Properties

Label 1170.2.e.f.469.5
Level $1170$
Weight $2$
Character 1170.469
Analytic conductor $9.342$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1170,2,Mod(469,1170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1170, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1170.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3534400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.5
Root \(-1.81837 - 0.301352i\) of defining polynomial
Character \(\chi\) \(=\) 1170.469
Dual form 1170.2.e.f.469.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(0.301352 + 2.21567i) q^{5} -3.63675i q^{7} -1.00000i q^{8} +(-2.21567 + 0.301352i) q^{10} -2.00000 q^{11} +1.00000i q^{13} +3.63675 q^{14} +1.00000 q^{16} -6.67079i q^{17} -8.06808 q^{19} +(-0.301352 - 2.21567i) q^{20} -2.00000i q^{22} -0.794590i q^{23} +(-4.81837 + 1.33539i) q^{25} -1.00000 q^{26} +3.63675i q^{28} -8.06808 q^{29} +5.20541 q^{31} +1.00000i q^{32} +6.67079 q^{34} +(8.05783 - 1.09594i) q^{35} -0.431337i q^{37} -8.06808i q^{38} +(2.21567 - 0.301352i) q^{40} -6.86267 q^{41} -5.80811i q^{43} +2.00000 q^{44} +0.794590 q^{46} -7.63675i q^{47} -6.22593 q^{49} +(-1.33539 - 4.81837i) q^{50} -1.00000i q^{52} -0.794590i q^{53} +(-0.602705 - 4.43134i) q^{55} -3.63675 q^{56} -8.06808i q^{58} +8.06808 q^{59} -2.86267 q^{61} +5.20541i q^{62} -1.00000 q^{64} +(-2.21567 + 0.301352i) q^{65} +5.20541i q^{67} +6.67079i q^{68} +(1.09594 + 8.05783i) q^{70} +9.46538 q^{71} -6.00000i q^{73} +0.431337 q^{74} +8.06808 q^{76} +7.27349i q^{77} -1.93192 q^{79} +(0.301352 + 2.21567i) q^{80} -6.86267i q^{82} -2.06808i q^{83} +(14.7803 - 2.01026i) q^{85} +5.80811 q^{86} +2.00000i q^{88} -8.06808 q^{89} +3.63675 q^{91} +0.794590i q^{92} +7.63675 q^{94} +(-2.43134 - 17.8762i) q^{95} +13.6573i q^{97} -6.22593i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 4 q^{10} - 12 q^{11} - 4 q^{14} + 6 q^{16} - 4 q^{19} - 16 q^{25} - 6 q^{26} - 4 q^{29} + 24 q^{31} - 8 q^{34} + 6 q^{35} + 4 q^{40} - 4 q^{41} + 12 q^{44} + 12 q^{46} - 26 q^{49} + 16 q^{50}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0.301352 + 2.21567i 0.134769 + 0.990877i
\(6\) 0 0
\(7\) 3.63675i 1.37456i −0.726392 0.687281i \(-0.758804\pi\)
0.726392 0.687281i \(-0.241196\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.21567 + 0.301352i −0.700656 + 0.0952960i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 3.63675 0.971961
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.67079i 1.61790i −0.587875 0.808952i \(-0.700035\pi\)
0.587875 0.808952i \(-0.299965\pi\)
\(18\) 0 0
\(19\) −8.06808 −1.85095 −0.925473 0.378814i \(-0.876332\pi\)
−0.925473 + 0.378814i \(0.876332\pi\)
\(20\) −0.301352 2.21567i −0.0673845 0.495439i
\(21\) 0 0
\(22\) 2.00000i 0.426401i
\(23\) 0.794590i 0.165683i −0.996563 0.0828417i \(-0.973600\pi\)
0.996563 0.0828417i \(-0.0263996\pi\)
\(24\) 0 0
\(25\) −4.81837 + 1.33539i −0.963675 + 0.267079i
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 3.63675i 0.687281i
\(29\) −8.06808 −1.49821 −0.749103 0.662454i \(-0.769515\pi\)
−0.749103 + 0.662454i \(0.769515\pi\)
\(30\) 0 0
\(31\) 5.20541 0.934919 0.467460 0.884014i \(-0.345169\pi\)
0.467460 + 0.884014i \(0.345169\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 6.67079 1.14403
\(35\) 8.05783 1.09594i 1.36202 0.185248i
\(36\) 0 0
\(37\) 0.431337i 0.0709114i −0.999371 0.0354557i \(-0.988712\pi\)
0.999371 0.0354557i \(-0.0112883\pi\)
\(38\) 8.06808i 1.30882i
\(39\) 0 0
\(40\) 2.21567 0.301352i 0.350328 0.0476480i
\(41\) −6.86267 −1.07177 −0.535885 0.844291i \(-0.680022\pi\)
−0.535885 + 0.844291i \(0.680022\pi\)
\(42\) 0 0
\(43\) 5.80811i 0.885729i −0.896589 0.442865i \(-0.853962\pi\)
0.896589 0.442865i \(-0.146038\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 0.794590 0.117156
\(47\) 7.63675i 1.11393i −0.830535 0.556967i \(-0.811965\pi\)
0.830535 0.556967i \(-0.188035\pi\)
\(48\) 0 0
\(49\) −6.22593 −0.889418
\(50\) −1.33539 4.81837i −0.188853 0.681421i
\(51\) 0 0
\(52\) 1.00000i 0.138675i
\(53\) 0.794590i 0.109145i −0.998510 0.0545727i \(-0.982620\pi\)
0.998510 0.0545727i \(-0.0173797\pi\)
\(54\) 0 0
\(55\) −0.602705 4.43134i −0.0812687 0.597521i
\(56\) −3.63675 −0.485981
\(57\) 0 0
\(58\) 8.06808i 1.05939i
\(59\) 8.06808 1.05038 0.525188 0.850987i \(-0.323995\pi\)
0.525188 + 0.850987i \(0.323995\pi\)
\(60\) 0 0
\(61\) −2.86267 −0.366528 −0.183264 0.983064i \(-0.558666\pi\)
−0.183264 + 0.983064i \(0.558666\pi\)
\(62\) 5.20541i 0.661088i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.21567 + 0.301352i −0.274820 + 0.0373782i
\(66\) 0 0
\(67\) 5.20541i 0.635942i 0.948100 + 0.317971i \(0.103001\pi\)
−0.948100 + 0.317971i \(0.896999\pi\)
\(68\) 6.67079i 0.808952i
\(69\) 0 0
\(70\) 1.09594 + 8.05783i 0.130990 + 0.963094i
\(71\) 9.46538 1.12333 0.561667 0.827363i \(-0.310160\pi\)
0.561667 + 0.827363i \(0.310160\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0.431337 0.0501419
\(75\) 0 0
\(76\) 8.06808 0.925473
\(77\) 7.27349i 0.828892i
\(78\) 0 0
