Properties

Label 130.2.b.a.79.2
Level $130$
Weight $2$
Character 130.79
Analytic conductor $1.038$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [130,2,Mod(79,130)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(130, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("130.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3534400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 79.2
Root \(-1.81837 + 0.301352i\) of defining polynomial
Character \(\chi\) \(=\) 130.79
Dual form 130.2.b.a.79.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +0.602705i q^{3} -1.00000 q^{4} +(-0.301352 - 2.21567i) q^{5} +0.602705 q^{6} -3.63675i q^{7} +1.00000i q^{8} +2.63675 q^{9} +(-2.21567 + 0.301352i) q^{10} +2.00000 q^{11} -0.602705i q^{12} +1.00000i q^{13} -3.63675 q^{14} +(1.33539 - 0.181627i) q^{15} +1.00000 q^{16} +6.67079i q^{17} -2.63675i q^{18} -8.06808 q^{19} +(0.301352 + 2.21567i) q^{20} +2.19189 q^{21} -2.00000i q^{22} +0.794590i q^{23} -0.602705 q^{24} +(-4.81837 + 1.33539i) q^{25} +1.00000 q^{26} +3.39730i q^{27} +3.63675i q^{28} +8.06808 q^{29} +(-0.181627 - 1.33539i) q^{30} +5.20541 q^{31} -1.00000i q^{32} +1.20541i q^{33} +6.67079 q^{34} +(-8.05783 + 1.09594i) q^{35} -2.63675 q^{36} -0.431337i q^{37} +8.06808i q^{38} -0.602705 q^{39} +(2.21567 - 0.301352i) q^{40} +6.86267 q^{41} -2.19189i q^{42} -5.80811i q^{43} -2.00000 q^{44} +(-0.794590 - 5.84216i) q^{45} +0.794590 q^{46} +7.63675i q^{47} +0.602705i q^{48} -6.22593 q^{49} +(1.33539 + 4.81837i) q^{50} -4.02052 q^{51} -1.00000i q^{52} +0.794590i q^{53} +3.39730 q^{54} +(-0.602705 - 4.43134i) q^{55} +3.63675 q^{56} -4.86267i q^{57} -8.06808i q^{58} -8.06808 q^{59} +(-1.33539 + 0.181627i) q^{60} -2.86267 q^{61} -5.20541i q^{62} -9.58918i q^{63} -1.00000 q^{64} +(2.21567 - 0.301352i) q^{65} +1.20541 q^{66} +5.20541i q^{67} -6.67079i q^{68} -0.478903 q^{69} +(1.09594 + 8.05783i) q^{70} -9.46538 q^{71} +2.63675i q^{72} -6.00000i q^{73} -0.431337 q^{74} +(-0.804849 - 2.90406i) q^{75} +8.06808 q^{76} -7.27349i q^{77} +0.602705i q^{78} -1.93192 q^{79} +(-0.301352 - 2.21567i) q^{80} +5.86267 q^{81} -6.86267i q^{82} +2.06808i q^{83} -2.19189 q^{84} +(14.7803 - 2.01026i) q^{85} -5.80811 q^{86} +4.86267i q^{87} +2.00000i q^{88} +8.06808 q^{89} +(-5.84216 + 0.794590i) q^{90} +3.63675 q^{91} -0.794590i q^{92} +3.13733i q^{93} +7.63675 q^{94} +(2.43134 + 17.8762i) q^{95} +0.602705 q^{96} +13.6573i q^{97} +6.22593i q^{98} +5.27349 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 10 q^{9} - 4 q^{10} + 12 q^{11} + 4 q^{14} - 16 q^{15} + 6 q^{16} - 4 q^{19} + 24 q^{21} - 16 q^{25} + 6 q^{26} + 4 q^{29} - 14 q^{30} + 24 q^{31} - 8 q^{34} - 6 q^{35} + 10 q^{36} + 4 q^{40}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.602705i 0.347972i 0.984748 + 0.173986i \(0.0556647\pi\)
−0.984748 + 0.173986i \(0.944335\pi\)
\(4\) −1.00000 −0.500000
\(5\) −0.301352 2.21567i −0.134769 0.990877i
\(6\) 0.602705 0.246053
\(7\) 3.63675i 1.37456i −0.726392 0.687281i \(-0.758804\pi\)
0.726392 0.687281i \(-0.241196\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.63675 0.878916
\(10\) −2.21567 + 0.301352i −0.700656 + 0.0952960i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0.602705i 0.173986i
\(13\) 1.00000i 0.277350i
\(14\) −3.63675 −0.971961
\(15\) 1.33539 0.181627i 0.344797 0.0468958i
\(16\) 1.00000 0.250000
\(17\) 6.67079i 1.61790i 0.587875 + 0.808952i \(0.299965\pi\)
−0.587875 + 0.808952i \(0.700035\pi\)
\(18\) 2.63675i 0.621487i
\(19\) −8.06808 −1.85095 −0.925473 0.378814i \(-0.876332\pi\)
−0.925473 + 0.378814i \(0.876332\pi\)
\(20\) 0.301352 + 2.21567i 0.0673845 + 0.495439i
\(21\) 2.19189 0.478309
\(22\) 2.00000i 0.426401i
\(23\) 0.794590i 0.165683i 0.996563 + 0.0828417i \(0.0263996\pi\)
−0.996563 + 0.0828417i \(0.973600\pi\)
\(24\) −0.602705 −0.123027
\(25\) −4.81837 + 1.33539i −0.963675 + 0.267079i
\(26\) 1.00000 0.196116
\(27\) 3.39730i 0.653810i
\(28\) 3.63675i 0.687281i
\(29\) 8.06808 1.49821 0.749103 0.662454i \(-0.230485\pi\)
0.749103 + 0.662454i \(0.230485\pi\)
\(30\) −0.181627 1.33539i −0.0331603 0.243809i
\(31\) 5.20541 0.934919 0.467460 0.884014i \(-0.345169\pi\)
0.467460 + 0.884014i \(0.345169\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 1.20541i 0.209835i
\(34\) 6.67079 1.14403
\(35\) −8.05783 + 1.09594i −1.36202 + 0.185248i
\(36\) −2.63675 −0.439458
\(37\) 0.431337i 0.0709114i −0.999371 0.0354557i \(-0.988712\pi\)
0.999371 0.0354557i \(-0.0112883\pi\)
\(38\) 8.06808i 1.30882i
\(39\) −0.602705 −0.0965100
\(40\) 2.21567 0.301352i 0.350328 0.0476480i
\(41\) 6.86267 1.07177 0.535885 0.844291i \(-0.319978\pi\)
0.535885 + 0.844291i \(0.319978\pi\)
\(42\) 2.19189i 0.338215i
\(43\) 5.80811i 0.885729i −0.896589 0.442865i \(-0.853962\pi\)
0.896589 0.442865i \(-0.146038\pi\)
\(44\) −2.00000 −0.301511
\(45\) −0.794590 5.84216i −0.118451 0.870897i
\(46\) 0.794590 0.117156
\(47\) 7.63675i 1.11393i 0.830535 + 0.556967i \(0.188035\pi\)
−0.830535 + 0.556967i \(0.811965\pi\)
\(48\) 0.602705i 0.0869930i
\(49\) −6.22593 −0.889418
\(50\) 1.33539 + 4.81837i 0.188853 + 0.681421i
\(51\) −4.02052 −0.562985
\(52\) 1.00000i 0.138675i
\(53\) 0.794590i 0.109145i 0.998510 + 0.0545727i \(0.0173797\pi\)
−0.998510 + 0.0545727i \(0.982620\pi\)
\(54\) 3.39730 0.462313
\(55\) −0.602705 4.43134i −0.0812687 0.597521i
\(56\) 3.63675 0.485981
\(57\) 4.86267i 0.644077i
\(58\) 8.06808i 1.05939i
\(59\) −8.06808 −1.05038 −0.525188 0.850987i \(-0.676005\pi\)
−0.525188 + 0.850987i \(0.676005\pi\)
\(60\) −1.33539 + 0.181627i −0.172399 + 0.0234479i
\(61\) −2.86267 −0.366528 −0.183264 0.983064i \(-0.558666\pi\)
−0.183264 + 0.983064i \(0.558666\pi\)
\(62\) 5.20541i 0.661088i
\(63\) 9.58918i 1.20812i
\(64\) −1.00000 −0.125000
\(65\) 2.21567 0.301352i 0.274820 0.0373782i
\(66\) 1.20541 0.148376
\(67\) 5.20541i 0.635942i 0.948100 + 0.317971i \(0.103001\pi\)
−0.948100 + 0.317971i \(0.896999\pi\)
\(68\) 6.67079i 0.808952i
