Properties

Label 1176.2.k.b.881.2
Level $1176$
Weight $2$
Character 1176.881
Analytic conductor $9.390$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1176,2,Mod(881,1176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1176.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.2
Character \(\chi\) \(=\) 1176.881
Dual form 1176.2.k.b.881.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72171 + 0.188994i) q^{3} +4.01535 q^{5} +(2.92856 - 0.650785i) q^{9} +3.77164i q^{11} +4.48235i q^{13} +(-6.91326 + 0.758876i) q^{15} -4.11977 q^{17} +6.57031i q^{19} -5.01026i q^{23} +11.1230 q^{25} +(-4.91914 + 1.67394i) q^{27} -1.23251i q^{29} +0.934715i q^{31} +(-0.712817 - 6.49367i) q^{33} +2.02362 q^{37} +(-0.847136 - 7.71730i) q^{39} -2.21527 q^{41} -3.14096 q^{43} +(11.7592 - 2.61313i) q^{45} -5.85659 q^{47} +(7.09304 - 0.778611i) q^{51} -4.56288i q^{53} +15.1444i q^{55} +(-1.24175 - 11.3122i) q^{57} +1.96554 q^{59} +9.24698i q^{61} +17.9982i q^{65} +7.76053 q^{67} +(0.946908 + 8.62621i) q^{69} +7.97495i q^{71} +14.8218i q^{73} +(-19.1506 + 2.10218i) q^{75} +3.70259 q^{79} +(8.15296 - 3.81173i) q^{81} +9.15704 q^{83} -16.5423 q^{85} +(0.232938 + 2.12203i) q^{87} +13.0719 q^{89} +(-0.176655 - 1.60931i) q^{93} +26.3821i q^{95} -7.06073i q^{97} +(2.45453 + 11.0455i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 16 q^{15} + 8 q^{25} + 16 q^{37} - 64 q^{39} + 16 q^{43} + 48 q^{51} + 48 q^{57} + 16 q^{67} + 80 q^{81} - 64 q^{85} - 32 q^{93} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72171 + 0.188994i −0.994029 + 0.109116i
\(4\) 0 0
\(5\) 4.01535 1.79572 0.897859 0.440284i \(-0.145122\pi\)
0.897859 + 0.440284i \(0.145122\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.92856 0.650785i 0.976188 0.216928i
\(10\) 0 0
\(11\) 3.77164i 1.13719i 0.822617 + 0.568597i \(0.192513\pi\)
−0.822617 + 0.568597i \(0.807487\pi\)
\(12\) 0 0
\(13\) 4.48235i 1.24318i 0.783343 + 0.621590i \(0.213513\pi\)
−0.783343 + 0.621590i \(0.786487\pi\)
\(14\) 0 0
\(15\) −6.91326 + 0.758876i −1.78499 + 0.195941i
\(16\) 0 0
\(17\) −4.11977 −0.999191 −0.499595 0.866259i \(-0.666518\pi\)
−0.499595 + 0.866259i \(0.666518\pi\)
\(18\) 0 0
\(19\) 6.57031i 1.50733i 0.657257 + 0.753666i \(0.271717\pi\)
−0.657257 + 0.753666i \(0.728283\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.01026i 1.04471i −0.852728 0.522356i \(-0.825053\pi\)
0.852728 0.522356i \(-0.174947\pi\)
\(24\) 0 0
\(25\) 11.1230 2.22460
\(26\) 0 0
\(27\) −4.91914 + 1.67394i −0.946689 + 0.322150i
\(28\) 0 0
\(29\) 1.23251i 0.228872i −0.993431 0.114436i \(-0.963494\pi\)
0.993431 0.114436i \(-0.0365061\pi\)
\(30\) 0 0
\(31\) 0.934715i 0.167880i 0.996471 + 0.0839399i \(0.0267504\pi\)
−0.996471 + 0.0839399i \(0.973250\pi\)
\(32\) 0 0