\(79\) −1.93192 −0.217358 −0.108679 0.994077i \(-0.534662\pi\)
−0.108679 + 0.994077i \(0.534662\pi\)
\(80\) 0.301352 + 2.21567i 0.0336922 + 0.247719i
\(81\) 0 0
\(82\) 6.86267i 0.757856i
\(83\) 2.06808i 0.227002i −0.993538 0.113501i \(-0.963794\pi\)
0.993538 0.113501i \(-0.0362065\pi\)
\(84\) 0 0
\(85\) 14.7803 2.01026i 1.60314 0.218043i
\(86\) 5.80811 0.626305
\(87\) 0 0
\(88\) 2.00000i 0.213201i
\(89\) −8.06808 −0.855215 −0.427608 0.903964i \(-0.640643\pi\)
−0.427608 + 0.903964i \(0.640643\pi\)
\(90\) 0 0
\(91\) 3.63675 0.381235
\(92\) 0.794590i 0.0828417i
\(93\) 0 0
\(94\) 7.63675 0.787670
\(95\) −2.43134 17.8762i −0.249450 1.83406i
\(96\) 0 0
\(97\) 13.6573i 1.38669i 0.720608 + 0.693343i \(0.243863\pi\)
−0.720608 + 0.693343i \(0.756137\pi\)
\(98\) 6.22593i 0.628914i
\(99\) 0 0
\(100\) 4.81837 1.33539i 0.481837 0.133539i
\(101\) 15.6843 1.56065 0.780324 0.625376i \(-0.215054\pi\)
0.780324 + 0.625376i \(0.215054\pi\)
\(102\) 0 0
\(103\) 15.3416i 1.51165i −0.654773 0.755825i \(-0.727236\pi\)
0.654773 0.755825i \(-0.272764\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 0.794590 0.0771774
\(107\) 1.20541i 0.116531i 0.998301 + 0.0582657i \(0.0185571\pi\)
−0.998301 + 0.0582657i \(0.981443\pi\)
\(108\) 0 0
\(109\) −9.80811 −0.939447 −0.469724 0.882814i \(-0.655646\pi\)
−0.469724 + 0.882814i \(0.655646\pi\)
\(110\) 4.43134 0.602705i 0.422511 0.0574657i
\(111\) 0 0
\(112\) 3.63675i 0.343640i
\(113\) 4.00000i 0.376288i −0.982141 0.188144i \(-0.939753\pi\)
0.982141 0.188144i \(-0.0602472\pi\)
\(114\) 0 0
\(115\) 1.76055 0.239452i 0.164172 0.0223290i
\(116\) 8.06808 0.749103
\(117\) 0 0
\(118\) 8.06808i 0.742727i
\(119\) −24.2600 −2.22391
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 2.86267i 0.259174i
\(123\) 0 0
\(124\) −5.20541 −0.467460
\(125\) −4.41082 10.2735i −0.394516 0.918889i
\(126\) 0 0
\(127\) 4.79459i 0.425451i −0.977112 0.212726i \(-0.931766\pi\)
0.977112 0.212726i \(-0.0682340\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −0.301352 2.21567i −0.0264304 0.194327i
\(131\) 4.02052 0.351274 0.175637 0.984455i \(-0.443801\pi\)
0.175637 + 0.984455i \(0.443801\pi\)
\(132\) 0 0
\(133\) 29.3416i 2.54424i
\(134\) −5.20541 −0.449679
\(135\) 0 0
\(136\) −6.67079 −0.572015
\(137\) 11.2054i 0.957343i 0.877994 + 0.478671i \(0.158881\pi\)
−0.877994 + 0.478671i \(0.841119\pi\)
\(138\) 0 0
\(139\) −8.84216 −0.749982 −0.374991 0.927028i \(-0.622354\pi\)
−0.374991 + 0.927028i \(0.622354\pi\)
\(140\) −8.05783 + 1.09594i −0.681011 + 0.0926241i
\(141\) 0 0
\(142\) 9.46538i 0.794317i
\(143\) 2.00000i 0.167248i
\(144\) 0 0
\(145\) −2.43134 17.8762i −0.201912 1.48454i
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) 0.431337i 0.0354557i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 7.05456 0.574092 0.287046 0.957917i \(-0.407327\pi\)
0.287046 + 0.957917i \(0.407327\pi\)
\(152\) 8.06808i 0.654408i
\(153\) 0 0
\(154\) −7.27349 −0.586115
\(155\) 1.56866 + 11.5335i 0.125998 + 0.926390i
\(156\) 0 0
\(157\) 0.0680837i 0.00543367i 0.999996 + 0.00271683i \(0.000864796\pi\)
−0.999996 + 0.00271683i \(0.999135\pi\)
\(158\) 1.93192i 0.153695i
\(159\) 0 0
\(160\) −2.21567 + 0.301352i −0.175164 + 0.0238240i
\(161\) −2.88972 −0.227742
\(162\) 0 0
\(163\) 7.65726i 0.599763i −0.953976 0.299882i \(-0.903053\pi\)
0.953976 0.299882i \(-0.0969472\pi\)
\(164\) 6.86267 0.535885
\(165\) 0 0
\(166\) 2.06808 0.160514
\(167\) 4.82164i 0.373110i −0.982445 0.186555i \(-0.940268\pi\)
0.982445 0.186555i \(-0.0597322\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 2.01026 + 14.7803i 0.154180 + 1.13359i
\(171\) 0 0
\(172\) 5.80811i 0.442865i
\(173\) 12.7946i 0.972755i 0.873749 + 0.486377i \(0.161682\pi\)
−0.873749 + 0.486377i \(0.838318\pi\)
\(174\) 0 0
\(175\) 4.85649 + 17.5232i 0.367116 + 1.32463i
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 8.06808i 0.604728i
\(179\) −8.84216 −0.660894 −0.330447 0.943825i \(-0.607199\pi\)
−0.330447 + 0.943825i \(0.607199\pi\)
\(180\) 0 0
\(181\) 1.61623 0.120133 0.0600667 0.998194i \(-0.480869\pi\)
0.0600667 + 0.998194i \(0.480869\pi\)
\(182\) 3.63675i 0.269574i
\(183\) 0 0
\(184\) −0.794590 −0.0585780
\(185\) 0.955700 0.129984i 0.0702644 0.00955665i
\(186\) 0 0
\(187\) 13.3416i 0.975633i
\(188\) 7.63675i 0.556967i
\(189\) 0 0
\(190\) 17.8762 2.43134i 1.29688 0.176388i
\(191\) −21.3416 −1.54422 −0.772111 0.635487i \(-0.780799\pi\)
−0.772111 + 0.635487i \(0.780799\pi\)
\(192\) 0 0
\(193\) 5.61623i 0.404265i −0.979358 0.202133i \(-0.935213\pi\)
0.979358 0.202133i \(-0.0647872\pi\)
\(194\) −13.6573 −0.980534
\(195\) 0 0
\(196\) 6.22593 0.444709
\(197\) 14.0205i 0.998920i 0.866337 + 0.499460i \(0.166468\pi\)
−0.866337 + 0.499460i \(0.833532\pi\)
\(198\) 0 0
\(199\) 15.7524 1.11666 0.558329 0.829620i \(-0.311443\pi\)
0.558329 + 0.829620i \(0.311443\pi\)
\(200\) 1.33539 + 4.81837i 0.0944266 + 0.340710i
\(201\) 0 0
\(202\) 15.6843i 1.10354i
\(203\) 29.3416i 2.05937i
\(204\) 0 0
\(205\) −2.06808 15.2054i −0.144441 1.06199i
\(206\) 15.3416 1.06890
\(207\) 0 0