\(69\) −0.478903 −0.0576532
\(70\) 1.09594 + 8.05783i 0.130990 + 0.963094i
\(71\) −9.46538 −1.12333 −0.561667 0.827363i \(-0.689840\pi\)
−0.561667 + 0.827363i \(0.689840\pi\)
\(72\) 2.63675i 0.310744i
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) −0.431337 −0.0501419
\(75\) −0.804849 2.90406i −0.0929359 0.335332i
\(76\) 8.06808 0.925473
\(77\) 7.27349i 0.828892i
\(78\) 0.602705i 0.0682429i
\(79\) −1.93192 −0.217358 −0.108679 0.994077i \(-0.534662\pi\)
−0.108679 + 0.994077i \(0.534662\pi\)
\(80\) −0.301352 2.21567i −0.0336922 0.247719i
\(81\) 5.86267 0.651408
\(82\) 6.86267i 0.757856i
\(83\) 2.06808i 0.227002i 0.993538 + 0.113501i \(0.0362065\pi\)
−0.993538 + 0.113501i \(0.963794\pi\)
\(84\) −2.19189 −0.239154
\(85\) 14.7803 2.01026i 1.60314 0.218043i
\(86\) −5.80811 −0.626305
\(87\) 4.86267i 0.521333i
\(88\) 2.00000i 0.213201i
\(89\) 8.06808 0.855215 0.427608 0.903964i \(-0.359357\pi\)
0.427608 + 0.903964i \(0.359357\pi\)
\(90\) −5.84216 + 0.794590i −0.615817 + 0.0837572i
\(91\) 3.63675 0.381235
\(92\) 0.794590i 0.0828417i
\(93\) 3.13733i 0.325326i
\(94\) 7.63675 0.787670
\(95\) 2.43134 + 17.8762i 0.249450 + 1.83406i
\(96\) 0.602705 0.0615133
\(97\) 13.6573i 1.38669i 0.720608 + 0.693343i \(0.243863\pi\)
−0.720608 + 0.693343i \(0.756137\pi\)
\(98\) 6.22593i 0.628914i
\(99\) 5.27349 0.530006
\(100\) 4.81837 1.33539i 0.481837 0.133539i
\(101\) −15.6843 −1.56065 −0.780324 0.625376i \(-0.784946\pi\)
−0.780324 + 0.625376i \(0.784946\pi\)
\(102\) 4.02052i 0.398091i
\(103\) 15.3416i 1.51165i −0.654773 0.755825i \(-0.727236\pi\)
0.654773 0.755825i \(-0.272764\pi\)
\(104\) −1.00000 −0.0980581
\(105\) −0.660530 4.85649i −0.0644611 0.473945i
\(106\) 0.794590 0.0771774
\(107\) 1.20541i 0.116531i −0.998301 0.0582657i \(-0.981443\pi\)
0.998301 0.0582657i \(-0.0185571\pi\)
\(108\) 3.39730i 0.326905i
\(109\) −9.80811 −0.939447 −0.469724 0.882814i \(-0.655646\pi\)
−0.469724 + 0.882814i \(0.655646\pi\)
\(110\) −4.43134 + 0.602705i −0.422511 + 0.0574657i
\(111\) 0.259969 0.0246752
\(112\) 3.63675i 0.343640i
\(113\) 4.00000i 0.376288i 0.982141 + 0.188144i \(0.0602472\pi\)
−0.982141 + 0.188144i \(0.939753\pi\)
\(114\) −4.86267 −0.455431
\(115\) 1.76055 0.239452i 0.164172 0.0223290i
\(116\) −8.06808 −0.749103
\(117\) 2.63675i 0.243767i
\(118\) 8.06808i 0.742727i
\(119\) 24.2600 2.22391
\(120\) 0.181627 + 1.33539i 0.0165802 + 0.121904i
\(121\) −7.00000 −0.636364
\(122\) 2.86267i 0.259174i
\(123\) 4.13617i 0.372946i
\(124\) −5.20541 −0.467460
\(125\) 4.41082 + 10.2735i 0.394516 + 0.918889i
\(126\) −9.58918 −0.854272
\(127\) 4.79459i 0.425451i −0.977112 0.212726i \(-0.931766\pi\)
0.977112 0.212726i \(-0.0682340\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 3.50058 0.308209
\(130\) −0.301352 2.21567i −0.0264304 0.194327i
\(131\) −4.02052 −0.351274 −0.175637 0.984455i \(-0.556199\pi\)
−0.175637 + 0.984455i \(0.556199\pi\)
\(132\) 1.20541i 0.104917i
\(133\) 29.3416i 2.54424i
\(134\) 5.20541 0.449679
\(135\) 7.52728 1.02378i 0.647845 0.0881132i
\(136\) −6.67079 −0.572015
\(137\) 11.2054i 0.957343i −0.877994 0.478671i \(-0.841119\pi\)
0.877994 0.478671i \(-0.158881\pi\)
\(138\) 0.478903i 0.0407670i
\(139\) −8.84216 −0.749982 −0.374991 0.927028i \(-0.622354\pi\)
−0.374991 + 0.927028i \(0.622354\pi\)
\(140\) 8.05783 1.09594i 0.681011 0.0926241i
\(141\) −4.60270 −0.387618
\(142\) 9.46538i 0.794317i
\(143\) 2.00000i 0.167248i
\(144\) 2.63675 0.219729
\(145\) −2.43134 17.8762i −0.201912 1.48454i
\(146\) −6.00000 −0.496564
\(147\) 3.75240i 0.309492i
\(148\) 0.431337i 0.0354557i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) −2.90406 + 0.804849i −0.237115 + 0.0657156i
\(151\) 7.05456 0.574092 0.287046 0.957917i \(-0.407327\pi\)
0.287046 + 0.957917i \(0.407327\pi\)
\(152\) 8.06808i 0.654408i
\(153\) 17.5892i 1.42200i
\(154\) −7.27349 −0.586115
\(155\) −1.56866 11.5335i −0.125998 0.926390i
\(156\) 0.602705 0.0482550
\(157\) 0.0680837i 0.00543367i 0.999996 + 0.00271683i \(0.000864796\pi\)
−0.999996 + 0.00271683i \(0.999135\pi\)
\(158\) 1.93192i 0.153695i
\(159\) −0.478903 −0.0379795
\(160\) −2.21567 + 0.301352i −0.175164 + 0.0238240i
\(161\) 2.88972 0.227742
\(162\) 5.86267i 0.460615i
\(163\) 7.65726i 0.599763i −0.953976 0.299882i \(-0.903053\pi\)
0.953976 0.299882i \(-0.0969472\pi\)
\(164\) −6.86267 −0.535885
\(165\) 2.67079 0.363253i 0.207921 0.0282792i
\(166\) 2.06808 0.160514
\(167\) 4.82164i 0.373110i 0.982445 + 0.186555i \(0.0597322\pi\)
−0.982445 + 0.186555i \(0.940268\pi\)
\(168\) 2.19189i 0.169108i
\(169\) −1.00000 −0.0769231
\(170\) −2.01026 14.7803i −0.154180 1.13359i
\(171\) −21.2735 −1.62682
\(172\) 5.80811i 0.442865i
\(173\) 12.7946i 0.972755i −0.873749 0.486377i \(-0.838318\pi\)
0.873749 0.486377i \(-0.161682\pi\)
\(174\) 4.86267 0.368638
\(175\) 4.85649 + 17.5232i 0.367116 + 1.32463i
\(176\) 2.00000 0.150756
\(177\) 4.86267i 0.365501i
\(178\) 8.06808i 0.604728i
\(179\) 8.84216 0.660894 0.330447 0.943825i \(-0.392801\pi\)
0.330447 + 0.943825i \(0.392801\pi\)
\(180\) 0.794590 + 5.84216i 0.0592253 + 0.435449i
\(181\) 1.61623 0.120133 0.0600667 0.998194i \(-0.480869\pi\)
0.0600667 + 0.998194i \(0.480869\pi\)
\(182\) 3.63675i 0.269574i
\(183\) 1.72535i 0.127541i
\(184\) −0.794590 −0.0585780
\(185\) −0.955700 + 0.129984i −0.0702644 + 0.00955665i
\(186\) 3.13733 0.230040
\(187\) 13.3416i 0.975633i
\(188\) 7.63675i 0.556967i
\(189\) 12.3551 0.898701
\(190\) 17.8762 2.43134i 1.29688 0.176388i
\(191\) 21.3416 1.54422 0.772111 0.635487i \(-0.219201\pi\)
0.772111 + 0.635487i \(0.219201\pi\)
\(192\) 0.602705i 0.0434965i
\(193\) 5.61623i 0.404265i −0.979358 0.202133i \(-0.935213\pi\)
0.979358 0.202133i \(-0.0647872\pi\)
\(194\) 13.6573 0.980534
\(195\) 0.181627 + 1.33539i 0.0130066 + 0.0956296i
\(196\) 6.22593 0.444709
\(197\) 14.0205i 0.998920i −0.866337 0.499460i \(-0.833532\pi\)
0.866337 0.499460i \(-0.166468\pi\)
\(198\) 5.27349i 0.374771i
