Properties

Label 1176.2.q.l.961.2
Level $1176$
Weight $2$
Character 1176.961
Analytic conductor $9.390$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(361,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.2
Root \(2.13746 - 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 1176.961
Dual form 1176.2.q.l.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(1.63746 - 2.83616i) q^{5} +(-0.500000 + 0.866025i) q^{9} +(-1.63746 - 2.83616i) q^{11} -6.27492 q^{13} -3.27492 q^{15} +(-2.00000 - 3.46410i) q^{17} +(-3.13746 + 5.43424i) q^{19} +(-2.00000 + 3.46410i) q^{23} +(-2.86254 - 4.95807i) q^{25} +1.00000 q^{27} +5.27492 q^{29} +(-0.500000 - 0.866025i) q^{31} +(-1.63746 + 2.83616i) q^{33} +(1.13746 - 1.97014i) q^{37} +(3.13746 + 5.43424i) q^{39} +4.54983 q^{41} +0.274917 q^{43} +(1.63746 + 2.83616i) q^{45} +(-3.00000 + 5.19615i) q^{47} +(-2.00000 + 3.46410i) q^{51} +(-4.63746 - 8.03231i) q^{53} -10.7251 q^{55} +6.27492 q^{57} +(-0.637459 - 1.10411i) q^{59} +(5.00000 - 8.66025i) q^{61} +(-10.2749 + 17.7967i) q^{65} +(0.137459 + 0.238085i) q^{67} +4.00000 q^{69} +2.00000 q^{71} +(-2.13746 - 3.70219i) q^{73} +(-2.86254 + 4.95807i) q^{75} +(-5.77492 + 10.0025i) q^{79} +(-0.500000 - 0.866025i) q^{81} -7.27492 q^{83} -13.0997 q^{85} +(-2.63746 - 4.56821i) q^{87} +(-5.27492 + 9.13642i) q^{89} +(-0.500000 + 0.866025i) q^{93} +(10.2749 + 17.7967i) q^{95} -8.72508 q^{97} +3.27492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - q^{5} - 2 q^{9} + q^{11} - 10 q^{13} + 2 q^{15} - 8 q^{17} - 5 q^{19} - 8 q^{23} - 19 q^{25} + 4 q^{27} + 6 q^{29} - 2 q^{31} + q^{33} - 3 q^{37} + 5 q^{39} - 12 q^{41} - 14 q^{43} - q^{45}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 1.63746 2.83616i 0.732294 1.26837i −0.223607 0.974679i \(-0.571783\pi\)
0.955901 0.293691i \(-0.0948835\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.63746 2.83616i −0.493712 0.855135i 0.506261 0.862380i \(-0.331027\pi\)
−0.999974 + 0.00724520i \(0.997694\pi\)
\(12\) 0 0
\(13\) −6.27492 −1.74035 −0.870174 0.492744i \(-0.835994\pi\)
−0.870174 + 0.492744i \(0.835994\pi\)
\(14\) 0 0
\(15\) −3.27492 −0.845580
\(16\) 0 0
\(17\) −2.00000 3.46410i −0.485071 0.840168i 0.514782 0.857321i \(-0.327873\pi\)
−0.999853 + 0.0171533i \(0.994540\pi\)
\(18\) 0 0
\(19\) −3.13746 + 5.43424i −0.719782 + 1.24670i 0.241303 + 0.970450i \(0.422425\pi\)
−0.961086 + 0.276250i \(0.910908\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) −2.86254 4.95807i −0.572508 0.991613i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 5.27492 0.979528 0.489764 0.871855i \(-0.337083\pi\)
0.489764 + 0.871855i \(0.337083\pi\)
\(30\) 0 0
\(31\) −0.500000 0.866025i −0.0898027 0.155543i 0.817625 0.575751i \(-0.195290\pi\)
−0.907428 + 0.420208i \(0.861957\pi\)
\(32\) 0 0
\(33\) −1.63746 + 2.83616i −0.285045 + 0.493712i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.13746 1.97014i 0.186997 0.323888i −0.757251 0.653124i \(-0.773458\pi\)
0.944248 + 0.329236i \(0.106791\pi\)
\(38\) 0 0
\(39\) 3.13746 + 5.43424i 0.502395 + 0.870174i
\(40\) 0 0
\(41\) 4.54983 0.710565 0.355282 0.934759i \(-0.384385\pi\)
0.355282 + 0.934759i \(0.384385\pi\)
\(42\) 0 0
\(43\) 0.274917 0.0419245 0.0209622 0.999780i \(-0.493327\pi\)
0.0209622 + 0.999780i \(0.493327\pi\)
\(44\) 0 0
\(45\) 1.63746 + 2.83616i 0.244098 + 0.422790i
\(46\) 0 0
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.00000 + 3.46410i −0.280056 + 0.485071i
\(52\) 0 0
\(53\) −4.63746 8.03231i −0.637004 1.10332i −0.986087 0.166231i \(-0.946840\pi\)
0.349083 0.937092i \(-0.386493\pi\)
\(54\) 0 0
\(55\) −10.7251 −1.44617
\(56\) 0 0
\(57\) 6.27492 0.831133
\(58\) 0 0
\(59\) −0.637459 1.10411i −0.0829900 0.143743i 0.821543 0.570147i \(-0.193114\pi\)
−0.904533 + 0.426404i \(0.859780\pi\)
\(60\) 0 0
\(61\) 5.00000 8.66025i 0.640184 1.10883i −0.345207 0.938527i \(-0.612191\pi\)
0.985391 0.170305i \(-0.0544754\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.2749 + 17.7967i −1.27445 + 2.20741i
\(66\) 0 0
\(67\) 0.137459 + 0.238085i 0.0167932 + 0.0290867i 0.874300 0.485386i \(-0.161321\pi\)
−0.857507 + 0.514473i \(0.827988\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) −2.13746 3.70219i −0.250171 0.433308i 0.713402 0.700755i \(-0.247153\pi\)
−0.963573 + 0.267447i \(0.913820\pi\)
\(74\) 0 0
\(75\) −2.86254 + 4.95807i −0.330538 + 0.572508i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.77492 + 10.0025i −0.649729 + 1.12536i 0.333459 + 0.942765i \(0.391784\pi\)
−0.983188 + 0.182599i \(0.941549\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −7.27492 −0.798526 −0.399263 0.916836i \(-0.630734\pi\)
−0.399263 + 0.916836i \(0.630734\pi\)
\(84\) 0 0
\(85\) −13.0997 −1.42086
\(86\) 0 0
\(87\) −2.63746 4.56821i −0.282765 0.489764i
\(88\) 0 0
\(89\) −5.27492 + 9.13642i −0.559140 + 0.968459i 0.438428 + 0.898766i \(0.355535\pi\)
−0.997568 + 0.0696929i \(0.977798\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.500000 + 0.866025i −0.0518476 + 0.0898027i
