Properties

Label 169.8.b.d.168.3
Level $169$
Weight $8$
Character 169.168
Analytic conductor $52.793$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{17}\cdot 3^{3}\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.3
Root \(-16.7213i\) of defining polynomial
Character \(\chi\) \(=\) 169.168
Dual form 169.8.b.d.168.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.7213i q^{2} +42.5564 q^{3} -151.602 q^{4} +94.5127i q^{5} -711.598i q^{6} -1415.38i q^{7} +394.655i q^{8} -375.955 q^{9} +1580.37 q^{10} +1433.00i q^{11} -6451.63 q^{12} -23667.0 q^{14} +4022.12i q^{15} -12805.9 q^{16} +2788.62 q^{17} +6286.46i q^{18} -28732.4i q^{19} -14328.3i q^{20} -60233.5i q^{21} +23961.7 q^{22} +50599.7 q^{23} +16795.1i q^{24} +69192.4 q^{25} -109070. q^{27} +214575. i q^{28} -228357. q^{29} +67255.0 q^{30} -154870. i q^{31} +264647. i q^{32} +60983.4i q^{33} -46629.4i q^{34} +133772. q^{35} +56995.5 q^{36} -73482.1i q^{37} -480443. q^{38} -37299.9 q^{40} +685869. i q^{41} -1.00718e6 q^{42} -787730. q^{43} -217246. i q^{44} -35532.5i q^{45} -846094. i q^{46} +690181. i q^{47} -544973. q^{48} -1.17976e6 q^{49} -1.15699e6i q^{50} +118674. q^{51} -1.69205e6 q^{53} +1.82379e6i q^{54} -135437. q^{55} +558588. q^{56} -1.22275e6i q^{57} +3.81843e6i q^{58} +493676. i q^{59} -609761. i q^{60} +2.20773e6 q^{61} -2.58963e6 q^{62} +532120. i q^{63} +2.78609e6 q^{64} +1.01972e6 q^{66} -2.25744e6i q^{67} -422760. q^{68} +2.15334e6 q^{69} -2.23683e6i q^{70} -403562. i q^{71} -148373. i q^{72} -509572. i q^{73} -1.22872e6 q^{74} +2.94458e6 q^{75} +4.35589e6i q^{76} +2.02825e6 q^{77} -1.91796e6 q^{79} -1.21032e6i q^{80} -3.81941e6 q^{81} +1.14686e7 q^{82} -4.57733e6i q^{83} +9.13152e6i q^{84} +263560. i q^{85} +1.31719e7i q^{86} -9.71806e6 q^{87} -565542. q^{88} +3.52649e6i q^{89} -594150. q^{90} -7.67102e6 q^{92} -6.59070e6i q^{93} +1.15407e7 q^{94} +2.71558e6 q^{95} +1.12624e7i q^{96} -4.86752e6i q^{97} +1.97272e7i q^{98} -538744. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 52 q^{3} - 766 q^{4} + 6982 q^{9} + 1018 q^{10} + 38380 q^{12} - 47916 q^{14} + 1266 q^{16} + 76806 q^{17} + 251764 q^{22} + 137100 q^{23} + 39380 q^{25} - 432400 q^{27} - 443166 q^{29} + 315780 q^{30}+ \cdots + 86840772 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 16.7213i − 1.47797i −0.673723 0.738984i \(-0.735306\pi\)
0.673723 0.738984i \(-0.264694\pi\)
\(3\) 42.5564 0.909998 0.454999 0.890492i \(-0.349640\pi\)
0.454999 + 0.890492i \(0.349640\pi\)
\(4\) −151.602 −1.18439
\(5\) 94.5127i 0.338139i 0.985604 + 0.169069i \(0.0540762\pi\)
−0.985604 + 0.169069i \(0.945924\pi\)
\(6\) − 711.598i − 1.34495i
\(7\) − 1415.38i − 1.55966i −0.625990 0.779831i \(-0.715305\pi\)
0.625990 0.779831i \(-0.284695\pi\)
\(8\) 394.655i 0.272523i
\(9\) −375.955 −0.171904
\(10\) 1580.37 0.499758
\(11\) 1433.00i 0.324618i 0.986740 + 0.162309i \(0.0518941\pi\)
−0.986740 + 0.162309i \(0.948106\pi\)
\(12\) −6451.63 −1.07779
\(13\) 0 0
\(14\) −23667.0 −2.30513
\(15\) 4022.12i 0.307705i
\(16\) −12805.9 −0.781610
\(17\) 2788.62 0.137663 0.0688316 0.997628i \(-0.478073\pi\)
0.0688316 + 0.997628i \(0.478073\pi\)
\(18\) 6286.46i 0.254069i
\(19\) − 28732.4i − 0.961025i −0.876988 0.480512i \(-0.840451\pi\)
0.876988 0.480512i \(-0.159549\pi\)
\(20\) − 14328.3i − 0.400488i
\(21\) − 60233.5i − 1.41929i
\(22\) 23961.7 0.479775
\(23\) 50599.7 0.867163 0.433582 0.901114i \(-0.357250\pi\)
0.433582 + 0.901114i \(0.357250\pi\)
\(24\) 16795.1i 0.247995i
\(25\) 69192.4 0.885662
\(26\) 0 0
\(27\) −109070. −1.06643
\(28\) 214575.i 1.84725i
\(29\) −228357. −1.73869 −0.869344 0.494207i \(-0.835459\pi\)
−0.869344 + 0.494207i \(0.835459\pi\)
\(30\) 67255.0 0.454779
\(31\) − 154870.i − 0.933686i −0.884340 0.466843i \(-0.845391\pi\)
0.884340 0.466843i \(-0.154609\pi\)
\(32\) 264647.i 1.42772i
\(33\) 60983.4i 0.295402i
\(34\) − 46629.4i − 0.203462i
\(35\) 133772. 0.527382
\(36\) 56995.5 0.203602
\(37\) − 73482.1i − 0.238493i −0.992865 0.119247i \(-0.961952\pi\)
0.992865 0.119247i \(-0.0380479\pi\)
\(38\) −480443. −1.42036
\(39\) 0 0
\(40\) −37299.9 −0.0921506
\(41\) 685869.i 1.55417i 0.629398 + 0.777083i \(0.283302\pi\)
−0.629398 + 0.777083i \(0.716698\pi\)
\(42\) −1.00718e6 −2.09766
\(43\) −787730. −1.51091 −0.755454 0.655202i \(-0.772584\pi\)
−0.755454 + 0.655202i \(0.772584\pi\)
\(44\) − 217246.i − 0.384474i
\(45\) − 35532.5i − 0.0581275i
\(46\) − 846094.i − 1.28164i
\(47\) 690181.i 0.969663i 0.874608 + 0.484831i \(0.161119\pi\)
−0.874608 + 0.484831i \(0.838881\pi\)
\(48\) −544973. −0.711263
\(49\) −1.17976e6 −1.43255
\(50\) − 1.15699e6i − 1.30898i
\(51\) 118674. 0.125273
\(52\) 0 0
\(53\) −1.69205e6 −1.56116 −0.780579 0.625057i \(-0.785076\pi\)
−0.780579 + 0.625057i \(0.785076\pi\)
\(54\) 1.82379e6i 1.57615i
\(55\) −135437. −0.109766
\(56\) 558588. 0.425044
\(57\) − 1.22275e6i − 0.874530i
\(58\) 3.81843e6i 2.56973i
\(59\) 493676.i 0.312939i 0.987683 + 0.156470i \(0.0500113\pi\)
−0.987683 + 0.156470i \(0.949989\pi\)
\(60\) − 609761.i − 0.364443i
\(61\) 2.20773e6 1.24535 0.622674 0.782481i \(-0.286046\pi\)
0.622674 + 0.782481i \(0.286046\pi\)
\(62\) −2.58963e6 −1.37996
\(63\) 532120.i 0.268113i
\(64\) 2.78609e6 1.32851
\(65\) 0 0
\(66\) 1.01972e6 0.436594
\(67\) − 2.25744e6i − 0.916968i −0.888703 0.458484i \(-0.848393\pi\)
0.888703 0.458484i \(-0.151607\pi\)
\(68\) −422760. −0.163047
\(69\) 2.15334e6 0.789117
\(70\) − 2.23683e6i − 0.779455i
\(71\) − 403562.i − 0.133815i −0.997759 0.0669077i \(-0.978687\pi\)