\(33\) −0.712817 6.49367i −0.124086 1.13040i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.02362 0.332680 0.166340 0.986068i \(-0.446805\pi\)
0.166340 + 0.986068i \(0.446805\pi\)
\(38\) 0 0
\(39\) −0.847136 7.71730i −0.135650 1.23576i
\(40\) 0 0
\(41\) −2.21527 −0.345967 −0.172983 0.984925i \(-0.555341\pi\)
−0.172983 + 0.984925i \(0.555341\pi\)
\(42\) 0 0
\(43\) −3.14096 −0.478992 −0.239496 0.970897i \(-0.576982\pi\)
−0.239496 + 0.970897i \(0.576982\pi\)
\(44\) 0 0
\(45\) 11.7592 2.61313i 1.75296 0.389542i
\(46\) 0 0
\(47\) −5.85659 −0.854271 −0.427136 0.904188i \(-0.640477\pi\)
−0.427136 + 0.904188i \(0.640477\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 7.09304 0.778611i 0.993225 0.109027i
\(52\) 0 0
\(53\) 4.56288i 0.626759i −0.949628 0.313380i \(-0.898539\pi\)
0.949628 0.313380i \(-0.101461\pi\)
\(54\) 0 0
\(55\) 15.1444i 2.04208i
\(56\) 0 0
\(57\) −1.24175 11.3122i −0.164474 1.49833i
\(58\) 0 0
\(59\) 1.96554 0.255891 0.127946 0.991781i \(-0.459162\pi\)
0.127946 + 0.991781i \(0.459162\pi\)
\(60\) 0 0
\(61\) 9.24698i 1.18395i 0.805955 + 0.591977i \(0.201652\pi\)
−0.805955 + 0.591977i \(0.798348\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 17.9982i 2.23240i
\(66\) 0 0
\(67\) 7.76053 0.948099 0.474050 0.880498i \(-0.342792\pi\)
0.474050 + 0.880498i \(0.342792\pi\)
\(68\) 0 0
\(69\) 0.946908 + 8.62621i 0.113994 + 1.03847i
\(70\) 0 0
\(71\) 7.97495i 0.946452i 0.880941 + 0.473226i \(0.156911\pi\)
−0.880941 + 0.473226i \(0.843089\pi\)
\(72\) 0 0
\(73\) 14.8218i 1.73476i 0.497644 + 0.867381i \(0.334199\pi\)
−0.497644 + 0.867381i \(0.665801\pi\)
\(74\) 0 0
\(75\) −19.1506 + 2.10218i −2.21132 + 0.242739i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.70259 0.416574 0.208287 0.978068i \(-0.433211\pi\)
0.208287 + 0.978068i \(0.433211\pi\)
\(80\) 0 0
\(81\) 8.15296 3.81173i 0.905884 0.423525i
\(82\) 0 0
\(83\) 9.15704 1.00512 0.502558 0.864543i \(-0.332392\pi\)
0.502558 + 0.864543i \(0.332392\pi\)
\(84\) 0 0
\(85\) −16.5423 −1.79426
\(86\) 0 0
\(87\) 0.232938 + 2.12203i 0.0249735 + 0.227506i
\(88\) 0 0
\(89\) 13.0719 1.38562 0.692809 0.721121i \(-0.256373\pi\)
0.692809 + 0.721121i \(0.256373\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.176655 1.60931i −0.0183183 0.166877i
\(94\) 0 0
\(95\) 26.3821i 2.70674i
\(96\) 0 0
\(97\) 7.06073i 0.716908i −0.933547 0.358454i \(-0.883304\pi\)
0.933547 0.358454i \(-0.116696\pi\)
\(98\) 0 0
\(99\) 2.45453 + 11.0455i 0.246689 + 1.11011i
\(100\) 0 0
\(101\) −8.78929 −0.874567 −0.437284 0.899324i \(-0.644059\pi\)
−0.437284 + 0.899324i \(0.644059\pi\)
\(102\) 0 0
\(103\) 17.0387i 1.67887i −0.543460 0.839435i \(-0.682886\pi\)
0.543460 0.839435i \(-0.317114\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.74103i 0.361659i −0.983514 0.180829i \(-0.942122\pi\)
0.983514 0.180829i \(-0.0578782\pi\)
\(108\) 0 0
\(109\) −14.3170 −1.37132 −0.685660 0.727922i \(-0.740486\pi\)