\(94\) 0 0
\(95\) 10.2749 + 17.7967i 1.05418 + 1.82590i
\(96\) 0 0
\(97\) −8.72508 −0.885898 −0.442949 0.896547i \(-0.646068\pi\)
−0.442949 + 0.896547i \(0.646068\pi\)
\(98\) 0 0
\(99\) 3.27492 0.329142
\(100\) 0 0
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 0 0
\(103\) 5.41238 9.37451i 0.533297 0.923698i −0.465946 0.884813i \(-0.654286\pi\)
0.999244 0.0388850i \(-0.0123806\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.91238 13.7046i 0.764918 1.32488i −0.175372 0.984502i \(-0.556113\pi\)
0.940290 0.340375i \(-0.110554\pi\)
\(108\) 0 0
\(109\) −8.41238 14.5707i −0.805759 1.39562i −0.915777 0.401687i \(-0.868424\pi\)
0.110018 0.993930i \(-0.464909\pi\)
\(110\) 0 0
\(111\) −2.27492 −0.215926
\(112\) 0 0
\(113\) −4.54983 −0.428012 −0.214006 0.976832i \(-0.568651\pi\)
−0.214006 + 0.976832i \(0.568651\pi\)
\(114\) 0 0
\(115\) 6.54983 + 11.3446i 0.610775 + 1.05789i
\(116\) 0 0
\(117\) 3.13746 5.43424i 0.290058 0.502395i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.137459 0.238085i 0.0124962 0.0216441i
\(122\) 0 0
\(123\) −2.27492 3.94027i −0.205122 0.355282i
\(124\) 0 0
\(125\) −2.37459 −0.212389
\(126\) 0 0
\(127\) −6.45017 −0.572360 −0.286180 0.958176i \(-0.592385\pi\)
−0.286180 + 0.958176i \(0.592385\pi\)
\(128\) 0 0
\(129\) −0.137459 0.238085i −0.0121026 0.0209622i
\(130\) 0 0
\(131\) 3.63746 6.30026i 0.317806 0.550457i −0.662224 0.749306i \(-0.730387\pi\)
0.980030 + 0.198850i \(0.0637205\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.63746 2.83616i 0.140930 0.244098i
\(136\) 0 0
\(137\) −0.725083 1.25588i −0.0619480 0.107297i 0.833388 0.552688i \(-0.186398\pi\)
−0.895336 + 0.445391i \(0.853065\pi\)
\(138\) 0 0
\(139\) −8.27492 −0.701869 −0.350935 0.936400i \(-0.614136\pi\)
−0.350935 + 0.936400i \(0.614136\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 10.2749 + 17.7967i 0.859232 + 1.48823i
\(144\) 0 0
\(145\) 8.63746 14.9605i 0.717302 1.24240i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.27492 12.6005i 0.595984 1.03228i −0.397423 0.917636i \(-0.630095\pi\)
0.993407 0.114640i \(-0.0365713\pi\)
\(150\) 0 0
\(151\) −11.1873 19.3770i −0.910409 1.57687i −0.813487 0.581583i \(-0.802434\pi\)
−0.0969217 0.995292i \(-0.530900\pi\)
\(152\) 0 0
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) −3.27492 −0.263048
\(156\) 0 0
\(157\) −0.274917 0.476171i −0.0219408 0.0380026i 0.854847 0.518881i \(-0.173651\pi\)
−0.876787 + 0.480878i \(0.840318\pi\)
\(158\) 0 0
\(159\) −4.63746 + 8.03231i −0.367774 + 0.637004i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.00000 10.3923i 0.469956 0.813988i −0.529454 0.848339i \(-0.677603\pi\)
0.999410 + 0.0343508i \(0.0109363\pi\)
\(164\) 0 0
\(165\) 5.36254 + 9.28819i 0.417473 + 0.723085i
\(166\) 0 0
\(167\) 6.00000 0.464294 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(168\) 0 0
\(169\) 26.3746 2.02881
\(170\) 0 0
\(171\) −3.13746 5.43424i −0.239927 0.415567i
\(172\) 0 0
\(173\) −11.2749 + 19.5287i −0.857216 + 1.48474i 0.0173577 + 0.999849i \(0.494475\pi\)
−0.874574 + 0.484892i \(0.838859\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.637459 + 1.10411i −0.0479143 + 0.0829900i
\(178\) 0 0
\(179\) 8.27492 + 14.3326i 0.618496 + 1.07127i 0.989760 + 0.142740i \(0.0455912\pi\)
−0.371264 + 0.928527i \(0.621075\pi\)
\(180\) 0 0
\(181\) 18.8248 1.39923 0.699616 0.714519i \(-0.253354\pi\)
0.699616 + 0.714519i \(0.253354\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) −3.72508 6.45203i −0.273874 0.474363i
\(186\) 0 0
\(187\) −6.54983 + 11.3446i −0.478971 + 0.829603i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.27492 + 3.94027i −0.164607 + 0.285108i −0.936516 0.350626i \(-0.885969\pi\)
0.771909 + 0.635734i \(0.219302\pi\)
\(192\) 0 0
\(193\) −0.225083 0.389855i −0.0162018 0.0280624i 0.857811 0.513966i \(-0.171824\pi\)
−0.874013 + 0.485903i \(0.838491\pi\)
\(194\) 0 0
\(195\) 20.5498 1.47160
\(196\) 0 0
\(197\) −1.45017 −0.103320 −0.0516600 0.998665i \(-0.516451\pi\)
−0.0516600 + 0.998665i \(0.516451\pi\)
\(198\) 0 0
\(199\) −2.54983 4.41644i −0.180753 0.313073i 0.761384 0.648301i \(-0.224520\pi\)
−0.942137 + 0.335228i \(0.891187\pi\)
\(200\) 0 0
\(201\) 0.137459 0.238085i 0.00969558 0.0167932i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 7.45017 12.9041i 0.520342 0.901259i
\(206\) 0 0
\(207\) −2.00000 3.46410i −0.139010 0.240772i
\(208\) 0 0
\(209\) 20.5498 1.42146
\(210\) 0 0
\(211\) −27.6495 −1.90347 −0.951735 0.306921i \(-0.900701\pi\)
−0.951735 + 0.306921i \(0.900701\pi\)
\(212\) 0 0
\(213\) −1.00000 1.73205i −0.0685189 0.118678i
\(214\) 0 0
\(215\) 0.450166 0.779710i 0.0307010 0.0531758i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.13746 + 3.70219i −0.144436 + 0.250171i
\(220\) 0 0
\(221\) 12.5498 + 21.7370i 0.844193 + 1.46219i
\(222\) 0 0
\(223\) 1.27492 0.0853748 0.0426874 0.999088i \(-0.486408\pi\)
0.0426874 + 0.999088i \(0.486408\pi\)
\(224\) 0 0