0.997759 0.0669077i \(-0.0213133\pi\)
\(72\) − 148373.i − 0.0468479i
\(73\) − 509572.i − 0.153312i −0.997058 0.0766558i \(-0.975576\pi\)
0.997058 0.0766558i \(-0.0244243\pi\)
\(74\) −1.22872e6 −0.352485
\(75\) 2.94458e6 0.805950
\(76\) 4.35589e6i 1.13823i
\(77\) 2.02825e6 0.506295
\(78\) 0 0
\(79\) −1.91796e6 −0.437668 −0.218834 0.975762i \(-0.570225\pi\)
−0.218834 + 0.975762i \(0.570225\pi\)
\(80\) − 1.21032e6i − 0.264293i
\(81\) −3.81941e6 −0.798544
\(82\) 1.14686e7 2.29701
\(83\) − 4.57733e6i − 0.878697i −0.898317 0.439348i \(-0.855209\pi\)
0.898317 0.439348i \(-0.144791\pi\)
\(84\) 9.13152e6i 1.68099i
\(85\) 263560.i 0.0465493i
\(86\) 1.31719e7i 2.23307i
\(87\) −9.71806e6 −1.58220
\(88\) −565542. −0.0884658
\(89\) 3.52649e6i 0.530246i 0.964215 + 0.265123i \(0.0854125\pi\)
−0.964215 + 0.265123i \(0.914587\pi\)
\(90\) −594150. −0.0859107
\(91\) 0 0
\(92\) −7.67102e6 −1.02706
\(93\) − 6.59070e6i − 0.849652i
\(94\) 1.15407e7 1.43313
\(95\) 2.71558e6 0.324960
\(96\) 1.12624e7i 1.29922i
\(97\) − 4.86752e6i − 0.541511i −0.962648 0.270755i \(-0.912727\pi\)
0.962648 0.270755i \(-0.0872734\pi\)
\(98\) 1.97272e7i 2.11726i
\(99\) − 538744.i − 0.0558033i
\(100\) −1.04897e7 −1.04897
\(101\) −1.39742e6 −0.134959 −0.0674795 0.997721i \(-0.521496\pi\)
−0.0674795 + 0.997721i \(0.521496\pi\)
\(102\) − 1.98438e6i − 0.185150i
\(103\) −6.54055e6 −0.589772 −0.294886 0.955533i \(-0.595282\pi\)
−0.294886 + 0.955533i \(0.595282\pi\)
\(104\) 0 0
\(105\) 5.69283e6 0.479917
\(106\) 2.82932e7i 2.30734i
\(107\) 6.60631e6 0.521334 0.260667 0.965429i \(-0.416058\pi\)
0.260667 + 0.965429i \(0.416058\pi\)
\(108\) 1.65352e7 1.26307
\(109\) 1.24329e7i 0.919561i 0.888033 + 0.459781i \(0.152072\pi\)
−0.888033 + 0.459781i \(0.847928\pi\)
\(110\) 2.26468e6i 0.162231i
\(111\) − 3.12713e6i − 0.217028i
\(112\) 1.81252e7i 1.21905i
\(113\) −1.18932e7 −0.775396 −0.387698 0.921786i \(-0.626730\pi\)
−0.387698 + 0.921786i \(0.626730\pi\)
\(114\) −2.04459e7 −1.29253
\(115\) 4.78232e6i 0.293222i
\(116\) 3.46194e7 2.05929
\(117\) 0 0
\(118\) 8.25491e6 0.462514
\(119\) − 3.94696e6i − 0.214708i
\(120\) −1.58735e6 −0.0838568
\(121\) 1.74337e7 0.894623
\(122\) − 3.69161e7i − 1.84059i
\(123\) 2.91881e7i 1.41429i
\(124\) 2.34786e7i 1.10585i
\(125\) 1.39234e7i 0.637616i
\(126\) 8.89774e6 0.396262
\(127\) 3.16001e7 1.36891 0.684457 0.729053i \(-0.260039\pi\)
0.684457 + 0.729053i \(0.260039\pi\)
\(128\) − 1.27122e7i − 0.535780i
\(129\) −3.35229e7 −1.37492
\(130\) 0 0
\(131\) −1.45168e7 −0.564184 −0.282092 0.959387i \(-0.591028\pi\)
−0.282092 + 0.959387i \(0.591028\pi\)
\(132\) − 9.24520e6i − 0.349871i
\(133\) −4.06674e7 −1.49887
\(134\) −3.77473e7 −1.35525
\(135\) − 1.03085e7i − 0.360601i
\(136\) 1.10054e6i 0.0375164i
\(137\) − 5.29202e7i − 1.75833i −0.476521 0.879163i \(-0.658102\pi\)
0.476521 0.879163i \(-0.341898\pi\)
\(138\) − 3.60067e7i − 1.16629i
\(139\) 5.49458e7 1.73533 0.867666 0.497148i \(-0.165619\pi\)
0.867666 + 0.497148i \(0.165619\pi\)
\(140\) −2.02800e7 −0.624627
\(141\) 2.93716e7i 0.882391i
\(142\) −6.74808e6 −0.197775
\(143\) 0 0
\(144\) 4.81444e6 0.134362
\(145\) − 2.15827e7i − 0.587918i
\(146\) −8.52070e6 −0.226590
\(147\) −5.02065e7 −1.30361
\(148\) 1.11400e7i 0.282469i
\(149\) − 4.53910e7i − 1.12413i −0.827092 0.562066i \(-0.810007\pi\)
0.827092 0.562066i \(-0.189993\pi\)
\(150\) − 4.92371e7i − 1.19117i
\(151\) − 3.65804e7i − 0.864627i −0.901723 0.432313i \(-0.857697\pi\)
0.901723 0.432313i \(-0.142303\pi\)
\(152\) 1.13394e7 0.261901
\(153\) −1.04840e6 −0.0236649
\(154\) − 3.39149e7i − 0.748287i
\(155\) 1.46372e7 0.315716
\(156\) 0 0
\(157\) −6.28265e7 −1.29567 −0.647835 0.761781i \(-0.724325\pi\)
−0.647835 + 0.761781i \(0.724325\pi\)
\(158\) 3.20708e7i 0.646860i
\(159\) −7.20074e7 −1.42065
\(160\) −2.50125e7 −0.482767
\(161\) − 7.16180e7i − 1.35248i
\(162\) 6.38656e7i 1.18022i
\(163\) − 2.82451e7i − 0.510842i −0.966830 0.255421i \(-0.917786\pi\)
0.966830 0.255421i \(-0.0822140\pi\)
\(164\) − 1.03979e8i − 1.84074i
\(165\) −5.76370e6 −0.0998867
\(166\) −7.65389e7 −1.29869
\(167\) − 8.56901e7i − 1.42371i −0.702324 0.711857i \(-0.747854\pi\)
0.702324 0.711857i \(-0.252146\pi\)
\(168\) 2.37715e7 0.386789
\(169\) 0 0
\(170\) 4.40707e6 0.0687984
\(171\) 1.08021e7i 0.165204i
\(172\) 1.19421e8 1.78950
\(173\) 1.07204e7 0.157416 0.0787079 0.996898i \(-0.474921\pi\)
0.0787079 + 0.996898i \(0.474921\pi\)
\(174\) 1.62499e8i 2.33844i
\(175\) − 9.79337e7i − 1.38133i
\(176\) − 1.83509e7i − 0.253725i
\(177\) 2.10091e7i 0.284774i
\(178\) 5.89674e7 0.783686
\(179\) 1.14749e8 1.49543 0.747713 0.664022i \(-0.231152\pi\)
0.747713 + 0.664022i \(0.231152\pi\)
\(180\) 5.38680e6i 0.0688457i
\(181\) −7.50660e7 −0.940953 −0.470477 0.882412i \(-0.655918\pi\)
−0.470477 + 0.882412i \(0.655918\pi\)
\(182\) 0 0
\(183\) 9.39528e7 1.13326
\(184\) 1.99695e7i 0.236322i
\(185\) 6.94499e6 0.0806438
\(186\) −1.10205e8 −1.25576
\(187\) 3.99610e6i 0.0446880i
\(188\) − 1.04633e8i − 1.14846i
\(189\) 1.54376e8i 1.66327i
\(190\) − 4.54080e7i − 0.480280i
\(191\) −1.40238e7 −0.145629 −0.0728147 0.997345i \(-0.523198\pi\)
−0.0728147 + 0.997345i \(0.523198\pi\)
\(192\) 1.18566e8 1.20894
\(193\) 6.00369e7i 0.601129i 0.953761 + 0.300565i \(0.0971751\pi\)
−0.953761 + 0.300565i \(0.902825\pi\)
\(194\) −8.13913e7 −0.800336
\(195\) 0 0
\(196\) 1.78855e8 1.69670
\(197\) − 4.54705e7i − 0.423739i −0.977298 0.211869i \(-0.932045\pi\)
0.977298 0.211869i \(-0.0679551\pi\)
\(198\) −9.00851e6 −0.0824755
