Properties

Label 1176.2.u.c.521.8
Level $1176$
Weight $2$
Character 1176.521
Analytic conductor $9.390$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(521,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.8
Character \(\chi\) \(=\) 1176.521
Dual form 1176.2.u.c.1097.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02453 + 1.39655i) q^{3} +(2.00767 + 3.47739i) q^{5} +(-0.900685 - 2.86160i) q^{9} +(3.26634 + 1.88582i) q^{11} +4.48235i q^{13} +(-6.91326 - 0.758876i) q^{15} +(-2.05988 + 3.56782i) q^{17} +(5.69006 - 3.28516i) q^{19} +(4.33901 - 2.50513i) q^{23} +(-5.56150 + 9.63280i) q^{25} +(4.91914 + 1.67394i) q^{27} +1.23251i q^{29} +(-0.809487 - 0.467358i) q^{31} +(-5.98009 + 2.62952i) q^{33} +(-1.01181 - 1.75250i) q^{37} +(-6.25981 - 4.59229i) q^{39} +2.21527 q^{41} -3.14096 q^{43} +(8.14263 - 8.87719i) q^{45} +(-2.92829 - 5.07195i) q^{47} +(-2.87222 - 6.53206i) q^{51} +(-3.95157 - 2.28144i) q^{53} +15.1444i q^{55} +(-1.24175 + 11.3122i) q^{57} +(0.982768 - 1.70220i) q^{59} +(8.00812 - 4.62349i) q^{61} +(-15.5869 + 8.99909i) q^{65} +(-3.88026 + 6.72081i) q^{67} +(-0.946908 + 8.62621i) q^{69} -7.97495i q^{71} +(-12.8361 - 7.41091i) q^{73} +(-7.75474 - 17.6360i) q^{75} +(-1.85129 - 3.20653i) q^{79} +(-7.37753 + 5.15480i) q^{81} -9.15704 q^{83} -16.5423 q^{85} +(-1.72126 - 1.26275i) q^{87} +(6.53595 + 11.3206i) q^{89} +(1.48203 - 0.651666i) q^{93} +(22.8475 + 13.1910i) q^{95} -7.06073i q^{97} +(2.45453 - 11.0455i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 32 q^{15} - 8 q^{25} - 16 q^{37} + 64 q^{39} + 32 q^{43} - 48 q^{51} + 96 q^{57} - 16 q^{67} - 80 q^{81} - 128 q^{85} + 32 q^{93} - 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.02453 + 1.39655i −0.591511 + 0.806297i
\(4\) 0 0
\(5\) 2.00767 + 3.47739i 0.897859 + 1.55514i 0.830226 + 0.557426i \(0.188211\pi\)
0.0676320 + 0.997710i \(0.478456\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.900685 2.86160i −0.300228 0.953867i
\(10\) 0 0
\(11\) 3.26634 + 1.88582i 0.984838 + 0.568597i 0.903727 0.428109i \(-0.140820\pi\)
0.0811107 + 0.996705i \(0.474153\pi\)
\(12\) 0 0
\(13\) 4.48235i 1.24318i 0.783343 + 0.621590i \(0.213513\pi\)
−0.783343 + 0.621590i \(0.786487\pi\)
\(14\) 0 0
\(15\) −6.91326 0.758876i −1.78499 0.195941i
\(16\) 0 0
\(17\) −2.05988 + 3.56782i −0.499595 + 0.865325i −1.00000 0.000467189i \(-0.999851\pi\)
0.500405 + 0.865792i \(0.333185\pi\)
\(18\) 0 0
\(19\) 5.69006 3.28516i 1.30539 0.753666i 0.324066 0.946035i \(-0.394950\pi\)
0.981323 + 0.192368i \(0.0616168\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.33901 2.50513i 0.904747 0.522356i 0.0260094 0.999662i \(-0.491720\pi\)
0.878737 + 0.477306i \(0.158387\pi\)
\(24\) 0 0
\(25\) −5.56150 + 9.63280i −1.11230 + 1.92656i
\(26\) 0 0
\(27\) 4.91914 + 1.67394i 0.946689 + 0.322150i
\(28\) 0 0
\(29\) 1.23251i 0.228872i 0.993431 + 0.114436i \(0.0365061\pi\)
−0.993431 + 0.114436i \(0.963494\pi\)
\(30\) 0 0
\(31\) −0.809487 0.467358i −0.145388 0.0839399i 0.425541 0.904939i \(-0.360084\pi\)
−0.570929 + 0.820999i \(0.693417\pi\)
\(32\) 0 0
\(33\) −5.98009 + 2.62952i −1.04100 + 0.457740i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.01181 1.75250i −0.166340 0.288110i 0.770790 0.637089i \(-0.219862\pi\)
−0.937130 + 0.348979i \(0.886528\pi\)
\(38\) 0 0
\(39\) −6.25981 4.59229i −1.00237 0.735355i
\(40\) 0 0
\(41\) 2.21527 0.345967 0.172983 0.984925i \(-0.444659\pi\)
0.172983 + 0.984925i \(0.444659\pi\)
\(42\) 0 0
\(43\) −3.14096 −0.478992 −0.239496 0.970897i \(-0.576982\pi\)
−0.239496 + 0.970897i \(0.576982\pi\)
\(44\) 0 0
\(45\) 8.14263 8.87719i 1.21383 1.32333i
\(46\) 0 0
\(47\) −2.92829 5.07195i −0.427136 0.739820i 0.569482 0.822004i \(-0.307144\pi\)
−0.996617 + 0.0821836i \(0.973811\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.87222 6.53206i −0.402192 0.914671i
\(52\) 0 0
\(53\) −3.95157 2.28144i −0.542790 0.313380i 0.203419 0.979092i \(-0.434795\pi\)
−0.746209 + 0.665712i \(0.768128\pi\)
\(54\) 0 0
\(55\) 15.1444i 2.04208i
\(56\) 0 0
\(57\) −1.24175 + 11.3122i −0.164474 + 1.49833i
\(58\) 0 0
\(59\) 0.982768 1.70220i 0.127946 0.221608i −0.794935 0.606695i \(-0.792495\pi\)
0.922880 + 0.385087i \(0.125828\pi\)
\(60\) 0 0
\(61\) 8.00812 4.62349i 1.02533 0.591977i 0.109690 0.993966i \(-0.465014\pi\)
0.915645 + 0.401989i \(0.131681\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −15.5869 + 8.99909i −1.93331 + 1.11620i
\(66\) 0 0
\(67\) −3.88026 + 6.72081i −0.474050 + 0.821078i −0.999559 0.0297101i \(-0.990542\pi\)
0.525509 + 0.850788i \(0.323875\pi\)
\(68\) 0 0
\(69\) −0.946908 + 8.62621i −0.113994 + 1.03847i
\(70\) 0 0
\(71\) 7.97495i 0.946452i −0.880941 0.473226i \(-0.843089\pi\)
0.880941 0.473226i \(-0.156911\pi\)
\(72\) 0 0
\(73\) −12.8361 7.41091i −1.50235 0.867381i −0.999996 0.00271822i \(-0.999135\pi\)
−0.502352 0.864663i \(-0.667532\pi\)
\(74\) 0 0
\(75\) −7.75474 17.6360i −0.895440 2.03643i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.85129 3.20653i −0.208287 0.360763i 0.742888 0.669416i \(-0.233455\pi\)
−0.951175 + 0.308652i \(0.900122\pi\)
\(80\) 0 0
\(81\) −7.37753 + 5.15480i −0.819726 + 0.572756i