\(225\) 5.72508 0.381672
\(226\) 0 0
\(227\) −5.63746 9.76436i −0.374171 0.648084i 0.616031 0.787722i \(-0.288739\pi\)
−0.990203 + 0.139638i \(0.955406\pi\)
\(228\) 0 0
\(229\) 9.13746 15.8265i 0.603820 1.04585i −0.388416 0.921484i \(-0.626978\pi\)
0.992237 0.124363i \(-0.0396889\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.274917 0.476171i 0.0180104 0.0311950i −0.856880 0.515516i \(-0.827600\pi\)
0.874890 + 0.484321i \(0.160933\pi\)
\(234\) 0 0
\(235\) 9.82475 + 17.0170i 0.640896 + 1.11006i
\(236\) 0 0
\(237\) 11.5498 0.750242
\(238\) 0 0
\(239\) 15.4502 0.999388 0.499694 0.866202i \(-0.333446\pi\)
0.499694 + 0.866202i \(0.333446\pi\)
\(240\) 0 0
\(241\) 4.91238 + 8.50848i 0.316434 + 0.548080i 0.979741 0.200267i \(-0.0641811\pi\)
−0.663307 + 0.748347i \(0.730848\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 19.6873 34.0994i 1.25267 2.16969i
\(248\) 0 0
\(249\) 3.63746 + 6.30026i 0.230515 + 0.399263i
\(250\) 0 0
\(251\) 18.3746 1.15979 0.579897 0.814690i \(-0.303093\pi\)
0.579897 + 0.814690i \(0.303093\pi\)
\(252\) 0 0
\(253\) 13.0997 0.823569
\(254\) 0 0
\(255\) 6.54983 + 11.3446i 0.410167 + 0.710429i
\(256\) 0 0
\(257\) 5.54983 9.61260i 0.346189 0.599617i −0.639380 0.768891i \(-0.720809\pi\)
0.985569 + 0.169274i \(0.0541422\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −2.63746 + 4.56821i −0.163255 + 0.282765i
\(262\) 0 0
\(263\) 4.72508 + 8.18408i 0.291361 + 0.504652i 0.974132 0.225980i \(-0.0725586\pi\)
−0.682771 + 0.730633i \(0.739225\pi\)
\(264\) 0 0
\(265\) −30.3746 −1.86590
\(266\) 0 0
\(267\) 10.5498 0.645639
\(268\) 0 0
\(269\) 10.3625 + 17.9484i 0.631815 + 1.09434i 0.987180 + 0.159609i \(0.0510232\pi\)
−0.355365 + 0.934728i \(0.615643\pi\)
\(270\) 0 0
\(271\) 0.637459 1.10411i 0.0387229 0.0670699i −0.846014 0.533160i \(-0.821004\pi\)
0.884737 + 0.466090i \(0.154338\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.37459 + 16.2373i −0.565309 + 0.979144i
\(276\) 0 0
\(277\) 13.4124 + 23.2309i 0.805872 + 1.39581i 0.915701 + 0.401860i \(0.131636\pi\)
−0.109830 + 0.993950i \(0.535030\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −26.5498 −1.58383 −0.791915 0.610631i \(-0.790916\pi\)
−0.791915 + 0.610631i \(0.790916\pi\)
\(282\) 0 0
\(283\) −12.9622 22.4512i −0.770523 1.33459i −0.937276 0.348587i \(-0.886662\pi\)
0.166753 0.985999i \(-0.446672\pi\)
\(284\) 0 0
\(285\) 10.2749 17.7967i 0.608634 1.05418i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 0 0
\(291\) 4.36254 + 7.55614i 0.255737 + 0.442949i
\(292\) 0 0
\(293\) 27.8248 1.62554 0.812770 0.582585i \(-0.197959\pi\)
0.812770 + 0.582585i \(0.197959\pi\)
\(294\) 0 0
\(295\) −4.17525 −0.243092
\(296\) 0 0
\(297\) −1.63746 2.83616i −0.0950150 0.164571i
\(298\) 0 0
\(299\) 12.5498 21.7370i 0.725776 1.25708i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.00000 + 5.19615i −0.172345 + 0.298511i
\(304\) 0 0
\(305\) −16.3746 28.3616i −0.937606 1.62398i
\(306\) 0 0
\(307\) −11.3746 −0.649182 −0.324591 0.945854i \(-0.605227\pi\)
−0.324591 + 0.945854i \(0.605227\pi\)
\(308\) 0 0
\(309\) −10.8248 −0.615799
\(310\) 0 0
\(311\) −2.27492 3.94027i −0.128999 0.223432i 0.794290 0.607539i \(-0.207843\pi\)
−0.923289 + 0.384106i \(0.874510\pi\)
\(312\) 0 0
\(313\) −9.77492 + 16.9307i −0.552511 + 0.956977i 0.445582 + 0.895241i \(0.352997\pi\)
−0.998093 + 0.0617357i \(0.980336\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.9124 24.0969i 0.781397 1.35342i −0.149731 0.988727i \(-0.547841\pi\)
0.931128 0.364692i \(-0.118826\pi\)
\(318\) 0 0
\(319\) −8.63746 14.9605i −0.483605 0.837628i
\(320\) 0 0
\(321\) −15.8248 −0.883252
\(322\) 0 0
\(323\) 25.0997 1.39658
\(324\) 0 0
\(325\) 17.9622 + 31.1115i 0.996364 + 1.72575i
\(326\) 0 0
\(327\) −8.41238 + 14.5707i −0.465205 + 0.805759i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.587624 + 1.01779i −0.0322987 + 0.0559431i −0.881723 0.471768i \(-0.843616\pi\)
0.849424 + 0.527711i \(0.176949\pi\)
\(332\) 0 0
\(333\) 1.13746 + 1.97014i 0.0623323 + 0.107963i
\(334\) 0 0
\(335\) 0.900331 0.0491903
\(336\) 0 0
\(337\) −24.0997 −1.31279 −0.656396 0.754416i \(-0.727920\pi\)
−0.656396 + 0.754416i \(0.727920\pi\)
\(338\) 0 0
\(339\) 2.27492 + 3.94027i 0.123557 + 0.214006i
\(340\) 0 0
\(341\) −1.63746 + 2.83616i −0.0886734 + 0.153587i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 6.54983 11.3446i 0.352631 0.610775i
\(346\) 0 0
\(347\) −15.0997 26.1534i −0.810593 1.40399i −0.912450 0.409189i \(-0.865812\pi\)
0.101857 0.994799i \(-0.467522\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) −6.27492 −0.334930
\(352\) 0 0
\(353\) −10.2749 17.7967i −0.546879 0.947222i −0.998486 0.0550049i \(-0.982483\pi\)
0.451607 0.892217i \(-0.350851\pi\)
\(354\) 0 0
\(355\) 3.27492 5.67232i 0.173815 0.301056i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.82475 17.0170i 0.518531 0.898121i −0.481238 0.876590i \(-0.659813\pi\)
0.999768 0.0215311i \(-0.00685409\pi\)
\(360\) 0 0