\(199\) −1.27240e8 −1.14456 −0.572280 0.820058i \(-0.693941\pi\)
−0.572280 + 0.820058i \(0.693941\pi\)
\(200\) 2.73071e7i 0.241363i
\(201\) − 9.60685e7i − 0.834439i
\(202\) 2.33667e7i 0.199465i
\(203\) 3.23213e8i 2.71177i
\(204\) −1.79911e7 −0.148372
\(205\) −6.48233e7 −0.525524
\(206\) 1.09366e8i 0.871664i
\(207\) −1.90232e7 −0.149069
\(208\) 0 0
\(209\) 4.11736e7 0.311966
\(210\) − 9.51916e7i − 0.709302i
\(211\) 6.62059e7 0.485186 0.242593 0.970128i \(-0.422002\pi\)
0.242593 + 0.970128i \(0.422002\pi\)
\(212\) 2.56518e8 1.84902
\(213\) − 1.71741e7i − 0.121772i
\(214\) − 1.10466e8i − 0.770515i
\(215\) − 7.44505e7i − 0.510896i
\(216\) − 4.30451e7i − 0.290627i
\(217\) −2.19200e8 −1.45624
\(218\) 2.07895e8 1.35908
\(219\) − 2.16855e7i − 0.139513i
\(220\) 2.05325e7 0.130006
\(221\) 0 0
\(222\) −5.22897e7 −0.320761
\(223\) − 1.91691e8i − 1.15754i −0.815492 0.578769i \(-0.803533\pi\)
0.815492 0.578769i \(-0.196467\pi\)
\(224\) 3.74577e8 2.22676
\(225\) −2.60132e7 −0.152249
\(226\) 1.98870e8i 1.14601i
\(227\) − 5.62115e7i − 0.318959i −0.987201 0.159479i \(-0.949018\pi\)
0.987201 0.159479i \(-0.0509816\pi\)
\(228\) 1.85371e8i 1.03579i
\(229\) − 2.40345e8i − 1.32255i −0.750145 0.661274i \(-0.770016\pi\)
0.750145 0.661274i \(-0.229984\pi\)
\(230\) 7.99666e7 0.433372
\(231\) 8.63148e7 0.460727
\(232\) − 9.01224e7i − 0.473832i
\(233\) −8.29632e7 −0.429675 −0.214837 0.976650i \(-0.568922\pi\)
−0.214837 + 0.976650i \(0.568922\pi\)
\(234\) 0 0
\(235\) −6.52309e7 −0.327881
\(236\) − 7.48423e7i − 0.370642i
\(237\) −8.16215e7 −0.398277
\(238\) −6.59984e7 −0.317332
\(239\) 1.71336e8i 0.811812i 0.913915 + 0.405906i \(0.133044\pi\)
−0.913915 + 0.405906i \(0.866956\pi\)
\(240\) − 5.15068e7i − 0.240506i
\(241\) 4.48189e7i 0.206254i 0.994668 + 0.103127i \(0.0328847\pi\)
−0.994668 + 0.103127i \(0.967115\pi\)
\(242\) − 2.91514e8i − 1.32222i
\(243\) 7.59959e7 0.339757
\(244\) −3.34696e8 −1.47498
\(245\) − 1.11503e8i − 0.484400i
\(246\) 4.88063e8 2.09027
\(247\) 0 0
\(248\) 6.11202e7 0.254451
\(249\) − 1.94795e8i − 0.799612i
\(250\) 2.32817e8 0.942376
\(251\) 2.46344e8 0.983294 0.491647 0.870795i \(-0.336395\pi\)
0.491647 + 0.870795i \(0.336395\pi\)
\(252\) − 8.06704e7i − 0.317550i
\(253\) 7.25096e7i 0.281497i
\(254\) − 5.28396e8i − 2.02321i
\(255\) 1.12162e7i 0.0423597i
\(256\) 1.44055e8 0.536646
\(257\) −1.12599e8 −0.413777 −0.206889 0.978364i \(-0.566334\pi\)
−0.206889 + 0.978364i \(0.566334\pi\)
\(258\) 5.60547e8i 2.03209i
\(259\) −1.04005e8 −0.371969
\(260\) 0 0
\(261\) 8.58520e7 0.298888
\(262\) 2.42739e8i 0.833846i
\(263\) −3.49444e8 −1.18449 −0.592247 0.805757i \(-0.701759\pi\)
−0.592247 + 0.805757i \(0.701759\pi\)
\(264\) −2.40674e7 −0.0805037
\(265\) − 1.59920e8i − 0.527888i
\(266\) 6.80011e8i 2.21529i
\(267\) 1.50074e8i 0.482522i
\(268\) 3.42232e8i 1.08605i
\(269\) −3.40037e8 −1.06511 −0.532554 0.846396i \(-0.678768\pi\)
−0.532554 + 0.846396i \(0.678768\pi\)
\(270\) −1.72372e8 −0.532957
\(271\) − 4.42243e8i − 1.34980i −0.737911 0.674898i \(-0.764187\pi\)
0.737911 0.674898i \(-0.235813\pi\)
\(272\) −3.57108e7 −0.107599
\(273\) 0 0
\(274\) −8.84895e8 −2.59875
\(275\) 9.91528e7i 0.287502i
\(276\) −3.26451e8 −0.934622
\(277\) 1.00629e8 0.284475 0.142237 0.989833i \(-0.454570\pi\)
0.142237 + 0.989833i \(0.454570\pi\)
\(278\) − 9.18765e8i − 2.56476i
\(279\) 5.82241e7i 0.160505i
\(280\) 5.27937e7i 0.143724i
\(281\) 2.13226e8i 0.573281i 0.958038 + 0.286640i \(0.0925385\pi\)
−0.958038 + 0.286640i \(0.907462\pi\)
\(282\) 4.91132e8 1.30415
\(283\) 1.73883e8 0.456042 0.228021 0.973656i \(-0.426774\pi\)
0.228021 + 0.973656i \(0.426774\pi\)
\(284\) 6.11808e7i 0.158490i
\(285\) 1.15565e8 0.295713
\(286\) 0 0
\(287\) 9.70767e8 2.42398
\(288\) − 9.94954e7i − 0.245431i
\(289\) −4.02562e8 −0.981049
\(290\) −3.60890e8 −0.868924
\(291\) − 2.07144e8i − 0.492773i
\(292\) 7.72520e7i 0.181581i
\(293\) 1.31462e8i 0.305327i 0.988278 + 0.152663i \(0.0487850\pi\)
−0.988278 + 0.152663i \(0.951215\pi\)
\(294\) 8.39518e8i 1.92670i
\(295\) −4.66587e7 −0.105817
\(296\) 2.90001e7 0.0649948
\(297\) − 1.56298e8i − 0.346182i
\(298\) −7.58996e8 −1.66143
\(299\) 0 0
\(300\) −4.46403e8 −0.954560
\(301\) 1.11494e9i 2.35651i
\(302\) −6.11671e8 −1.27789
\(303\) −5.94691e7 −0.122812
\(304\) 3.67944e8i 0.751147i
\(305\) 2.08658e8i 0.421101i
\(306\) 1.75305e7i 0.0349760i
\(307\) − 7.71793e8i − 1.52236i −0.648542 0.761179i \(-0.724621\pi\)
0.648542 0.761179i \(-0.275379\pi\)
\(308\) −3.07486e8 −0.599650
\(309\) −2.78342e8 −0.536691
\(310\) − 2.44752e8i − 0.466618i
\(311\) 3.88587e8 0.732533 0.366267 0.930510i \(-0.380636\pi\)
0.366267 + 0.930510i \(0.380636\pi\)
\(312\) 0 0
\(313\) −5.42552e8 −1.00008 −0.500042 0.866001i \(-0.666682\pi\)
−0.500042 + 0.866001i \(0.666682\pi\)
\(314\) 1.05054e9i 1.91496i
\(315\) −5.02921e7 −0.0906594
\(316\) 2.90767e8 0.518370
\(317\) − 9.56858e7i − 0.168710i −0.996436 0.0843549i \(-0.973117\pi\)
0.996436 0.0843549i \(-0.0268829\pi\)
\(318\) 1.20406e9i 2.09968i
\(319\) − 3.27237e8i − 0.564410i
\(320\) 2.63321e8i 0.449221i
\(321\) 2.81141e8 0.474412
\(322\) −1.19755e9 −1.99893
\(323\) − 8.01238e7i − 0.132298i
\(324\) 5.79031e8 0.945788
\(325\) 0 0
\(326\) −4.72295e8 −0.755008
\(327\) 5.29100e8i 0.836798i
\(328\) −2.70682e8 −0.423546
\(329\) 9.76871e8 1.51235
\(330\) 9.63766e7i 0.147629i
\(331\) − 2.23414e8i − 0.338620i −0.985563 0.169310i \(-0.945846\pi\)
0.985563 0.169310i \(-0.0541538\pi\)
\(332\) 6.93932e8i 1.04072i