\(208\) 1.00000i 0.0693375i
\(209\) 16.1362 1.11616
\(210\) 0 0
\(211\) −1.70483 −0.117365 −0.0586827 0.998277i \(-0.518690\pi\)
−0.0586827 + 0.998277i \(0.518690\pi\)
\(212\) 0.794590i 0.0545727i
\(213\) 0 0
\(214\) −1.20541 −0.0824001
\(215\) 12.8689 1.75029i 0.877649 0.119369i
\(216\) 0 0
\(217\) 18.9308i 1.28510i
\(218\) 9.80811i 0.664289i
\(219\) 0 0
\(220\) 0.602705 + 4.43134i 0.0406344 + 0.298761i
\(221\) 6.67079 0.448726
\(222\) 0 0
\(223\) 22.9513i 1.53693i 0.639891 + 0.768466i \(0.278979\pi\)
−0.639891 + 0.768466i \(0.721021\pi\)
\(224\) 3.63675 0.242990
\(225\) 0 0
\(226\) 4.00000 0.266076
\(227\) 10.5470i 0.700028i 0.936744 + 0.350014i \(0.113823\pi\)
−0.936744 + 0.350014i \(0.886177\pi\)
\(228\) 0 0
\(229\) −25.9443 −1.71445 −0.857223 0.514945i \(-0.827812\pi\)
−0.857223 + 0.514945i \(0.827812\pi\)
\(230\) 0.239452 + 1.76055i 0.0157890 + 0.116087i
\(231\) 0 0
\(232\) 8.06808i 0.529696i
\(233\) 11.4924i 0.752894i −0.926438 0.376447i \(-0.877146\pi\)
0.926438 0.376447i \(-0.122854\pi\)
\(234\) 0 0
\(235\) 16.9205 2.30135i 1.10377 0.150124i
\(236\) −8.06808 −0.525188
\(237\) 0 0
\(238\) 24.2600i 1.57254i
\(239\) 14.6708 0.948974 0.474487 0.880262i \(-0.342634\pi\)
0.474487 + 0.880262i \(0.342634\pi\)
\(240\) 0 0
\(241\) −18.6151 −1.19910 −0.599551 0.800337i \(-0.704654\pi\)
−0.599551 + 0.800337i \(0.704654\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 0 0
\(244\) 2.86267 0.183264
\(245\) −1.87620 13.7946i −0.119866 0.881304i
\(246\) 0 0
\(247\) 8.06808i 0.513360i
\(248\) 5.20541i 0.330544i
\(249\) 0 0
\(250\) 10.2735 4.41082i 0.649753 0.278965i
\(251\) 14.4108 0.909603 0.454801 0.890593i \(-0.349710\pi\)
0.454801 + 0.890593i \(0.349710\pi\)
\(252\) 0 0
\(253\) 1.58918i 0.0999109i
\(254\) 4.79459 0.300839
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0.123802i 0.00772253i 0.999993 + 0.00386126i \(0.00122908\pi\)
−0.999993 + 0.00386126i \(0.998771\pi\)
\(258\) 0 0
\(259\) −1.56866 −0.0974720
\(260\) 2.21567 0.301352i 0.137410 0.0186891i
\(261\) 0 0
\(262\) 4.02052i 0.248388i
\(263\) 5.27349i 0.325178i −0.986694 0.162589i \(-0.948016\pi\)
0.986694 0.162589i \(-0.0519844\pi\)
\(264\) 0 0
\(265\) 1.76055 0.239452i 0.108150 0.0147094i
\(266\) −29.3416 −1.79905
\(267\) 0 0
\(268\) 5.20541i 0.317971i
\(269\) 1.27349 0.0776463 0.0388231 0.999246i \(-0.487639\pi\)
0.0388231 + 0.999246i \(0.487639\pi\)
\(270\) 0 0
\(271\) 6.28702 0.381909 0.190955 0.981599i \(-0.438842\pi\)
0.190955 + 0.981599i \(0.438842\pi\)
\(272\) 6.67079i 0.404476i
\(273\) 0 0
\(274\) −11.2054 −0.676944
\(275\) 9.63675 2.67079i 0.581118 0.161055i
\(276\) 0 0
\(277\) 22.9988i 1.38187i 0.722919 + 0.690933i \(0.242800\pi\)
−0.722919 + 0.690933i \(0.757200\pi\)
\(278\) 8.84216i 0.530317i
\(279\) 0 0
\(280\) −1.09594 8.05783i −0.0654951 0.481547i
\(281\) −10.3427 −0.616996 −0.308498 0.951225i \(-0.599826\pi\)
−0.308498 + 0.951225i \(0.599826\pi\)
\(282\) 0 0
\(283\) 10.0270i 0.596046i 0.954559 + 0.298023i \(0.0963272\pi\)
−0.954559 + 0.298023i \(0.903673\pi\)
\(284\) −9.46538 −0.561667
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) 24.9578i 1.47321i
\(288\) 0 0
\(289\) −27.4994 −1.61761
\(290\) 17.8762 2.43134i 1.04973 0.142773i
\(291\) 0 0
\(292\) 6.00000i 0.351123i
\(293\) 6.11565i 0.357280i 0.983914 + 0.178640i \(0.0571698\pi\)
−0.983914 + 0.178640i \(0.942830\pi\)
\(294\) 0 0
\(295\) 2.43134 + 17.8762i 0.141558 + 1.04079i
\(296\) −0.431337 −0.0250709
\(297\) 0 0
\(298\) 0 0
\(299\) 0.794590 0.0459523
\(300\) 0 0
\(301\) −21.1226 −1.21749
\(302\) 7.05456i 0.405944i
\(303\) 0 0
\(304\) −8.06808 −0.462736
\(305\) −0.862674 6.34274i −0.0493966 0.363184i
\(306\) 0 0
\(307\) 16.8627i 0.962404i 0.876610 + 0.481202i \(0.159800\pi\)
−0.876610 + 0.481202i \(0.840200\pi\)
\(308\) 7.27349i 0.414446i
\(309\) 0 0
\(310\) −11.5335 + 1.56866i −0.655057 + 0.0890941i
\(311\) −32.9988 −1.87119 −0.935596 0.353072i \(-0.885137\pi\)
−0.935596 + 0.353072i \(0.885137\pi\)
\(312\) 0 0
\(313\) 25.4654i 1.43939i 0.694291 + 0.719694i \(0.255718\pi\)
−0.694291 + 0.719694i \(0.744282\pi\)
\(314\) −0.0680837 −0.00384218
\(315\) 0 0
\(316\) 1.93192 0.108679
\(317\) 14.1362i 0.793966i 0.917826 + 0.396983i \(0.129943\pi\)
−0.917826 + 0.396983i \(0.870057\pi\)
\(318\) 0 0
\(319\) 16.1362 0.903452
\(320\) −0.301352 2.21567i −0.0168461 0.123860i
\(321\) 0 0
\(322\) 2.88972i 0.161038i
\(323\) 53.8205i 2.99465i
\(324\) 0 0
\(325\) −1.33539 4.81837i −0.0740743 0.267275i
\(326\) 7.65726 0.424097
\(327\) 0 0
\(328\) 6.86267i 0.378928i
\(329\) −27.7729 −1.53117
\(330\) 0 0
\(331\) 18.5199 1.01795 0.508974 0.860782i \(-0.330025\pi\)
0.508974 + 0.860782i \(0.330025\pi\)
\(332\) 2.06808i 0.113501i
\(333\) 0 0
\(334\) 4.82164 0.263828
\(335\) −11.5335 + 1.56866i −0.630140 + 0.0857052i
\(336\) 0 0
\(337\) 22.2870i 1.21405i −0.794682 0.607026i \(-0.792363\pi\)
0.794682 0.607026i \(-0.207637\pi\)
\(338\) 1.00000i 0.0543928i
\(339\) 0 0
\(340\) −14.7803 + 2.01026i −0.801572 + 0.109022i
\(341\) −10.4108 −0.563777
\(342\) 0 0
\(343\) 2.81511i 0.152002i