\(361\) −10.1873 17.6449i −0.536173 0.928679i
\(362\) 0 0
\(363\) −0.274917 −0.0144294
\(364\) 0 0
\(365\) −14.0000 −0.732793
\(366\) 0 0
\(367\) 11.0498 + 19.1389i 0.576797 + 0.999041i 0.995844 + 0.0910767i \(0.0290308\pi\)
−0.419047 + 0.907964i \(0.637636\pi\)
\(368\) 0 0
\(369\) −2.27492 + 3.94027i −0.118427 + 0.205122i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 3.13746 5.43424i 0.162451 0.281374i −0.773296 0.634045i \(-0.781393\pi\)
0.935747 + 0.352671i \(0.114727\pi\)
\(374\) 0 0
\(375\) 1.18729 + 2.05645i 0.0613115 + 0.106195i
\(376\) 0 0
\(377\) −33.0997 −1.70472
\(378\) 0 0
\(379\) 13.1752 0.676767 0.338384 0.941008i \(-0.390120\pi\)
0.338384 + 0.941008i \(0.390120\pi\)
\(380\) 0 0
\(381\) 3.22508 + 5.58601i 0.165226 + 0.286180i
\(382\) 0 0
\(383\) 5.27492 9.13642i 0.269536 0.466849i −0.699206 0.714920i \(-0.746463\pi\)
0.968742 + 0.248070i \(0.0797965\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.137459 + 0.238085i −0.00698741 + 0.0121026i
\(388\) 0 0
\(389\) 1.00000 + 1.73205i 0.0507020 + 0.0878185i 0.890263 0.455448i \(-0.150521\pi\)
−0.839561 + 0.543266i \(0.817187\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) −7.27492 −0.366971
\(394\) 0 0
\(395\) 18.9124 + 32.7572i 0.951585 + 1.64819i
\(396\) 0 0
\(397\) −1.68729 + 2.92248i −0.0846828 + 0.146675i −0.905256 0.424867i \(-0.860321\pi\)
0.820573 + 0.571541i \(0.193654\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.0000 + 20.7846i −0.599251 + 1.03793i 0.393680 + 0.919247i \(0.371202\pi\)
−0.992932 + 0.118686i \(0.962132\pi\)
\(402\) 0 0
\(403\) 3.13746 + 5.43424i 0.156288 + 0.270699i
\(404\) 0 0
\(405\) −3.27492 −0.162732
\(406\) 0 0
\(407\) −7.45017 −0.369291
\(408\) 0 0
\(409\) 5.22508 + 9.05011i 0.258364 + 0.447499i 0.965804 0.259274i \(-0.0834834\pi\)
−0.707440 + 0.706773i \(0.750150\pi\)
\(410\) 0 0
\(411\) −0.725083 + 1.25588i −0.0357657 + 0.0619480i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −11.9124 + 20.6328i −0.584756 + 1.01283i
\(416\) 0 0
\(417\) 4.13746 + 7.16629i 0.202612 + 0.350935i
\(418\) 0 0
\(419\) −28.5498 −1.39475 −0.697375 0.716706i \(-0.745649\pi\)
−0.697375 + 0.716706i \(0.745649\pi\)
\(420\) 0 0
\(421\) 8.82475 0.430092 0.215046 0.976604i \(-0.431010\pi\)
0.215046 + 0.976604i \(0.431010\pi\)
\(422\) 0 0
\(423\) −3.00000 5.19615i −0.145865 0.252646i
\(424\) 0 0
\(425\) −11.4502 + 19.8323i −0.555415 + 0.962006i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 10.2749 17.7967i 0.496078 0.859232i
\(430\) 0 0
\(431\) 8.82475 + 15.2849i 0.425073 + 0.736249i 0.996427 0.0844552i \(-0.0269150\pi\)
−0.571354 + 0.820704i \(0.693582\pi\)
\(432\) 0 0
\(433\) −3.17525 −0.152593 −0.0762963 0.997085i \(-0.524310\pi\)
−0.0762963 + 0.997085i \(0.524310\pi\)
\(434\) 0 0
\(435\) −17.2749 −0.828269
\(436\) 0 0
\(437\) −12.5498 21.7370i −0.600340 1.03982i
\(438\) 0 0
\(439\) 8.63746 14.9605i 0.412243 0.714027i −0.582891 0.812550i \(-0.698079\pi\)
0.995135 + 0.0985236i \(0.0314120\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.18729 5.52055i 0.151433 0.262289i −0.780322 0.625378i \(-0.784945\pi\)
0.931754 + 0.363089i \(0.118278\pi\)
\(444\) 0 0
\(445\) 17.2749 + 29.9210i 0.818910 + 1.41839i
\(446\) 0 0
\(447\) −14.5498 −0.688184
\(448\) 0 0
\(449\) 20.5498 0.969807 0.484903 0.874568i \(-0.338855\pi\)
0.484903 + 0.874568i \(0.338855\pi\)
\(450\) 0 0
\(451\) −7.45017 12.9041i −0.350815 0.607629i
\(452\) 0 0
\(453\) −11.1873 + 19.3770i −0.525625 + 0.910409i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18.3248 + 31.7394i −0.857196 + 1.48471i 0.0173972 + 0.999849i \(0.494462\pi\)
−0.874593 + 0.484858i \(0.838871\pi\)
\(458\) 0 0
\(459\) −2.00000 3.46410i −0.0933520 0.161690i
\(460\) 0 0
\(461\) 3.64950 0.169974 0.0849872 0.996382i \(-0.472915\pi\)
0.0849872 + 0.996382i \(0.472915\pi\)
\(462\) 0 0
\(463\) 13.1752 0.612306 0.306153 0.951982i \(-0.400958\pi\)
0.306153 + 0.951982i \(0.400958\pi\)
\(464\) 0 0
\(465\) 1.63746 + 2.83616i 0.0759353 + 0.131524i
\(466\) 0 0
\(467\) 20.2749 35.1172i 0.938211 1.62503i 0.169406 0.985546i \(-0.445815\pi\)
0.768805 0.639483i \(-0.220852\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −0.274917 + 0.476171i −0.0126675 + 0.0219408i
\(472\) 0 0
\(473\) −0.450166 0.779710i −0.0206986 0.0358511i
\(474\) 0 0
\(475\) 35.9244 1.64833
\(476\) 0 0
\(477\) 9.27492 0.424669
\(478\) 0 0
\(479\) −2.72508 4.71998i −0.124512 0.215661i 0.797030 0.603940i \(-0.206403\pi\)
−0.921542 + 0.388278i \(0.873070\pi\)
\(480\) 0 0
\(481\) −7.13746 + 12.3624i −0.325440 + 0.563679i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.2870 + 24.7457i −0.648738 + 1.12365i
\(486\) 0 0
\(487\) −0.500000 0.866025i −0.0226572 0.0392434i 0.854475 0.519493i \(-0.173879\pi\)
−0.877132 + 0.480250i \(0.840546\pi\)
\(488\) 0 0
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 36.9244 1.66638 0.833188 0.552990i \(-0.186513\pi\)
0.833188 + 0.552990i \(0.186513\pi\)
\(492\) 0 0
\(493\) −10.5498 18.2728i −0.475141 0.822968i