−0.685660 + 0.727922i \(0.740486\pi\)
\(110\) 0 0
\(111\) −3.48408 + 0.382451i −0.330694 + 0.0363006i
\(112\) 0 0
\(113\) 3.14828i 0.296165i −0.988975 0.148083i \(-0.952690\pi\)
0.988975 0.148083i \(-0.0473102\pi\)
\(114\) 0 0
\(115\) 20.1179i 1.87601i
\(116\) 0 0
\(117\) 2.91704 + 13.1268i 0.269681 + 1.21358i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.22529 −0.293208
\(122\) 0 0
\(123\) 3.81405 0.418672i 0.343901 0.0377504i
\(124\) 0 0
\(125\) 24.5860 2.19903
\(126\) 0 0
\(127\) 9.79366 0.869046 0.434523 0.900661i \(-0.356917\pi\)
0.434523 + 0.900661i \(0.356917\pi\)
\(128\) 0 0
\(129\) 5.40782 0.593622i 0.476132 0.0522655i
\(130\) 0 0
\(131\) 11.3387 0.990663 0.495331 0.868704i \(-0.335047\pi\)
0.495331 + 0.868704i \(0.335047\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −19.7520 + 6.72146i −1.69998 + 0.578491i
\(136\) 0 0
\(137\) 16.6995i 1.42673i 0.700792 + 0.713365i \(0.252830\pi\)
−0.700792 + 0.713365i \(0.747170\pi\)
\(138\) 0 0
\(139\) 1.74422i 0.147943i −0.997260 0.0739713i \(-0.976433\pi\)
0.997260 0.0739713i \(-0.0235673\pi\)
\(140\) 0 0
\(141\) 10.0833 1.10686i 0.849170 0.0932144i
\(142\) 0 0
\(143\) −16.9058 −1.41374
\(144\) 0 0
\(145\) 4.94897i 0.410990i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.19765i 0.0981152i 0.998796 + 0.0490576i \(0.0156218\pi\)
−0.998796 + 0.0490576i \(0.984378\pi\)
\(150\) 0 0
\(151\) 0.739210 0.0601560 0.0300780 0.999548i \(-0.490424\pi\)
0.0300780 + 0.999548i \(0.490424\pi\)
\(152\) 0 0
\(153\) −12.0650 + 2.68108i −0.975398 + 0.216753i
\(154\) 0 0
\(155\) 3.75320i 0.301465i
\(156\) 0 0
\(157\) 10.4051i 0.830415i −0.909727 0.415207i \(-0.863709\pi\)
0.909727 0.415207i \(-0.136291\pi\)
\(158\) 0 0
\(159\) 0.862356 + 7.85595i 0.0683893 + 0.623017i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 23.0449 1.80502 0.902509 0.430671i \(-0.141723\pi\)
0.902509 + 0.430671i \(0.141723\pi\)
\(164\) 0 0
\(165\) −2.86221 26.0743i −0.222823 2.02988i
\(166\) 0 0
\(167\) −9.84130 −0.761543 −0.380771 0.924669i \(-0.624342\pi\)
−0.380771 + 0.924669i \(0.624342\pi\)
\(168\) 0 0
\(169\) −7.09145 −0.545496
\(170\) 0 0
\(171\) 4.27586 + 19.2416i 0.326983 + 1.47144i
\(172\) 0 0
\(173\) 15.9678 1.21401 0.607003 0.794699i \(-0.292371\pi\)
0.607003 + 0.794699i \(0.292371\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.38408 + 0.371474i −0.254363 + 0.0279217i
\(178\) 0 0
\(179\) 2.03410i 0.152036i −0.997106 0.0760179i \(-0.975779\pi\)
0.997106 0.0760179i \(-0.0242206\pi\)
\(180\) 0 0
\(181\) 7.58845i 0.564045i −0.959408 0.282023i \(-0.908995\pi\)
0.959408 0.282023i \(-0.0910053\pi\)
\(182\) 0 0
\(183\) −1.74762 15.9206i −0.129188 1.17688i
\(184\) 0 0
\(185\) 8.12552 0.597400
\(186\) 0 0
\(187\) 15.5383i 1.13627i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.3242i 1.61532i −0.589649 0.807660i \(-0.700734\pi\)