\(344\) −5.80811 −0.313153
\(345\) 0 0
\(346\) −12.7946 −0.687841
\(347\) 31.5335i 1.69280i −0.532544 0.846402i \(-0.678764\pi\)
0.532544 0.846402i \(-0.321236\pi\)
\(348\) 0 0
\(349\) −32.3551 −1.73193 −0.865964 0.500106i \(-0.833295\pi\)
−0.865964 + 0.500106i \(0.833295\pi\)
\(350\) −17.5232 + 4.85649i −0.936655 + 0.259590i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) 20.0270i 1.06593i −0.846137 0.532966i \(-0.821077\pi\)
0.846137 0.532966i \(-0.178923\pi\)
\(354\) 0 0
\(355\) 2.85242 + 20.9721i 0.151390 + 1.11309i
\(356\) 8.06808 0.427608
\(357\) 0 0
\(358\) 8.84216i 0.467322i
\(359\) 22.9308 1.21024 0.605120 0.796135i \(-0.293125\pi\)
0.605120 + 0.796135i \(0.293125\pi\)
\(360\) 0 0
\(361\) 46.0940 2.42600
\(362\) 1.61623i 0.0849471i
\(363\) 0 0
\(364\) −3.63675 −0.190617
\(365\) 13.2940 1.80811i 0.695840 0.0946411i
\(366\) 0 0
\(367\) 34.1362i 1.78189i −0.454108 0.890947i \(-0.650042\pi\)
0.454108 0.890947i \(-0.349958\pi\)
\(368\) 0.794590i 0.0414209i
\(369\) 0 0
\(370\) 0.129984 + 0.955700i 0.00675757 + 0.0496845i
\(371\) −2.88972 −0.150027
\(372\) 0 0
\(373\) 26.9988i 1.39795i −0.715148 0.698974i \(-0.753641\pi\)
0.715148 0.698974i \(-0.246359\pi\)
\(374\) −13.3416 −0.689877
\(375\) 0 0
\(376\) −7.63675 −0.393835
\(377\) 8.06808i 0.415527i
\(378\) 0 0
\(379\) −12.9308 −0.664208 −0.332104 0.943243i \(-0.607759\pi\)
−0.332104 + 0.943243i \(0.607759\pi\)
\(380\) 2.43134 + 17.8762i 0.124725 + 0.917030i
\(381\) 0 0
\(382\) 21.3416i 1.09193i
\(383\) 21.3621i 1.09155i 0.837931 + 0.545776i \(0.183765\pi\)
−0.837931 + 0.545776i \(0.816235\pi\)
\(384\) 0 0
\(385\) −16.1157 + 2.19189i −0.821330 + 0.111709i
\(386\) 5.61623 0.285859
\(387\) 0 0
\(388\) 13.6573i 0.693343i
\(389\) −29.4507 −1.49321 −0.746605 0.665268i \(-0.768317\pi\)
−0.746605 + 0.665268i \(0.768317\pi\)
\(390\) 0 0
\(391\) −5.30054 −0.268060
\(392\) 6.22593i 0.314457i
\(393\) 0 0
\(394\) −14.0205 −0.706343
\(395\) −0.582188 4.28049i −0.0292930 0.215375i
\(396\) 0 0
\(397\) 16.6832i 0.837304i −0.908147 0.418652i \(-0.862503\pi\)
0.908147 0.418652i \(-0.137497\pi\)
\(398\) 15.7524i 0.789596i
\(399\) 0 0
\(400\) −4.81837 + 1.33539i −0.240919 + 0.0667697i
\(401\) 7.34158 0.366621 0.183310 0.983055i \(-0.441319\pi\)
0.183310 + 0.983055i \(0.441319\pi\)
\(402\) 0 0
\(403\) 5.20541i 0.259300i
\(404\) −15.6843 −0.780324
\(405\) 0 0
\(406\) −29.3416 −1.45620
\(407\) 0.862674i 0.0427612i
\(408\) 0 0
\(409\) 35.4777 1.75426 0.877131 0.480252i \(-0.159455\pi\)
0.877131 + 0.480252i \(0.159455\pi\)
\(410\) 15.2054 2.06808i 0.750942 0.102135i
\(411\) 0 0
\(412\) 15.3416i 0.755825i
\(413\) 29.3416i 1.44380i
\(414\) 0 0
\(415\) 4.58219 0.623222i 0.224931 0.0305928i
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) 16.1362i 0.789246i
\(419\) 0.883191 0.0431467 0.0215734 0.999767i \(-0.493132\pi\)
0.0215734 + 0.999767i \(0.493132\pi\)
\(420\) 0 0
\(421\) 27.2859 1.32983 0.664916 0.746918i \(-0.268467\pi\)
0.664916 + 0.746918i \(0.268467\pi\)
\(422\) 1.70483i 0.0829898i
\(423\) 0 0
\(424\) −0.794590 −0.0385887
\(425\) 8.90813 + 32.1424i 0.432108 + 1.55913i
\(426\) 0 0
\(427\) 10.4108i 0.503815i
\(428\) 1.20541i 0.0582657i
\(429\) 0 0
\(430\) 1.75029 + 12.8689i 0.0844065 + 0.620591i
\(431\) −0.259969 −0.0125223 −0.00626113 0.999980i \(-0.501993\pi\)
−0.00626113 + 0.999980i \(0.501993\pi\)
\(432\) 0 0
\(433\) 17.4654i 0.839333i −0.907678 0.419666i \(-0.862147\pi\)
0.907678 0.419666i \(-0.137853\pi\)
\(434\) 18.9308 0.908705
\(435\) 0 0
\(436\) 9.80811 0.469724
\(437\) 6.41082i 0.306671i
\(438\) 0 0
\(439\) −17.6843 −0.844026 −0.422013 0.906590i \(-0.638676\pi\)
−0.422013 + 0.906590i \(0.638676\pi\)
\(440\) −4.43134 + 0.602705i −0.211256 + 0.0287328i
\(441\) 0 0
\(442\) 6.67079i 0.317297i
\(443\) 32.4913i 1.54371i −0.635801 0.771853i \(-0.719330\pi\)
0.635801 0.771853i \(-0.280670\pi\)
\(444\) 0 0
\(445\) −2.43134 17.8762i −0.115256 0.847413i
\(446\) −22.9513 −1.08677
\(447\) 0 0
\(448\) 3.63675i 0.171820i
\(449\) 35.0940 1.65619 0.828094 0.560590i \(-0.189426\pi\)
0.828094 + 0.560590i \(0.189426\pi\)
\(450\) 0 0
\(451\) 13.7253 0.646301
\(452\) 4.00000i 0.188144i
\(453\) 0 0
\(454\) −10.5470 −0.494995
\(455\) 1.09594 + 8.05783i 0.0513786 + 0.377757i
\(456\) 0 0
\(457\) 20.5470i 0.961148i −0.876954 0.480574i \(-0.840428\pi\)
0.876954 0.480574i \(-0.159572\pi\)
\(458\) 25.9443i 1.21230i
\(459\) 0 0
\(460\) −1.76055 + 0.239452i −0.0820860 + 0.0111645i
\(461\) 7.14969 0.332994 0.166497 0.986042i \(-0.446754\pi\)
0.166497 + 0.986042i \(0.446754\pi\)
\(462\) 0 0
\(463\) 22.6832i 1.05418i 0.849811 + 0.527088i \(0.176716\pi\)
−0.849811 + 0.527088i \(0.823284\pi\)
\(464\) −8.06808 −0.374551
\(465\) 0 0
\(466\) 11.4924 0.532376
\(467\) 25.2054i 1.16637i −0.812340 0.583184i \(-0.801807\pi\)
0.812340 0.583184i \(-0.198193\pi\)
\(468\) 0 0
\(469\) 18.9308 0.874141
\(470\) 2.30135 + 16.9205i 0.106153 + 0.780484i
\(471\) 0 0
\(472\) 8.06808i 0.371364i
\(473\) 11.6162i 0.534115i
\(474\) 0 0
\(475\) 38.8750 10.7741i 1.78371 0.494348i