\(494\) 0 0
\(495\) 5.36254 9.28819i 0.241028 0.417473i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −16.1375 + 27.9509i −0.722412 + 1.25125i 0.237619 + 0.971359i \(0.423633\pi\)
−0.960030 + 0.279896i \(0.909700\pi\)
\(500\) 0 0
\(501\) −3.00000 5.19615i −0.134030 0.232147i
\(502\) 0 0
\(503\) 37.6495 1.67871 0.839354 0.543585i \(-0.182933\pi\)
0.839354 + 0.543585i \(0.182933\pi\)
\(504\) 0 0
\(505\) −19.6495 −0.874391
\(506\) 0 0
\(507\) −13.1873 22.8411i −0.585668 1.01441i
\(508\) 0 0
\(509\) −5.63746 + 9.76436i −0.249876 + 0.432798i −0.963491 0.267740i \(-0.913723\pi\)
0.713615 + 0.700538i \(0.247057\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.13746 + 5.43424i −0.138522 + 0.239927i
\(514\) 0 0
\(515\) −17.7251 30.7007i −0.781060 1.35284i
\(516\) 0 0
\(517\) 19.6495 0.864184
\(518\) 0 0
\(519\) 22.5498 0.989828
\(520\) 0 0
\(521\) −7.27492 12.6005i −0.318720 0.552039i 0.661501 0.749944i \(-0.269920\pi\)
−0.980221 + 0.197905i \(0.936586\pi\)
\(522\) 0 0
\(523\) −8.86254 + 15.3504i −0.387532 + 0.671225i −0.992117 0.125316i \(-0.960006\pi\)
0.604585 + 0.796541i \(0.293339\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.00000 + 3.46410i −0.0871214 + 0.150899i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) 1.27492 0.0553267
\(532\) 0 0
\(533\) −28.5498 −1.23663
\(534\) 0 0
\(535\) −25.9124 44.8816i −1.12029 1.94040i
\(536\) 0 0
\(537\) 8.27492 14.3326i 0.357089 0.618496i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.13746 7.16629i 0.177883 0.308103i −0.763272 0.646077i \(-0.776408\pi\)
0.941155 + 0.337974i \(0.109742\pi\)
\(542\) 0 0
\(543\) −9.41238 16.3027i −0.403924 0.699616i
\(544\) 0 0
\(545\) −55.0997 −2.36021
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 5.00000 + 8.66025i 0.213395 + 0.369611i
\(550\) 0 0
\(551\) −16.5498 + 28.6652i −0.705047 + 1.22118i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3.72508 + 6.45203i −0.158121 + 0.273874i
\(556\) 0 0
\(557\) 14.9124 + 25.8290i 0.631858 + 1.09441i 0.987172 + 0.159663i \(0.0510406\pi\)
−0.355314 + 0.934747i \(0.615626\pi\)
\(558\) 0 0
\(559\) −1.72508 −0.0729632
\(560\) 0 0
\(561\) 13.0997 0.553068
\(562\) 0 0
\(563\) 7.63746 + 13.2285i 0.321881 + 0.557513i 0.980876 0.194633i \(-0.0623517\pi\)
−0.658996 + 0.752147i \(0.729018\pi\)
\(564\) 0 0
\(565\) −7.45017 + 12.9041i −0.313431 + 0.542878i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.72508 + 9.91613i −0.240008 + 0.415706i −0.960716 0.277532i \(-0.910483\pi\)
0.720708 + 0.693238i \(0.243817\pi\)
\(570\) 0 0
\(571\) −4.13746 7.16629i −0.173147 0.299900i 0.766371 0.642398i \(-0.222060\pi\)
−0.939519 + 0.342498i \(0.888727\pi\)
\(572\) 0 0
\(573\) 4.54983 0.190072
\(574\) 0 0
\(575\) 22.9003 0.955010
\(576\) 0 0
\(577\) −12.5000 21.6506i −0.520382 0.901328i −0.999719 0.0236970i \(-0.992456\pi\)
0.479337 0.877631i \(-0.340877\pi\)
\(578\) 0 0
\(579\) −0.225083 + 0.389855i −0.00935412 + 0.0162018i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −15.1873 + 26.3052i −0.628993 + 1.08945i
\(584\) 0 0
\(585\) −10.2749 17.7967i −0.424816 0.735802i
\(586\) 0 0
\(587\) −9.27492 −0.382817 −0.191408 0.981510i \(-0.561305\pi\)
−0.191408 + 0.981510i \(0.561305\pi\)
\(588\) 0 0
\(589\) 6.27492 0.258553
\(590\) 0 0
\(591\) 0.725083 + 1.25588i 0.0298259 + 0.0516600i
\(592\) 0 0
\(593\) −0.274917 + 0.476171i −0.0112895 + 0.0195540i −0.871615 0.490191i \(-0.836927\pi\)
0.860325 + 0.509745i \(0.170260\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.54983 + 4.41644i −0.104358 + 0.180753i
\(598\) 0 0
\(599\) −11.2749 19.5287i −0.460681 0.797922i 0.538314 0.842744i \(-0.319061\pi\)
−0.998995 + 0.0448219i \(0.985728\pi\)
\(600\) 0 0
\(601\) −4.09967 −0.167229 −0.0836145 0.996498i \(-0.526646\pi\)
−0.0836145 + 0.996498i \(0.526646\pi\)
\(602\) 0 0
\(603\) −0.274917 −0.0111955
\(604\) 0 0
\(605\) −0.450166 0.779710i −0.0183018 0.0316997i
\(606\) 0 0
\(607\) −3.50000 + 6.06218i −0.142061 + 0.246056i −0.928272 0.371901i \(-0.878706\pi\)
0.786212 + 0.617957i \(0.212039\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.8248 32.6054i 0.761568 1.31907i
\(612\) 0 0
\(613\) 4.27492 + 7.40437i 0.172662 + 0.299060i 0.939350 0.342961i \(-0.111430\pi\)
−0.766688 + 0.642020i \(0.778096\pi\)
\(614\) 0 0
\(615\) −14.9003 −0.600839
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 14.4124 + 24.9630i 0.579282 + 1.00335i 0.995562 + 0.0941097i \(0.0300004\pi\)
−0.416280 + 0.909237i \(0.636666\pi\)
\(620\) 0 0
\(621\) −2.00000 + 3.46410i −0.0802572 + 0.139010i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 10.4244 18.0556i 0.416977 0.722225i
\(626\) 0 0
\(627\) −10.2749 17.7967i −0.410341 0.710731i
\(628\) 0 0
\(629\) −9.09967 −0.362828
\(630\) 0 0
\(631\) 19.8248 0.789211 0.394605 0.918851i \(-0.370881\pi\)
0.394605 + 0.918851i \(0.370881\pi\)
\(632\) 0 0
\(633\) 13.8248 + 23.9452i 0.549485 + 0.951735i
\(634\) 0 0