0.589649 0.807660i \(-0.299266\pi\)
\(192\) 0 0
\(193\) −17.3106 −1.24605 −0.623023 0.782204i \(-0.714096\pi\)
−0.623023 + 0.782204i \(0.714096\pi\)
\(194\) 0 0
\(195\) −3.40155 30.9876i −0.243590 2.21907i
\(196\) 0 0
\(197\) 0.00885665i 0.000631010i 1.00000 0.000315505i \(0.000100428\pi\)
−1.00000 0.000315505i \(0.999900\pi\)
\(198\) 0 0
\(199\) 19.3934i 1.37476i 0.726297 + 0.687381i \(0.241240\pi\)
−0.726297 + 0.687381i \(0.758760\pi\)
\(200\) 0 0
\(201\) −13.3614 + 1.46669i −0.942438 + 0.103452i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −8.89506 −0.621258
\(206\) 0 0
\(207\) −3.26060 14.6729i −0.226627 1.01983i
\(208\) 0 0
\(209\) −24.7809 −1.71413
\(210\) 0 0
\(211\) 13.4174 0.923691 0.461845 0.886961i \(-0.347188\pi\)
0.461845 + 0.886961i \(0.347188\pi\)
\(212\) 0 0
\(213\) −1.50722 13.7305i −0.103273 0.940801i
\(214\) 0 0
\(215\) −12.6120 −0.860134
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.80123 25.5189i −0.189290 1.72440i
\(220\) 0 0
\(221\) 18.4662i 1.24217i
\(222\) 0 0
\(223\) 22.6164i 1.51451i −0.653120 0.757255i \(-0.726540\pi\)
0.653120 0.757255i \(-0.273460\pi\)
\(224\) 0 0
\(225\) 32.5744 7.23868i 2.17163 0.482579i
\(226\) 0 0
\(227\) −12.9582 −0.860066 −0.430033 0.902813i \(-0.641498\pi\)
−0.430033 + 0.902813i \(0.641498\pi\)
\(228\) 0 0
\(229\) 0.613695i 0.0405541i −0.999794 0.0202770i \(-0.993545\pi\)
0.999794 0.0202770i \(-0.00645483\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.08800i 0.529862i −0.964267 0.264931i \(-0.914651\pi\)
0.964267 0.264931i \(-0.0853492\pi\)
\(234\) 0 0
\(235\) −23.5162 −1.53403
\(236\) 0 0
\(237\) −6.37478 + 0.699766i −0.414086 + 0.0454547i
\(238\) 0 0
\(239\) 24.8454i 1.60711i 0.595229 + 0.803556i \(0.297061\pi\)
−0.595229 + 0.803556i \(0.702939\pi\)
\(240\) 0 0
\(241\) 16.7171i 1.07684i −0.842676 0.538422i \(-0.819021\pi\)
0.842676 0.538422i \(-0.180979\pi\)
\(242\) 0 0
\(243\) −13.3166 + 8.10355i −0.854262 + 0.519843i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −29.4504 −1.87389
\(248\) 0 0
\(249\) −15.7658 + 1.73063i −0.999115 + 0.109674i
\(250\) 0 0
\(251\) 4.42932 0.279576 0.139788 0.990181i \(-0.455358\pi\)
0.139788 + 0.990181i \(0.455358\pi\)
\(252\) 0 0
\(253\) 18.8969 1.18804
\(254\) 0 0
\(255\) 28.4810 3.12639i 1.78355 0.195782i
\(256\) 0 0
\(257\) 3.53994 0.220815 0.110408 0.993886i \(-0.464784\pi\)
0.110408 + 0.993886i \(0.464784\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −0.802102 3.60950i −0.0496489 0.223422i
\(262\) 0 0
\(263\) 14.4400i 0.890407i −0.895429 0.445204i \(-0.853131\pi\)
0.895429 0.445204i \(-0.146869\pi\)
\(264\) 0 0
\(265\) 18.3215i 1.12548i
\(266\) 0 0
\(267\) −22.5060 + 2.47051i −1.37734 + 0.151193i
\(268\) 0 0
\(269\) 3.35036 0.204275 0.102137 0.994770i \(-0.467432\pi\)