\(476\) 24.2600 1.11195
\(477\) 0 0
\(478\) 14.6708i 0.671026i
\(479\) 4.01237 0.183330 0.0916648 0.995790i \(-0.470781\pi\)
0.0916648 + 0.995790i \(0.470781\pi\)
\(480\) 0 0
\(481\) 0.431337 0.0196673
\(482\) 18.6151i 0.847893i
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) −30.2600 + 4.11565i −1.37403 + 0.186882i
\(486\) 0 0
\(487\) 8.00000i 0.362515i −0.983436 0.181257i \(-0.941983\pi\)
0.983436 0.181257i \(-0.0580167\pi\)
\(488\) 2.86267i 0.129587i
\(489\) 0 0
\(490\) 13.7946 1.87620i 0.623176 0.0847580i
\(491\) 8.88319 0.400893 0.200446 0.979705i \(-0.435761\pi\)
0.200446 + 0.979705i \(0.435761\pi\)
\(492\) 0 0
\(493\) 53.8205i 2.42395i
\(494\) 8.06808 0.363000
\(495\) 0 0
\(496\) 5.20541 0.233730
\(497\) 34.4232i 1.54409i
\(498\) 0 0
\(499\) 10.9988 0.492376 0.246188 0.969222i \(-0.420822\pi\)
0.246188 + 0.969222i \(0.420822\pi\)
\(500\) 4.41082 + 10.2735i 0.197258 + 0.459445i
\(501\) 0 0
\(502\) 14.4108i 0.643186i
\(503\) 5.65726i 0.252245i −0.992015 0.126122i \(-0.959747\pi\)
0.992015 0.126122i \(-0.0402532\pi\)
\(504\) 0 0
\(505\) 4.72651 + 34.7512i 0.210327 + 1.54641i
\(506\) −1.58918 −0.0706477
\(507\) 0 0
\(508\) 4.79459i 0.212726i
\(509\) −9.72535 −0.431068 −0.215534 0.976496i \(-0.569149\pi\)
−0.215534 + 0.976496i \(0.569149\pi\)
\(510\) 0 0
\(511\) −21.8205 −0.965281
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −0.123802 −0.00546065
\(515\) 33.9918 4.62322i 1.49786 0.203724i
\(516\) 0 0
\(517\) 15.2735i 0.671727i
\(518\) 1.56866i 0.0689231i
\(519\) 0 0
\(520\) 0.301352 + 2.21567i 0.0132152 + 0.0971635i
\(521\) 28.7741 1.26062 0.630308 0.776346i \(-0.282929\pi\)
0.630308 + 0.776346i \(0.282929\pi\)
\(522\) 0 0
\(523\) 37.6139i 1.64474i −0.568952 0.822371i \(-0.692651\pi\)
0.568952 0.822371i \(-0.307349\pi\)
\(524\) −4.02052 −0.175637
\(525\) 0 0
\(526\) 5.27349 0.229935
\(527\) 34.7242i 1.51261i
\(528\) 0 0
\(529\) 22.3686 0.972549
\(530\) 0.239452 + 1.76055i 0.0104011 + 0.0764733i
\(531\) 0 0
\(532\) 29.3416i 1.27212i
\(533\) 6.86267i 0.297255i
\(534\) 0 0
\(535\) −2.67079 + 0.363253i −0.115468 + 0.0157048i
\(536\) 5.20541 0.224839
\(537\) 0 0
\(538\) 1.27349i 0.0549042i
\(539\) 12.4519 0.536339
\(540\) 0 0
\(541\) 21.8081 0.937604 0.468802 0.883303i \(-0.344686\pi\)
0.468802 + 0.883303i \(0.344686\pi\)
\(542\) 6.28702i 0.270051i
\(543\) 0 0
\(544\) 6.67079 0.286008
\(545\) −2.95570 21.7315i −0.126608 0.930876i
\(546\) 0 0
\(547\) 4.73887i 0.202620i 0.994855 + 0.101310i \(0.0323033\pi\)
−0.994855 + 0.101310i \(0.967697\pi\)
\(548\) 11.2054i 0.478671i
\(549\) 0 0
\(550\) 2.67079 + 9.63675i 0.113883 + 0.410912i
\(551\) 65.0940 2.77310
\(552\) 0 0
\(553\) 7.02589i 0.298771i
\(554\) −22.9988 −0.977127
\(555\) 0 0
\(556\) 8.84216 0.374991
\(557\) 6.74702i 0.285881i −0.989731 0.142940i \(-0.954344\pi\)
0.989731 0.142940i \(-0.0456557\pi\)
\(558\) 0 0
\(559\) 5.80811 0.245657
\(560\) 8.05783 1.09594i 0.340505 0.0463120i
\(561\) 0 0
\(562\) 10.3427i 0.436282i
\(563\) 41.9443i 1.76774i 0.467732 + 0.883870i \(0.345071\pi\)
−0.467732 + 0.883870i \(0.654929\pi\)
\(564\) 0 0
\(565\) 8.86267 1.20541i 0.372855 0.0507120i
\(566\) −10.0270 −0.421468
\(567\) 0 0
\(568\) 9.46538i 0.397158i
\(569\) −7.95243 −0.333383 −0.166692 0.986009i \(-0.553308\pi\)
−0.166692 + 0.986009i \(0.553308\pi\)
\(570\) 0 0
\(571\) −14.5265 −0.607914 −0.303957 0.952686i \(-0.598308\pi\)
−0.303957 + 0.952686i \(0.598308\pi\)
\(572\) 2.00000i 0.0836242i
\(573\) 0 0
\(574\) −24.9578 −1.04172
\(575\) 1.06109 + 3.82863i 0.0442506 + 0.159665i
\(576\) 0 0
\(577\) 5.17836i 0.215578i −0.994174 0.107789i \(-0.965623\pi\)
0.994174 0.107789i \(-0.0343771\pi\)
\(578\) 27.4994i 1.14383i
\(579\) 0 0
\(580\) 2.43134 + 17.8762i 0.100956 + 0.742269i
\(581\) −7.52110 −0.312028
\(582\) 0 0
\(583\) 1.58918i 0.0658171i
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) −6.11565 −0.252635
\(587\) 22.8897i 0.944760i −0.881395 0.472380i \(-0.843395\pi\)
0.881395 0.472380i \(-0.156605\pi\)
\(588\) 0 0
\(589\) −41.9977 −1.73048
\(590\) −17.8762 + 2.43134i −0.735951 + 0.100097i
\(591\) 0 0
\(592\) 0.431337i 0.0177278i
\(593\) 14.3427i 0.588986i 0.955654 + 0.294493i \(0.0951507\pi\)
−0.955654 + 0.294493i \(0.904849\pi\)
\(594\) 0 0
\(595\) −7.31080 53.7520i −0.299714 2.20362i
\(596\) 0 0
\(597\) 0 0
\(598\) 0.794590i 0.0324932i
\(599\) 5.63021 0.230044 0.115022 0.993363i \(-0.463306\pi\)
0.115022 + 0.993363i \(0.463306\pi\)
\(600\) 0 0
\(601\) −11.3211 −0.461796 −0.230898 0.972978i \(-0.574166\pi\)
−0.230898 + 0.972978i \(0.574166\pi\)
\(602\) 21.1226i 0.860895i
\(603\) 0 0
\(604\) −7.05456 −0.287046
\(605\) −2.10947 15.5097i −0.0857620 0.630558i
\(606\) 0 0
\(607\) 25.0259i 1.01577i −0.861425 0.507885i \(-0.830428\pi\)
0.861425 0.507885i \(-0.169572\pi\)
\(608\) 8.06808i 0.327204i
\(609\) 0 0
\(610\) 6.34274 0.862674i 0.256810 0.0349286i
\(611\) 7.63675 0.308950
\(612\) 0 0
\(613\) 25.4507i 1.02794i −0.857807 0.513972i \(-0.828174\pi\)
0.857807 0.513972i \(-0.171826\pi\)
\(614\) −16.8627 −0.680522
\(615\) 0 0