\(635\) −10.5619 + 18.2937i −0.419135 + 0.725964i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.00000 + 1.73205i −0.0395594 + 0.0685189i
\(640\) 0 0
\(641\) 1.82475 + 3.16056i 0.0720734 + 0.124835i 0.899810 0.436282i \(-0.143705\pi\)
−0.827736 + 0.561117i \(0.810372\pi\)
\(642\) 0 0
\(643\) −5.37459 −0.211953 −0.105976 0.994369i \(-0.533797\pi\)
−0.105976 + 0.994369i \(0.533797\pi\)
\(644\) 0 0
\(645\) −0.900331 −0.0354505
\(646\) 0 0
\(647\) −17.0000 29.4449i −0.668339 1.15760i −0.978368 0.206870i \(-0.933672\pi\)
0.310029 0.950727i \(-0.399661\pi\)
\(648\) 0 0
\(649\) −2.08762 + 3.61587i −0.0819464 + 0.141935i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.46221 5.99672i 0.135487 0.234670i −0.790297 0.612725i \(-0.790074\pi\)
0.925783 + 0.378055i \(0.123407\pi\)
\(654\) 0 0
\(655\) −11.9124 20.6328i −0.465455 0.806192i
\(656\) 0 0
\(657\) 4.27492 0.166780
\(658\) 0 0
\(659\) −42.1993 −1.64385 −0.821926 0.569594i \(-0.807101\pi\)
−0.821926 + 0.569594i \(0.807101\pi\)
\(660\) 0 0
\(661\) 3.58762 + 6.21395i 0.139542 + 0.241695i 0.927323 0.374261i \(-0.122104\pi\)
−0.787781 + 0.615955i \(0.788770\pi\)
\(662\) 0 0
\(663\) 12.5498 21.7370i 0.487395 0.844193i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −10.5498 + 18.2728i −0.408491 + 0.707528i
\(668\) 0 0
\(669\) −0.637459 1.10411i −0.0246456 0.0426874i
\(670\) 0 0
\(671\) −32.7492 −1.26427
\(672\) 0 0
\(673\) 41.5498 1.60163 0.800814 0.598913i \(-0.204400\pi\)
0.800814 + 0.598913i \(0.204400\pi\)
\(674\) 0 0
\(675\) −2.86254 4.95807i −0.110179 0.190836i
\(676\) 0 0
\(677\) −6.63746 + 11.4964i −0.255098 + 0.441843i −0.964922 0.262536i \(-0.915441\pi\)
0.709824 + 0.704379i \(0.248774\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −5.63746 + 9.76436i −0.216028 + 0.374171i
\(682\) 0 0
\(683\) −6.08762 10.5441i −0.232936 0.403458i 0.725735 0.687975i \(-0.241500\pi\)
−0.958671 + 0.284517i \(0.908167\pi\)
\(684\) 0 0
\(685\) −4.74917 −0.181457
\(686\) 0 0
\(687\) −18.2749 −0.697232
\(688\) 0 0
\(689\) 29.0997 + 50.4021i 1.10861 + 1.92017i
\(690\) 0 0
\(691\) −5.41238 + 9.37451i −0.205896 + 0.356623i −0.950418 0.310975i \(-0.899344\pi\)
0.744522 + 0.667598i \(0.232678\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.5498 + 23.4690i −0.513975 + 0.890230i
\(696\) 0 0
\(697\) −9.09967 15.7611i −0.344675 0.596994i
\(698\) 0 0
\(699\) −0.549834 −0.0207966
\(700\) 0 0
\(701\) −12.9244 −0.488149 −0.244074 0.969757i \(-0.578484\pi\)
−0.244074 + 0.969757i \(0.578484\pi\)
\(702\) 0 0
\(703\) 7.13746 + 12.3624i 0.269194 + 0.466258i
\(704\) 0 0
\(705\) 9.82475 17.0170i 0.370022 0.640896i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 14.0997 24.4213i 0.529524 0.917163i −0.469883 0.882729i \(-0.655704\pi\)
0.999407 0.0344340i \(-0.0109628\pi\)
\(710\) 0 0
\(711\) −5.77492 10.0025i −0.216576 0.375121i
\(712\) 0 0
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 67.2990 2.51684
\(716\) 0 0
\(717\) −7.72508 13.3802i −0.288499 0.499694i
\(718\) 0 0
\(719\) 14.0997 24.4213i 0.525829 0.910762i −0.473718 0.880676i \(-0.657089\pi\)
0.999547 0.0300860i \(-0.00957813\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 4.91238 8.50848i 0.182693 0.316434i
\(724\) 0 0
\(725\) −15.0997 26.1534i −0.560788 0.971313i
\(726\) 0 0
\(727\) −31.5498 −1.17012 −0.585059 0.810991i \(-0.698929\pi\)
−0.585059 + 0.810991i \(0.698929\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −0.549834 0.952341i −0.0203364 0.0352236i
\(732\) 0 0
\(733\) 2.96221 5.13070i 0.109412 0.189507i −0.806120 0.591752i \(-0.798437\pi\)
0.915532 + 0.402245i \(0.131770\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.450166 0.779710i 0.0165821 0.0287210i
\(738\) 0 0
\(739\) −0.687293 1.19043i −0.0252825 0.0437905i 0.853107 0.521735i \(-0.174715\pi\)
−0.878390 + 0.477945i \(0.841382\pi\)
\(740\) 0 0
\(741\) −39.3746 −1.44646
\(742\) 0 0
\(743\) −44.1993 −1.62152 −0.810758 0.585381i \(-0.800945\pi\)
−0.810758 + 0.585381i \(0.800945\pi\)
\(744\) 0 0
\(745\) −23.8248 41.2657i −0.872871 1.51186i
\(746\) 0 0
\(747\) 3.63746 6.30026i 0.133088 0.230515i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 5.22508 9.05011i 0.190666 0.330243i −0.754805 0.655949i \(-0.772269\pi\)
0.945471 + 0.325706i \(0.105602\pi\)
\(752\) 0 0
\(753\) −9.18729 15.9129i −0.334804 0.579897i
\(754\) 0 0
\(755\) −73.2749 −2.66675
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) −6.54983 11.3446i −0.237744 0.411785i
\(760\) 0 0
\(761\) −12.5498 + 21.7370i −0.454931 + 0.787964i −0.998684 0.0512814i \(-0.983669\pi\)
0.543753 + 0.839245i \(0.317003\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 6.54983 11.3446i 0.236810 0.410167i
\(766\) 0 0
\(767\) 4.00000 + 6.92820i 0.144432 + 0.250163i
\(768\) 0 0
\(769\) 32.6495 1.17737 0.588686 0.808362i \(-0.299646\pi\)
0.588686 + 0.808362i \(0.299646\pi\)
\(770\) 0 0
\(771\) −11.0997 −0.399745
\(772\) 0 0
\(773\) 1.54983 + 2.68439i 0.0557437 + 0.0965509i 0.892551 0.450947i \(-0.148914\pi\)