\(333\) 2.76260e7i 0.0409980i
\(334\) −1.43285e9 −2.10420
\(335\) 2.13357e8 0.310063
\(336\) 7.71345e8i 1.10933i
\(337\) 5.78709e8 0.823674 0.411837 0.911257i \(-0.364887\pi\)
0.411837 + 0.911257i \(0.364887\pi\)
\(338\) 0 0
\(339\) −5.06131e8 −0.705609
\(340\) − 3.99562e7i − 0.0551325i
\(341\) 2.21929e8 0.303091
\(342\) 1.80625e8 0.244167
\(343\) 5.04190e8i 0.674629i
\(344\) − 3.10882e8i − 0.411757i
\(345\) 2.03518e8i 0.266831i
\(346\) − 1.79259e8i − 0.232656i
\(347\) 5.47565e8 0.703530 0.351765 0.936088i \(-0.385582\pi\)
0.351765 + 0.936088i \(0.385582\pi\)
\(348\) 1.47328e9 1.87395
\(349\) − 1.12482e9i − 1.41643i −0.705997 0.708215i \(-0.749501\pi\)
0.705997 0.708215i \(-0.250499\pi\)
\(350\) −1.63758e9 −2.04157
\(351\) 0 0
\(352\) −3.79240e8 −0.463463
\(353\) − 9.30531e8i − 1.12595i −0.826474 0.562976i \(-0.809657\pi\)
0.826474 0.562976i \(-0.190343\pi\)
\(354\) 3.51299e8 0.420887
\(355\) 3.81417e7 0.0452482
\(356\) − 5.34622e8i − 0.628018i
\(357\) − 1.67968e8i − 0.195384i
\(358\) − 1.91876e9i − 2.21019i
\(359\) − 8.37591e8i − 0.955436i −0.878513 0.477718i \(-0.841464\pi\)
0.878513 0.477718i \(-0.158536\pi\)
\(360\) 1.40231e7 0.0158411
\(361\) 6.83199e7 0.0764314
\(362\) 1.25520e9i 1.39070i
\(363\) 7.41914e8 0.814105
\(364\) 0 0
\(365\) 4.81610e7 0.0518406
\(366\) − 1.57101e9i − 1.67493i
\(367\) 5.81239e8 0.613795 0.306898 0.951743i \(-0.400709\pi\)
0.306898 + 0.951743i \(0.400709\pi\)
\(368\) −6.47975e8 −0.677784
\(369\) − 2.57856e8i − 0.267168i
\(370\) − 1.16129e8i − 0.119189i
\(371\) 2.39489e9i 2.43488i
\(372\) 9.99163e8i 1.00632i
\(373\) 2.47661e8 0.247103 0.123551 0.992338i \(-0.460572\pi\)
0.123551 + 0.992338i \(0.460572\pi\)
\(374\) 6.68200e7 0.0660474
\(375\) 5.92528e8i 0.580229i
\(376\) −2.72384e8 −0.264255
\(377\) 0 0
\(378\) 2.58137e9 2.45826
\(379\) − 1.42176e9i − 1.34149i −0.741687 0.670746i \(-0.765974\pi\)
0.741687 0.670746i \(-0.234026\pi\)
\(380\) −4.11687e8 −0.384879
\(381\) 1.34479e9 1.24571
\(382\) 2.34496e8i 0.215236i
\(383\) − 1.11622e9i − 1.01520i −0.861592 0.507601i \(-0.830533\pi\)
0.861592 0.507601i \(-0.169467\pi\)
\(384\) − 5.40986e8i − 0.487559i
\(385\) 1.91695e8i 0.171198i
\(386\) 1.00390e9 0.888450
\(387\) 2.96151e8 0.259732
\(388\) 7.37926e8i 0.641360i
\(389\) 2.16836e9 1.86770 0.933851 0.357661i \(-0.116426\pi\)
0.933851 + 0.357661i \(0.116426\pi\)
\(390\) 0 0
\(391\) 1.41103e8 0.119377
\(392\) − 4.65600e8i − 0.390402i
\(393\) −6.17781e8 −0.513406
\(394\) −7.60326e8 −0.626272
\(395\) − 1.81272e8i − 0.147993i
\(396\) 8.16747e7i 0.0660928i
\(397\) − 2.93811e8i − 0.235669i −0.993033 0.117834i \(-0.962405\pi\)
0.993033 0.117834i \(-0.0375952\pi\)
\(398\) 2.12762e9i 1.69162i
\(399\) −1.73066e9 −1.36397
\(400\) −8.86070e8 −0.692242
\(401\) − 4.98847e8i − 0.386333i −0.981166 0.193167i \(-0.938124\pi\)
0.981166 0.193167i \(-0.0618758\pi\)
\(402\) −1.60639e9 −1.23327
\(403\) 0 0
\(404\) 2.11851e8 0.159844
\(405\) − 3.60983e8i − 0.270019i
\(406\) 5.40454e9 4.00791
\(407\) 1.05300e8 0.0774191
\(408\) 4.68352e7i 0.0341398i
\(409\) 8.87949e7i 0.0641736i 0.999485 + 0.0320868i \(0.0102153\pi\)
−0.999485 + 0.0320868i \(0.989785\pi\)
\(410\) 1.08393e9i 0.776708i
\(411\) − 2.25209e9i − 1.60007i
\(412\) 9.91560e8 0.698520
\(413\) 6.98741e8 0.488080
\(414\) 3.18093e8i 0.220320i
\(415\) 4.32616e8 0.297121
\(416\) 0 0
\(417\) 2.33829e9 1.57915
\(418\) − 6.88477e8i − 0.461076i
\(419\) 1.55617e8 0.103349 0.0516746 0.998664i \(-0.483544\pi\)
0.0516746 + 0.998664i \(0.483544\pi\)
\(420\) −8.63045e8 −0.568409
\(421\) 2.18824e9i 1.42925i 0.699509 + 0.714624i \(0.253402\pi\)
−0.699509 + 0.714624i \(0.746598\pi\)
\(422\) − 1.10705e9i − 0.717089i
\(423\) − 2.59477e8i − 0.166689i
\(424\) − 6.67775e8i − 0.425451i
\(425\) 1.92951e8 0.121923
\(426\) −2.87174e8 −0.179975
\(427\) − 3.12478e9i − 1.94232i
\(428\) −1.00153e9 −0.617462
\(429\) 0 0
\(430\) −1.24491e9 −0.755089
\(431\) − 9.56674e7i − 0.0575564i −0.999586 0.0287782i \(-0.990838\pi\)
0.999586 0.0287782i \(-0.00916165\pi\)
\(432\) 1.39674e9 0.833533
\(433\) −9.63031e8 −0.570076 −0.285038 0.958516i \(-0.592006\pi\)
−0.285038 + 0.958516i \(0.592006\pi\)
\(434\) 3.66531e9i 2.15227i
\(435\) − 9.18479e8i − 0.535004i
\(436\) − 1.88486e9i − 1.08912i
\(437\) − 1.45385e9i − 0.833365i
\(438\) −3.62610e8 −0.206196
\(439\) −2.04315e9 −1.15259 −0.576296 0.817241i \(-0.695502\pi\)
−0.576296 + 0.817241i \(0.695502\pi\)
\(440\) − 5.34509e7i − 0.0299137i
\(441\) 4.43538e8 0.246261
\(442\) 0 0
\(443\) 9.64971e8 0.527353 0.263676 0.964611i \(-0.415065\pi\)
0.263676 + 0.964611i \(0.415065\pi\)
\(444\) 4.74080e8i 0.257046i
\(445\) −3.33298e8 −0.179297
\(446\) −3.20533e9 −1.71080
\(447\) − 1.93168e9i − 1.02296i
\(448\) − 3.94338e9i − 2.07203i
\(449\) 2.01105e9i 1.04848i 0.851571 + 0.524240i \(0.175650\pi\)
−0.851571 + 0.524240i \(0.824350\pi\)
\(450\) 4.34975e8i 0.225020i
\(451\) −9.82852e8 −0.504511
\(452\) 1.80303e9 0.918372
\(453\) − 1.55673e9i − 0.786808i
\(454\) −9.39930e8 −0.471411
\(455\) 0 0
\(456\) 4.82564e8 0.238329
\(457\) 3.09444e9i 1.51661i 0.651897 + 0.758307i \(0.273973\pi\)
−0.651897 + 0.758307i \(0.726027\pi\)
\(458\) −4.01888e9 −1.95468
\(459\) −3.04155e8 −0.146808
\(460\) − 7.25009e8i − 0.347289i
\(461\) 2.50825e9i 1.19239i 0.802840 + 0.596194i \(0.203321\pi\)
−0.802840 + 0.596194i \(0.796679\pi\)
\(462\) − 1.44330e9i − 0.680940i
\(463\) − 8.14250e8i − 0.381263i −0.981662 0.190631i \(-0.938947\pi\)
0.981662 0.190631i \(-0.0610535\pi\)
\(464\) 2.92432e9 1.35898