\(616\) 7.27349 0.293057
\(617\) 15.6843i 0.631427i 0.948855 + 0.315713i \(0.102244\pi\)
−0.948855 + 0.315713i \(0.897756\pi\)
\(618\) 0 0
\(619\) 44.5880 1.79214 0.896072 0.443909i \(-0.146409\pi\)
0.896072 + 0.443909i \(0.146409\pi\)
\(620\) −1.56866 11.5335i −0.0629990 0.463195i
\(621\) 0 0
\(622\) 32.9988i 1.32313i
\(623\) 29.3416i 1.17555i
\(624\) 0 0
\(625\) 21.4334 12.8689i 0.857338 0.514754i
\(626\) −25.4654 −1.01780
\(627\) 0 0
\(628\) 0.0680837i 0.00271683i
\(629\) −2.87736 −0.114728
\(630\) 0 0
\(631\) −38.8070 −1.54488 −0.772440 0.635087i \(-0.780964\pi\)
−0.772440 + 0.635087i \(0.780964\pi\)
\(632\) 1.93192i 0.0768475i
\(633\) 0 0
\(634\) −14.1362 −0.561419
\(635\) 10.6232 1.44486i 0.421570 0.0573376i
\(636\) 0 0
\(637\) 6.22593i 0.246680i
\(638\) 16.1362i 0.638837i
\(639\) 0 0
\(640\) 2.21567 0.301352i 0.0875820 0.0119120i
\(641\) 8.27465 0.326829 0.163415 0.986557i \(-0.447749\pi\)
0.163415 + 0.986557i \(0.447749\pi\)
\(642\) 0 0
\(643\) 6.16322i 0.243054i 0.992588 + 0.121527i \(0.0387790\pi\)
−0.992588 + 0.121527i \(0.961221\pi\)
\(644\) 2.88972 0.113871
\(645\) 0 0
\(646\) −53.8205 −2.11754
\(647\) 7.24644i 0.284887i −0.989803 0.142444i \(-0.954504\pi\)
0.989803 0.142444i \(-0.0454959\pi\)
\(648\) 0 0
\(649\) −16.1362 −0.633400
\(650\) 4.81837 1.33539i 0.188992 0.0523785i
\(651\) 0 0
\(652\) 7.65726i 0.299882i
\(653\) 5.27349i 0.206368i −0.994662 0.103184i \(-0.967097\pi\)
0.994662 0.103184i \(-0.0329030\pi\)
\(654\) 0 0
\(655\) 1.21159 + 8.90813i 0.0473408 + 0.348070i
\(656\) −6.86267 −0.267942
\(657\) 0 0
\(658\) 27.7729i 1.08270i
\(659\) −18.6832 −0.727792 −0.363896 0.931440i \(-0.618554\pi\)
−0.363896 + 0.931440i \(0.618554\pi\)
\(660\) 0 0
\(661\) 15.3145 0.595666 0.297833 0.954618i \(-0.403736\pi\)
0.297833 + 0.954618i \(0.403736\pi\)
\(662\) 18.5199i 0.719798i
\(663\) 0 0
\(664\) −2.06808 −0.0802572
\(665\) −65.0112 + 8.84216i −2.52103 + 0.342884i
\(666\) 0 0
\(667\) 6.41082i 0.248228i
\(668\) 4.82164i 0.186555i
\(669\) 0 0
\(670\) −1.56866 11.5335i −0.0606027 0.445577i
\(671\) 5.72535 0.221025
\(672\) 0 0
\(673\) 10.2870i 0.396535i −0.980148 0.198268i \(-0.936468\pi\)
0.980148 0.198268i \(-0.0635315\pi\)
\(674\) 22.2870 0.858464
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 9.88856i 0.380048i 0.981779 + 0.190024i \(0.0608566\pi\)
−0.981779 + 0.190024i \(0.939143\pi\)
\(678\) 0 0
\(679\) 49.6680 1.90608
\(680\) −2.01026 14.7803i −0.0770899 0.566797i
\(681\) 0 0
\(682\) 10.4108i 0.398651i
\(683\) 2.06808i 0.0791330i −0.999217 0.0395665i \(-0.987402\pi\)
0.999217 0.0395665i \(-0.0125977\pi\)
\(684\) 0 0
\(685\) −24.8275 + 3.37678i −0.948609 + 0.129020i
\(686\) 2.81511 0.107481
\(687\) 0 0
\(688\) 5.80811i 0.221432i
\(689\) 0.794590 0.0302715
\(690\) 0 0
\(691\) 15.8205 0.601839 0.300920 0.953649i \(-0.402706\pi\)
0.300920 + 0.953649i \(0.402706\pi\)
\(692\) 12.7946i 0.486377i
\(693\) 0 0
\(694\) 31.5335 1.19699
\(695\) −2.66461 19.5913i −0.101074 0.743140i
\(696\) 0 0
\(697\) 45.7794i 1.73402i
\(698\) 32.3551i 1.22466i
\(699\) 0 0
\(700\) −4.85649 17.5232i −0.183558 0.662315i
\(701\) −14.6561 −0.553553 −0.276777 0.960934i \(-0.589266\pi\)
−0.276777 + 0.960934i \(0.589266\pi\)
\(702\) 0 0
\(703\) 3.48006i 0.131253i
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 20.0270 0.753728
\(707\) 57.0399i 2.14521i
\(708\) 0 0
\(709\) 23.3145 0.875595 0.437798 0.899073i \(-0.355759\pi\)
0.437798 + 0.899073i \(0.355759\pi\)
\(710\) −20.9721 + 2.85242i −0.787070 + 0.107049i
\(711\) 0 0
\(712\) 8.06808i 0.302364i
\(713\) 4.13617i 0.154901i
\(714\) 0 0
\(715\) 4.43134 0.602705i 0.165723 0.0225399i
\(716\) 8.84216 0.330447
\(717\) 0 0
\(718\) 22.9308i 0.855768i
\(719\) −29.3416 −1.09426 −0.547128 0.837049i \(-0.684279\pi\)
−0.547128 + 0.837049i \(0.684279\pi\)
\(720\) 0 0
\(721\) −55.7934 −2.07786
\(722\) 46.0940i 1.71544i
\(723\) 0 0
\(724\) −1.61623 −0.0600667
\(725\) 38.8750 10.7741i 1.44378 0.400139i
\(726\) 0 0
\(727\) 15.4530i 0.573121i −0.958062 0.286560i \(-0.907488\pi\)
0.958062 0.286560i \(-0.0925119\pi\)
\(728\) 3.63675i 0.134787i
\(729\) 0 0
\(730\) 1.80811 + 13.2940i 0.0669213 + 0.492033i
\(731\) −38.7447 −1.43302
\(732\) 0 0
\(733\) 30.2108i 1.11586i −0.829888 0.557930i \(-0.811596\pi\)
0.829888 0.557930i \(-0.188404\pi\)
\(734\) 34.1362 1.25999
\(735\) 0 0
\(736\) 0.794590 0.0292890
\(737\) 10.4108i 0.383487i
\(738\) 0 0
\(739\) 24.5880 0.904485 0.452242 0.891895i \(-0.350624\pi\)
0.452242 + 0.891895i \(0.350624\pi\)
\(740\) −0.955700 + 0.129984i −0.0351322 + 0.00477832i
\(741\) 0 0
\(742\) 2.88972i 0.106085i
\(743\) 48.0452i 1.76261i −0.472549 0.881305i \(-0.656666\pi\)
0.472549 0.881305i \(-0.343334\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 26.9988 0.988498
\(747\) 0 0
\(748\) 13.3416i 0.487816i
\(749\) 4.38377 0.160179
\(750\) 0 0
\(751\) −4.90371 −0.178939 −0.0894694 0.995990i \(-0.528517\pi\)
−0.0894694 + 0.995990i \(0.528517\pi\)
\(752\) 7.63675i 0.278484i
\(753\) 0 0
\(754\) 8.06808 0.293822
\(755\) 2.12591 + 15.6306i 0.0773697 + 0.568854i