\(82\) 0 0
\(83\) −9.15704 −1.00512 −0.502558 0.864543i \(-0.667608\pi\)
−0.502558 + 0.864543i \(0.667608\pi\)
\(84\) 0 0
\(85\) −16.5423 −1.79426
\(86\) 0 0
\(87\) −1.72126 1.26275i −0.184539 0.135381i
\(88\) 0 0
\(89\) 6.53595 + 11.3206i 0.692809 + 1.19998i 0.970914 + 0.239430i \(0.0769604\pi\)
−0.278105 + 0.960551i \(0.589706\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.48203 0.651666i 0.153679 0.0675746i
\(94\) 0 0
\(95\) 22.8475 + 13.1910i 2.34411 + 1.35337i
\(96\) 0 0
\(97\) 7.06073i 0.716908i −0.933547 0.358454i \(-0.883304\pi\)
0.933547 0.358454i \(-0.116696\pi\)
\(98\) 0 0
\(99\) 2.45453 11.0455i 0.246689 1.11011i
\(100\) 0 0
\(101\) −4.39465 + 7.61175i −0.437284 + 0.757398i −0.997479 0.0709630i \(-0.977393\pi\)
0.560195 + 0.828361i \(0.310726\pi\)
\(102\) 0 0
\(103\) −14.7559 + 8.51934i −1.45394 + 0.839435i −0.998702 0.0509323i \(-0.983781\pi\)
−0.455242 + 0.890368i \(0.650447\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.23983 1.87051i 0.313206 0.180829i −0.335154 0.942163i \(-0.608788\pi\)
0.648360 + 0.761334i \(0.275455\pi\)
\(108\) 0 0
\(109\) 7.15850 12.3989i 0.685660 1.18760i −0.287569 0.957760i \(-0.592847\pi\)
0.973229 0.229838i \(-0.0738198\pi\)
\(110\) 0 0
\(111\) 3.48408 + 0.382451i 0.330694 + 0.0363006i
\(112\) 0 0
\(113\) 3.14828i 0.296165i 0.988975 + 0.148083i \(0.0473102\pi\)
−0.988975 + 0.148083i \(0.952690\pi\)
\(114\) 0 0
\(115\) 17.4226 + 10.0590i 1.62467 + 0.938003i
\(116\) 0 0
\(117\) 12.8267 4.03718i 1.18583 0.373238i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.61264 + 2.79318i 0.146604 + 0.253926i
\(122\) 0 0
\(123\) −2.26960 + 3.09372i −0.204643 + 0.278952i
\(124\) 0 0
\(125\) −24.5860 −2.19903
\(126\) 0 0
\(127\) 9.79366 0.869046 0.434523 0.900661i \(-0.356917\pi\)
0.434523 + 0.900661i \(0.356917\pi\)
\(128\) 0 0
\(129\) 3.21800 4.38650i 0.283329 0.386209i
\(130\) 0 0
\(131\) 5.66933 + 9.81956i 0.495331 + 0.857939i 0.999986 0.00538243i \(-0.00171329\pi\)
−0.504654 + 0.863322i \(0.668380\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.05507 + 20.4665i 0.349005 + 1.76148i
\(136\) 0 0
\(137\) 14.4622 + 8.34973i 1.23558 + 0.713365i 0.968189 0.250221i \(-0.0805034\pi\)
0.267396 + 0.963587i \(0.413837\pi\)
\(138\) 0 0
\(139\) 1.74422i 0.147943i −0.997260 0.0739713i \(-0.976433\pi\)
0.997260 0.0739713i \(-0.0235673\pi\)
\(140\) 0 0
\(141\) 10.0833 + 1.10686i 0.849170 + 0.0932144i
\(142\) 0 0
\(143\) −8.45291 + 14.6409i −0.706868 + 1.22433i
\(144\) 0 0
\(145\) −4.28594 + 2.47449i −0.355928 + 0.205495i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.03719 + 0.598824i −0.0849703 + 0.0490576i −0.541883 0.840454i \(-0.682288\pi\)
0.456913 + 0.889511i \(0.348955\pi\)
\(150\) 0 0
\(151\) −0.369605 + 0.640174i −0.0300780 + 0.0520966i −0.880673 0.473725i \(-0.842909\pi\)
0.850595 + 0.525822i \(0.176242\pi\)
\(152\) 0 0
\(153\) 12.0650 + 2.68108i 0.975398 + 0.216753i
\(154\) 0 0
\(155\) 3.75320i 0.301465i
\(156\) 0 0
\(157\) 9.01105 + 5.20253i 0.719160 + 0.415207i 0.814444 0.580243i \(-0.197042\pi\)
−0.0952831 + 0.995450i \(0.530376\pi\)
\(158\) 0 0
\(159\) 7.23463 3.18115i 0.573743 0.252282i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −11.5225 19.9575i −0.902509 1.56319i −0.824226 0.566260i \(-0.808390\pi\)
−0.0782826 0.996931i \(-0.524944\pi\)
\(164\) 0 0
\(165\) −21.1499 15.5159i −1.64652 1.20791i
\(166\) 0 0
\(167\) 9.84130 0.761543 0.380771 0.924669i \(-0.375658\pi\)
0.380771 + 0.924669i \(0.375658\pi\)
\(168\) 0 0
\(169\) −7.09145 −0.545496
\(170\) 0 0
\(171\) −14.5258 13.3238i −1.11081 1.01890i
\(172\) 0 0
\(173\) 7.98388 + 13.8285i 0.607003 + 1.05136i 0.991731 + 0.128331i \(0.0409619\pi\)
−0.384728 + 0.923030i \(0.625705\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.37033 + 3.11644i 0.103001 + 0.234246i
\(178\) 0 0
\(179\) −1.76158 1.01705i −0.131667 0.0760179i 0.432720 0.901528i \(-0.357554\pi\)
−0.564387 + 0.825511i \(0.690887\pi\)
\(180\) 0 0
\(181\) 7.58845i 0.564045i −0.959408 0.282023i \(-0.908995\pi\)
0.959408 0.282023i \(-0.0910053\pi\)
\(182\) 0 0
\(183\) −1.74762 + 15.9206i −0.129188 + 1.17688i
\(184\) 0 0
\(185\) 4.06276 7.03690i 0.298700 0.517363i
\(186\) 0 0
\(187\) −13.4566 + 7.76915i −0.984041 + 0.568136i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.3333 11.1621i 1.39891 0.807660i 0.404629 0.914481i \(-0.367401\pi\)
0.994278 + 0.106821i \(0.0340672\pi\)
\(192\) 0 0
\(193\) 8.65531 14.9914i 0.623023 1.07911i −0.365897 0.930655i \(-0.619238\pi\)
0.988920 0.148452i \(-0.0474289\pi\)
\(194\) 0 0
\(195\) 3.40155 30.9876i 0.243590 2.21907i
\(196\) 0 0
\(197\) 0.00885665i 0.000631010i −1.00000 0.000315505i \(-0.999900\pi\)
1.00000 0.000315505i \(-0.000100428\pi\)
\(198\) 0 0
\(199\) −16.7952 9.69670i −1.19058 0.687381i −0.232141 0.972682i \(-0.574573\pi\)
−0.958438 + 0.285301i \(0.907906\pi\)
\(200\) 0 0
\(201\) −5.41049 12.3046i −0.381627 0.867902i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.44753 + 7.70335i 0.310629 + 0.538025i
\(206\) 0 0
\(207\) −11.0768 10.1602i −0.769889 0.706182i
\(208\) 0 0
\(209\) 24.7809 1.71413
\(210\) 0 0