\(199\) 15.7524 1.11666 0.558329 0.829620i \(-0.311443\pi\)
0.558329 + 0.829620i \(0.311443\pi\)
\(200\) −1.33539 4.81837i −0.0944266 0.340710i
\(201\) −3.13733 −0.221290
\(202\) 15.6843i 1.10354i
\(203\) 29.3416i 2.05937i
\(204\) 4.02052 0.281493
\(205\) −2.06808 15.2054i −0.144441 1.06199i
\(206\) −15.3416 −1.06890
\(207\) 2.09513i 0.145622i
\(208\) 1.00000i 0.0693375i
\(209\) −16.1362 −1.11616
\(210\) −4.85649 + 0.660530i −0.335130 + 0.0455809i
\(211\) −1.70483 −0.117365 −0.0586827 0.998277i \(-0.518690\pi\)
−0.0586827 + 0.998277i \(0.518690\pi\)
\(212\) 0.794590i 0.0545727i
\(213\) 5.70483i 0.390889i
\(214\) −1.20541 −0.0824001
\(215\) −12.8689 + 1.75029i −0.877649 + 0.119369i
\(216\) −3.39730 −0.231157
\(217\) 18.9308i 1.28510i
\(218\) 9.80811i 0.664289i
\(219\) 3.61623 0.244362
\(220\) 0.602705 + 4.43134i 0.0406344 + 0.298761i
\(221\) −6.67079 −0.448726
\(222\) 0.259969i 0.0174480i
\(223\) 22.9513i 1.53693i 0.639891 + 0.768466i \(0.278979\pi\)
−0.639891 + 0.768466i \(0.721021\pi\)
\(224\) −3.63675 −0.242990
\(225\) −12.7048 + 3.52110i −0.846989 + 0.234740i
\(226\) 4.00000 0.266076
\(227\) 10.5470i 0.700028i −0.936744 0.350014i \(-0.886177\pi\)
0.936744 0.350014i \(-0.113823\pi\)
\(228\) 4.86267i 0.322038i
\(229\) −25.9443 −1.71445 −0.857223 0.514945i \(-0.827812\pi\)
−0.857223 + 0.514945i \(0.827812\pi\)
\(230\) −0.239452 1.76055i −0.0157890 0.116087i
\(231\) 4.38377 0.288431
\(232\) 8.06808i 0.529696i
\(233\) 11.4924i 0.752894i 0.926438 + 0.376447i \(0.122854\pi\)
−0.926438 + 0.376447i \(0.877146\pi\)
\(234\) 2.63675 0.172370
\(235\) 16.9205 2.30135i 1.10377 0.150124i
\(236\) 8.06808 0.525188
\(237\) 1.16438i 0.0756343i
\(238\) 24.2600i 1.57254i
\(239\) −14.6708 −0.948974 −0.474487 0.880262i \(-0.657366\pi\)
−0.474487 + 0.880262i \(0.657366\pi\)
\(240\) 1.33539 0.181627i 0.0861993 0.0117239i
\(241\) −18.6151 −1.19910 −0.599551 0.800337i \(-0.704654\pi\)
−0.599551 + 0.800337i \(0.704654\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 13.7253i 0.880481i
\(244\) 2.86267 0.183264
\(245\) 1.87620 + 13.7946i 0.119866 + 0.881304i
\(246\) 4.13617 0.263712
\(247\) 8.06808i 0.513360i
\(248\) 5.20541i 0.330544i
\(249\) −1.24644 −0.0789902
\(250\) 10.2735 4.41082i 0.649753 0.278965i
\(251\) −14.4108 −0.909603 −0.454801 0.890593i \(-0.650290\pi\)
−0.454801 + 0.890593i \(0.650290\pi\)
\(252\) 9.58918i 0.604062i
\(253\) 1.58918i 0.0999109i
\(254\) −4.79459 −0.300839
\(255\) 1.21159 + 8.90813i 0.0758729 + 0.557849i
\(256\) 1.00000 0.0625000
\(257\) 0.123802i 0.00772253i −0.999993 0.00386126i \(-0.998771\pi\)
0.999993 0.00386126i \(-0.00122908\pi\)
\(258\) 3.50058i 0.217937i
\(259\) −1.56866 −0.0974720
\(260\) −2.21567 + 0.301352i −0.137410 + 0.0186891i
\(261\) 21.2735 1.31680
\(262\) 4.02052i 0.248388i
\(263\) 5.27349i 0.325178i 0.986694 + 0.162589i \(0.0519844\pi\)
−0.986694 + 0.162589i \(0.948016\pi\)
\(264\) −1.20541 −0.0741878
\(265\) 1.76055 0.239452i 0.108150 0.0147094i
\(266\) 29.3416 1.79905
\(267\) 4.86267i 0.297591i
\(268\) 5.20541i 0.317971i
\(269\) −1.27349 −0.0776463 −0.0388231 0.999246i \(-0.512361\pi\)
−0.0388231 + 0.999246i \(0.512361\pi\)
\(270\) −1.02378 7.52728i −0.0623055 0.458096i
\(271\) 6.28702 0.381909 0.190955 0.981599i \(-0.438842\pi\)
0.190955 + 0.981599i \(0.438842\pi\)
\(272\) 6.67079i 0.404476i
\(273\) 2.19189i 0.132659i
\(274\) −11.2054 −0.676944
\(275\) −9.63675 + 2.67079i −0.581118 + 0.161055i
\(276\) 0.478903 0.0288266
\(277\) 22.9988i 1.38187i 0.722919 + 0.690933i \(0.242800\pi\)
−0.722919 + 0.690933i \(0.757200\pi\)
\(278\) 8.84216i 0.530317i
\(279\) 13.7253 0.821715
\(280\) −1.09594 8.05783i −0.0654951 0.481547i
\(281\) 10.3427 0.616996 0.308498 0.951225i \(-0.400174\pi\)
0.308498 + 0.951225i \(0.400174\pi\)
\(282\) 4.60270i 0.274087i
\(283\) 10.0270i 0.596046i 0.954559 + 0.298023i \(0.0963272\pi\)
−0.954559 + 0.298023i \(0.903673\pi\)
\(284\) 9.46538 0.561667
\(285\) −10.7741 + 1.46538i −0.638201 + 0.0868015i
\(286\) 2.00000 0.118262
\(287\) 24.9578i 1.47321i
\(288\) 2.63675i 0.155372i
\(289\) −27.4994 −1.61761
\(290\) −17.8762 + 2.43134i −1.04973 + 0.142773i
\(291\) −8.23130 −0.482527
\(292\) 6.00000i 0.351123i
\(293\) 6.11565i 0.357280i −0.983914 0.178640i \(-0.942830\pi\)
0.983914 0.178640i \(-0.0571698\pi\)
\(294\) −3.75240 −0.218844
\(295\) 2.43134 + 17.8762i 0.141558 + 1.04079i
\(296\) 0.431337 0.0250709
\(297\) 6.79459i 0.394262i
\(298\) 0 0
\(299\) −0.794590 −0.0459523
\(300\) 0.804849 + 2.90406i 0.0464680 + 0.167666i
\(301\) −21.1226 −1.21749
\(302\) 7.05456i 0.405944i
\(303\) 9.45301i 0.543061i
\(304\) −8.06808 −0.462736
\(305\) 0.862674 + 6.34274i 0.0493966 + 0.363184i
\(306\) 17.5892 1.00551
\(307\) 16.8627i 0.962404i 0.876610 + 0.481202i \(0.159800\pi\)
−0.876610 + 0.481202i \(0.840200\pi\)
\(308\) 7.27349i 0.414446i
\(309\) 9.24644 0.526012
\(310\) −11.5335 + 1.56866i −0.655057 + 0.0890941i
\(311\) 32.9988 1.87119 0.935596 0.353072i \(-0.114863\pi\)
0.935596 + 0.353072i \(0.114863\pi\)
\(312\) 0.602705i 0.0341214i
\(313\) 25.4654i 1.43939i 0.694291 + 0.719694i \(0.255718\pi\)
−0.694291 + 0.719694i \(0.744282\pi\)
\(314\) 0.0680837 0.00384218
\(315\) −21.2464 + 2.88972i −1.19710 + 0.162817i
\(316\) 1.93192 0.108679
\(317\) 14.1362i 0.793966i −0.917826 0.396983i \(-0.870057\pi\)
0.917826 0.396983i \(-0.129943\pi\)
\(318\) 0.478903i 0.0268556i
\(319\) 16.1362 0.903452
\(320\) 0.301352 + 2.21567i 0.0168461 + 0.123860i
\(321\) 0.726506 0.0405496
\(322\) 2.88972i 0.161038i
\(323\) 53.8205i 2.99465i
\(324\) −5.86267 −0.325704
\(325\) −1.33539 4.81837i −0.0740743 0.267275i
\(326\) −7.65726 −0.424097
\(327\) 5.91140i 0.326901i
\(328\) 6.86267i 0.378928i
\(329\) 27.7729 1.53117
\(330\) −0.363253 2.67079i −0.0199964 0.147022i
\(331\) 18.5199 1.01795 0.508974 0.860782i \(-0.330025\pi\)
0.508974 + 0.860782i \(0.330025\pi\)
\(332\) 2.06808i 0.113501i
\(333\) 1.13733i 0.0623251i
\(334\) 4.82164 0.263828