\(756\) 0 0
\(757\) 11.3416i 0.412217i 0.978529 + 0.206108i \(0.0660799\pi\)
−0.978529 + 0.206108i \(0.933920\pi\)
\(758\) 12.9308i 0.469666i
\(759\) 0 0
\(760\) −17.8762 + 2.43134i −0.648438 + 0.0881939i
\(761\) −10.3427 −0.374924 −0.187462 0.982272i \(-0.560026\pi\)
−0.187462 + 0.982272i \(0.560026\pi\)
\(762\) 0 0
\(763\) 35.6696i 1.29133i
\(764\) 21.3416 0.772111
\(765\) 0 0
\(766\) −21.3621 −0.771844
\(767\) 8.06808i 0.291322i
\(768\) 0 0
\(769\) −27.6843 −0.998322 −0.499161 0.866509i \(-0.666358\pi\)
−0.499161 + 0.866509i \(0.666358\pi\)
\(770\) −2.19189 16.1157i −0.0789901 0.580768i
\(771\) 0 0
\(772\) 5.61623i 0.202133i
\(773\) 12.2952i 0.442227i 0.975248 + 0.221113i \(0.0709690\pi\)
−0.975248 + 0.221113i \(0.929031\pi\)
\(774\) 0 0
\(775\) −25.0816 + 6.95127i −0.900958 + 0.249697i
\(776\) 13.6573 0.490267
\(777\) 0 0
\(778\) 29.4507i 1.05586i
\(779\) 55.3686 1.98379
\(780\) 0 0
\(781\) −18.9308 −0.677396
\(782\) 5.30054i 0.189547i
\(783\) 0 0
\(784\) −6.22593 −0.222355
\(785\) −0.150851 + 0.0205172i −0.00538410 + 0.000732290i
\(786\) 0 0
\(787\) 43.5048i 1.55078i 0.631484 + 0.775389i \(0.282446\pi\)
−0.631484 + 0.775389i \(0.717554\pi\)
\(788\) 14.0205i 0.499460i
\(789\) 0 0
\(790\) 4.28049 0.582188i 0.152293 0.0207133i
\(791\) −14.5470 −0.517231
\(792\) 0 0
\(793\) 2.86267i 0.101657i
\(794\) 16.6832 0.592063
\(795\) 0 0
\(796\) −15.7524 −0.558329
\(797\) 12.9718i 0.459484i 0.973252 + 0.229742i \(0.0737883\pi\)
−0.973252 + 0.229742i \(0.926212\pi\)
\(798\) 0 0
\(799\) −50.9431 −1.80224
\(800\) −1.33539 4.81837i −0.0472133 0.170355i
\(801\) 0 0
\(802\) 7.34158i 0.259240i
\(803\) 12.0000i 0.423471i
\(804\) 0 0
\(805\) −0.870825 6.40267i −0.0306926 0.225664i
\(806\) −5.20541 −0.183353
\(807\) 0 0
\(808\) 15.6843i 0.551772i
\(809\) 8.73304 0.307037 0.153519 0.988146i \(-0.450939\pi\)
0.153519 + 0.988146i \(0.450939\pi\)
\(810\) 0 0
\(811\) 46.3134 1.62628 0.813141 0.582067i \(-0.197756\pi\)
0.813141 + 0.582067i \(0.197756\pi\)
\(812\) 29.3416i 1.02969i
\(813\) 0 0
\(814\) −0.862674 −0.0302367
\(815\) 16.9660 2.30754i 0.594292 0.0808294i
\(816\) 0 0
\(817\) 46.8604i 1.63944i
\(818\) 35.4777i 1.24045i
\(819\) 0 0
\(820\) 2.06808 + 15.2054i 0.0722206 + 0.530996i
\(821\) −31.9172 −1.11392 −0.556960 0.830540i \(-0.688032\pi\)
−0.556960 + 0.830540i \(0.688032\pi\)
\(822\) 0 0
\(823\) 6.42480i 0.223955i 0.993711 + 0.111977i \(0.0357184\pi\)
−0.993711 + 0.111977i \(0.964282\pi\)
\(824\) −15.3416 −0.534449
\(825\) 0 0
\(826\) 29.3416 1.02092
\(827\) 38.7242i 1.34657i 0.739382 + 0.673286i \(0.235118\pi\)
−0.739382 + 0.673286i \(0.764882\pi\)
\(828\) 0 0
\(829\) 18.3427 0.637070 0.318535 0.947911i \(-0.396809\pi\)
0.318535 + 0.947911i \(0.396809\pi\)
\(830\) 0.623222 + 4.58219i 0.0216324 + 0.159050i
\(831\) 0 0
\(832\) 1.00000i 0.0346688i
\(833\) 41.5318i 1.43899i
\(834\) 0 0
\(835\) 10.6832 1.45301i 0.369706 0.0502836i
\(836\) −16.1362 −0.558081
\(837\) 0 0
\(838\) 0.883191i 0.0305093i
\(839\) −12.6561 −0.436937 −0.218469 0.975844i \(-0.570106\pi\)
−0.218469 + 0.975844i \(0.570106\pi\)
\(840\) 0 0
\(841\) 36.0940 1.24462
\(842\) 27.2859i 0.940333i
\(843\) 0 0
\(844\) 1.70483 0.0586827
\(845\) −0.301352 2.21567i −0.0103668 0.0762213i
\(846\) 0 0
\(847\) 25.4572i 0.874721i
\(848\) 0.794590i 0.0272863i
\(849\) 0 0
\(850\) −32.1424 + 8.90813i −1.10247 + 0.305546i
\(851\) −0.342736 −0.0117488
\(852\) 0 0
\(853\) 44.7988i 1.53388i −0.641718 0.766941i \(-0.721778\pi\)
0.641718 0.766941i \(-0.278222\pi\)
\(854\) −10.4108 −0.356251
\(855\) 0 0
\(856\) 1.20541 0.0412001
\(857\) 46.8193i 1.59932i −0.600455 0.799659i \(-0.705014\pi\)
0.600455 0.799659i \(-0.294986\pi\)
\(858\) 0 0
\(859\) 23.8638 0.814223 0.407112 0.913378i \(-0.366536\pi\)
0.407112 + 0.913378i \(0.366536\pi\)
\(860\) −12.8689 + 1.75029i −0.438824 + 0.0596844i
\(861\) 0 0
\(862\) 0.259969i 0.00885458i
\(863\) 12.2271i 0.416215i −0.978106 0.208107i \(-0.933270\pi\)
0.978106 0.208107i \(-0.0667304\pi\)
\(864\) 0 0
\(865\) −28.3486 + 3.85568i −0.963880 + 0.131097i
\(866\) 17.4654 0.593498
\(867\) 0 0
\(868\) 18.9308i 0.642552i
\(869\) 3.86383 0.131072
\(870\) 0 0
\(871\) −5.20541 −0.176379
\(872\) 9.80811i 0.332145i
\(873\) 0 0
\(874\) −6.41082 −0.216849
\(875\) −37.3621 + 16.0410i −1.26307 + 0.542286i
\(876\) 0 0
\(877\) 0.336204i 0.0113528i 0.999984 + 0.00567640i \(0.00180686\pi\)
−0.999984 + 0.00567640i \(0.998193\pi\)
\(878\) 17.6843i 0.596817i
\(879\) 0 0
\(880\) −0.602705 4.43134i −0.0203172 0.149380i
\(881\) 41.0464 1.38289 0.691444 0.722430i \(-0.256975\pi\)
0.691444 + 0.722430i \(0.256975\pi\)
\(882\) 0 0
\(883\) 40.0534i 1.34790i 0.738775 + 0.673952i \(0.235405\pi\)
−0.738775 + 0.673952i \(0.764595\pi\)
\(884\) −6.67079 −0.224363
\(885\) 0 0
\(886\) 32.4913 1.09157
\(887\) 28.7242i 0.964464i 0.876044 + 0.482232i \(0.160174\pi\)
−0.876044 + 0.482232i \(0.839826\pi\)
\(888\) 0 0
\(889\) −17.4367 −0.584808
\(890\) 17.8762 2.43134i 0.599212 0.0814986i
\(891\) 0 0
\(892\) 22.9513i 0.768466i