\(211\) 13.4174 0.923691 0.461845 0.886961i \(-0.347188\pi\)
0.461845 + 0.886961i \(0.347188\pi\)
\(212\) 0 0
\(213\) 11.1374 + 8.17056i 0.763121 + 0.559837i
\(214\) 0 0
\(215\) −6.30602 10.9223i −0.430067 0.744898i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 23.5006 10.3335i 1.58802 0.698272i
\(220\) 0 0
\(221\) −15.9922 9.23312i −1.07575 0.621087i
\(222\) 0 0
\(223\) 22.6164i 1.51451i −0.653120 0.757255i \(-0.726540\pi\)
0.653120 0.757255i \(-0.273460\pi\)
\(224\) 0 0
\(225\) 32.5744 + 7.23868i 2.17163 + 0.482579i
\(226\) 0 0
\(227\) −6.47910 + 11.2221i −0.430033 + 0.744839i −0.996876 0.0789871i \(-0.974831\pi\)
0.566843 + 0.823826i \(0.308165\pi\)
\(228\) 0 0
\(229\) −0.531475 + 0.306847i −0.0351209 + 0.0202770i −0.517458 0.855709i \(-0.673121\pi\)
0.482337 + 0.875986i \(0.339788\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.00441 4.04400i 0.458874 0.264931i −0.252697 0.967546i \(-0.581317\pi\)
0.711571 + 0.702614i \(0.247984\pi\)
\(234\) 0 0
\(235\) 11.7581 20.3656i 0.767015 1.32851i
\(236\) 0 0
\(237\) 6.37478 + 0.699766i 0.414086 + 0.0454547i
\(238\) 0 0
\(239\) 24.8454i 1.60711i −0.595229 0.803556i \(-0.702939\pi\)
0.595229 0.803556i \(-0.297061\pi\)
\(240\) 0 0
\(241\) 14.4774 + 8.35855i 0.932574 + 0.538422i 0.887625 0.460568i \(-0.152354\pi\)
0.0449490 + 0.998989i \(0.485687\pi\)
\(242\) 0 0
\(243\) 0.359563 15.5843i 0.0230660 0.999734i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 14.7252 + 25.5048i 0.936943 + 1.62283i
\(248\) 0 0
\(249\) 9.38165 12.7882i 0.594538 0.810422i
\(250\) 0 0
\(251\) −4.42932 −0.279576 −0.139788 0.990181i \(-0.544642\pi\)
−0.139788 + 0.990181i \(0.544642\pi\)
\(252\) 0 0
\(253\) 18.8969 1.18804
\(254\) 0 0
\(255\) 16.9480 23.1021i 1.06133 1.44671i
\(256\) 0 0
\(257\) 1.76997 + 3.06567i 0.110408 + 0.191232i 0.915935 0.401327i \(-0.131451\pi\)
−0.805527 + 0.592559i \(0.798118\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.52697 1.11011i 0.218314 0.0687139i
\(262\) 0 0
\(263\) −12.5054 7.21999i −0.771115 0.445204i 0.0621571 0.998066i \(-0.480202\pi\)
−0.833272 + 0.552863i \(0.813535\pi\)
\(264\) 0 0
\(265\) 18.3215i 1.12548i
\(266\) 0 0
\(267\) −22.5060 2.47051i −1.37734 0.151193i
\(268\) 0 0
\(269\) 1.67518 2.90149i 0.102137 0.176907i −0.810428 0.585839i \(-0.800765\pi\)
0.912565 + 0.408932i \(0.134099\pi\)
\(270\) 0 0
\(271\) −2.28534 + 1.31944i −0.138824 + 0.0801502i −0.567804 0.823164i \(-0.692207\pi\)
0.428979 + 0.903314i \(0.358873\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −36.3315 + 20.9760i −2.19087 + 1.26490i
\(276\) 0 0
\(277\) −5.95777 + 10.3192i −0.357968 + 0.620018i −0.987621 0.156858i \(-0.949864\pi\)
0.629653 + 0.776876i \(0.283197\pi\)
\(278\) 0 0
\(279\) −0.608298 + 2.73737i −0.0364179 + 0.163882i
\(280\) 0 0
\(281\) 23.9059i 1.42611i 0.701109 + 0.713054i \(0.252688\pi\)
−0.701109 + 0.713054i \(0.747312\pi\)
\(282\) 0 0
\(283\) 12.6715 + 7.31591i 0.753244 + 0.434886i 0.826865 0.562401i \(-0.190122\pi\)
−0.0736209 + 0.997286i \(0.523455\pi\)
\(284\) 0 0
\(285\) −41.8298 + 18.3931i −2.47779 + 1.08951i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.0137526 + 0.0238202i 0.000808977 + 0.00140119i
\(290\) 0 0
\(291\) 9.86064 + 7.23391i 0.578041 + 0.424060i
\(292\) 0 0
\(293\) −23.0499 −1.34659 −0.673294 0.739375i \(-0.735121\pi\)
−0.673294 + 0.739375i \(0.735121\pi\)
\(294\) 0 0
\(295\) 7.89231 0.459508
\(296\) 0 0
\(297\) 12.9108 + 14.7443i 0.749161 + 0.855550i
\(298\) 0 0
\(299\) 11.2289 + 19.4490i 0.649382 + 1.12476i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.12773 13.9358i −0.352029 0.800590i
\(304\) 0 0
\(305\) 32.1554 + 18.5649i 1.84121 + 1.06302i
\(306\) 0 0
\(307\) 6.05212i 0.345413i −0.984973 0.172706i \(-0.944749\pi\)
0.984973 0.172706i \(-0.0552512\pi\)
\(308\) 0 0
\(309\) 3.22021 29.3356i 0.183191 1.66885i
\(310\) 0 0
\(311\) −5.03492 + 8.72073i −0.285504 + 0.494507i −0.972731 0.231935i \(-0.925494\pi\)
0.687227 + 0.726442i \(0.258828\pi\)
\(312\) 0 0
\(313\) 16.0586 9.27145i 0.907687 0.524053i 0.0280007 0.999608i \(-0.491086\pi\)
0.879686 + 0.475555i \(0.157753\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.5264 10.6962i 1.04055 0.600761i 0.120560 0.992706i \(-0.461531\pi\)
0.919989 + 0.391945i \(0.128198\pi\)
\(318\) 0 0
\(319\) −2.32430 + 4.02581i −0.130136 + 0.225402i
\(320\) 0 0
\(321\) −0.707031 + 6.44096i −0.0394626 + 0.359499i
\(322\) 0 0
\(323\) 27.0682i 1.50611i
\(324\) 0 0
\(325\) −43.1776 24.9286i −2.39506 1.38279i
\(326\) 0 0
\(327\) 9.98154 + 22.7002i 0.551981 + 1.25532i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 15.5927 + 27.0074i 0.857054 + 1.48446i 0.874726 + 0.484618i \(0.161041\pi\)
−0.0176715 + 0.999844i \(0.505625\pi\)
\(332\) 0 0
\(333\) −4.10364 + 4.47384i −0.224878 + 0.245165i
\(334\) 0 0
\(335\) −31.1612 −1.70252
\(336\) 0 0
\(337\) −1.80637 −0.0983995 −0.0491998 0.998789i \(-0.515667\pi\)
−0.0491998 + 0.998789i \(0.515667\pi\)
\(338\) 0 0
\(339\) −4.39672 3.22550i −0.238797 0.175185i
\(340\) 0 0
\(341\) −1.76271 3.05310i −0.0954559 0.165334i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −31.8978 + 14.0258i −1.71732 + 0.755125i
