(845\) −5.93017e9 6.57374e7i −0.338118 0.00374812i
\(846\) 0 0
\(847\) −2.13695e10 + 1.23377e10i −1.20837 + 0.697655i
\(848\) 1.08341e10 + 1.87652e10i 0.610108 + 1.05674i
\(849\) 0 0
\(850\) 3.22640e9i 0.180199i
\(851\) −3.22004e9 1.85909e9i −0.179105 0.103406i
\(852\) 0 0
\(853\) 1.25745e10i 0.693696i −0.937921 0.346848i \(-0.887252\pi\)
0.937921 0.346848i \(-0.112748\pi\)
\(854\) −2.61252e10 + 4.52501e10i −1.43535 + 2.48609i
\(855\) 0 0
\(856\) 2.25791e9 1.30361e9i 0.123041 0.0710377i
\(857\) 2.63377e10 1.42937 0.714687 0.699445i \(-0.246569\pi\)
0.714687 + 0.699445i \(0.246569\pi\)
\(858\) 0 0
\(859\) −6.43919e9 −0.346621 −0.173311 0.984867i \(-0.555446\pi\)
−0.173311 + 0.984867i \(0.555446\pi\)
\(860\) −9.77469e9 + 5.64342e9i −0.524033 + 0.302550i
\(861\) 0 0
\(862\) 7.99842e8 1.38537e9i 0.0425332 0.0736697i
\(863\) 3.08603e10i 1.63442i −0.576343 0.817208i \(-0.695521\pi\)
0.576343 0.817208i \(-0.304479\pi\)
\(864\) 0 0
\(865\) −8.77466e8 5.06605e8i −0.0460971 0.0266142i
\(866\) 1.61031e10i 0.842554i
\(867\) 0 0
\(868\) −1.66156e10 2.87790e10i −0.862376 1.49368i
\(869\) 2.38022e9 1.37422e9i 0.123041 0.0710375i
\(870\) 0 0
\(871\) −4.72388e9 + 1.72468e10i −0.242234 + 0.884394i
\(872\) 4.90672e9 0.250601
\(873\) 0 0
\(874\) 1.21552e10 + 2.10534e10i 0.615844 + 1.06667i
\(875\) 9.85344e9 1.70667e10i 0.497233 0.861232i
\(876\) 0 0
\(877\) 8.49967e9 + 4.90729e9i 0.425504 + 0.245665i 0.697429 0.716654i \(-0.254327\pi\)
−0.271925 + 0.962318i \(0.587660\pi\)
\(878\) 2.95871e10 + 1.70821e10i 1.47527 + 0.851747i
\(879\) 0 0
\(880\) −8.67196e8 + 1.50203e9i −0.0428971 + 0.0742999i
\(881\) 8.85422e9 + 1.53360e10i 0.436249 + 0.755606i 0.997397 0.0721101i \(-0.0229733\pi\)
−0.561147 + 0.827716i \(0.689640\pi\)
\(882\) 0 0
\(883\) 3.61270e10 1.76591 0.882956 0.469456i \(-0.155550\pi\)
0.882956 + 0.469456i \(0.155550\pi\)
\(884\) −3.22989e9 8.84661e8i −0.157255 0.0430719i
\(885\) 0 0
\(886\) −1.39738e10 + 8.06778e9i −0.674989 + 0.389705i
\(887\) −8.80542e9 1.52514e10i −0.423660 0.733800i 0.572634 0.819811i \(-0.305921\pi\)
−0.996294 + 0.0860106i \(0.972588\pi\)
\(888\) 0 0
\(889\) 4.47263e10i 2.13504i
\(890\) 4.82651e9 + 2.78658e9i 0.229492 + 0.132497i
\(891\) 0 0
\(892\) 2.90607e10i 1.37098i
\(893\) 9.91529e9 1.71738e10i 0.465935 0.807023i
\(894\) 0 0
\(895\) 9.39228e9 5.42264e9i 0.437916 0.252831i
\(896\) 1.79927e10 0.835636
\(897\) 0 0
\(898\) 3.36273e10 1.54962
\(899\) −3.06276e10 + 1.76828e10i −1.40590 + 0.811695i
\(900\) 0 0
\(901\) 2.35924e9 4.08632e9i 0.107457 0.186121i