\(335\) 11.5335 1.56866i 0.630140 0.0857052i
\(336\) 2.19189 0.119577
\(337\) 22.2870i 1.21405i −0.794682 0.607026i \(-0.792363\pi\)
0.794682 0.607026i \(-0.207637\pi\)
\(338\) 1.00000i 0.0543928i
\(339\) −2.41082 −0.130938
\(340\) −14.7803 + 2.01026i −0.801572 + 0.109022i
\(341\) 10.4108 0.563777
\(342\) 21.2735i 1.15034i
\(343\) 2.81511i 0.152002i
\(344\) 5.80811 0.313153
\(345\) 0.144319 + 1.06109i 0.00776986 + 0.0571272i
\(346\) −12.7946 −0.687841
\(347\) 31.5335i 1.69280i 0.532544 + 0.846402i \(0.321236\pi\)
−0.532544 + 0.846402i \(0.678764\pi\)
\(348\) 4.86267i 0.260667i
\(349\) −32.3551 −1.73193 −0.865964 0.500106i \(-0.833295\pi\)
−0.865964 + 0.500106i \(0.833295\pi\)
\(350\) 17.5232 4.85649i 0.936655 0.259590i
\(351\) −3.39730 −0.181334
\(352\) 2.00000i 0.106600i
\(353\) 20.0270i 1.06593i 0.846137 + 0.532966i \(0.178923\pi\)
−0.846137 + 0.532966i \(0.821077\pi\)
\(354\) −4.86267 −0.258448
\(355\) 2.85242 + 20.9721i 0.151390 + 1.11309i
\(356\) −8.06808 −0.427608
\(357\) 14.6216i 0.773857i
\(358\) 8.84216i 0.467322i
\(359\) −22.9308 −1.21024 −0.605120 0.796135i \(-0.706875\pi\)
−0.605120 + 0.796135i \(0.706875\pi\)
\(360\) 5.84216 0.794590i 0.307909 0.0418786i
\(361\) 46.0940 2.42600
\(362\) 1.61623i 0.0849471i
\(363\) 4.21893i 0.221437i
\(364\) −3.63675 −0.190617
\(365\) −13.2940 + 1.80811i −0.695840 + 0.0946411i
\(366\) −1.72535 −0.0901854
\(367\) 34.1362i 1.78189i −0.454108 0.890947i \(-0.650042\pi\)
0.454108 0.890947i \(-0.349958\pi\)
\(368\) 0.794590i 0.0414209i
\(369\) 18.0951 0.941995
\(370\) 0.129984 + 0.955700i 0.00675757 + 0.0496845i
\(371\) 2.88972 0.150027
\(372\) 3.13733i 0.162663i
\(373\) 26.9988i 1.39795i −0.715148 0.698974i \(-0.753641\pi\)
0.715148 0.698974i \(-0.246359\pi\)
\(374\) 13.3416 0.689877
\(375\) −6.19189 + 2.65842i −0.319748 + 0.137280i
\(376\) −7.63675 −0.393835
\(377\) 8.06808i 0.415527i
\(378\) 12.3551i 0.635478i
\(379\) −12.9308 −0.664208 −0.332104 0.943243i \(-0.607759\pi\)
−0.332104 + 0.943243i \(0.607759\pi\)
\(380\) −2.43134 17.8762i −0.124725 0.917030i
\(381\) 2.88972 0.148045
\(382\) 21.3416i 1.09193i
\(383\) 21.3621i 1.09155i −0.837931 0.545776i \(-0.816235\pi\)
0.837931 0.545776i \(-0.183765\pi\)
\(384\) −0.602705 −0.0307567
\(385\) −16.1157 + 2.19189i −0.821330 + 0.111709i
\(386\) −5.61623 −0.285859
\(387\) 15.3145i 0.778481i
\(388\) 13.6573i 0.693343i
\(389\) 29.4507 1.49321 0.746605 0.665268i \(-0.231683\pi\)
0.746605 + 0.665268i \(0.231683\pi\)
\(390\) 1.33539 0.181627i 0.0676203 0.00919702i
\(391\) −5.30054 −0.268060
\(392\) 6.22593i 0.314457i
\(393\) 2.42319i 0.122234i
\(394\) −14.0205 −0.706343
\(395\) 0.582188 + 4.28049i 0.0292930 + 0.215375i
\(396\) −5.27349 −0.265003
\(397\) 16.6832i 0.837304i −0.908147 0.418652i \(-0.862503\pi\)
0.908147 0.418652i \(-0.137497\pi\)
\(398\) 15.7524i 0.789596i
\(399\) −17.6843 −0.885323
\(400\) −4.81837 + 1.33539i −0.240919 + 0.0667697i
\(401\) −7.34158 −0.366621 −0.183310 0.983055i \(-0.558681\pi\)
−0.183310 + 0.983055i \(0.558681\pi\)
\(402\) 3.13733i 0.156476i
\(403\) 5.20541i 0.259300i
\(404\) 15.6843 0.780324
\(405\) −1.76673 12.9897i −0.0877896 0.645465i
\(406\) −29.3416 −1.45620
\(407\) 0.862674i 0.0427612i
\(408\) 4.02052i 0.199045i
\(409\) 35.4777 1.75426 0.877131 0.480252i \(-0.159455\pi\)
0.877131 + 0.480252i \(0.159455\pi\)
\(410\) −15.2054 + 2.06808i −0.750942 + 0.102135i
\(411\) 6.75356 0.333128
\(412\) 15.3416i 0.755825i
\(413\) 29.3416i 1.44380i
\(414\) 2.09513 0.102970
\(415\) 4.58219 0.623222i 0.224931 0.0305928i
\(416\) 1.00000 0.0490290
\(417\) 5.32921i 0.260973i
\(418\) 16.1362i 0.789246i
\(419\) −0.883191 −0.0431467 −0.0215734 0.999767i \(-0.506868\pi\)
−0.0215734 + 0.999767i \(0.506868\pi\)
\(420\) 0.660530 + 4.85649i 0.0322306 + 0.236972i
\(421\) 27.2859 1.32983 0.664916 0.746918i \(-0.268467\pi\)
0.664916 + 0.746918i \(0.268467\pi\)
\(422\) 1.70483i 0.0829898i
\(423\) 20.1362i 0.979054i
\(424\) −0.794590 −0.0385887
\(425\) −8.90813 32.1424i −0.432108 1.55913i
\(426\) −5.70483 −0.276400
\(427\) 10.4108i 0.503815i
\(428\) 1.20541i 0.0582657i
\(429\) −1.20541 −0.0581977
\(430\) 1.75029 + 12.8689i 0.0844065 + 0.620591i
\(431\) 0.259969 0.0125223 0.00626113 0.999980i \(-0.498007\pi\)
0.00626113 + 0.999980i \(0.498007\pi\)
\(432\) 3.39730i 0.163452i
\(433\) 17.4654i 0.839333i −0.907678 0.419666i \(-0.862147\pi\)
0.907678 0.419666i \(-0.137853\pi\)
\(434\) −18.9308 −0.908705
\(435\) 10.7741 1.46538i 0.516577 0.0702595i
\(436\) 9.80811 0.469724
\(437\) 6.41082i 0.306671i
\(438\) 3.61623i 0.172790i
\(439\) −17.6843 −0.844026 −0.422013 0.906590i \(-0.638676\pi\)
−0.422013 + 0.906590i \(0.638676\pi\)
\(440\) 4.43134 0.602705i 0.211256 0.0287328i
\(441\) −16.4162 −0.781723
\(442\) 6.67079i 0.317297i
\(443\) 32.4913i 1.54371i 0.635801 + 0.771853i \(0.280670\pi\)
−0.635801 + 0.771853i \(0.719330\pi\)
\(444\) −0.259969 −0.0123376
\(445\) −2.43134 17.8762i −0.115256 0.847413i
\(446\) 22.9513 1.08677
\(447\) 0 0
\(448\) 3.63675i 0.171820i
\(449\) −35.0940 −1.65619 −0.828094 0.560590i \(-0.810574\pi\)
−0.828094 + 0.560590i \(0.810574\pi\)
\(450\) 3.52110 + 12.7048i 0.165986 + 0.598911i
\(451\) 13.7253 0.646301
\(452\) 4.00000i 0.188144i
\(453\) 4.25182i 0.199768i
\(454\) −10.5470 −0.494995
\(455\) −1.09594 8.05783i −0.0513786 0.377757i
\(456\) 4.86267 0.227716
\(457\) 20.5470i 0.961148i −0.876954 0.480574i \(-0.840428\pi\)
0.876954 0.480574i \(-0.159572\pi\)
\(458\) 25.9443i 1.21230i
\(459\) −22.6626 −1.05780
\(460\) −1.76055 + 0.239452i −0.0820860 + 0.0111645i
\(461\) −7.14969 −0.332994 −0.166497 0.986042i \(-0.553246\pi\)
−0.166497 + 0.986042i \(0.553246\pi\)
\(462\) 4.38377i 0.203951i
\(463\) 22.6832i 1.05418i 0.849811 + 0.527088i \(0.176716\pi\)
−0.849811 + 0.527088i \(0.823284\pi\)
\(464\) 8.06808 0.374551
\(465\) 6.95127 0.945441i 0.322358 0.0438438i
\(466\) 11.4924 0.532376
\(467\) 25.2054i 1.16637i 0.812340 + 0.583184i \(0.198193\pi\)