\(346\) 0 0
\(347\) 6.42998 + 3.71235i 0.345179 + 0.199289i 0.662560 0.749009i \(-0.269470\pi\)
−0.317381 + 0.948298i \(0.602803\pi\)
\(348\) 0 0
\(349\) 19.1105i 1.02296i −0.859295 0.511480i \(-0.829097\pi\)
0.859295 0.511480i \(-0.170903\pi\)
\(350\) 0 0
\(351\) −7.50319 + 22.0493i −0.400491 + 1.17690i
\(352\) 0 0
\(353\) −5.62455 + 9.74201i −0.299365 + 0.518515i −0.975991 0.217812i \(-0.930108\pi\)
0.676626 + 0.736327i \(0.263441\pi\)
\(354\) 0 0
\(355\) 27.7320 16.0111i 1.47186 0.849780i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.7712 + 11.9923i −1.09626 + 0.632928i −0.935237 0.354023i \(-0.884814\pi\)
−0.161026 + 0.986950i \(0.551480\pi\)
\(360\) 0 0
\(361\) 12.0845 20.9310i 0.636026 1.10163i
\(362\) 0 0
\(363\) −5.55301 0.609560i −0.291457 0.0319936i
\(364\) 0 0
\(365\) 59.5147i 3.11514i
\(366\) 0 0
\(367\) 24.1821 + 13.9615i 1.26229 + 0.728786i 0.973518 0.228611i \(-0.0734185\pi\)
0.288776 + 0.957397i \(0.406752\pi\)
\(368\) 0 0
\(369\) −1.99526 6.33921i −0.103869 0.330006i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6.87475 + 11.9074i 0.355961 + 0.616543i 0.987282 0.158979i \(-0.0508203\pi\)
−0.631321 + 0.775522i \(0.717487\pi\)
\(374\) 0 0
\(375\) 25.1890 34.3354i 1.30075 1.77307i
\(376\) 0 0
\(377\) −5.52456 −0.284529
\(378\) 0 0
\(379\) 37.2400 1.91289 0.956445 0.291913i \(-0.0942918\pi\)
0.956445 + 0.291913i \(0.0942918\pi\)
\(380\) 0 0
\(381\) −10.0339 + 13.6773i −0.514051 + 0.700709i
\(382\) 0 0
\(383\) 1.62622 + 2.81669i 0.0830959 + 0.143926i 0.904578 0.426308i \(-0.140186\pi\)
−0.821482 + 0.570234i \(0.806853\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.82901 + 8.98817i 0.143807 + 0.456895i
\(388\) 0 0
\(389\) 19.2223 + 11.0980i 0.974609 + 0.562691i 0.900638 0.434570i \(-0.143100\pi\)
0.0739706 + 0.997260i \(0.476433\pi\)
\(390\) 0 0
\(391\) 20.6411i 1.04387i
\(392\) 0 0
\(393\) −19.5219 2.14294i −0.984748 0.108097i
\(394\) 0 0
\(395\) 7.43358 12.8753i 0.374024 0.647829i
\(396\) 0 0
\(397\) −2.36880 + 1.36763i −0.118887 + 0.0686393i −0.558264 0.829663i \(-0.688532\pi\)
0.439377 + 0.898303i \(0.355199\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.67543 2.12201i 0.183542 0.105968i −0.405414 0.914133i \(-0.632873\pi\)
0.588956 + 0.808165i \(0.299539\pi\)
\(402\) 0 0
\(403\) 2.09486 3.62840i 0.104352 0.180744i
\(404\) 0 0
\(405\) −32.7369 15.3054i −1.62671 0.760532i
\(406\) 0 0
\(407\) 7.63235i 0.378322i
\(408\) 0 0
\(409\) −15.8087 9.12717i −0.781691 0.451310i 0.0553382 0.998468i \(-0.482376\pi\)
−0.837029 + 0.547158i \(0.815710\pi\)
\(410\) 0 0
\(411\) −26.4777 + 11.6425i −1.30605 + 0.574284i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −18.3843 31.8426i −0.902452 1.56309i
\(416\) 0 0
\(417\) 2.43588 + 1.78700i 0.119286 + 0.0875098i
\(418\) 0 0
\(419\) 27.1802 1.32784 0.663919 0.747805i \(-0.268892\pi\)
0.663919 + 0.747805i \(0.268892\pi\)
\(420\) 0 0
\(421\) −17.8910 −0.871954 −0.435977 0.899958i \(-0.643597\pi\)
−0.435977 + 0.899958i \(0.643597\pi\)
\(422\) 0 0
\(423\) −11.8764 + 12.9478i −0.577452 + 0.629546i
\(424\) 0 0
\(425\) −22.9121 39.6849i −1.11140 1.92500i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −11.7864 26.8049i −0.569053 1.29415i
\(430\) 0 0
\(431\) −5.64512 3.25921i −0.271916 0.156991i 0.357842 0.933782i \(-0.383513\pi\)
−0.629758 + 0.776791i \(0.716846\pi\)
\(432\) 0 0
\(433\) 16.4285i 0.789506i 0.918787 + 0.394753i \(0.129170\pi\)
−0.918787 + 0.394753i \(0.870830\pi\)
\(434\) 0 0
\(435\) 0.935325 8.52069i 0.0448454 0.408536i
\(436\) 0 0
\(437\) 16.4595 28.5087i 0.787364 1.36375i
\(438\) 0 0
\(439\) −15.8365 + 9.14319i −0.755833 + 0.436381i −0.827798 0.561027i \(-0.810407\pi\)
0.0719643 + 0.997407i \(0.477073\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.588421 + 0.339725i −0.0279567 + 0.0161408i −0.513913 0.857842i \(-0.671805\pi\)
0.485957 + 0.873983i \(0.338471\pi\)
\(444\) 0 0
\(445\) −26.2441 + 45.4561i −1.24409 + 2.15483i
\(446\) 0 0
\(447\) 0.226348 2.06200i 0.0107059 0.0975294i
\(448\) 0 0
\(449\) 23.7906i 1.12275i 0.827562 + 0.561375i \(0.189727\pi\)
−0.827562 + 0.561375i \(0.810273\pi\)
\(450\) 0 0
\(451\) 7.23581 + 4.17760i 0.340721 + 0.196715i
\(452\) 0 0
\(453\) −0.515363 1.17205i −0.0242139 0.0550676i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.1594 + 21.0607i 0.568792 + 0.985177i 0.996686 + 0.0813481i \(0.0259226\pi\)
−0.427893 + 0.903829i \(0.640744\pi\)
\(458\) 0 0
\(459\) −16.1052 + 14.1025i −0.751726 + 0.658248i
\(460\) 0 0
\(461\) −4.08266 −0.190148 −0.0950742 0.995470i \(-0.530309\pi\)
−0.0950742 + 0.995470i \(0.530309\pi\)
\(462\) 0 0
\(463\) 17.5152 0.814001 0.407001 0.913428i \(-0.366575\pi\)
0.407001 + 0.913428i \(0.366575\pi\)
\(464\) 0 0
\(465\) 5.24152 + 3.84526i 0.243070 + 0.178320i
\(466\) 0 0
\(467\) −3.17097 5.49228i −0.146735 0.254152i 0.783284 0.621664i \(-0.213543\pi\)
−0.930019 + 0.367512i \(0.880210\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −16.4977 + 7.25422i −0.760172 + 0.334257i
\(472\) 0 0
\(473\) −10.2594 5.92329i −0.471729 0.272353i
\(474\) 0 0
\(475\) 73.0816i 3.35321i
\(476\) 0 0
\(477\) −2.96945 + 13.3627i −0.135962 + 0.611835i