−0.836807 + 0.547498i \(0.815580\pi\)
\(774\) 0 0
\(775\) −2.86254 + 4.95807i −0.102826 + 0.178099i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.2749 + 24.7249i −0.511452 + 0.885861i
\(780\) 0 0
\(781\) −3.27492 5.67232i −0.117186 0.202972i
\(782\) 0 0
\(783\) 5.27492 0.188510
\(784\) 0 0
\(785\) −1.80066 −0.0642684
\(786\) 0 0
\(787\) 1.27492 + 2.20822i 0.0454459 + 0.0787146i 0.887854 0.460126i \(-0.152196\pi\)
−0.842408 + 0.538841i \(0.818862\pi\)
\(788\) 0 0
\(789\) 4.72508 8.18408i 0.168217 0.291361i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −31.3746 + 54.3424i −1.11414 + 1.92975i
\(794\) 0 0
\(795\) 15.1873 + 26.3052i 0.538638 + 0.932948i
\(796\) 0 0
\(797\) 31.4743 1.11488 0.557438 0.830219i \(-0.311785\pi\)
0.557438 + 0.830219i \(0.311785\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) −5.27492 9.13642i −0.186380 0.322820i
\(802\) 0 0
\(803\) −7.00000 + 12.1244i −0.247025 + 0.427859i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.3625 17.9484i 0.364779 0.631815i
\(808\) 0 0
\(809\) 14.8248 + 25.6772i 0.521211 + 0.902763i 0.999696 + 0.0246675i \(0.00785270\pi\)
−0.478485 + 0.878096i \(0.658814\pi\)
\(810\) 0 0
\(811\) 42.5498 1.49413 0.747063 0.664753i \(-0.231463\pi\)
0.747063 + 0.664753i \(0.231463\pi\)
\(812\) 0 0
\(813\) −1.27492 −0.0447133
\(814\) 0 0
\(815\) −19.6495 34.0339i −0.688292 1.19216i
\(816\) 0 0
\(817\) −0.862541 + 1.49397i −0.0301765 + 0.0522672i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.36254 + 11.0202i −0.222054 + 0.384609i −0.955432 0.295213i \(-0.904610\pi\)
0.733377 + 0.679822i \(0.237943\pi\)
\(822\) 0 0
\(823\) 17.0997 + 29.6175i 0.596057 + 1.03240i 0.993397 + 0.114729i \(0.0366001\pi\)
−0.397340 + 0.917672i \(0.630067\pi\)
\(824\) 0 0
\(825\) 18.7492 0.652762
\(826\) 0 0
\(827\) −44.0241 −1.53087 −0.765434 0.643515i \(-0.777476\pi\)
−0.765434 + 0.643515i \(0.777476\pi\)
\(828\) 0 0
\(829\) 15.1375 + 26.2188i 0.525746 + 0.910618i 0.999550 + 0.0299882i \(0.00954697\pi\)
−0.473805 + 0.880630i \(0.657120\pi\)
\(830\) 0 0
\(831\) 13.4124 23.2309i 0.465270 0.805872i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 9.82475 17.0170i 0.340000 0.588896i
\(836\) 0 0
\(837\) −0.500000 0.866025i −0.0172825 0.0299342i
\(838\) 0 0
\(839\) 30.1993 1.04260 0.521298 0.853374i \(-0.325448\pi\)
0.521298 + 0.853374i \(0.325448\pi\)
\(840\) 0 0
\(841\) −1.17525 −0.0405258
\(842\) 0 0
\(843\) 13.2749 + 22.9928i 0.457212 + 0.791915i
\(844\) 0 0
\(845\) 43.1873 74.8026i 1.48569 2.57329i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −12.9622 + 22.4512i −0.444862 + 0.770523i
\(850\) 0 0
\(851\) 4.54983 + 7.88054i 0.155966 + 0.270142i
\(852\) 0 0
\(853\) −13.3746 −0.457937 −0.228969 0.973434i \(-0.573535\pi\)
−0.228969 + 0.973434i \(0.573535\pi\)
\(854\) 0 0
\(855\) −20.5498 −0.702790
\(856\) 0 0
\(857\) −6.72508 11.6482i −0.229724 0.397894i 0.728002 0.685575i \(-0.240449\pi\)
−0.957726 + 0.287681i \(0.907116\pi\)
\(858\) 0 0
\(859\) −27.8248 + 48.1939i −0.949368 + 1.64435i −0.202609 + 0.979260i \(0.564942\pi\)
−0.746759 + 0.665094i \(0.768391\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.54983 + 16.5408i −0.325080 + 0.563055i −0.981529 0.191316i \(-0.938725\pi\)
0.656448 + 0.754371i \(0.272058\pi\)
\(864\) 0 0
\(865\) 36.9244 + 63.9550i 1.25547 + 2.17453i
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 37.8248 1.28312
\(870\) 0 0
\(871\) −0.862541 1.49397i −0.0292261 0.0506211i
\(872\) 0 0
\(873\) 4.36254 7.55614i 0.147650 0.255737i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −23.3746 + 40.4860i −0.789304 + 1.36711i 0.137090 + 0.990559i \(0.456225\pi\)
−0.926394 + 0.376556i \(0.877108\pi\)
\(878\) 0 0
\(879\) −13.9124 24.0969i −0.469253 0.812770i
\(880\) 0 0
\(881\) −9.45017 −0.318384 −0.159192 0.987248i \(-0.550889\pi\)
−0.159192 + 0.987248i \(0.550889\pi\)
\(882\) 0 0
\(883\) 7.37459 0.248175 0.124087 0.992271i \(-0.460400\pi\)
0.124087 + 0.992271i \(0.460400\pi\)
\(884\) 0 0
\(885\) 2.08762 + 3.61587i 0.0701747 + 0.121546i
\(886\) 0 0
\(887\) 16.8248 29.1413i 0.564920 0.978470i −0.432137 0.901808i \(-0.642240\pi\)
0.997057 0.0766621i \(-0.0244263\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.63746 + 2.83616i −0.0548569 + 0.0950150i
\(892\) 0 0
\(893\) −18.8248 32.6054i −0.629946 1.09110i
\(894\) 0 0
\(895\) 54.1993 1.81168
\(896\) 0 0
\(897\) −25.0997 −0.838054
\(898\) 0 0
\(899\) −2.63746 4.56821i −0.0879642 0.152358i
\(900\) 0 0
\(901\) −18.5498 + 32.1293i −0.617985 + 1.07038i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.8248 53.3900i 1.02465 1.77474i
\(906\) 0 0
\(907\) 14.8625 + 25.7427i 0.493503 + 0.854772i 0.999972 0.00748639i \(-0.00238301\pi\)
−0.506469 + 0.862258i \(0.669050\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 53.8488 1.78409 0.892046 0.451945i \(-0.149270\pi\)
0.892046 + 0.451945i \(0.149270\pi\)
\(912\) 0 0
\(913\) 11.9124 + 20.6328i 0.394242 + 0.682847i
\(914\) 0 0