\(465\) 6.22905e8 0.287300
\(466\) 1.38725e9i 0.635045i
\(467\) −2.48449e9 −1.12883 −0.564413 0.825492i \(-0.690898\pi\)
−0.564413 + 0.825492i \(0.690898\pi\)
\(468\) 0 0
\(469\) −3.19514e9 −1.43016
\(470\) 1.09075e9i 0.484597i
\(471\) −2.67367e9 −1.17906
\(472\) −1.94832e8 −0.0852831
\(473\) − 1.12882e9i − 0.490468i
\(474\) 1.36482e9i 0.588641i
\(475\) − 1.98806e9i − 0.851143i
\(476\) 5.98367e8i 0.254298i
\(477\) 6.36133e8 0.268370
\(478\) 2.86496e9 1.19983
\(479\) 4.44069e9i 1.84619i 0.384575 + 0.923094i \(0.374348\pi\)
−0.384575 + 0.923094i \(0.625652\pi\)
\(480\) −1.06444e9 −0.439317
\(481\) 0 0
\(482\) 7.49430e8 0.304836
\(483\) − 3.04780e9i − 1.23076i
\(484\) −2.64298e9 −1.05958
\(485\) 4.60043e8 0.183106
\(486\) − 1.27075e9i − 0.502150i
\(487\) − 3.69425e9i − 1.44935i −0.689089 0.724677i \(-0.741989\pi\)
0.689089 0.724677i \(-0.258011\pi\)
\(488\) 8.71291e8i 0.339386i
\(489\) − 1.20201e9i − 0.464865i
\(490\) −1.86447e9 −0.715928
\(491\) 3.09370e9 1.17949 0.589743 0.807591i \(-0.299229\pi\)
0.589743 + 0.807591i \(0.299229\pi\)
\(492\) − 4.42497e9i − 1.67507i
\(493\) −6.36802e8 −0.239354
\(494\) 0 0
\(495\) 5.09182e7 0.0188692
\(496\) 1.98325e9i 0.729779i
\(497\) −5.71195e8 −0.208707
\(498\) −3.25722e9 −1.18180
\(499\) 2.44557e9i 0.881107i 0.897726 + 0.440554i \(0.145218\pi\)
−0.897726 + 0.440554i \(0.854782\pi\)
\(500\) − 2.11081e9i − 0.755186i
\(501\) − 3.64666e9i − 1.29558i
\(502\) − 4.11919e9i − 1.45328i
\(503\) 3.44504e9 1.20700 0.603498 0.797365i \(-0.293773\pi\)
0.603498 + 0.797365i \(0.293773\pi\)
\(504\) −2.10004e8 −0.0730669
\(505\) − 1.32074e8i − 0.0456349i
\(506\) 1.21245e9 0.416043
\(507\) 0 0
\(508\) −4.79064e9 −1.62133
\(509\) 1.88074e9i 0.632146i 0.948735 + 0.316073i \(0.102364\pi\)
−0.948735 + 0.316073i \(0.897636\pi\)
\(510\) 1.87549e8 0.0626064
\(511\) −7.21239e8 −0.239114
\(512\) − 4.03595e9i − 1.32893i
\(513\) 3.13385e9i 1.02487i
\(514\) 1.88279e9i 0.611550i
\(515\) − 6.18165e8i − 0.199425i
\(516\) 5.08214e9 1.62844
\(517\) −9.89032e8 −0.314770
\(518\) 1.73910e9i 0.549758i
\(519\) 4.56220e8 0.143248
\(520\) 0 0
\(521\) 7.91865e8 0.245312 0.122656 0.992449i \(-0.460859\pi\)
0.122656 + 0.992449i \(0.460859\pi\)
\(522\) − 1.43556e9i − 0.441747i
\(523\) 2.06100e8 0.0629972 0.0314986 0.999504i \(-0.489972\pi\)
0.0314986 + 0.999504i \(0.489972\pi\)
\(524\) 2.20077e9 0.668214
\(525\) − 4.16770e9i − 1.25701i
\(526\) 5.84316e9i 1.75064i
\(527\) − 4.31873e8i − 0.128534i
\(528\) − 7.80947e8i − 0.230889i
\(529\) −8.44491e8 −0.248028
\(530\) −2.67407e9 −0.780202
\(531\) − 1.85600e8i − 0.0537956i
\(532\) 6.16525e9 1.77525
\(533\) 0 0
\(534\) 2.50944e9 0.713153
\(535\) 6.24380e8i 0.176283i
\(536\) 8.90911e8 0.249895
\(537\) 4.88332e9 1.36083
\(538\) 5.68587e9i 1.57420i
\(539\) − 1.69061e9i − 0.465031i
\(540\) 1.56279e9i 0.427093i
\(541\) 5.13810e9i 1.39512i 0.716525 + 0.697561i \(0.245731\pi\)
−0.716525 + 0.697561i \(0.754269\pi\)
\(542\) −7.39488e9 −1.99496
\(543\) −3.19454e9 −0.856265
\(544\) 7.38000e8i 0.196544i
\(545\) −1.17507e9 −0.310939
\(546\) 0 0
\(547\) 3.45399e8 0.0902331 0.0451165 0.998982i \(-0.485634\pi\)
0.0451165 + 0.998982i \(0.485634\pi\)
\(548\) 8.02280e9i 2.08254i
\(549\) −8.30006e8 −0.214081
\(550\) 1.65796e9 0.424919
\(551\) 6.56126e9i 1.67092i
\(552\) 8.49828e8i 0.215052i
\(553\) 2.71465e9i 0.682615i
\(554\) − 1.68265e9i − 0.420444i
\(555\) 2.95554e8 0.0733856
\(556\) −8.32989e9 −2.05531
\(557\) − 3.59385e9i − 0.881185i −0.897707 0.440592i \(-0.854768\pi\)
0.897707 0.440592i \(-0.145232\pi\)
\(558\) 9.73583e8 0.237221
\(559\) 0 0
\(560\) −1.71307e9 −0.412207
\(561\) 1.70060e8i 0.0406660i
\(562\) 3.56541e9 0.847291
\(563\) −1.27744e9 −0.301689 −0.150845 0.988557i \(-0.548199\pi\)
−0.150845 + 0.988557i \(0.548199\pi\)
\(564\) − 4.45279e9i − 1.04510i
\(565\) − 1.12406e9i − 0.262192i
\(566\) − 2.90755e9i − 0.674016i
\(567\) 5.40593e9i 1.24546i
\(568\) 1.59268e8 0.0364678
\(569\) 4.78849e9 1.08970 0.544849 0.838534i \(-0.316587\pi\)
0.544849 + 0.838534i \(0.316587\pi\)
\(570\) − 1.93240e9i − 0.437054i
\(571\) −1.93902e9 −0.435869 −0.217935 0.975963i \(-0.569932\pi\)
−0.217935 + 0.975963i \(0.569932\pi\)
\(572\) 0 0
\(573\) −5.96802e8 −0.132522
\(574\) − 1.62325e10i − 3.58256i
\(575\) 3.50112e9 0.768014
\(576\) −1.04744e9 −0.228377
\(577\) − 6.58473e9i − 1.42699i −0.700658 0.713497i \(-0.747110\pi\)
0.700658 0.713497i \(-0.252890\pi\)
\(578\) 6.73137e9i 1.44996i
\(579\) 2.55495e9i 0.547026i
\(580\) 3.27197e9i 0.696324i
\(581\) −6.47868e9 −1.37047
\(582\) −3.46372e9 −0.728303
\(583\) − 2.42471e9i − 0.506780i
\(584\) 2.01105e8 0.0417809
\(585\) 0 0
\(586\) 2.19822e9 0.451263
\(587\) − 1.22975e9i − 0.250948i −0.992097 0.125474i \(-0.959955\pi\)
0.992097 0.125474i \(-0.0400451\pi\)
\(588\) 7.61140e9 1.54399
\(589\) −4.44979e9 −0.897296
\(590\) 7.80193e8i 0.156394i
\(591\) − 1.93506e9i − 0.385601i
\(592\) 9.41005e8i 0.186409i
\(593\) 8.85789e9i 1.74437i 0.489174 + 0.872186i \(0.337298\pi\)
−0.489174 + 0.872186i \(0.662702\pi\)
\(594\) −2.61350e9 −0.511647
\(595\) 3.73038e8 0.0726012
\(596\) 6.88136e9i 1.33141i
\(597\) −5.41488e9 −1.04155
\(598\) 0 0
\(599\) 3.97030e9 0.754795 0.377398 0.926051i \(-0.376819\pi\)
0.377398 + 0.926051i \(0.376819\pi\)
\(600\) 1.16209e9i 0.219640i
\(601\) 5.95118e8 0.111826 0.0559130 0.998436i \(-0.482193\pi\)
0.0559130 + 0.998436i \(0.482193\pi\)
\(602\) 1.86432e10 3.48284
\(603\) 8.48696e8i 0.157631i
\(604\) 5.54565e9i 1.02406i
\(605\) 1.64770e9i 0.302507i