\(478\) 0 0
\(479\) 15.4881 26.8262i 0.707669 1.22572i −0.258050 0.966131i \(-0.583080\pi\)
0.965720 0.259588i \(-0.0835866\pi\)
\(480\) 0 0
\(481\) 7.85533 4.53528i 0.358172 0.206791i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 24.5529 14.1756i 1.11489 0.643682i
\(486\) 0 0
\(487\) −17.9715 + 31.1275i −0.814366 + 1.41052i 0.0954161 + 0.995437i \(0.469582\pi\)
−0.909782 + 0.415086i \(0.863751\pi\)
\(488\) 0 0
\(489\) 39.6767 + 4.35535i 1.79424 + 0.196956i
\(490\) 0 0
\(491\) 23.7756i 1.07298i 0.843907 + 0.536490i \(0.180250\pi\)
−0.843907 + 0.536490i \(0.819750\pi\)
\(492\) 0 0
\(493\) −4.39740 2.53884i −0.198049 0.114344i
\(494\) 0 0
\(495\) 43.3374 13.6404i 1.94787 0.613089i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −8.64048 14.9657i −0.386801 0.669959i 0.605216 0.796061i \(-0.293087\pi\)
−0.992017 + 0.126102i \(0.959753\pi\)
\(500\) 0 0
\(501\) −10.0827 + 13.7438i −0.450461 + 0.614029i
\(502\) 0 0
\(503\) 22.4974 1.00311 0.501554 0.865126i \(-0.332762\pi\)
0.501554 + 0.865126i \(0.332762\pi\)
\(504\) 0 0
\(505\) −35.2920 −1.57048
\(506\) 0 0
\(507\) 7.26539 9.90354i 0.322667 0.439832i
\(508\) 0 0
\(509\) 1.68836 + 2.92432i 0.0748351 + 0.129618i 0.901015 0.433789i \(-0.142824\pi\)
−0.826179 + 0.563407i \(0.809490\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 33.4893 6.63531i 1.47859 0.292956i
\(514\) 0 0
\(515\) −59.2501 34.2081i −2.61087 1.50739i
\(516\) 0 0
\(517\) 22.0890i 0.971471i
\(518\) 0 0
\(519\) −27.4918 3.01781i −1.20676 0.132467i
\(520\) 0 0
\(521\) −15.2787 + 26.4635i −0.669371 + 1.15939i 0.308709 + 0.951157i \(0.400103\pi\)
−0.978080 + 0.208229i \(0.933230\pi\)
\(522\) 0 0
\(523\) 8.62638 4.98044i 0.377205 0.217780i −0.299396 0.954129i \(-0.596785\pi\)
0.676602 + 0.736349i \(0.263452\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.33490 1.92541i 0.145271 0.0838720i
\(528\) 0 0
\(529\) 1.05135 1.82099i 0.0457109 0.0791737i
\(530\) 0 0
\(531\) −5.75620 1.27914i −0.249798 0.0555100i
\(532\) 0 0
\(533\) 9.92960i 0.430099i
\(534\) 0 0
\(535\) 13.0090 + 7.51076i 0.562429 + 0.324718i
\(536\) 0 0
\(537\) 3.22515 1.41814i 0.139175 0.0611971i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −15.4359 26.7358i −0.663642 1.14946i −0.979652 0.200705i \(-0.935677\pi\)
0.316010 0.948756i \(-0.397657\pi\)
\(542\) 0 0
\(543\) 10.5976 + 7.77458i 0.454788 + 0.333639i
\(544\) 0 0
\(545\) 57.4877 2.46250
\(546\) 0 0
\(547\) −38.9414 −1.66501 −0.832506 0.554016i \(-0.813095\pi\)
−0.832506 + 0.554016i \(0.813095\pi\)
\(548\) 0 0
\(549\) −20.4434 18.7517i −0.872502 0.800305i
\(550\) 0 0
\(551\) 4.04900 + 7.01308i 0.172493 + 0.298767i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 5.66495 + 12.8833i 0.240464 + 0.546867i
\(556\) 0 0
\(557\) −39.3322 22.7084i −1.66656 0.962188i −0.969473 0.245200i \(-0.921146\pi\)
−0.697086 0.716988i \(-0.745520\pi\)
\(558\) 0 0
\(559\) 14.0789i 0.595473i
\(560\) 0 0
\(561\) 2.93664 26.7524i 0.123985 1.12949i
\(562\) 0 0
\(563\) 5.02435 8.70244i 0.211751 0.366764i −0.740511 0.672044i \(-0.765417\pi\)
0.952263 + 0.305280i \(0.0987500\pi\)
\(564\) 0 0
\(565\) −10.9478 + 6.32072i −0.460578 + 0.265915i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.7959 + 12.0065i −0.871808 + 0.503339i −0.867949 0.496654i \(-0.834562\pi\)
−0.00385959 + 0.999993i \(0.501229\pi\)
\(570\) 0 0
\(571\) 7.86981 13.6309i 0.329341 0.570436i −0.653040 0.757323i \(-0.726507\pi\)
0.982381 + 0.186888i \(0.0598400\pi\)
\(572\) 0 0
\(573\) −4.21913 + 38.4357i −0.176257 + 1.60567i
\(574\) 0 0
\(575\) 55.7291i 2.32406i
\(576\) 0 0
\(577\) 21.4412 + 12.3791i 0.892610 + 0.515348i 0.874795 0.484493i \(-0.160996\pi\)
0.0178145 + 0.999841i \(0.494329\pi\)
\(578\) 0 0
\(579\) 12.0686 + 27.4467i 0.501555 + 1.14065i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −8.60477 14.9039i −0.356373 0.617256i
\(584\) 0 0
\(585\) 39.7907 + 36.4981i 1.64514 + 1.50901i
\(586\) 0 0
\(587\) −23.8593 −0.984778 −0.492389 0.870375i \(-0.663876\pi\)
−0.492389 + 0.870375i \(0.663876\pi\)
\(588\) 0 0
\(589\) −6.14137 −0.253051
\(590\) 0 0
\(591\) 0.0123687 + 0.00907388i 0.000508781 + 0.000373250i
\(592\) 0 0
\(593\) −20.2197 35.0216i −0.830324 1.43816i −0.897781 0.440442i \(-0.854822\pi\)
0.0674569 0.997722i \(-0.478511\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 30.7490 13.5207i 1.25847 0.553366i
\(598\) 0 0
\(599\) −4.13793 2.38903i −0.169071 0.0976132i 0.413077 0.910696i \(-0.364454\pi\)
−0.582148 + 0.813083i \(0.697787\pi\)
\(600\) 0 0
\(601\) 4.52159i 0.184440i 0.995739 + 0.0922198i \(0.0293963\pi\)
−0.995739 + 0.0922198i \(0.970604\pi\)
\(602\) 0 0
\(603\) 22.7272 + 5.05043i 0.925523 + 0.205670i
\(604\) 0 0
\(605\) −6.47532 + 11.2156i −0.263259 + 0.455978i
\(606\) 0 0
\(607\) −9.20269 + 5.31317i −0.373526 + 0.215655i −0.674998 0.737820i \(-0.735855\pi\)
0.301472 + 0.953475i \(0.402522\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22.7343 13.1256i 0.919730 0.531006i
\(612\) 0 0
\(613\) 11.6510 20.1801i 0.470578 0.815066i −0.528855 0.848712i \(-0.677379\pi\)
0.999434 + 0.0336463i \(0.0107120\pi\)
\(614\) 0 0