0.102137 + 0.994770i \(0.467432\pi\)
\(270\) 0 0
\(271\) 2.63888i 0.160300i −0.996783 0.0801502i \(-0.974460\pi\)
0.996783 0.0801502i \(-0.0255400\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 41.9520i 2.52980i
\(276\) 0 0
\(277\) 11.9155 0.715935 0.357968 0.933734i \(-0.383470\pi\)
0.357968 + 0.933734i \(0.383470\pi\)
\(278\) 0 0
\(279\) 0.608298 + 2.73737i 0.0364179 + 0.163882i
\(280\) 0 0
\(281\) 23.9059i 1.42611i −0.701109 0.713054i \(-0.747312\pi\)
0.701109 0.713054i \(-0.252688\pi\)
\(282\) 0 0
\(283\) 14.6318i 0.869771i −0.900486 0.434886i \(-0.856789\pi\)
0.900486 0.434886i \(-0.143211\pi\)
\(284\) 0 0
\(285\) −4.98605 45.4222i −0.295348 2.69058i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.0275052 −0.00161795
\(290\) 0 0
\(291\) 1.33443 + 12.1565i 0.0782259 + 0.712628i
\(292\) 0 0
\(293\) 23.0499 1.34659 0.673294 0.739375i \(-0.264879\pi\)
0.673294 + 0.739375i \(0.264879\pi\)
\(294\) 0 0
\(295\) 7.89231 0.459508
\(296\) 0 0
\(297\) −6.31351 18.5532i −0.366347 1.07657i
\(298\) 0 0
\(299\) 22.4577 1.29876
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 15.1326 1.66112i 0.869345 0.0954290i
\(304\) 0 0
\(305\) 37.1298i 2.12605i
\(306\) 0 0
\(307\) 6.05212i 0.345413i −0.984973 0.172706i \(-0.944749\pi\)
0.984973 0.172706i \(-0.0552512\pi\)
\(308\) 0 0
\(309\) 3.22021 + 29.3356i 0.183191 + 1.66885i
\(310\) 0 0
\(311\) −10.0698 −0.571008 −0.285504 0.958378i \(-0.592161\pi\)
−0.285504 + 0.958378i \(0.592161\pi\)
\(312\) 0 0
\(313\) 18.5429i 1.04811i 0.851685 + 0.524053i \(0.175581\pi\)
−0.851685 + 0.524053i \(0.824419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.3925i 1.20152i −0.799429 0.600761i \(-0.794864\pi\)
0.799429 0.600761i \(-0.205136\pi\)
\(318\) 0 0
\(319\) 4.64861 0.260272
\(320\) 0 0
\(321\) 0.707031 + 6.44096i 0.0394626 + 0.359499i
\(322\) 0 0
\(323\) 27.0682i 1.50611i
\(324\) 0 0
\(325\) 49.8572i 2.76558i
\(326\) 0 0
\(327\) 24.6497 2.70583i 1.36313 0.149633i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −31.1855 −1.71411 −0.857054 0.515226i \(-0.827708\pi\)
−0.857054 + 0.515226i \(0.827708\pi\)
\(332\) 0 0
\(333\) 5.92628 1.31694i 0.324758 0.0721678i
\(334\) 0 0
\(335\) 31.1612 1.70252
\(336\) 0 0
\(337\) −1.80637 −0.0983995 −0.0491998 0.998789i \(-0.515667\pi\)
−0.0491998 + 0.998789i \(0.515667\pi\)
\(338\) 0 0
\(339\) 0.595006 + 5.42042i 0.0323163 + 0.294397i
\(340\) 0 0
\(341\) −3.52541 −0.190912
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.80216 + 34.6372i 0.204702 + 1.86480i
\(346\) 0 0
\(347\) 7.42470i 0.398579i 0.979941 + 0.199289i \(0.0638634\pi\)
−0.979941 + 0.199289i \(0.936137\pi\)
\(348\) 0 0
\(349\) 19.1105i 1.02296i −0.859295 0.511480i \(-0.829097\pi\)
0.859295 0.511480i \(-0.170903\pi\)
\(350\) 0 0
\(351\) −7.50319 22.0493i −0.400491 1.17690i
\(352\) 0 0