\(606\) 9.94400e8i 0.181513i
\(607\) −1.95656e8 −0.0355085 −0.0177542 0.999842i \(-0.505652\pi\)
−0.0177542 + 0.999842i \(0.505652\pi\)
\(608\) 7.60395e9 1.37207
\(609\) 1.37548e10i 2.46770i
\(610\) 3.48904e9 0.622373
\(611\) 0 0
\(612\) 1.58939e8 0.0280285
\(613\) − 3.70839e9i − 0.650240i −0.945673 0.325120i \(-0.894595\pi\)
0.945673 0.325120i \(-0.105405\pi\)
\(614\) −1.29054e10 −2.25000
\(615\) −2.75864e9 −0.478226
\(616\) 8.00458e8i 0.137977i
\(617\) 1.71550e8i 0.0294030i 0.999892 + 0.0147015i \(0.00467980\pi\)
−0.999892 + 0.0147015i \(0.995320\pi\)
\(618\) 4.65424e9i 0.793212i
\(619\) 3.49467e9i 0.592228i 0.955153 + 0.296114i \(0.0956908\pi\)
−0.955153 + 0.296114i \(0.904309\pi\)
\(620\) −2.21902e9 −0.373930
\(621\) −5.51892e9 −0.924769
\(622\) − 6.49769e9i − 1.08266i
\(623\) 4.99133e9 0.827004
\(624\) 0 0
\(625\) 4.08972e9 0.670060
\(626\) 9.07218e9i 1.47809i
\(627\) 1.75220e9 0.283888
\(628\) 9.52462e9 1.53458
\(629\) − 2.04914e8i − 0.0328317i
\(630\) 8.40949e8i 0.133992i
\(631\) − 3.07515e9i − 0.487263i −0.969868 0.243631i \(-0.921661\pi\)
0.969868 0.243631i \(-0.0783387\pi\)
\(632\) − 7.56933e8i − 0.119275i
\(633\) 2.81748e9 0.441518
\(634\) −1.59999e9 −0.249348
\(635\) 2.98661e9i 0.462883i
\(636\) 1.09165e10 1.68260
\(637\) 0 0
\(638\) −5.47182e9 −0.834180
\(639\) 1.51721e8i 0.0230035i
\(640\) 1.20147e9 0.181168
\(641\) 1.25219e9 0.187788 0.0938942 0.995582i \(-0.470068\pi\)
0.0938942 + 0.995582i \(0.470068\pi\)
\(642\) − 4.70104e9i − 0.701166i
\(643\) 1.04790e10i 1.55447i 0.629210 + 0.777235i \(0.283378\pi\)
−0.629210 + 0.777235i \(0.716622\pi\)
\(644\) 1.08574e10i 1.60187i
\(645\) − 3.16834e9i − 0.464915i
\(646\) −1.33977e9 −0.195532
\(647\) 8.34931e9 1.21195 0.605976 0.795483i \(-0.292783\pi\)
0.605976 + 0.795483i \(0.292783\pi\)
\(648\) − 1.50735e9i − 0.217622i
\(649\) −7.07439e8 −0.101586
\(650\) 0 0
\(651\) −9.32836e9 −1.32517
\(652\) 4.28201e9i 0.605036i
\(653\) 2.47822e9 0.348292 0.174146 0.984720i \(-0.444284\pi\)
0.174146 + 0.984720i \(0.444284\pi\)
\(654\) 8.84724e9 1.23676
\(655\) − 1.37202e9i − 0.190772i
\(656\) − 8.78317e9i − 1.21475i
\(657\) 1.91576e8i 0.0263549i
\(658\) − 1.63346e10i − 2.23520i
\(659\) −6.06308e9 −0.825266 −0.412633 0.910897i \(-0.635391\pi\)
−0.412633 + 0.910897i \(0.635391\pi\)
\(660\) 8.73789e8 0.118305
\(661\) 5.29524e9i 0.713150i 0.934267 + 0.356575i \(0.116056\pi\)
−0.934267 + 0.356575i \(0.883944\pi\)
\(662\) −3.73577e9 −0.500469
\(663\) 0 0
\(664\) 1.80647e9 0.239465
\(665\) − 3.84358e9i − 0.506828i
\(666\) 4.61942e8 0.0605938
\(667\) −1.15548e10 −1.50773
\(668\) 1.29908e10i 1.68623i
\(669\) − 8.15768e9i − 1.05336i
\(670\) − 3.56760e9i − 0.458263i
\(671\) 3.16368e9i 0.404263i
\(672\) 1.59406e10 2.02634
\(673\) −4.62818e9 −0.585272 −0.292636 0.956224i \(-0.594532\pi\)
−0.292636 + 0.956224i \(0.594532\pi\)
\(674\) − 9.67677e9i − 1.21736i
\(675\) −7.54682e9 −0.944497
\(676\) 0 0
\(677\) −1.40888e10 −1.74507 −0.872536 0.488550i \(-0.837526\pi\)
−0.872536 + 0.488550i \(0.837526\pi\)
\(678\) 8.46317e9i 1.04287i
\(679\) −6.88941e9 −0.844574
\(680\) −1.04015e8 −0.0126857
\(681\) − 2.39216e9i − 0.290252i
\(682\) − 3.71094e9i − 0.447959i
\(683\) − 1.20616e10i − 1.44855i −0.689511 0.724276i \(-0.742174\pi\)
0.689511 0.724276i \(-0.257826\pi\)
\(684\) − 1.63762e9i − 0.195666i
\(685\) 5.00163e9 0.594558
\(686\) 8.43071e9 0.997080
\(687\) − 1.02282e10i − 1.20351i
\(688\) 1.00876e10 1.18094
\(689\) 0 0
\(690\) 3.40309e9 0.394368
\(691\) 2.06932e9i 0.238591i 0.992859 + 0.119296i \(0.0380636\pi\)
−0.992859 + 0.119296i \(0.961936\pi\)
\(692\) −1.62523e9 −0.186442
\(693\) −7.62529e8 −0.0870343
\(694\) − 9.15601e9i − 1.03980i
\(695\) 5.19307e9i 0.586783i
\(696\) − 3.83528e9i − 0.431186i
\(697\) 1.91263e9i 0.213952i
\(698\) −1.88085e10 −2.09344
\(699\) −3.53061e9 −0.391003
\(700\) 1.48469e10i 1.63604i
\(701\) −1.66276e10 −1.82312 −0.911561 0.411166i \(-0.865122\pi\)
−0.911561 + 0.411166i \(0.865122\pi\)
\(702\) 0 0
\(703\) −2.11132e9 −0.229198
\(704\) 3.99248e9i 0.431259i
\(705\) −2.77599e9 −0.298371
\(706\) −1.55597e10 −1.66412
\(707\) 1.97788e9i 0.210490i
\(708\) − 3.18502e9i − 0.337284i
\(709\) 6.48948e8i 0.0683830i 0.999415 + 0.0341915i \(0.0108856\pi\)
−0.999415 + 0.0341915i \(0.989114\pi\)
\(710\) − 6.37779e8i − 0.0668754i
\(711\) 7.21067e8 0.0752371
\(712\) −1.39175e9 −0.144504
\(713\) − 7.83638e9i − 0.809659i
\(714\) −2.80865e9 −0.288771
\(715\) 0 0
\(716\) −1.73962e10 −1.77117
\(717\) 7.29143e9i 0.738747i
\(718\) −1.40056e10 −1.41210
\(719\) −6.31401e9 −0.633511 −0.316755 0.948507i \(-0.602593\pi\)
−0.316755 + 0.948507i \(0.602593\pi\)
\(720\) 4.55026e8i 0.0454331i
\(721\) 9.25738e9i 0.919845i
\(722\) − 1.14240e9i − 0.112963i
\(723\) 1.90733e9i 0.187690i
\(724\) 1.13801e10 1.11446
\(725\) −1.58006e10 −1.53989
\(726\) − 1.24058e10i − 1.20322i
\(727\) −6.79560e9 −0.655930 −0.327965 0.944690i \(-0.606363\pi\)
−0.327965 + 0.944690i \(0.606363\pi\)
\(728\) 0 0
\(729\) 1.15872e10 1.10772
\(730\) − 8.05314e8i − 0.0766188i
\(731\) −2.19668e9 −0.207997
\(732\) −1.42434e10 −1.34223
\(733\) 2.19137e9i 0.205519i 0.994706 + 0.102760i \(0.0327672\pi\)
−0.994706 + 0.102760i \(0.967233\pi\)
\(734\) − 9.71907e9i − 0.907170i
\(735\) − 4.74515e9i − 0.440803i
\(736\) 1.33911e10i 1.23806i
\(737\) 3.23492e9 0.297664
\(738\) −4.31168e9 −0.394866
\(739\) 1.32973e10i 1.21202i 0.795459 + 0.606008i \(0.207230\pi\)
−0.795459 + 0.606008i \(0.792770\pi\)
\(740\) −1.05287e9 −0.0955137
\(741\) 0 0