−0.812340 + 0.583184i \(0.801807\pi\)
\(468\) 2.63675i 0.121884i
\(469\) 18.9308 0.874141
\(470\) −2.30135 16.9205i −0.106153 0.780484i
\(471\) −0.0410344 −0.00189076
\(472\) 8.06808i 0.371364i
\(473\) 11.6162i 0.534115i
\(474\) −1.16438 −0.0534815
\(475\) 38.8750 10.7741i 1.78371 0.494348i
\(476\) −24.2600 −1.11195
\(477\) 2.09513i 0.0959295i
\(478\) 14.6708i 0.671026i
\(479\) −4.01237 −0.183330 −0.0916648 0.995790i \(-0.529219\pi\)
−0.0916648 + 0.995790i \(0.529219\pi\)
\(480\) −0.181627 1.33539i −0.00829008 0.0609521i
\(481\) 0.431337 0.0196673
\(482\) 18.6151i 0.847893i
\(483\) 1.74165i 0.0792478i
\(484\) 7.00000 0.318182
\(485\) 30.2600 4.11565i 1.37403 0.186882i
\(486\) 13.7253 0.622594
\(487\) 8.00000i 0.362515i −0.983436 0.181257i \(-0.941983\pi\)
0.983436 0.181257i \(-0.0580167\pi\)
\(488\) 2.86267i 0.129587i
\(489\) 4.61507 0.208701
\(490\) 13.7946 1.87620i 0.623176 0.0847580i
\(491\) −8.88319 −0.400893 −0.200446 0.979705i \(-0.564239\pi\)
−0.200446 + 0.979705i \(0.564239\pi\)
\(492\) 4.13617i 0.186473i
\(493\) 53.8205i 2.42395i
\(494\) −8.06808 −0.363000
\(495\) −1.58918 11.6843i −0.0714283 0.525171i
\(496\) 5.20541 0.233730
\(497\) 34.4232i 1.54409i
\(498\) 1.24644i 0.0558545i
\(499\) 10.9988 0.492376 0.246188 0.969222i \(-0.420822\pi\)
0.246188 + 0.969222i \(0.420822\pi\)
\(500\) −4.41082 10.2735i −0.197258 0.459445i
\(501\) −2.90603 −0.129832
\(502\) 14.4108i 0.643186i
\(503\) 5.65726i 0.252245i 0.992015 + 0.126122i \(0.0402532\pi\)
−0.992015 + 0.126122i \(0.959747\pi\)
\(504\) 9.58918 0.427136
\(505\) 4.72651 + 34.7512i 0.210327 + 1.54641i
\(506\) 1.58918 0.0706477
\(507\) 0.602705i 0.0267671i
\(508\) 4.79459i 0.212726i
\(509\) 9.72535 0.431068 0.215534 0.976496i \(-0.430851\pi\)
0.215534 + 0.976496i \(0.430851\pi\)
\(510\) 8.90813 1.21159i 0.394459 0.0536502i
\(511\) −21.8205 −0.965281
\(512\) 1.00000i 0.0441942i
\(513\) 27.4097i 1.21017i
\(514\) −0.123802 −0.00546065
\(515\) −33.9918 + 4.62322i −1.49786 + 0.203724i
\(516\) −3.50058 −0.154104
\(517\) 15.2735i 0.671727i
\(518\) 1.56866i 0.0689231i
\(519\) 7.71136 0.338491
\(520\) 0.301352 + 2.21567i 0.0132152 + 0.0971635i
\(521\) −28.7741 −1.26062 −0.630308 0.776346i \(-0.717071\pi\)
−0.630308 + 0.776346i \(0.717071\pi\)
\(522\) 21.2735i 0.931116i
\(523\) 37.6139i 1.64474i −0.568952 0.822371i \(-0.692651\pi\)
0.568952 0.822371i \(-0.307349\pi\)
\(524\) 4.02052 0.175637
\(525\) −10.5613 + 2.92703i −0.460934 + 0.127746i
\(526\) 5.27349 0.229935
\(527\) 34.7242i 1.51261i
\(528\) 1.20541i 0.0524587i
\(529\) 22.3686 0.972549
\(530\) −0.239452 1.76055i −0.0104011 0.0764733i
\(531\) −21.2735 −0.923191
\(532\) 29.3416i 1.27212i
\(533\) 6.86267i 0.297255i
\(534\) 4.86267 0.210428
\(535\) −2.67079 + 0.363253i −0.115468 + 0.0157048i
\(536\) −5.20541 −0.224839
\(537\) 5.32921i 0.229972i
\(538\) 1.27349i 0.0549042i
\(539\) −12.4519 −0.536339
\(540\) −7.52728 + 1.02378i −0.323923 + 0.0440566i
\(541\) 21.8081 0.937604 0.468802 0.883303i \(-0.344686\pi\)
0.468802 + 0.883303i \(0.344686\pi\)
\(542\) 6.28702i 0.270051i
\(543\) 0.974110i 0.0418030i
\(544\) 6.67079 0.286008
\(545\) 2.95570 + 21.7315i 0.126608 + 0.930876i
\(546\) 2.19189 0.0938040
\(547\) 4.73887i 0.202620i 0.994855 + 0.101310i \(0.0323033\pi\)
−0.994855 + 0.101310i \(0.967697\pi\)
\(548\) 11.2054i 0.478671i
\(549\) −7.54815 −0.322147
\(550\) 2.67079 + 9.63675i 0.113883 + 0.410912i
\(551\) −65.0940 −2.77310
\(552\) 0.478903i 0.0203835i
\(553\) 7.02589i 0.298771i
\(554\) 22.9988 0.977127
\(555\) −0.0783423 0.576005i −0.00332544 0.0244500i
\(556\) 8.84216 0.374991
\(557\) 6.74702i 0.285881i 0.989731 + 0.142940i \(0.0456557\pi\)
−0.989731 + 0.142940i \(0.954344\pi\)
\(558\) 13.7253i 0.581040i
\(559\) 5.80811 0.245657
\(560\) −8.05783 + 1.09594i −0.340505 + 0.0463120i
\(561\) −8.04103 −0.339493
\(562\) 10.3427i 0.436282i
\(563\) 41.9443i 1.76774i −0.467732 0.883870i \(-0.654929\pi\)
0.467732 0.883870i \(-0.345071\pi\)
\(564\) 4.60270 0.193809
\(565\) 8.86267 1.20541i 0.372855 0.0507120i
\(566\) 10.0270 0.421468
\(567\) 21.3211i 0.895400i
\(568\) 9.46538i 0.397158i
\(569\) 7.95243 0.333383 0.166692 0.986009i \(-0.446692\pi\)
0.166692 + 0.986009i \(0.446692\pi\)
\(570\) 1.46538 + 10.7741i 0.0613780 + 0.451276i
\(571\) −14.5265 −0.607914 −0.303957 0.952686i \(-0.598308\pi\)
−0.303957 + 0.952686i \(0.598308\pi\)
\(572\) 2.00000i 0.0836242i
\(573\) 12.8627i 0.537346i
\(574\) −24.9578 −1.04172
\(575\) −1.06109 3.82863i −0.0442506 0.159665i
\(576\) −2.63675 −0.109864
\(577\) 5.17836i 0.215578i −0.994174 0.107789i \(-0.965623\pi\)
0.994174 0.107789i \(-0.0343771\pi\)
\(578\) 27.4994i 1.14383i
\(579\) 3.38493 0.140673
\(580\) 2.43134 + 17.8762i 0.100956 + 0.742269i
\(581\) 7.52110 0.312028
\(582\) 8.23130i 0.341198i
\(583\) 1.58918i 0.0658171i
\(584\) 6.00000 0.248282
\(585\) 5.84216 0.794590i 0.241543 0.0328523i
\(586\) −6.11565 −0.252635
\(587\) 22.8897i 0.944760i 0.881395 + 0.472380i \(0.156605\pi\)
−0.881395 + 0.472380i \(0.843395\pi\)
\(588\) 3.75240i 0.154746i
\(589\) −41.9977 −1.73048
\(590\) 17.8762 2.43134i 0.735951 0.100097i
\(591\) 8.45023 0.347596
\(592\) 0.431337i 0.0177278i
\(593\) 14.3427i 0.588986i −0.955654 0.294493i \(-0.904849\pi\)
0.955654 0.294493i \(-0.0951507\pi\)
\(594\) 6.79459 0.278785
\(595\) −7.31080 53.7520i −0.299714 2.20362i
\(596\) 0 0
\(597\) 9.49405i 0.388565i
\(598\) 0.794590i 0.0324932i
\(599\) −5.63021 −0.230044 −0.115022 0.993363i \(-0.536694\pi\)
−0.115022 + 0.993363i \(0.536694\pi\)
\(600\) 2.90406 0.804849i 0.118558 0.0328578i
\(601\) −11.3211 −0.461796 −0.230898 0.972978i \(-0.574166\pi\)
−0.230898 + 0.972978i \(0.574166\pi\)
\(602\) 21.1226i 0.860895i
\(603\) 13.7253i 0.558939i
\(604\) −7.05456 −0.287046
\(605\) 2.10947 + 15.5097i 0.0857620 + 0.630558i
\(606\) −9.45301 −0.384002
\(607\) 25.0259i 1.01577i −0.861425 0.507885i \(-0.830428\pi\)
0.861425 0.507885i \(-0.169572\pi\)
\(608\) 8.06808i 0.327204i