\(353\) −11.2491 −0.598729 −0.299365 0.954139i \(-0.596775\pi\)
−0.299365 + 0.954139i \(0.596775\pi\)
\(354\) 0 0
\(355\) 32.0222i 1.69956i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.9845i 1.26586i 0.774211 + 0.632928i \(0.218147\pi\)
−0.774211 + 0.632928i \(0.781853\pi\)
\(360\) 0 0
\(361\) −24.1690 −1.27205
\(362\) 0 0
\(363\) 5.55301 0.609560i 0.291457 0.0319936i
\(364\) 0 0
\(365\) 59.5147i 3.11514i
\(366\) 0 0
\(367\) 27.9230i 1.45757i −0.684742 0.728786i \(-0.740085\pi\)
0.684742 0.728786i \(-0.259915\pi\)
\(368\) 0 0
\(369\) −6.48755 + 1.44166i −0.337728 + 0.0750499i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −13.7495 −0.711922 −0.355961 0.934501i \(-0.615846\pi\)
−0.355961 + 0.934501i \(0.615846\pi\)
\(374\) 0 0
\(375\) −42.3299 + 4.64659i −2.18590 + 0.239949i
\(376\) 0 0
\(377\) 5.52456 0.284529
\(378\) 0 0
\(379\) 37.2400 1.91289 0.956445 0.291913i \(-0.0942918\pi\)
0.956445 + 0.291913i \(0.0942918\pi\)
\(380\) 0 0
\(381\) −16.8618 + 1.85094i −0.863857 + 0.0948266i
\(382\) 0 0
\(383\) 3.25244 0.166192 0.0830959 0.996542i \(-0.473519\pi\)
0.0830959 + 0.996542i \(0.473519\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.19849 + 2.04409i −0.467586 + 0.103907i
\(388\) 0 0
\(389\) 22.1960i 1.12538i 0.826668 + 0.562691i \(0.190234\pi\)
−0.826668 + 0.562691i \(0.809766\pi\)
\(390\) 0 0
\(391\) 20.6411i 1.04387i
\(392\) 0 0
\(393\) −19.5219 + 2.14294i −0.984748 + 0.108097i
\(394\) 0 0
\(395\) 14.8672 0.748048
\(396\) 0 0
\(397\) 2.73526i 0.137279i −0.997642 0.0686393i \(-0.978134\pi\)
0.997642 0.0686393i \(-0.0218658\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.24402i 0.211936i −0.994370 0.105968i \(-0.966206\pi\)
0.994370 0.105968i \(-0.0337941\pi\)
\(402\) 0 0
\(403\) −4.18972 −0.208705
\(404\) 0 0
\(405\) 32.7369 15.3054i 1.62671 0.760532i
\(406\) 0 0
\(407\) 7.63235i 0.378322i
\(408\) 0 0
\(409\) 18.2543i 0.902619i 0.892367 + 0.451310i \(0.149043\pi\)
−0.892367 + 0.451310i \(0.850957\pi\)
\(410\) 0 0
\(411\) −3.15609 28.7516i −0.155679 1.41821i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 36.7687 1.80490
\(416\) 0 0
\(417\) 0.329647 + 3.00304i 0.0161429 + 0.147059i
\(418\) 0 0
\(419\) −27.1802 −1.32784 −0.663919 0.747805i \(-0.731108\pi\)
−0.663919 + 0.747805i \(0.731108\pi\)
\(420\) 0 0
\(421\) −17.8910 −0.871954 −0.435977 0.899958i \(-0.643597\pi\)
−0.435977 + 0.899958i \(0.643597\pi\)
\(422\) 0 0
\(423\) −17.1514 + 3.81138i −0.833929 + 0.185316i
\(424\) 0 0
\(425\) −45.8242 −2.22280
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 29.1069 3.19510i 1.40529 0.154261i
\(430\) 0 0
\(431\) 6.51842i 0.313981i −0.987600 0.156991i \(-0.949821\pi\)
0.987600 0.156991i \(-0.0501793\pi\)
\(432\) 0 0
\(433\) 16.4285i 0.789506i 0.918787 + 0.394753i \(0.129170\pi\)
−0.918787 + 0.394753i \(0.870830\pi\)
\(434\) 0 0