\(615\) −15.3147 1.68111i −0.617549 0.0677890i
\(616\) 0 0
\(617\) 38.6616i 1.55646i −0.627982 0.778228i \(-0.716119\pi\)
0.627982 0.778228i \(-0.283881\pi\)
\(618\) 0 0
\(619\) −42.5873 24.5878i −1.71173 0.988266i −0.932235 0.361854i \(-0.882144\pi\)
−0.779492 0.626412i \(-0.784523\pi\)
\(620\) 0 0
\(621\) 25.5376 5.05982i 1.02479 0.203044i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −21.5530 37.3310i −0.862122 1.49324i
\(626\) 0 0
\(627\) −25.3887 + 34.6076i −1.01393 + 1.38210i
\(628\) 0 0
\(629\) 8.33683 0.332411
\(630\) 0 0
\(631\) −18.6538 −0.742597 −0.371298 0.928514i \(-0.621087\pi\)
−0.371298 + 0.928514i \(0.621087\pi\)
\(632\) 0 0
\(633\) −13.7465 + 18.7380i −0.546374 + 0.744769i
\(634\) 0 0
\(635\) 19.6625 + 34.0564i 0.780281 + 1.35149i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −22.8211 + 7.18292i −0.902790 + 0.284152i
\(640\) 0 0
\(641\) 15.5921 + 9.00210i 0.615850 + 0.355561i 0.775252 0.631652i \(-0.217623\pi\)
−0.159401 + 0.987214i \(0.550956\pi\)
\(642\) 0 0
\(643\) 8.31261i 0.327817i 0.986476 + 0.163909i \(0.0524102\pi\)
−0.986476 + 0.163909i \(0.947590\pi\)
\(644\) 0 0
\(645\) 21.7143 + 2.38360i 0.854998 + 0.0938540i
\(646\) 0 0
\(647\) −10.4982 + 18.1834i −0.412726 + 0.714862i −0.995187 0.0979967i \(-0.968757\pi\)
0.582461 + 0.812859i \(0.302090\pi\)
\(648\) 0 0
\(649\) 6.42011 3.70665i 0.252011 0.145499i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.74581 5.62674i 0.381383 0.220191i −0.297037 0.954866i \(-0.595998\pi\)
0.678420 + 0.734675i \(0.262665\pi\)
\(654\) 0 0
\(655\) −22.7643 + 39.4289i −0.889475 + 1.54062i
\(656\) 0 0
\(657\) −9.64581 + 43.4066i −0.376319 + 1.69345i
\(658\) 0 0
\(659\) 30.5790i 1.19119i −0.803286 0.595594i \(-0.796917\pi\)
0.803286 0.595594i \(-0.203083\pi\)
\(660\) 0 0
\(661\) 19.0053 + 10.9727i 0.739222 + 0.426790i 0.821786 0.569796i \(-0.192978\pi\)
−0.0825645 + 0.996586i \(0.526311\pi\)
\(662\) 0 0
\(663\) 29.2790 12.8743i 1.13710 0.499997i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.08761 + 5.34790i 0.119553 + 0.207071i
\(668\) 0 0
\(669\) 31.5849 + 23.1712i 1.22114 + 0.895849i
\(670\) 0 0
\(671\) 34.8763 1.34638
\(672\) 0 0
\(673\) 2.10181 0.0810190 0.0405095 0.999179i \(-0.487102\pi\)
0.0405095 + 0.999179i \(0.487102\pi\)
\(674\) 0 0
\(675\) −43.4825 + 38.0754i −1.67364 + 1.46552i
\(676\) 0 0
\(677\) −11.4653 19.8584i −0.440646 0.763222i 0.557091 0.830451i \(-0.311917\pi\)
−0.997738 + 0.0672293i \(0.978584\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −9.03421 20.5458i −0.346192 0.787315i
\(682\) 0 0
\(683\) 41.7660 + 24.1136i 1.59813 + 0.922683i 0.991847 + 0.127436i \(0.0406749\pi\)
0.606287 + 0.795246i \(0.292658\pi\)
\(684\) 0 0
\(685\) 67.0541i 2.56200i
\(686\) 0 0
\(687\) 0.115985 1.05660i 0.00442509 0.0403119i
\(688\) 0 0
\(689\) 10.2262 17.7123i 0.389587 0.674785i
\(690\) 0 0
\(691\) −16.7466 + 9.66867i −0.637072 + 0.367813i −0.783486 0.621410i \(-0.786560\pi\)
0.146414 + 0.989223i \(0.453227\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.06533 3.50182i 0.230071 0.132832i
\(696\) 0 0
\(697\) −4.56319 + 7.90368i −0.172843 + 0.299373i
\(698\) 0 0
\(699\) −1.52858 + 13.9252i −0.0578163 + 0.526699i
\(700\) 0 0
\(701\) 22.3461i 0.844001i −0.906596 0.422001i \(-0.861328\pi\)
0.906596 0.422001i \(-0.138672\pi\)
\(702\) 0 0
\(703\) −11.5145 6.64789i −0.434277 0.250730i
\(704\) 0 0
\(705\) 16.3951 + 37.2859i 0.617474 + 1.40427i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −13.0147 22.5421i −0.488777 0.846587i 0.511139 0.859498i \(-0.329224\pi\)
−0.999917 + 0.0129106i \(0.995890\pi\)
\(710\) 0 0
\(711\) −7.50839 + 8.18574i −0.281587 + 0.306989i
\(712\) 0 0
\(713\) −4.68317 −0.175386
\(714\) 0 0
\(715\) −67.8827 −2.53867
\(716\) 0 0
\(717\) 34.6977 + 25.4548i 1.29581 + 0.950626i
\(718\) 0 0
\(719\) −0.627787 1.08736i −0.0234125 0.0405517i 0.854082 0.520139i \(-0.174120\pi\)
−0.877494 + 0.479587i \(0.840786\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −26.5056 + 11.6548i −0.985756 + 0.433448i
\(724\) 0 0
\(725\) −11.8726 6.85463i −0.440936 0.254575i
\(726\) 0 0
\(727\) 33.5608i 1.24470i −0.782738 0.622351i \(-0.786178\pi\)
0.782738 0.622351i \(-0.213822\pi\)
\(728\) 0 0
\(729\) 21.3958 + 16.4687i 0.792438 + 0.609952i
\(730\) 0 0
\(731\) 6.47001 11.2064i 0.239302 0.414483i
\(732\) 0 0
\(733\) 0.0552513 0.0318993i 0.00204075 0.00117823i −0.498979 0.866614i \(-0.666292\pi\)
0.501020 + 0.865436i \(0.332958\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −25.3485 + 14.6350i −0.933724 + 0.539086i
\(738\) 0 0
\(739\) 12.4280 21.5259i 0.457170 0.791842i −0.541640 0.840611i \(-0.682196\pi\)
0.998810 + 0.0487685i \(0.0155297\pi\)
\(740\) 0 0
\(741\) −50.7051 5.56595i −1.86270 0.204470i
\(742\) 0 0
\(743\) 1.14074i 0.0418496i 0.999781 + 0.0209248i \(0.00666106\pi\)
−0.999781 + 0.0209248i \(0.993339\pi\)
\(744\) 0 0
\(745\) −4.16469 2.40449i −0.152583 0.0880936i
\(746\) 0 0
\(747\) 8.24761 + 26.2038i 0.301764 + 0.958748i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.16929 15.8817i −0.334592 0.579531i 0.648814 0.760947i \(-0.275265\pi\)
−0.983406 + 0.181416i \(0.941932\pi\)