\(915\) −16.3746 + 28.3616i −0.541327 + 0.937606i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.41238 2.44631i 0.0465900 0.0806962i −0.841790 0.539805i \(-0.818498\pi\)
0.888380 + 0.459109i \(0.151831\pi\)
\(920\) 0 0
\(921\) 5.68729 + 9.85068i 0.187403 + 0.324591i
\(922\) 0 0
\(923\) −12.5498 −0.413083
\(924\) 0 0
\(925\) −13.0241 −0.428229
\(926\) 0 0
\(927\) 5.41238 + 9.37451i 0.177766 + 0.307899i
\(928\) 0 0
\(929\) −20.0997 + 34.8136i −0.659449 + 1.14220i 0.321310 + 0.946974i \(0.395877\pi\)
−0.980759 + 0.195225i \(0.937456\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.27492 + 3.94027i −0.0744774 + 0.128999i
\(934\) 0 0
\(935\) 21.4502 + 37.1528i 0.701495 + 1.21503i
\(936\) 0 0
\(937\) 6.09967 0.199267 0.0996337 0.995024i \(-0.468233\pi\)
0.0996337 + 0.995024i \(0.468233\pi\)
\(938\) 0 0
\(939\) 19.5498 0.637985
\(940\) 0 0
\(941\) 25.9124 + 44.8816i 0.844719 + 1.46310i 0.885865 + 0.463944i \(0.153566\pi\)
−0.0411454 + 0.999153i \(0.513101\pi\)
\(942\) 0 0
\(943\) −9.09967 + 15.7611i −0.296326 + 0.513252i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.72508 16.8443i 0.316023 0.547367i −0.663632 0.748060i \(-0.730986\pi\)
0.979654 + 0.200692i \(0.0643191\pi\)
\(948\) 0 0
\(949\) 13.4124 + 23.2309i 0.435384 + 0.754107i
\(950\) 0 0
\(951\) −27.8248 −0.902279
\(952\) 0 0
\(953\) 55.6495 1.80266 0.901332 0.433129i \(-0.142590\pi\)
0.901332 + 0.433129i \(0.142590\pi\)
\(954\) 0 0
\(955\) 7.45017 + 12.9041i 0.241082 + 0.417566i
\(956\) 0 0
\(957\) −8.63746 + 14.9605i −0.279209 + 0.483605i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.0000 25.9808i 0.483871 0.838089i
\(962\) 0 0
\(963\) 7.91238 + 13.7046i 0.254973 + 0.441626i
\(964\) 0 0
\(965\) −1.47425 −0.0474579
\(966\) 0 0
\(967\) −53.5498 −1.72205 −0.861023 0.508566i \(-0.830176\pi\)
−0.861023 + 0.508566i \(0.830176\pi\)
\(968\) 0 0
\(969\) −12.5498 21.7370i −0.403159 0.698291i
\(970\) 0 0
\(971\) 28.2870 48.9945i 0.907772 1.57231i 0.0906191 0.995886i \(-0.471115\pi\)
0.817153 0.576421i \(-0.195551\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 17.9622 31.1115i 0.575251 0.996364i
\(976\) 0 0
\(977\) −4.45017 7.70791i −0.142373 0.246598i 0.786017 0.618205i \(-0.212140\pi\)
−0.928390 + 0.371608i \(0.878807\pi\)
\(978\) 0 0
\(979\) 34.5498 1.10422
\(980\) 0 0
\(981\) 16.8248 0.537173
\(982\) 0 0
\(983\) 19.6495 + 34.0339i 0.626722 + 1.08551i 0.988205 + 0.153135i \(0.0489371\pi\)
−0.361483 + 0.932379i \(0.617730\pi\)
\(984\) 0 0
\(985\) −2.37459 + 4.11290i −0.0756606 + 0.131048i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.549834 + 0.952341i −0.0174837 + 0.0302827i
\(990\) 0 0
\(991\) 7.04983 + 12.2107i 0.223945 + 0.387885i 0.956003 0.293358i \(-0.0947729\pi\)
−0.732057 + 0.681243i \(0.761440\pi\)
\(992\) 0 0
\(993\) 1.17525 0.0372954
\(994\) 0 0
\(995\) −16.7010 −0.529457
\(996\) 0 0
\(997\) −22.4124 38.8194i −0.709807 1.22942i −0.964928 0.262513i \(-0.915449\pi\)
0.255121 0.966909i \(-0.417885\pi\)
\(998\) 0 0
\(999\) 1.13746 1.97014i 0.0359876 0.0623323i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.q.l.961.2 4
3.2 odd 2 3528.2.s.bk.3313.1 4
4.3 odd 2 2352.2.q.bf.961.2 4
7.2 even 3 1176.2.a.n.1.1 2
7.3 odd 6 168.2.q.c.25.1 4
7.4 even 3 inner 1176.2.q.l.361.2 4
7.5 odd 6 1176.2.a.k.1.2 2
7.6 odd 2 168.2.q.c.121.1 yes 4
21.2 odd 6 3528.2.a.bd.1.2 2
21.5 even 6 3528.2.a.bk.1.1 2
21.11 odd 6 3528.2.s.bk.361.1 4
21.17 even 6 504.2.s.i.361.2 4
21.20 even 2 504.2.s.i.289.2 4
28.3 even 6 336.2.q.g.193.1 4
28.11 odd 6 2352.2.q.bf.1537.2 4
28.19 even 6 2352.2.a.bf.1.2 2
28.23 odd 6 2352.2.a.ba.1.1 2
28.27 even 2 336.2.q.g.289.1 4
56.3 even 6 1344.2.q.x.193.2 4
56.5 odd 6 9408.2.a.ec.1.1 2
56.13 odd 2 1344.2.q.w.961.2 4
56.19 even 6 9408.2.a.dp.1.1 2
56.27 even 2 1344.2.q.x.961.2 4
56.37 even 6 9408.2.a.dj.1.2 2
56.45 odd 6 1344.2.q.w.193.2 4
56.51 odd 6 9408.2.a.dw.1.2 2
84.23 even 6 7056.2.a.ch.1.2 2
84.47 odd 6 7056.2.a.cu.1.1 2
84.59 odd 6 1008.2.s.r.865.2 4
84.83 odd 2 1008.2.s.r.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.q.c.25.1 4 7.3 odd 6
168.2.q.c.121.1 yes 4 7.6 odd 2
336.2.q.g.193.1 4 28.3 even 6
336.2.q.g.289.1 4 28.27 even 2
504.2.s.i.289.2 4 21.20 even 2
504.2.s.i.361.2 4 21.17 even 6
1008.2.s.r.289.2 4 84.83 odd 2
1008.2.s.r.865.2 4 84.59 odd 6
1176.2.a.k.1.2 2 7.5 odd 6
1176.2.a.n.1.1 2 7.2 even 3
1176.2.q.l.361.2 4 7.4 even 3 inner
1176.2.q.l.961.2 4 1.1 even 1 trivial
1344.2.q.w.193.2 4 56.45 odd 6
1344.2.q.w.961.2 4 56.13 odd 2
1344.2.q.x.193.2 4 56.3 even 6
1344.2.q.x.961.2 4 56.27 even 2
2352.2.a.ba.1.1 2 28.23 odd 6
2352.2.a.bf.1.2 2 28.19 even 6
2352.2.q.bf.961.2 4 4.3 odd 2
2352.2.q.bf.1537.2 4 28.11 odd 6
3528.2.a.bd.1.2 2 21.2 odd 6
3528.2.a.bk.1.1 2 21.5 even 6
3528.2.s.bk.361.1 4 21.11 odd 6
3528.2.s.bk.3313.1 4 3.2 odd 2
7056.2.a.ch.1.2 2 84.23 even 6
7056.2.a.cu.1.1 2 84.47 odd 6
9408.2.a.dj.1.2 2 56.37 even 6
9408.2.a.dp.1.1 2 56.19 even 6
9408.2.a.dw.1.2 2 56.51 odd 6
9408.2.a.ec.1.1 2 56.5 odd 6