\(435\) 0.935325 + 8.52069i 0.0448454 + 0.408536i
\(436\) 0 0
\(437\) 32.9190 1.57473
\(438\) 0 0
\(439\) 18.2864i 0.872761i −0.899762 0.436381i \(-0.856260\pi\)
0.899762 0.436381i \(-0.143740\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.679450i 0.0322816i 0.999870 + 0.0161408i \(0.00513801\pi\)
−0.999870 + 0.0161408i \(0.994862\pi\)
\(444\) 0 0
\(445\) 52.4882 2.48818
\(446\) 0 0
\(447\) −0.226348 2.06200i −0.0107059 0.0975294i
\(448\) 0 0
\(449\) 23.7906i 1.12275i −0.827562 0.561375i \(-0.810273\pi\)
0.827562 0.561375i \(-0.189727\pi\)
\(450\) 0 0
\(451\) 8.35520i 0.393431i
\(452\) 0 0
\(453\) −1.27270 + 0.139706i −0.0597968 + 0.00656396i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −24.3188 −1.13758 −0.568792 0.822481i \(-0.692589\pi\)
−0.568792 + 0.822481i \(0.692589\pi\)
\(458\) 0 0
\(459\) 20.2657 6.89626i 0.945922 0.321890i
\(460\) 0 0
\(461\) 4.08266 0.190148 0.0950742 0.995470i \(-0.469691\pi\)
0.0950742 + 0.995470i \(0.469691\pi\)
\(462\) 0 0
\(463\) 17.5152 0.814001 0.407001 0.913428i \(-0.366575\pi\)
0.407001 + 0.913428i \(0.366575\pi\)
\(464\) 0 0
\(465\) −0.709333 6.46192i −0.0328945 0.299665i
\(466\) 0 0
\(467\) −6.34194 −0.293470 −0.146735 0.989176i \(-0.546876\pi\)
−0.146735 + 0.989176i \(0.546876\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.96649 + 17.9145i 0.0906113 + 0.825457i
\(472\) 0 0
\(473\) 11.8466i 0.544706i
\(474\) 0 0
\(475\) 73.0816i 3.35321i
\(476\) 0 0
\(477\) −2.96945 13.3627i −0.135962 0.611835i
\(478\) 0 0
\(479\) 30.9762 1.41534 0.707669 0.706544i \(-0.249747\pi\)
0.707669 + 0.706544i \(0.249747\pi\)
\(480\) 0 0
\(481\) 9.07055i 0.413582i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.3513i 1.28736i
\(486\) 0 0
\(487\) 35.9430 1.62873 0.814366 0.580351i \(-0.197085\pi\)
0.814366 + 0.580351i \(0.197085\pi\)
\(488\) 0 0
\(489\) −39.6767 + 4.35535i −1.79424 + 0.196956i
\(490\) 0 0
\(491\) 23.7756i 1.07298i −0.843907 0.536490i \(-0.819750\pi\)
0.843907 0.536490i \(-0.180250\pi\)
\(492\) 0 0
\(493\) 5.07768i 0.228687i
\(494\) 0 0
\(495\) 9.85578 + 44.3515i 0.442984 + 1.99345i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 17.2810 0.773602 0.386801 0.922163i \(-0.373580\pi\)
0.386801 + 0.922163i \(0.373580\pi\)
\(500\) 0 0
\(501\) 16.9439 1.85995i 0.756996 0.0830962i
\(502\) 0 0
\(503\) −22.4974 −1.00311 −0.501554 0.865126i \(-0.667238\pi\)
−0.501554 + 0.865126i \(0.667238\pi\)
\(504\) 0 0
\(505\) −35.2920 −1.57048
\(506\) 0 0
\(507\) 12.2094 1.34024i 0.542239 0.0595222i
\(508\) 0 0
\(509\) 3.37671 0.149670 0.0748351 0.997196i \(-0.476157\pi\)
0.0748351 + 0.997196i \(0.476157\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −10.9983 32.3203i −0.485588 1.42697i
\(514\) 0 0
\(515\) 68.4162i 3.01478i
\(516\) 0 0
\(517\) 22.0890i 0.971471i
\(518\) 0 0
\(519\) −27.4918 + 3.01781i −1.20676 + 0.132467i