\(893\) 61.6139i 2.06183i
\(894\) 0 0
\(895\) −2.66461 19.5913i −0.0890679 0.654865i
\(896\) −3.63675 −0.121495
\(897\) 0 0
\(898\) 35.0940i 1.17110i
\(899\) −41.9977 −1.40070
\(900\) 0 0
\(901\) −5.30054 −0.176587
\(902\) 13.7253i 0.457004i
\(903\) 0 0
\(904\) −4.00000 −0.133038
\(905\) 0.487055 + 3.58103i 0.0161902 + 0.119037i
\(906\) 0 0
\(907\) 48.7636i 1.61917i −0.587003 0.809584i \(-0.699692\pi\)
0.587003 0.809584i \(-0.300308\pi\)
\(908\) 10.5470i 0.350014i
\(909\) 0 0
\(910\) −8.05783 + 1.09594i −0.267114 + 0.0363301i
\(911\) −15.4801 −0.512877 −0.256439 0.966561i \(-0.582549\pi\)
−0.256439 + 0.966561i \(0.582549\pi\)
\(912\) 0 0
\(913\) 4.13617i 0.136887i
\(914\) 20.5470 0.679634
\(915\) 0 0
\(916\) 25.9443 0.857223
\(917\) 14.6216i 0.482848i
\(918\) 0 0
\(919\) −45.8615 −1.51283 −0.756416 0.654091i \(-0.773051\pi\)
−0.756416 + 0.654091i \(0.773051\pi\)
\(920\) −0.239452 1.76055i −0.00789449 0.0580436i
\(921\) 0 0
\(922\) 7.14969i 0.235463i
\(923\) 9.46538i 0.311557i
\(924\) 0 0
\(925\) 0.576005 + 2.07834i 0.0189389 + 0.0683355i
\(926\) −22.6832 −0.745415
\(927\) 0 0
\(928\) 8.06808i 0.264848i
\(929\) −26.9168 −0.883111 −0.441555 0.897234i \(-0.645573\pi\)
−0.441555 + 0.897234i \(0.645573\pi\)
\(930\) 0 0
\(931\) 50.2313 1.64626
\(932\) 11.4924i 0.376447i
\(933\) 0 0
\(934\) 25.2054 0.824746
\(935\) −29.5605 + 4.02052i −0.966732 + 0.131485i
\(936\) 0 0
\(937\) 4.90371i 0.160197i −0.996787 0.0800986i \(-0.974476\pi\)
0.996787 0.0800986i \(-0.0255235\pi\)
\(938\) 18.9308i 0.618111i
\(939\) 0 0
\(940\) −16.9205 + 2.30135i −0.551886 + 0.0750618i
\(941\) 46.6004 1.51913 0.759565 0.650432i \(-0.225412\pi\)
0.759565 + 0.650432i \(0.225412\pi\)
\(942\) 0 0
\(943\) 5.45301i 0.177575i
\(944\) 8.06808 0.262594
\(945\) 0 0
\(946\) −11.6162 −0.377676
\(947\) 27.7524i 0.901832i −0.892566 0.450916i \(-0.851097\pi\)
0.892566 0.450916i \(-0.148903\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 10.7741 + 38.8750i 0.349557 + 1.26127i
\(951\) 0 0
\(952\) 24.2600i 0.786270i
\(953\) 14.9725i 0.485007i −0.970151 0.242503i \(-0.922031\pi\)
0.970151 0.242503i \(-0.0779685\pi\)
\(954\) 0 0
\(955\) −6.43134 47.2859i −0.208113 1.53013i
\(956\) −14.6708 −0.474487
\(957\) 0 0
\(958\) 4.01237i 0.129634i
\(959\) 40.7512 1.31593
\(960\) 0 0
\(961\) −3.90371 −0.125926
\(962\) 0.431337i 0.0139069i
\(963\) 0 0
\(964\) 18.6151 0.599551
\(965\) 12.4437 1.69246i 0.400577 0.0544824i
\(966\) 0 0
\(967\) 52.5946i 1.69133i −0.533717 0.845663i \(-0.679205\pi\)
0.533717 0.845663i \(-0.320795\pi\)
\(968\) 7.00000i 0.224989i
\(969\) 0 0
\(970\) −4.11565 30.2600i −0.132146 0.971589i
\(971\) 15.5253 0.498231 0.249115 0.968474i \(-0.419860\pi\)
0.249115 + 0.968474i \(0.419860\pi\)
\(972\) 0 0
\(973\) 32.1567i 1.03090i
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) −2.86267 −0.0916320
\(977\) 47.5729i 1.52199i 0.648757 + 0.760996i \(0.275289\pi\)
−0.648757 + 0.760996i \(0.724711\pi\)
\(978\) 0 0
\(979\) 16.1362 0.515714
\(980\) 1.87620 + 13.7946i 0.0599330 + 0.440652i
\(981\) 0 0
\(982\) 8.88319i 0.283474i
\(983\) 37.3211i 1.19036i −0.803594 0.595178i \(-0.797081\pi\)
0.803594 0.595178i \(-0.202919\pi\)
\(984\) 0 0
\(985\) −31.0648 + 4.22512i −0.989807 + 0.134623i
\(986\) −53.8205 −1.71399
\(987\) 0 0
\(988\) 8.06808i 0.256680i
\(989\) −4.61507 −0.146751
\(990\) 0 0
\(991\) 22.5060 0.714925 0.357463 0.933927i \(-0.383642\pi\)
0.357463 + 0.933927i \(0.383642\pi\)
\(992\) 5.20541i 0.165272i
\(993\) 0 0
\(994\) 34.4232 1.09184
\(995\) 4.74702 + 34.9021i 0.150491 + 1.10647i
\(996\) 0 0
\(997\) 24.4108i 0.773098i −0.922269 0.386549i \(-0.873667\pi\)
0.922269 0.386549i \(-0.126333\pi\)
\(998\) 10.9988i 0.348162i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.e.f.469.5 6
3.2 odd 2 130.2.b.a.79.2 6
5.2 odd 4 5850.2.a.cp.1.3 3
5.3 odd 4 5850.2.a.cs.1.1 3
5.4 even 2 inner 1170.2.e.f.469.2 6
12.11 even 2 1040.2.d.b.209.3 6
15.2 even 4 650.2.a.o.1.2 3
15.8 even 4 650.2.a.n.1.2 3
15.14 odd 2 130.2.b.a.79.5 yes 6
39.5 even 4 1690.2.c.a.1689.4 6
39.8 even 4 1690.2.c.d.1689.4 6
39.38 odd 2 1690.2.b.a.339.5 6
60.23 odd 4 5200.2.a.ce.1.2 3
60.47 odd 4 5200.2.a.cf.1.2 3
60.59 even 2 1040.2.d.b.209.4 6
195.38 even 4 8450.2.a.cc.1.2 3
195.44 even 4 1690.2.c.d.1689.3 6
195.77 even 4 8450.2.a.bs.1.2 3
195.164 even 4 1690.2.c.a.1689.3 6
195.194 odd 2 1690.2.b.a.339.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.b.a.79.2 6 3.2 odd 2
130.2.b.a.79.5 yes 6 15.14 odd 2
650.2.a.n.1.2 3 15.8 even 4
650.2.a.o.1.2 3 15.2 even 4
1040.2.d.b.209.3 6 12.11 even 2
1040.2.d.b.209.4 6 60.59 even 2
1170.2.e.f.469.2 6 5.4 even 2 inner
1170.2.e.f.469.5 6 1.1 even 1 trivial
1690.2.b.a.339.2 6 195.194 odd 2
1690.2.b.a.339.5 6 39.38 odd 2
1690.2.c.a.1689.3 6 195.164 even 4
1690.2.c.a.1689.4 6 39.5 even 4
1690.2.c.d.1689.3 6 195.44 even 4
1690.2.c.d.1689.4 6 39.8 even 4
5200.2.a.ce.1.2 3 60.23 odd 4
5200.2.a.cf.1.2 3 60.47 odd 4
5850.2.a.cp.1.3 3 5.2 odd 4
5850.2.a.cs.1.1 3 5.3 odd 4
8450.2.a.bs.1.2 3 195.77 even 4
8450.2.a.cc.1.2 3 195.38 even 4