\(742\) 4.00457e10 3.59867
\(743\) 6.93757e9i 0.620506i 0.950654 + 0.310253i \(0.100414\pi\)
−0.950654 + 0.310253i \(0.899586\pi\)
\(744\) 2.60105e9 0.231550
\(745\) 4.29002e9 0.380113
\(746\) − 4.14122e9i − 0.365210i
\(747\) 1.72087e9i 0.151052i
\(748\) − 6.05817e8i − 0.0529280i
\(749\) − 9.35046e9i − 0.813105i
\(750\) 9.90783e9 0.857559
\(751\) 2.15610e10 1.85751 0.928753 0.370700i \(-0.120882\pi\)
0.928753 + 0.370700i \(0.120882\pi\)
\(752\) − 8.83839e9i − 0.757898i
\(753\) 1.04835e10 0.894795
\(754\) 0 0
\(755\) 3.45731e9 0.292364
\(756\) − 2.34037e10i − 1.96996i
\(757\) −3.63572e9 −0.304617 −0.152309 0.988333i \(-0.548671\pi\)
−0.152309 + 0.988333i \(0.548671\pi\)
\(758\) −2.37736e10 −1.98268
\(759\) 3.08574e9i 0.256161i
\(760\) 1.07172e9i 0.0885590i
\(761\) − 8.44474e9i − 0.694608i −0.937753 0.347304i \(-0.887097\pi\)
0.937753 0.347304i \(-0.112903\pi\)
\(762\) − 2.24866e10i − 1.84112i
\(763\) 1.75973e10 1.43421
\(764\) 2.12604e9 0.172482
\(765\) − 9.90867e7i − 0.00800203i
\(766\) −1.86646e10 −1.50044
\(767\) 0 0
\(768\) 6.13045e9 0.488346
\(769\) − 9.24151e9i − 0.732825i −0.930452 0.366413i \(-0.880586\pi\)
0.930452 0.366413i \(-0.119414\pi\)
\(770\) 3.20539e9 0.253025
\(771\) −4.79178e9 −0.376536
\(772\) − 9.10172e9i − 0.711972i
\(773\) − 1.17156e10i − 0.912297i −0.889904 0.456149i \(-0.849229\pi\)
0.889904 0.456149i \(-0.150771\pi\)
\(774\) − 4.95203e9i − 0.383875i
\(775\) − 1.07158e10i − 0.826931i
\(776\) 1.92099e9 0.147574
\(777\) −4.42609e9 −0.338491
\(778\) − 3.62578e10i − 2.76041i
\(779\) 1.97067e10 1.49359
\(780\) 0 0
\(781\) 5.78305e8 0.0434389
\(782\) − 2.35943e9i − 0.176435i
\(783\) 2.49069e10 1.85419
\(784\) 1.51079e10 1.11969
\(785\) − 5.93790e9i − 0.438116i
\(786\) 1.03301e10i 0.758798i
\(787\) 1.29788e10i 0.949121i 0.880223 + 0.474560i \(0.157393\pi\)
−0.880223 + 0.474560i \(0.842607\pi\)
\(788\) 6.89342e9i 0.501872i
\(789\) −1.48711e10 −1.07789
\(790\) −3.03110e9 −0.218728
\(791\) 1.68334e10i 1.20936i
\(792\) 2.12618e8 0.0152077
\(793\) 0 0
\(794\) −4.91291e9 −0.348311
\(795\) − 6.80561e9i − 0.480377i
\(796\) 1.92899e10 1.35560
\(797\) 6.23728e9 0.436406 0.218203 0.975903i \(-0.429980\pi\)
0.218203 + 0.975903i \(0.429980\pi\)
\(798\) 2.89388e10i 2.01591i
\(799\) 1.92465e9i 0.133487i
\(800\) 1.83116e10i 1.26448i
\(801\) − 1.32580e9i − 0.0911516i
\(802\) −8.34137e9 −0.570988
\(803\) 7.30217e8 0.0497677
\(804\) 1.45642e10i 0.988301i
\(805\) 6.76881e9 0.457327
\(806\) 0 0
\(807\) −1.44708e10 −0.969246
\(808\) − 5.51499e8i − 0.0367794i
\(809\) 1.36198e10 0.904379 0.452189 0.891922i \(-0.350643\pi\)
0.452189 + 0.891922i \(0.350643\pi\)
\(810\) −6.03611e9 −0.399079
\(811\) 3.36478e9i 0.221505i 0.993848 + 0.110752i \(0.0353261\pi\)
−0.993848 + 0.110752i \(0.964674\pi\)
\(812\) − 4.89997e10i − 3.21179i
\(813\) − 1.88203e10i − 1.22831i
\(814\) − 1.76075e9i − 0.114423i
\(815\) 2.66952e9 0.172735
\(816\) −1.51972e9 −0.0979148
\(817\) 2.26334e10i 1.45202i
\(818\) 1.48477e9 0.0948465
\(819\) 0 0
\(820\) 9.82734e9 0.622426
\(821\) 2.07010e10i 1.30554i 0.757555 + 0.652771i \(0.226394\pi\)
−0.757555 + 0.652771i \(0.773606\pi\)
\(822\) −3.76579e10 −2.36486
\(823\) 7.89394e9 0.493622 0.246811 0.969064i \(-0.420617\pi\)
0.246811 + 0.969064i \(0.420617\pi\)
\(824\) − 2.58126e9i − 0.160726i
\(825\) 4.21959e9i 0.261626i
\(826\) − 1.16839e10i − 0.721366i
\(827\) − 2.15815e9i − 0.132682i −0.997797 0.0663411i \(-0.978867\pi\)
0.997797 0.0663411i \(-0.0211325\pi\)
\(828\) 2.88396e9 0.176556
\(829\) −6.94515e9 −0.423390 −0.211695 0.977336i \(-0.567898\pi\)
−0.211695 + 0.977336i \(0.567898\pi\)
\(830\) − 7.23390e9i − 0.439136i
\(831\) 4.28240e9 0.258871
\(832\) 0 0
\(833\) −3.28992e9 −0.197209
\(834\) − 3.90993e10i − 2.33393i
\(835\) 8.09880e9 0.481413
\(836\) −6.24200e9 −0.369489
\(837\) 1.68917e10i 0.995711i
\(838\) − 2.60211e9i − 0.152747i
\(839\) 1.03645e10i 0.605875i 0.953010 + 0.302938i \(0.0979674\pi\)
−0.953010 + 0.302938i \(0.902033\pi\)
\(840\) 2.24671e9i 0.130788i
\(841\) 3.48972e10 2.02304
\(842\) 3.65902e10 2.11238
\(843\) 9.07411e9i 0.521684i
\(844\) −1.00369e10 −0.574649
\(845\) 0 0
\(846\) −4.33879e9 −0.246362
\(847\) − 2.46753e10i − 1.39531i
\(848\) 2.16682e10 1.22022
\(849\) 7.39984e9 0.414997
\(850\) − 3.22640e9i − 0.180199i
\(851\) − 3.71818e9i − 0.206812i
\(852\) 2.60363e9i 0.144225i
\(853\) − 1.25745e10i − 0.693696i −0.937921 0.346848i \(-0.887252\pi\)
0.937921 0.346848i \(-0.112748\pi\)
\(854\) −5.22503e10 −2.87069
\(855\) −1.02093e9 −0.0558620
\(856\) 2.60722e9i 0.142075i
\(857\) −2.63377e10 −1.42937 −0.714687 0.699445i \(-0.753431\pi\)
−0.714687 + 0.699445i \(0.753431\pi\)
\(858\) 0 0
\(859\) −6.43919e9 −0.346621 −0.173311 0.984867i \(-0.555446\pi\)
−0.173311 + 0.984867i \(0.555446\pi\)
\(860\) 1.12868e10i 0.605101i
\(861\) 4.13123e10 2.20581
\(862\) −1.59968e9 −0.0850665
\(863\) 3.08603e10i 1.63442i 0.576343 + 0.817208i \(0.304479\pi\)
−0.576343 + 0.817208i \(0.695521\pi\)
\(864\) − 2.88651e10i − 1.52256i
\(865\) 1.01321e9i 0.0532284i
\(866\) 1.61031e10i 0.842554i
\(867\) −1.71316e10 −0.892752
\(868\) 3.32312e10 1.72475
\(869\) − 2.74844e9i − 0.142075i
\(870\) −1.53582e10 −0.790719
\(871\) 0 0
\(872\) −4.90672e9 −0.250601
\(873\) 1.82997e9i 0.0930881i
\(874\) −2.43103e10 −1.23169
\(875\) 1.97069e10 0.994465
\(876\) 3.28757e9i 0.165238i
\(877\) − 9.81457e9i − 0.491330i −0.969355 0.245665i \(-0.920994\pi\)
0.969355 0.245665i \(-0.0790062\pi\)
\(878\) 3.41642e10i 1.70349i
\(879\) 5.59456e9i 0.277847i