\(609\) 17.6843 0.716605
\(610\) 6.34274 0.862674i 0.256810 0.0349286i
\(611\) −7.63675 −0.308950
\(612\) 17.5892i 0.711000i
\(613\) 25.4507i 1.02794i −0.857807 0.513972i \(-0.828174\pi\)
0.857807 0.513972i \(-0.171826\pi\)
\(614\) 16.8627 0.680522
\(615\) 9.16438 1.24644i 0.369543 0.0502615i
\(616\) 7.27349 0.293057
\(617\) 15.6843i 0.631427i −0.948855 0.315713i \(-0.897756\pi\)
0.948855 0.315713i \(-0.102244\pi\)
\(618\) 9.24644i 0.371947i
\(619\) 44.5880 1.79214 0.896072 0.443909i \(-0.146409\pi\)
0.896072 + 0.443909i \(0.146409\pi\)
\(620\) 1.56866 + 11.5335i 0.0629990 + 0.463195i
\(621\) −2.69946 −0.108325
\(622\) 32.9988i 1.32313i
\(623\) 29.3416i 1.17555i
\(624\) −0.602705 −0.0241275
\(625\) 21.4334 12.8689i 0.857338 0.514754i
\(626\) 25.4654 1.01780
\(627\) 9.72535i 0.388393i
\(628\) 0.0680837i 0.00271683i
\(629\) 2.87736 0.114728
\(630\) 2.88972 + 21.2464i 0.115129 + 0.846479i
\(631\) −38.8070 −1.54488 −0.772440 0.635087i \(-0.780964\pi\)
−0.772440 + 0.635087i \(0.780964\pi\)
\(632\) 1.93192i 0.0768475i
\(633\) 1.02751i 0.0408398i
\(634\) −14.1362 −0.561419
\(635\) −10.6232 + 1.44486i −0.421570 + 0.0573376i
\(636\) 0.478903 0.0189898
\(637\) 6.22593i 0.246680i
\(638\) 16.1362i 0.638837i
\(639\) −24.9578 −0.987316
\(640\) 2.21567 0.301352i 0.0875820 0.0119120i
\(641\) −8.27465 −0.326829 −0.163415 0.986557i \(-0.552251\pi\)
−0.163415 + 0.986557i \(0.552251\pi\)
\(642\) 0.726506i 0.0286729i
\(643\) 6.16322i 0.243054i 0.992588 + 0.121527i \(0.0387790\pi\)
−0.992588 + 0.121527i \(0.961221\pi\)
\(644\) −2.88972 −0.113871
\(645\) −1.05491 7.75612i −0.0415370 0.305397i
\(646\) −53.8205 −2.11754
\(647\) 7.24644i 0.284887i 0.989803 + 0.142444i \(0.0454959\pi\)
−0.989803 + 0.142444i \(0.954504\pi\)
\(648\) 5.86267i 0.230308i
\(649\) −16.1362 −0.633400
\(650\) −4.81837 + 1.33539i −0.188992 + 0.0523785i
\(651\) 11.4097 0.447180
\(652\) 7.65726i 0.299882i
\(653\) 5.27349i 0.206368i 0.994662 + 0.103184i \(0.0329030\pi\)
−0.994662 + 0.103184i \(0.967097\pi\)
\(654\) −5.91140 −0.231154
\(655\) 1.21159 + 8.90813i 0.0473408 + 0.348070i
\(656\) 6.86267 0.267942
\(657\) 15.8205i 0.617216i
\(658\) 27.7729i 1.08270i
\(659\) 18.6832 0.727792 0.363896 0.931440i \(-0.381446\pi\)
0.363896 + 0.931440i \(0.381446\pi\)
\(660\) −2.67079 + 0.363253i −0.103960 + 0.0141396i
\(661\) 15.3145 0.595666 0.297833 0.954618i \(-0.403736\pi\)
0.297833 + 0.954618i \(0.403736\pi\)
\(662\) 18.5199i 0.719798i
\(663\) 4.02052i 0.156144i
\(664\) −2.06808 −0.0802572
\(665\) 65.0112 8.84216i 2.52103 0.342884i
\(666\) −1.13733 −0.0440705
\(667\) 6.41082i 0.248228i
\(668\) 4.82164i 0.186555i
\(669\) −13.8328 −0.534809
\(670\) −1.56866 11.5335i −0.0606027 0.445577i
\(671\) −5.72535 −0.221025
\(672\) 2.19189i 0.0845538i
\(673\) 10.2870i 0.396535i −0.980148 0.198268i \(-0.936468\pi\)
0.980148 0.198268i \(-0.0635315\pi\)
\(674\) −22.2870 −0.858464
\(675\) −4.53673 16.3694i −0.174619 0.630060i
\(676\) 1.00000 0.0384615
\(677\) 9.88856i 0.380048i −0.981779 0.190024i \(-0.939143\pi\)
0.981779 0.190024i \(-0.0608566\pi\)
\(678\) 2.41082i 0.0925870i
\(679\) 49.6680 1.90608
\(680\) 2.01026 + 14.7803i 0.0770899 + 0.566797i
\(681\) 6.35672 0.243590
\(682\) 10.4108i 0.398651i
\(683\) 2.06808i 0.0791330i 0.999217 + 0.0395665i \(0.0125977\pi\)
−0.999217 + 0.0395665i \(0.987402\pi\)
\(684\) 21.2735 0.813412
\(685\) −24.8275 + 3.37678i −0.948609 + 0.129020i
\(686\) −2.81511 −0.107481
\(687\) 15.6367i 0.596579i
\(688\) 5.80811i 0.221432i
\(689\) −0.794590 −0.0302715
\(690\) 1.06109 0.144319i 0.0403950 0.00549412i
\(691\) 15.8205 0.601839 0.300920 0.953649i \(-0.402706\pi\)
0.300920 + 0.953649i \(0.402706\pi\)
\(692\) 12.7946i 0.486377i
\(693\) 19.1784i 0.728526i
\(694\) 31.5335 1.19699
\(695\) 2.66461 + 19.5913i 0.101074 + 0.743140i
\(696\) −4.86267 −0.184319
\(697\) 45.7794i 1.73402i
\(698\) 32.3551i 1.22466i
\(699\) −6.92654 −0.261986
\(700\) −4.85649 17.5232i −0.183558 0.662315i
\(701\) 14.6561 0.553553 0.276777 0.960934i \(-0.410734\pi\)
0.276777 + 0.960934i \(0.410734\pi\)
\(702\) 3.39730i 0.128223i
\(703\) 3.48006i 0.131253i
\(704\) −2.00000 −0.0753778
\(705\) 1.38704 + 10.1981i 0.0522388 + 0.384081i
\(706\) 20.0270 0.753728
\(707\) 57.0399i 2.14521i
\(708\) 4.86267i 0.182750i
\(709\) 23.3145 0.875595 0.437798 0.899073i \(-0.355759\pi\)
0.437798 + 0.899073i \(0.355759\pi\)
\(710\) 20.9721 2.85242i 0.787070 0.107049i
\(711\) −5.09397 −0.191039
\(712\) 8.06808i 0.302364i
\(713\) 4.13617i 0.154901i
\(714\) 14.6216 0.547200
\(715\) 4.43134 0.602705i 0.165723 0.0225399i
\(716\) −8.84216 −0.330447
\(717\) 8.84216i 0.330216i
\(718\) 22.9308i 0.855768i
\(719\) 29.3416 1.09426 0.547128 0.837049i \(-0.315721\pi\)
0.547128 + 0.837049i \(0.315721\pi\)
\(720\) −0.794590 5.84216i −0.0296126 0.217724i
\(721\) −55.7934 −2.07786
\(722\) 46.0940i 1.71544i
\(723\) 11.2194i 0.417254i
\(724\) −1.61623 −0.0600667
\(725\) −38.8750 + 10.7741i −1.44378 + 0.400139i
\(726\) −4.21893 −0.156579
\(727\) 15.4530i 0.573121i −0.958062 0.286560i \(-0.907488\pi\)
0.958062 0.286560i \(-0.0925119\pi\)
\(728\) 3.63675i 0.134787i
\(729\) 9.31569 0.345025
\(730\) 1.80811 + 13.2940i 0.0669213 + 0.492033i
\(731\) 38.7447 1.43302
\(732\) 1.72535i 0.0637707i
\(733\) 30.2108i 1.11586i −0.829888 0.557930i \(-0.811596\pi\)
0.829888 0.557930i \(-0.188404\pi\)
\(734\) −34.1362 −1.25999
\(735\) −8.31407 + 1.13079i −0.306669 + 0.0417100i
\(736\) 0.794590 0.0292890
\(737\) 10.4108i 0.383487i
\(738\) 18.0951i 0.666091i
\(739\) 24.5880 0.904485 0.452242 0.891895i \(-0.350624\pi\)
0.452242 + 0.891895i \(0.350624\pi\)
\(740\) 0.955700 0.129984i 0.0351322 0.00477832i
\(741\) 4.86267 0.178635
\(742\) 2.88972i 0.106085i
\(743\) 48.0452i 1.76261i 0.472549 + 0.881305i \(0.343334\pi\)
−0.472549 + 0.881305i \(0.656666\pi\)
\(744\) −3.13733 −0.115020
\(745\) 0 0
\(746\) −26.9988 −0.988498
\(747\) 5.45301i 0.199515i
\(748\) 13.3416i 0.487816i
\(749\) −4.38377 −0.160179