\(902\) 1.64346e10i 0.745651i
\(903\) 0 0
\(904\) 4.06487e9 + 2.34685e9i 0.183003 + 0.105657i
\(905\) 7.09468e9i 0.318173i
\(906\) 0 0
\(907\) 1.54413e10 + 2.67452e10i 0.687162 + 1.19020i 0.972752 + 0.231848i \(0.0744771\pi\)
−0.285590 + 0.958352i \(0.592190\pi\)
\(908\) −7.38007e9 + 4.26089e9i −0.327160 + 0.188886i
\(909\) 0 0
\(910\) −1.24595e10 1.25984e10i −0.548094 0.554204i
\(911\) −5.82328e9 −0.255184 −0.127592 0.991827i \(-0.540725\pi\)
−0.127592 + 0.991827i \(0.540725\pi\)
\(912\) 0 0
\(913\) −3.27966e9 5.68055e9i −0.142620 0.247026i
\(914\) 2.58715e10 4.48108e10i 1.12075 1.94120i
\(915\) 0 0
\(916\) −3.15552e10 1.82184e10i −1.35655 0.783206i
\(917\) 1.77940e10 + 1.02734e10i 0.762047 + 0.439968i
\(918\) 0 0
\(919\) 1.21661e10 2.10724e10i 0.517068 0.895589i −0.482735 0.875766i \(-0.660357\pi\)
0.999804 0.0198224i \(-0.00631009\pi\)
\(920\) −9.43683e8 1.63451e9i −0.0399548 0.0692037i
\(921\) 0 0
\(922\) 4.19412e10 1.76231
\(923\) −3.09239e9 + 8.10259e8i −0.129446 + 0.0339171i
\(924\) 0 0
\(925\) −4.40322e9 + 2.54220e9i −0.182926 + 0.105612i
\(926\) −6.80766e9 1.17912e10i −0.281747 0.488000i
\(927\) 0 0
\(928\) 6.04341e10i 2.48236i
\(929\) −4.03422e9 2.32916e9i −0.165084 0.0953111i 0.415182 0.909738i \(-0.363718\pi\)
−0.580266 + 0.814427i \(0.697051\pi\)
\(930\) 0 0
\(931\) 3.38975e10i 1.37671i
\(932\) 6.28869e9 1.08923e10i 0.254451 0.440722i
\(933\) 0 0
\(934\) 3.59780e10 2.07719e10i 1.44485 0.834185i
\(935\) 3.77682e8 0.0151107
\(936\) 0 0
\(937\) 4.24433e10 1.68547 0.842734 0.538331i \(-0.180945\pi\)
0.842734 + 0.538331i \(0.180945\pi\)
\(938\) −4.62691e10 + 2.67135e10i −1.83055 + 1.05687i
\(939\) 0 0
\(940\) −4.94456e9 + 8.56424e9i −0.194169 + 0.336311i
\(941\) 2.82397e10i 1.10483i −0.833569 0.552416i \(-0.813706\pi\)
0.833569 0.552416i \(-0.186294\pi\)
\(942\) 0 0
\(943\) −3.00552e10 1.73524e10i −1.16716 0.673858i
\(944\) 6.32197e9i 0.244597i
\(945\) 0 0
\(946\) 9.43767e9 + 1.63465e10i 0.362448 + 0.627778i
\(947\) 1.43781e10 8.30119e9i 0.550143 0.317625i −0.199036 0.979992i \(-0.563781\pi\)
0.749180 + 0.662367i \(0.230448\pi\)
\(948\) 0 0
\(949\) −2.83839e9 2.87002e9i −0.107805 0.109007i
\(950\) 3.32430e10 1.25796
\(951\) 0 0
\(952\) −7.78845e8 1.34900e9i −0.0292565 0.0506737i
\(953\) −2.12895e10 + 3.68745e10i −0.796783 + 1.38007i 0.124918 + 0.992167i \(0.460133\pi\)
−0.921701 + 0.387902i \(0.873200\pi\)
\(954\) 0 0
\(955\) 1.14785e9 + 6.62714e8i 0.0426457 + 0.0246215i
\(956\) −2.24949e10 1.29874e10i −0.832685 0.480751i
\(957\) 0 0
\(958\) −3.71270e10 + 6.43059e10i −1.36430 + 2.36304i