\(880\) 1.73439e9 0.0857942
\(881\) 1.77084e10 0.872498 0.436249 0.899826i \(-0.356307\pi\)
0.436249 + 0.899826i \(0.356307\pi\)
\(882\) − 7.41654e9i − 0.363966i
\(883\) 3.61270e10 1.76591 0.882956 0.469456i \(-0.155550\pi\)
0.882956 + 0.469456i \(0.155550\pi\)
\(884\) 0 0
\(885\) −1.98562e9 −0.0962932
\(886\) − 1.61356e10i − 0.779411i
\(887\) −1.76108e10 −0.847320 −0.423660 0.905821i \(-0.639255\pi\)
−0.423660 + 0.905821i \(0.639255\pi\)
\(888\) 1.23414e9 0.0591451
\(889\) − 4.47263e10i − 2.13504i
\(890\) 5.57317e9i 0.264995i
\(891\) − 5.47323e9i − 0.259222i
\(892\) 2.90607e10i 1.37098i
\(893\) 1.98306e10 0.931870
\(894\) −3.23001e10 −1.51190
\(895\) 1.08453e10i 0.505662i
\(896\) −1.79927e10 −0.835636
\(897\) 0 0
\(898\) 3.36273e10 1.54962
\(899\) 3.53657e10i 1.62339i
\(900\) 3.94365e9 0.180322
\(901\) −4.71848e9 −0.214914
\(902\) 1.64346e10i 0.745651i
\(903\) 4.74478e10i 2.14442i
\(904\) − 4.69371e9i − 0.211313i
\(905\) − 7.09468e9i − 0.318173i
\(906\) −2.60305e10 −1.16288
\(907\) −3.08827e10 −1.37432 −0.687162 0.726504i \(-0.741144\pi\)
−0.687162 + 0.726504i \(0.741144\pi\)
\(908\) 8.52177e9i 0.377772i
\(909\) 5.25366e8 0.0232000
\(910\) 0 0
\(911\) 5.82328e9 0.255184 0.127592 0.991827i \(-0.459275\pi\)
0.127592 + 0.991827i \(0.459275\pi\)
\(912\) 1.56584e10i 0.683542i
\(913\) 6.55933e9 0.285241
\(914\) 5.17430e10 2.24151
\(915\) 8.87973e9i 0.383201i
\(916\) 3.64368e10i 1.56641i
\(917\) 2.05468e10i 0.879937i
\(918\) 5.08587e9i 0.216978i
\(919\) −2.43323e10 −1.03414 −0.517068 0.855944i \(-0.672977\pi\)
−0.517068 + 0.855944i \(0.672977\pi\)
\(920\) −1.88737e9 −0.0799096
\(921\) − 3.28447e10i − 1.38534i
\(922\) 4.19412e10 1.76231
\(923\) 0 0
\(924\) −1.30855e10 −0.545680
\(925\) − 5.08440e9i − 0.211224i
\(926\) −1.36153e10 −0.563494
\(927\) 2.45895e9 0.101384
\(928\) − 6.04341e10i − 2.48236i
\(929\) − 4.65831e9i − 0.190622i −0.995448 0.0953111i \(-0.969615\pi\)
0.995448 0.0953111i \(-0.0303846\pi\)
\(930\) − 1.04158e10i − 0.424621i
\(931\) 3.38975e10i 1.37671i
\(932\) 1.25774e10 0.508902
\(933\) 1.65369e10 0.666604
\(934\) 4.15438e10i 1.66837i
\(935\) −3.77682e8 −0.0151107
\(936\) 0 0
\(937\) 4.24433e10 1.68547 0.842734 0.538331i \(-0.180945\pi\)
0.842734 + 0.538331i \(0.180945\pi\)
\(938\) 5.34269e10i 2.11373i
\(939\) −2.30890e10 −0.910073
\(940\) 9.88913e9 0.388339
\(941\) 2.82397e10i 1.10483i 0.833569 + 0.552416i \(0.186294\pi\)
−0.833569 + 0.552416i \(0.813706\pi\)
\(942\) 4.47072e10i 1.74261i
\(943\) 3.47048e10i 1.34772i
\(944\) − 6.32197e9i − 0.244597i
\(945\) −1.45905e10 −0.562417
\(946\) −1.88753e10 −0.724896
\(947\) − 1.66024e10i − 0.635251i −0.948216 0.317625i \(-0.897115\pi\)
0.948216 0.317625i \(-0.102885\pi\)
\(948\) 1.23740e10 0.471715
\(949\) 0 0
\(950\) −3.32430e10 −1.25796
\(951\) − 4.07204e9i − 0.153525i
\(952\) 1.55769e9 0.0585129
\(953\) −4.25790e10 −1.59357 −0.796783 0.604265i \(-0.793467\pi\)
−0.796783 + 0.604265i \(0.793467\pi\)
\(954\) − 1.06370e10i − 0.396642i
\(955\) − 1.32543e9i − 0.0492430i
\(956\) − 2.59748e10i − 0.961502i
\(957\) − 1.39260e10i − 0.513611i
\(958\) 7.42540e10 2.72861
\(959\) −7.49023e10 −2.74240
\(960\) 1.12060e10i 0.408790i
\(961\) 3.52794e9 0.128230
\(962\) 0 0
\(963\) −2.48367e9 −0.0896195
\(964\) − 6.79463e9i − 0.244285i
\(965\) −5.67425e9 −0.203265
\(966\) −5.09632e10 −1.81902
\(967\) − 2.16365e10i − 0.769474i −0.923026 0.384737i \(-0.874292\pi\)
0.923026 0.384737i \(-0.125708\pi\)
\(968\) 6.88029e9i 0.243805i
\(969\) − 3.40978e9i − 0.120391i
\(970\) − 7.69251e9i − 0.270624i
\(971\) 5.78647e9 0.202837 0.101418 0.994844i \(-0.467662\pi\)
0.101418 + 0.994844i \(0.467662\pi\)
\(972\) −1.15211e10 −0.402404
\(973\) − 7.77693e10i − 2.70653i
\(974\) −6.17726e10 −2.14210
\(975\) 0 0
\(976\) −2.82719e10 −0.973377
\(977\) 1.10283e10i 0.378335i 0.981945 + 0.189167i \(0.0605789\pi\)
−0.981945 + 0.189167i \(0.939421\pi\)
\(978\) −2.00992e10 −0.687055
\(979\) −5.05346e9 −0.172127
\(980\) 1.69040e10i 0.573719i
\(981\) − 4.67422e9i − 0.158077i
\(982\) − 5.17307e10i − 1.74324i
\(983\) − 1.85197e10i − 0.621864i −0.950432 0.310932i \(-0.899359\pi\)
0.950432 0.310932i \(-0.100641\pi\)
\(984\) −1.15192e10 −0.385426
\(985\) 4.29754e9 0.143282
\(986\) 1.06482e10i 0.353757i
\(987\) 4.15721e10 1.37623
\(988\) 0 0
\(989\) −3.98590e10 −1.31020
\(990\) − 8.51418e8i − 0.0278882i
\(991\) −1.54024e10 −0.502725 −0.251363 0.967893i \(-0.580879\pi\)
−0.251363 + 0.967893i \(0.580879\pi\)
\(992\) 4.09859e10 1.33304
\(993\) − 9.50768e9i − 0.308143i
\(994\) 9.55112e9i 0.308462i
\(995\) − 1.20258e10i − 0.387020i
\(996\) 2.95312e10i 0.947053i
\(997\) −3.62981e10 −1.15998 −0.579990 0.814624i \(-0.696943\pi\)
−0.579990 + 0.814624i \(0.696943\pi\)
\(998\) 4.08932e10 1.30225
\(999\) 8.01470e9i 0.254336i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.b.d.168.3 14
13.5 odd 4 169.8.a.g.1.3 14
13.8 odd 4 169.8.a.g.1.12 14
13.9 even 3 13.8.e.a.10.2 yes 14
13.10 even 6 13.8.e.a.4.2 14
13.12 even 2 inner 169.8.b.d.168.12 14
39.23 odd 6 117.8.q.b.82.6 14
39.35 odd 6 117.8.q.b.10.6 14
52.23 odd 6 208.8.w.a.17.5 14
52.35 odd 6 208.8.w.a.49.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.2 14 13.10 even 6
13.8.e.a.10.2 yes 14 13.9 even 3
117.8.q.b.10.6 14 39.35 odd 6
117.8.q.b.82.6 14 39.23 odd 6
169.8.a.g.1.3 14 13.5 odd 4
169.8.a.g.1.12 14 13.8 odd 4
169.8.b.d.168.3 14 1.1 even 1 trivial
169.8.b.d.168.12 14 13.12 even 2 inner
208.8.w.a.17.5 14 52.23 odd 6
208.8.w.a.49.5 14 52.35 odd 6