\(752\) 0 0
\(753\) 4.53796 6.18575i 0.165373 0.225421i
\(754\) 0 0
\(755\) −2.96818 −0.108023
\(756\) 0 0
\(757\) −41.6253 −1.51290 −0.756449 0.654053i \(-0.773067\pi\)
−0.756449 + 0.654053i \(0.773067\pi\)
\(758\) 0 0
\(759\) −19.3604 + 26.3904i −0.702738 + 0.957911i
\(760\) 0 0
\(761\) 8.66684 + 15.0114i 0.314173 + 0.544163i 0.979261 0.202601i \(-0.0649395\pi\)
−0.665088 + 0.746765i \(0.731606\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 14.8994 + 47.3375i 0.538689 + 1.71149i
\(766\) 0 0
\(767\) 7.62987 + 4.40511i 0.275499 + 0.159059i
\(768\) 0 0
\(769\) 15.7285i 0.567184i 0.958945 + 0.283592i \(0.0915261\pi\)
−0.958945 + 0.283592i \(0.908474\pi\)
\(770\) 0 0
\(771\) −6.09474 0.669026i −0.219497 0.0240944i
\(772\) 0 0
\(773\) −7.12720 + 12.3447i −0.256348 + 0.444007i −0.965261 0.261289i \(-0.915852\pi\)
0.708913 + 0.705296i \(0.249186\pi\)
\(774\) 0 0
\(775\) 9.00392 5.19842i 0.323430 0.186733i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.6050 7.27750i 0.451621 0.260743i
\(780\) 0 0
\(781\) 15.0393 26.0489i 0.538149 0.932102i
\(782\) 0 0
\(783\) −2.06316 + 6.06291i −0.0737313 + 0.216671i
\(784\) 0 0
\(785\) 41.7799i 1.49119i
\(786\) 0 0
\(787\) 11.2126 + 6.47357i 0.399685 + 0.230758i 0.686348 0.727273i \(-0.259213\pi\)
−0.286663 + 0.958031i \(0.592546\pi\)
\(788\) 0 0
\(789\) 22.8952 10.0673i 0.815090 0.358405i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 20.7241 + 35.8952i 0.735934 + 1.27468i
\(794\) 0 0
\(795\) 25.5869 + 18.7709i 0.907473 + 0.665736i
\(796\) 0 0
\(797\) −21.1678 −0.749803 −0.374901 0.927065i \(-0.622323\pi\)
−0.374901 + 0.927065i \(0.622323\pi\)
\(798\) 0 0
\(799\) 24.1278 0.853580
\(800\) 0 0
\(801\) 26.5082 28.8996i 0.936621 1.02112i
\(802\) 0 0
\(803\) −27.9513 48.4131i −0.986380 1.70846i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.33580 + 5.31213i 0.0822242 + 0.186996i
\(808\) 0 0
\(809\) −36.0989 20.8417i −1.26917 0.732756i −0.294340 0.955701i \(-0.595100\pi\)
−0.974831 + 0.222945i \(0.928433\pi\)
\(810\) 0 0
\(811\) 31.7652i 1.11543i −0.830033 0.557714i \(-0.811679\pi\)
0.830033 0.557714i \(-0.188321\pi\)
\(812\) 0 0
\(813\) 0.498732 4.54338i 0.0174913 0.159343i
\(814\) 0 0
\(815\) 46.2667 80.1362i 1.62065 2.80705i
\(816\) 0 0
\(817\) −17.8722 + 10.3185i −0.625270 + 0.361000i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.2908 + 7.09611i −0.428953 + 0.247656i −0.698900 0.715219i \(-0.746327\pi\)
0.269948 + 0.962875i \(0.412994\pi\)
\(822\) 0 0
\(823\) −7.13017 + 12.3498i −0.248542 + 0.430488i −0.963122 0.269067i \(-0.913285\pi\)
0.714579 + 0.699554i \(0.246618\pi\)
\(824\) 0 0
\(825\) 7.92867 72.2291i 0.276041 2.51469i
\(826\) 0 0
\(827\) 43.8269i 1.52401i 0.647571 + 0.762006i \(0.275785\pi\)
−0.647571 + 0.762006i \(0.724215\pi\)
\(828\) 0 0
\(829\) 16.9331 + 9.77631i 0.588110 + 0.339545i 0.764350 0.644802i \(-0.223060\pi\)
−0.176240 + 0.984347i \(0.556394\pi\)
\(830\) 0 0
\(831\) −8.30729 18.8926i −0.288177 0.655376i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 19.7581 + 34.2221i 0.683758 + 1.18430i
\(836\) 0 0
\(837\) −3.19965 3.65403i −0.110596 0.126302i
\(838\) 0 0
\(839\) −41.5510 −1.43450 −0.717251 0.696815i \(-0.754600\pi\)
−0.717251 + 0.696815i \(0.754600\pi\)
\(840\) 0 0
\(841\) 27.4809 0.947617
\(842\) 0 0
\(843\) −33.3857 24.4923i −1.14987 0.843559i
\(844\) 0 0
\(845\) −14.2373 24.6597i −0.489778 0.848321i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −23.1993 + 10.2010i −0.796199 + 0.350098i
\(850\) 0 0
\(851\) −8.78049 5.06942i −0.300991 0.173777i
\(852\) 0 0
\(853\) 17.5344i 0.600367i 0.953882 + 0.300183i \(0.0970478\pi\)
−0.953882 + 0.300183i \(0.902952\pi\)
\(854\) 0 0
\(855\) 17.1690 77.2615i 0.587169 2.64229i
\(856\) 0 0
\(857\) 9.82141 17.0112i 0.335493 0.581091i −0.648086 0.761567i \(-0.724430\pi\)
0.983579 + 0.180476i \(0.0577638\pi\)
\(858\) 0 0
\(859\) −11.6418 + 6.72140i −0.397213 + 0.229331i −0.685281 0.728279i \(-0.740321\pi\)
0.288068 + 0.957610i \(0.406987\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −19.5405 + 11.2817i −0.665168 + 0.384035i −0.794243 0.607600i \(-0.792132\pi\)
0.129075 + 0.991635i \(0.458799\pi\)
\(864\) 0 0
\(865\) −32.0581 + 55.5262i −1.09001 + 1.88795i
\(866\) 0 0
\(867\) −0.0473560 0.00519832i −0.00160829 0.000176544i
\(868\) 0 0
\(869\) 13.9648i 0.473725i
\(870\) 0 0
\(871\) −30.1250 17.3927i −1.02075 0.589329i
\(872\) 0 0
\(873\) −20.2050 + 6.35949i −0.683836 + 0.215236i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.78849 + 8.29391i 0.161696 + 0.280065i 0.935477 0.353388i \(-0.114970\pi\)
−0.773781 + 0.633453i \(0.781637\pi\)
\(878\) 0 0
\(879\) 23.6152 32.1902i 0.796522 1.08575i
\(880\) 0 0
\(881\) 4.74822 0.159971 0.0799857 0.996796i \(-0.474513\pi\)
0.0799857 + 0.996796i \(0.474513\pi\)
\(882\) 0 0
\(883\) 36.7930 1.23818 0.619092 0.785318i \(-0.287501\pi\)
0.619092 + 0.785318i \(0.287501\pi\)
\(884\) 0 0
\(885\) −8.08589 + 11.0220i −0.271804 + 0.370500i
\(886\) 0 0
\(887\) −17.2408 29.8619i −0.578889 1.00267i −0.995607 0.0936294i \(-0.970153\pi\)
0.416718 0.909036i \(-0.363180\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −33.8186 + 2.92463i −1.13296 + 0.0979787i