\(959\) −3.74512e10 6.48673e10i −1.37120 2.37498i
\(960\) 0 0
\(961\) 3.52794e9 0.128230
\(962\) 2.46698e9 + 9.41532e9i 0.0893414 + 0.340975i
\(963\) 0 0
\(964\) −5.88432e9 + 3.39731e9i −0.211557 + 0.122142i
\(965\) −2.83713e9 4.91405e9i −0.101633 0.176033i
\(966\) 0 0
\(967\) 2.16365e10i 0.769474i −0.923026 0.384737i \(-0.874292\pi\)
0.923026 0.384737i \(-0.125708\pi\)
\(968\) 5.95851e9 + 3.44015e9i 0.211142 + 0.121903i
\(969\) 0 0
\(970\) 7.69251e9i 0.270624i
\(971\) 2.89323e9 5.01123e9i 0.101418 0.175662i −0.810851 0.585253i \(-0.800995\pi\)
0.912269 + 0.409591i \(0.134329\pi\)
\(972\) 0 0
\(973\) −6.73502e10 + 3.88846e10i −2.34393 + 1.35327i
\(974\) 6.17726e10 2.14210
\(975\) 0 0
\(976\) −2.82719e10 −0.973377
\(977\) −9.55076e9 + 5.51413e9i −0.327647 + 0.189167i −0.654796 0.755806i \(-0.727246\pi\)
0.327149 + 0.944973i \(0.393912\pi\)
\(978\) 0 0
\(979\) 2.52673e9 4.37643e9i 0.0860637 0.149067i
\(980\) 1.69040e10i 0.573719i
\(981\) 0 0
\(982\) 4.48001e10 + 2.58653e10i 1.50969 + 0.871622i
\(983\) 1.85197e10i 0.621864i 0.950432 + 0.310932i \(0.100641\pi\)
−0.950432 + 0.310932i \(0.899359\pi\)
\(984\) 0 0
\(985\) −2.14877e9 3.72178e9i −0.0716412 0.124086i
\(986\) −9.22157e9 + 5.32408e9i −0.306363 + 0.176879i
\(987\) 0 0
\(988\) 9.11507e9 3.32790e10i 0.300684 1.09779i
\(989\) 3.98590e10 1.31020
\(990\) 0 0
\(991\) 7.70120e9 + 1.33389e10i 0.251363 + 0.435373i 0.963901 0.266260i \(-0.0857880\pi\)
−0.712539 + 0.701633i \(0.752455\pi\)
\(992\) 2.04929e10 3.54948e10i 0.666520 1.15445i
\(993\) 0 0
\(994\) −8.27151e9 4.77556e9i −0.267136 0.154231i
\(995\) −1.04147e10 6.01290e9i −0.335169 0.193510i
\(996\) 0 0
\(997\) 1.81490e10 3.14350e10i 0.579990 1.00457i −0.415490 0.909598i \(-0.636390\pi\)
0.995480 0.0949739i \(-0.0302768\pi\)
\(998\) 2.04466e10 + 3.54145e10i 0.651124 + 1.12778i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.8.q.b.10.6 14
3.2 odd 2 13.8.e.a.10.2 yes 14
12.11 even 2 208.8.w.a.49.5 14
13.4 even 6 inner 117.8.q.b.82.6 14
39.2 even 12 169.8.a.g.1.3 14
39.11 even 12 169.8.a.g.1.12 14
39.17 odd 6 13.8.e.a.4.2 14
39.23 odd 6 169.8.b.d.168.12 14
39.29 odd 6 169.8.b.d.168.3 14
156.95 even 6 208.8.w.a.17.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.2 14 39.17 odd 6
13.8.e.a.10.2 yes 14 3.2 odd 2
117.8.q.b.10.6 14 1.1 even 1 trivial
117.8.q.b.82.6 14 13.4 even 6 inner
169.8.a.g.1.3 14 39.2 even 12
169.8.a.g.1.12 14 39.11 even 12
169.8.b.d.168.3 14 39.29 odd 6
169.8.b.d.168.12 14 39.23 odd 6
208.8.w.a.17.5 14 156.95 even 6
208.8.w.a.49.5 14 12.11 even 2