\(750\) 2.65842 + 6.19189i 0.0970719 + 0.226096i
\(751\) −4.90371 −0.178939 −0.0894694 0.995990i \(-0.528517\pi\)
−0.0894694 + 0.995990i \(0.528517\pi\)
\(752\) 7.63675i 0.278484i
\(753\) 8.68547i 0.316516i
\(754\) 8.06808 0.293822
\(755\) −2.12591 15.6306i −0.0773697 0.568854i
\(756\) −12.3551 −0.449351
\(757\) 11.3416i 0.412217i 0.978529 + 0.206108i \(0.0660799\pi\)
−0.978529 + 0.206108i \(0.933920\pi\)
\(758\) 12.9308i 0.469666i
\(759\) −0.957807 −0.0347662
\(760\) −17.8762 + 2.43134i −0.648438 + 0.0881939i
\(761\) 10.3427 0.374924 0.187462 0.982272i \(-0.439974\pi\)
0.187462 + 0.982272i \(0.439974\pi\)
\(762\) 2.88972i 0.104684i
\(763\) 35.6696i 1.29133i
\(764\) −21.3416 −0.772111
\(765\) 38.9718 5.30054i 1.40903 0.191642i
\(766\) −21.3621 −0.771844
\(767\) 8.06808i 0.291322i
\(768\) 0.602705i 0.0217482i
\(769\) −27.6843 −0.998322 −0.499161 0.866509i \(-0.666358\pi\)
−0.499161 + 0.866509i \(0.666358\pi\)
\(770\) 2.19189 + 16.1157i 0.0789901 + 0.580768i
\(771\) 0.0746158 0.00268722
\(772\) 5.61623i 0.202133i
\(773\) 12.2952i 0.442227i −0.975248 0.221113i \(-0.929031\pi\)
0.975248 0.221113i \(-0.0709690\pi\)
\(774\) −15.3145 −0.550469
\(775\) −25.0816 + 6.95127i −0.900958 + 0.249697i
\(776\) −13.6573 −0.490267
\(777\) 0.945441i 0.0339175i
\(778\) 29.4507i 1.05586i
\(779\) −55.3686 −1.98379
\(780\) −0.181627 1.33539i −0.00650328 0.0478148i
\(781\) −18.9308 −0.677396
\(782\) 5.30054i 0.189547i
\(783\) 27.4097i 0.979541i
\(784\) −6.22593 −0.222355
\(785\) 0.150851 0.0205172i 0.00538410 0.000732290i
\(786\) −2.42319 −0.0864322
\(787\) 43.5048i 1.55078i 0.631484 + 0.775389i \(0.282446\pi\)
−0.631484 + 0.775389i \(0.717554\pi\)
\(788\) 14.0205i 0.499460i
\(789\) −3.17836 −0.113153
\(790\) 4.28049 0.582188i 0.152293 0.0207133i
\(791\) 14.5470 0.517231
\(792\) 5.27349i 0.187385i
\(793\) 2.86267i 0.101657i
\(794\) −16.6832 −0.592063
\(795\) 0.144319 + 1.06109i 0.00511846 + 0.0376330i
\(796\) −15.7524 −0.558329
\(797\) 12.9718i 0.459484i −0.973252 0.229742i \(-0.926212\pi\)
0.973252 0.229742i \(-0.0737883\pi\)
\(798\) 17.6843i 0.626018i
\(799\) −50.9431 −1.80224
\(800\) 1.33539 + 4.81837i 0.0472133 + 0.170355i
\(801\) 21.2735 0.751662
\(802\) 7.34158i 0.259240i
\(803\) 12.0000i 0.423471i
\(804\) 3.13733 0.110645
\(805\) −0.870825 6.40267i −0.0306926 0.225664i
\(806\) 5.20541 0.183353
\(807\) 0.767541i 0.0270187i
\(808\) 15.6843i 0.551772i
\(809\) −8.73304 −0.307037 −0.153519 0.988146i \(-0.549061\pi\)
−0.153519 + 0.988146i \(0.549061\pi\)
\(810\) −12.9897 + 1.76673i −0.456413 + 0.0620766i
\(811\) 46.3134 1.62628 0.813141 0.582067i \(-0.197756\pi\)
0.813141 + 0.582067i \(0.197756\pi\)
\(812\) 29.3416i 1.02969i
\(813\) 3.78922i 0.132894i
\(814\) −0.862674 −0.0302367
\(815\) −16.9660 + 2.30754i −0.594292 + 0.0808294i
\(816\) −4.02052 −0.140746
\(817\) 46.8604i 1.63944i
\(818\) 35.4777i 1.24045i
\(819\) 9.58918 0.335073
\(820\) 2.06808 + 15.2054i 0.0722206 + 0.530996i
\(821\) 31.9172 1.11392 0.556960 0.830540i \(-0.311968\pi\)
0.556960 + 0.830540i \(0.311968\pi\)
\(822\) 6.75356i 0.235557i
\(823\) 6.42480i 0.223955i 0.993711 + 0.111977i \(0.0357184\pi\)
−0.993711 + 0.111977i \(0.964282\pi\)
\(824\) 15.3416 0.534449
\(825\) −1.60970 5.80811i −0.0560425 0.202213i
\(826\) 29.3416 1.02092
\(827\) 38.7242i 1.34657i −0.739382 0.673286i \(-0.764882\pi\)
0.739382 0.673286i \(-0.235118\pi\)
\(828\) 2.09513i 0.0728109i
\(829\) 18.3427 0.637070 0.318535 0.947911i \(-0.396809\pi\)
0.318535 + 0.947911i \(0.396809\pi\)
\(830\) −0.623222 4.58219i −0.0216324 0.159050i
\(831\) −13.8615 −0.480851
\(832\) 1.00000i 0.0346688i
\(833\) 41.5318i 1.43899i
\(834\) −5.32921 −0.184535
\(835\) 10.6832 1.45301i 0.369706 0.0502836i
\(836\) 16.1362 0.558081
\(837\) 17.6843i 0.611259i
\(838\) 0.883191i 0.0305093i
\(839\) 12.6561 0.436937 0.218469 0.975844i \(-0.429894\pi\)
0.218469 + 0.975844i \(0.429894\pi\)
\(840\) 4.85649 0.660530i 0.167565 0.0227905i
\(841\) 36.0940 1.24462
\(842\) 27.2859i 0.940333i
\(843\) 6.23362i 0.214697i
\(844\) 1.70483 0.0586827
\(845\) 0.301352 + 2.21567i 0.0103668 + 0.0762213i
\(846\) 20.1362 0.692296
\(847\) 25.4572i 0.874721i
\(848\) 0.794590i 0.0272863i
\(849\) −6.04335 −0.207407
\(850\) −32.1424 + 8.90813i −1.10247 + 0.305546i
\(851\) 0.342736 0.0117488
\(852\) 5.70483i 0.195444i
\(853\) 44.7988i 1.53388i −0.641718 0.766941i \(-0.721778\pi\)
0.641718 0.766941i \(-0.278222\pi\)
\(854\) 10.4108 0.356251
\(855\) 6.41082 + 47.1350i 0.219245 + 1.61198i
\(856\) 1.20541 0.0412001
\(857\) 46.8193i 1.59932i 0.600455 + 0.799659i \(0.294986\pi\)
−0.600455 + 0.799659i \(0.705014\pi\)
\(858\) 1.20541i 0.0411520i
\(859\) 23.8638 0.814223 0.407112 0.913378i \(-0.366536\pi\)
0.407112 + 0.913378i \(0.366536\pi\)
\(860\) 12.8689 1.75029i 0.438824 0.0596844i
\(861\) 15.0422 0.512637
\(862\) 0.259969i 0.00885458i
\(863\) 12.2271i 0.416215i 0.978106 + 0.208107i \(0.0667304\pi\)
−0.978106 + 0.208107i \(0.933270\pi\)
\(864\) 3.39730 0.115578
\(865\) −28.3486 + 3.85568i −0.963880 + 0.131097i
\(866\) −17.4654 −0.593498
\(867\) 16.5740i 0.562884i
\(868\) 18.9308i 0.642552i
\(869\) −3.86383 −0.131072
\(870\) −1.46538 10.7741i −0.0496810 0.365275i
\(871\) −5.20541 −0.176379
\(872\) 9.80811i 0.332145i
\(873\) 36.0107i 1.21878i
\(874\) −6.41082 −0.216849
\(875\) 37.3621 16.0410i 1.26307 0.542286i
\(876\) −3.61623 −0.122181
\(877\) 0.336204i 0.0113528i 0.999984 + 0.00567640i \(0.00180686\pi\)
−0.999984 + 0.00567640i \(0.998193\pi\)
\(878\) 17.6843i 0.596817i
\(879\) 3.68593 0.124323
\(880\) −0.602705 4.43134i −0.0203172 0.149380i
\(881\) −41.0464 −1.38289 −0.691444 0.722430i \(-0.743025\pi\)
−0.691444 + 0.722430i \(0.743025\pi\)
\(882\) 16.4162i 0.552762i
\(883\) 40.0534i 1.34790i 0.738775 + 0.673952i \(0.235405\pi\)
−0.738775 + 0.673952i \(0.764595\pi\)
\(884\) 6.67079 0.224363
\(885\) −10.7741 + 1.46538i −0.362167 + 0.0492582i
\(886\) 32.4913 1.09157