\(892\) 0 0
\(893\) −33.3243 19.2398i −1.11516 0.643835i
\(894\) 0 0
\(895\) 8.16761i 0.273013i
\(896\) 0 0
\(897\) −38.6657 4.24437i −1.29101 0.141716i
\(898\) 0 0
\(899\) 0.576025 0.997705i 0.0192115 0.0332753i
\(900\) 0 0
\(901\) 16.2795 9.39900i 0.542350 0.313126i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 26.3880 15.2351i 0.877168 0.506433i
\(906\) 0 0
\(907\) 9.30335 16.1139i 0.308913 0.535053i −0.669212 0.743072i \(-0.733368\pi\)
0.978125 + 0.208019i \(0.0667015\pi\)
\(908\) 0 0
\(909\) 25.7400 + 5.71994i 0.853742 + 0.189718i
\(910\) 0 0
\(911\) 27.0277i 0.895467i 0.894167 + 0.447733i \(0.147769\pi\)
−0.894167 + 0.447733i \(0.852231\pi\)
\(912\) 0 0
\(913\) −29.9100 17.2685i −0.989877 0.571506i
\(914\) 0 0
\(915\) −58.8708 + 25.8862i −1.94621 + 0.855771i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −8.84583 15.3214i −0.291797 0.505407i 0.682438 0.730944i \(-0.260920\pi\)
−0.974235 + 0.225537i \(0.927586\pi\)
\(920\) 0 0
\(921\) 8.45207 + 6.20057i 0.278505 + 0.204316i
\(922\) 0 0
\(923\) 35.7465 1.17661
\(924\) 0 0
\(925\) 22.5087 0.740081
\(926\) 0 0
\(927\) 37.6694 + 34.5523i 1.23723 + 1.13485i
\(928\) 0 0
\(929\) −11.3508 19.6601i −0.372406 0.645026i 0.617529 0.786548i \(-0.288134\pi\)
−0.989935 + 0.141522i \(0.954800\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −7.02050 15.9661i −0.229841 0.522708i
\(934\) 0 0
\(935\) −54.0327 31.1958i −1.76706 1.02021i
\(936\) 0 0
\(937\) 29.4147i 0.960935i −0.877012 0.480468i \(-0.840467\pi\)
0.877012 0.480468i \(-0.159533\pi\)
\(938\) 0 0
\(939\) −3.50449 + 31.9255i −0.114365 + 1.04185i
\(940\) 0 0
\(941\) 20.5512 35.5957i 0.669949 1.16039i −0.307968 0.951397i \(-0.599649\pi\)
0.977918 0.208990i \(-0.0670175\pi\)
\(942\) 0 0
\(943\) 9.61207 5.54953i 0.313012 0.180718i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.831993 + 0.480351i −0.0270361 + 0.0156093i −0.513457 0.858115i \(-0.671635\pi\)
0.486421 + 0.873725i \(0.338302\pi\)
\(948\) 0 0
\(949\) 33.2183 57.5357i 1.07831 1.86769i
\(950\) 0 0
\(951\) −4.04305 + 36.8316i −0.131105 + 1.19435i
\(952\) 0 0
\(953\) 14.0678i 0.455702i 0.973696 + 0.227851i \(0.0731699\pi\)
−0.973696 + 0.227851i \(0.926830\pi\)
\(954\) 0 0
\(955\) 77.6298 + 44.8196i 2.51204 + 1.45033i
\(956\) 0 0
\(957\) −3.24092 7.37055i −0.104764 0.238256i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0632 26.0901i −0.485908 0.841618i
\(962\) 0 0
\(963\) −8.27073 7.58635i −0.266521 0.244467i
\(964\) 0 0
\(965\) 69.5081 2.23754
\(966\) 0 0
\(967\) 40.1695 1.29177 0.645883 0.763437i \(-0.276490\pi\)
0.645883 + 0.763437i \(0.276490\pi\)
\(968\) 0 0
\(969\) −37.8019 27.7321i −1.21437 0.890883i
\(970\) 0 0
\(971\) −24.7784 42.9175i −0.795177 1.37729i −0.922727 0.385455i \(-0.874045\pi\)
0.127550 0.991832i \(-0.459289\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 79.0505 34.7595i 2.53164 1.11319i
\(976\) 0 0
\(977\) 13.0979 + 7.56208i 0.419039 + 0.241932i 0.694666 0.719332i \(-0.255552\pi\)
−0.275627 + 0.961265i \(0.588885\pi\)
\(978\) 0 0
\(979\) 49.3025i 1.57572i
\(980\) 0 0
\(981\) −41.9283 9.31729i −1.33867 0.297478i
\(982\) 0 0
\(983\) −14.2454 + 24.6737i −0.454358 + 0.786970i −0.998651 0.0519245i \(-0.983464\pi\)
0.544293 + 0.838895i \(0.316798\pi\)
\(984\) 0 0
\(985\) 0.0307980 0.0177812i 0.000981307 0.000566558i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13.6287 + 7.86851i −0.433366 + 0.250204i
\(990\) 0 0
\(991\) −5.14988 + 8.91986i −0.163591 + 0.283349i −0.936154 0.351590i \(-0.885641\pi\)
0.772563 + 0.634938i \(0.218975\pi\)
\(992\) 0 0
\(993\) −53.6923 5.89386i −1.70387 0.187036i
\(994\) 0 0
\(995\) 77.8712i 2.46868i
\(996\) 0 0
\(997\) 17.7056 + 10.2223i 0.560742 + 0.323744i 0.753443 0.657513i \(-0.228392\pi\)
−0.192701 + 0.981257i \(0.561725\pi\)
\(998\) 0 0
\(999\) −2.04363 10.3145i −0.0646577 0.326337i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.u.c.521.8 48
3.2 odd 2 inner 1176.2.u.c.521.15 48
7.2 even 3 inner 1176.2.u.c.1097.10 48
7.3 odd 6 1176.2.k.b.881.1 24
7.4 even 3 1176.2.k.b.881.24 yes 24
7.5 odd 6 inner 1176.2.u.c.1097.15 48
7.6 odd 2 inner 1176.2.u.c.521.17 48
21.2 odd 6 inner 1176.2.u.c.1097.17 48
21.5 even 6 inner 1176.2.u.c.1097.8 48
21.11 odd 6 1176.2.k.b.881.2 yes 24
21.17 even 6 1176.2.k.b.881.23 yes 24
21.20 even 2 inner 1176.2.u.c.521.10 48
28.3 even 6 2352.2.k.j.881.24 24
28.11 odd 6 2352.2.k.j.881.1 24
84.11 even 6 2352.2.k.j.881.23 24
84.59 odd 6 2352.2.k.j.881.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.1 24 7.3 odd 6
1176.2.k.b.881.2 yes 24 21.11 odd 6
1176.2.k.b.881.23 yes 24 21.17 even 6
1176.2.k.b.881.24 yes 24 7.4 even 3
1176.2.u.c.521.8 48 1.1 even 1 trivial
1176.2.u.c.521.10 48 21.20 even 2 inner
1176.2.u.c.521.15 48 3.2 odd 2 inner
1176.2.u.c.521.17 48 7.6 odd 2 inner
1176.2.u.c.1097.8 48 21.5 even 6 inner
1176.2.u.c.1097.10 48 7.2 even 3 inner
1176.2.u.c.1097.15 48 7.5 odd 6 inner
1176.2.u.c.1097.17 48 21.2 odd 6 inner
2352.2.k.j.881.1 24 28.11 odd 6
2352.2.k.j.881.2 24 84.59 odd 6
2352.2.k.j.881.23 24 84.11 even 6
2352.2.k.j.881.24 24 28.3 even 6