\(887\) 28.7242i 0.964464i −0.876044 0.482232i \(-0.839826\pi\)
0.876044 0.482232i \(-0.160174\pi\)
\(888\) 0.259969i 0.00872398i
\(889\) −17.4367 −0.584808
\(890\) −17.8762 + 2.43134i −0.599212 + 0.0814986i
\(891\) 11.7253 0.392814
\(892\) 22.9513i 0.768466i
\(893\) 61.6139i 2.06183i
\(894\) 0 0
\(895\) −2.66461 19.5913i −0.0890679 0.654865i
\(896\) 3.63675 0.121495
\(897\) 0.478903i 0.0159901i
\(898\) 35.0940i 1.17110i
\(899\) 41.9977 1.40070
\(900\) 12.7048 3.52110i 0.423494 0.117370i
\(901\) −5.30054 −0.176587
\(902\) 13.7253i 0.457004i
\(903\) 12.7307i 0.423652i
\(904\) −4.00000 −0.133038
\(905\) −0.487055 3.58103i −0.0161902 0.119037i
\(906\) 4.25182 0.141257
\(907\) 48.7636i 1.61917i −0.587003 0.809584i \(-0.699692\pi\)
0.587003 0.809584i \(-0.300308\pi\)
\(908\) 10.5470i 0.350014i
\(909\) −41.3556 −1.37168
\(910\) −8.05783 + 1.09594i −0.267114 + 0.0363301i
\(911\) 15.4801 0.512877 0.256439 0.966561i \(-0.417451\pi\)
0.256439 + 0.966561i \(0.417451\pi\)
\(912\) 4.86267i 0.161019i
\(913\) 4.13617i 0.136887i
\(914\) −20.5470 −0.679634
\(915\) −3.82280 + 0.519938i −0.126378 + 0.0171886i
\(916\) 25.9443 0.857223
\(917\) 14.6216i 0.482848i
\(918\) 22.6626i 0.747978i
\(919\) −45.8615 −1.51283 −0.756416 0.654091i \(-0.773051\pi\)
−0.756416 + 0.654091i \(0.773051\pi\)
\(920\) 0.239452 + 1.76055i 0.00789449 + 0.0580436i
\(921\) −10.1632 −0.334889
\(922\) 7.14969i 0.235463i
\(923\) 9.46538i 0.311557i
\(924\) −4.38377 −0.144215
\(925\) 0.576005 + 2.07834i 0.0189389 + 0.0683355i
\(926\) 22.6832 0.745415
\(927\) 40.4519i 1.32861i
\(928\) 8.06808i 0.264848i
\(929\) 26.9168 0.883111 0.441555 0.897234i \(-0.354427\pi\)
0.441555 + 0.897234i \(0.354427\pi\)
\(930\) −0.945441 6.95127i −0.0310022 0.227941i
\(931\) 50.2313 1.64626
\(932\) 11.4924i 0.376447i
\(933\) 19.8886i 0.651122i
\(934\) 25.2054 0.824746
\(935\) 29.5605 4.02052i 0.966732 0.131485i
\(936\) −2.63675 −0.0861848
\(937\) 4.90371i 0.160197i −0.996787 0.0800986i \(-0.974476\pi\)
0.996787 0.0800986i \(-0.0255235\pi\)
\(938\) 18.9308i 0.618111i
\(939\) −15.3481 −0.500867
\(940\) −16.9205 + 2.30135i −0.551886 + 0.0750618i
\(941\) −46.6004 −1.51913 −0.759565 0.650432i \(-0.774588\pi\)
−0.759565 + 0.650432i \(0.774588\pi\)
\(942\) 0.0410344i 0.00133697i
\(943\) 5.45301i 0.177575i
\(944\) −8.06808 −0.262594
\(945\) −3.72324 27.3748i −0.121117 0.890503i
\(946\) −11.6162 −0.377676
\(947\) 27.7524i 0.901832i 0.892566 + 0.450916i \(0.148903\pi\)
−0.892566 + 0.450916i \(0.851097\pi\)
\(948\) 1.16438i 0.0378172i
\(949\) 6.00000 0.194768
\(950\) −10.7741 38.8750i −0.349557 1.26127i
\(951\) 8.51994 0.276278
\(952\) 24.2600i 0.786270i
\(953\) 14.9725i 0.485007i 0.970151 + 0.242503i \(0.0779685\pi\)
−0.970151 + 0.242503i \(0.922031\pi\)
\(954\) 2.09513 0.0678324
\(955\) −6.43134 47.2859i −0.208113 1.53013i
\(956\) 14.6708 0.474487
\(957\) 9.72535i 0.314376i
\(958\) 4.01237i 0.129634i
\(959\) −40.7512 −1.31593
\(960\) −1.33539 + 0.181627i −0.0430997 + 0.00586197i
\(961\) −3.90371 −0.125926
\(962\) 0.431337i 0.0139069i
\(963\) 3.17836i 0.102421i
\(964\) 18.6151 0.599551
\(965\) −12.4437 + 1.69246i −0.400577 + 0.0544824i
\(966\) 1.74165 0.0560367
\(967\) 52.5946i 1.69133i −0.533717 0.845663i \(-0.679205\pi\)
0.533717 0.845663i \(-0.320795\pi\)
\(968\) 7.00000i 0.224989i
\(969\) 32.4379 1.04205
\(970\) −4.11565 30.2600i −0.132146 0.971589i
\(971\) −15.5253 −0.498231 −0.249115 0.968474i \(-0.580140\pi\)
−0.249115 + 0.968474i \(0.580140\pi\)
\(972\) 13.7253i 0.440241i
\(973\) 32.1567i 1.03090i
\(974\) −8.00000 −0.256337
\(975\) 2.90406 0.804849i 0.0930043 0.0257758i
\(976\) −2.86267 −0.0916320
\(977\) 47.5729i 1.52199i −0.648757 0.760996i \(-0.724711\pi\)
0.648757 0.760996i \(-0.275289\pi\)
\(978\) 4.61507i 0.147574i
\(979\) 16.1362 0.515714
\(980\) −1.87620 13.7946i −0.0599330 0.440652i
\(981\) −25.8615 −0.825695
\(982\) 8.88319i 0.283474i
\(983\) 37.3211i 1.19036i 0.803594 + 0.595178i \(0.202919\pi\)
−0.803594 + 0.595178i \(0.797081\pi\)
\(984\) −4.13617 −0.131856
\(985\) −31.0648 + 4.22512i −0.989807 + 0.134623i
\(986\) 53.8205 1.71399
\(987\) 16.7389i 0.532804i
\(988\) 8.06808i 0.256680i
\(989\) 4.61507 0.146751
\(990\) −11.6843 + 1.58918i −0.371352 + 0.0505075i
\(991\) 22.5060 0.714925 0.357463 0.933927i \(-0.383642\pi\)
0.357463 + 0.933927i \(0.383642\pi\)
\(992\) 5.20541i 0.165272i
\(993\) 11.1621i 0.354217i
\(994\) 34.4232 1.09184
\(995\) −4.74702 34.9021i −0.150491 1.10647i
\(996\) 1.24644 0.0394951
\(997\) 24.4108i 0.773098i −0.922269 0.386549i \(-0.873667\pi\)
0.922269 0.386549i \(-0.126333\pi\)
\(998\) 10.9988i 0.348162i
\(999\) 1.46538 0.0463625
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.b.a.79.2 6
3.2 odd 2 1170.2.e.f.469.5 6
4.3 odd 2 1040.2.d.b.209.3 6
5.2 odd 4 650.2.a.o.1.2 3
5.3 odd 4 650.2.a.n.1.2 3
5.4 even 2 inner 130.2.b.a.79.5 yes 6
13.5 odd 4 1690.2.c.a.1689.4 6
13.8 odd 4 1690.2.c.d.1689.4 6
13.12 even 2 1690.2.b.a.339.5 6
15.2 even 4 5850.2.a.cp.1.3 3
15.8 even 4 5850.2.a.cs.1.1 3
15.14 odd 2 1170.2.e.f.469.2 6
20.3 even 4 5200.2.a.ce.1.2 3
20.7 even 4 5200.2.a.cf.1.2 3
20.19 odd 2 1040.2.d.b.209.4 6
65.12 odd 4 8450.2.a.bs.1.2 3
65.34 odd 4 1690.2.c.a.1689.3 6
65.38 odd 4 8450.2.a.cc.1.2 3
65.44 odd 4 1690.2.c.d.1689.3 6
65.64 even 2 1690.2.b.a.339.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.b.a.79.2 6 1.1 even 1 trivial
130.2.b.a.79.5 yes 6 5.4 even 2 inner
650.2.a.n.1.2 3 5.3 odd 4
650.2.a.o.1.2 3 5.2 odd 4
1040.2.d.b.209.3 6 4.3 odd 2
1040.2.d.b.209.4 6 20.19 odd 2
1170.2.e.f.469.2 6 15.14 odd 2
1170.2.e.f.469.5 6 3.2 odd 2
1690.2.b.a.339.2 6 65.64 even 2
1690.2.b.a.339.5 6 13.12 even 2
1690.2.c.a.1689.3 6 65.34 odd 4
1690.2.c.a.1689.4 6 13.5 odd 4
1690.2.c.d.1689.3 6 65.44 odd 4
1690.2.c.d.1689.4 6 13.8 odd 4
5200.2.a.ce.1.2 3 20.3 even 4
5200.2.a.cf.1.2 3 20.7 even 4
5850.2.a.cp.1.3 3 15.2 even 4
5850.2.a.cs.1.1 3 15.8 even 4
8450.2.a.bs.1.2 3 65.12 odd 4
8450.2.a.cc.1.2 3 65.38 odd 4