\(520\) 0 0
\(521\) −30.5574 −1.33874 −0.669371 0.742928i \(-0.733436\pi\)
−0.669371 + 0.742928i \(0.733436\pi\)
\(522\) 0 0
\(523\) 9.96089i 0.435559i 0.975998 + 0.217780i \(0.0698814\pi\)
−0.975998 + 0.217780i \(0.930119\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.85081i 0.167744i
\(528\) 0 0
\(529\) −2.10270 −0.0914219
\(530\) 0 0
\(531\) 5.75620 1.27914i 0.249798 0.0555100i
\(532\) 0 0
\(533\) 9.92960i 0.430099i
\(534\) 0 0
\(535\) 15.0215i 0.649437i
\(536\) 0 0
\(537\) 0.384432 + 3.50213i 0.0165895 + 0.151128i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 30.8718 1.32728 0.663642 0.748051i \(-0.269010\pi\)
0.663642 + 0.748051i \(0.269010\pi\)
\(542\) 0 0
\(543\) 1.43417 + 13.0651i 0.0615462 + 0.560677i
\(544\) 0 0
\(545\) −57.4877 −2.46250
\(546\) 0 0
\(547\) −38.9414 −1.66501 −0.832506 0.554016i \(-0.813095\pi\)
−0.832506 + 0.554016i \(0.813095\pi\)
\(548\) 0 0
\(549\) 6.01779 + 27.0804i 0.256833 + 1.15576i
\(550\) 0 0
\(551\) 8.09800 0.344987
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −13.9898 + 1.53567i −0.593833 + 0.0651857i
\(556\) 0 0
\(557\) 45.4169i 1.92438i −0.272387 0.962188i \(-0.587813\pi\)
0.272387 0.962188i \(-0.412187\pi\)
\(558\) 0 0
\(559\) 14.0789i 0.595473i
\(560\) 0 0
\(561\) 2.93664 + 26.7524i 0.123985 + 1.12949i
\(562\) 0 0
\(563\) 10.0487 0.423503 0.211751 0.977324i \(-0.432083\pi\)
0.211751 + 0.977324i \(0.432083\pi\)
\(564\) 0 0
\(565\) 12.6414i 0.531829i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 24.0130i 1.00668i 0.864089 + 0.503339i \(0.167895\pi\)
−0.864089 + 0.503339i \(0.832105\pi\)
\(570\) 0 0
\(571\) −15.7396 −0.658683 −0.329341 0.944211i \(-0.606827\pi\)
−0.329341 + 0.944211i \(0.606827\pi\)
\(572\) 0 0
\(573\) 4.21913 + 38.4357i 0.176257 + 1.60567i
\(574\) 0 0
\(575\) 55.7291i 2.32406i
\(576\) 0 0
\(577\) 24.7582i 1.03070i −0.856981 0.515348i \(-0.827662\pi\)
0.856981 0.515348i \(-0.172338\pi\)
\(578\) 0 0
\(579\) 29.8038 3.27160i 1.23861 0.135963i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 17.2095 0.712746
\(584\) 0 0
\(585\) 11.7129 + 52.7088i 0.484271 + 2.17924i
\(586\) 0 0
\(587\) 23.8593 0.984778 0.492389 0.870375i \(-0.336124\pi\)
0.492389 + 0.870375i \(0.336124\pi\)
\(588\) 0 0
\(589\) −6.14137 −0.253051
\(590\) 0 0
\(591\) −0.00167385 0.0152486i −6.88531e−5 0.000627242i
\(592\) 0 0
\(593\) −40.4394 −1.66065 −0.830324 0.557280i \(-0.811845\pi\)
−0.830324 + 0.557280i \(0.811845\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.66523 33.3898i −0.150008 1.36655i
\(598\) 0 0
\(599\) 4.77807i 0.195226i −0.995224 0.0976132i \(-0.968879\pi\)
0.995224 0.0976132i \(-0.0311208\pi\)
\(600\) 0 0
\(601\) 4.52159i 0.184440i 0.995739 + 0.0922198i \(0.0293963\pi\)
−0.995739 + 0.0922198i \(0.970604\pi\)
\(602\) 0 0
\(603\) 22.7272 5.05043i 0.925523 0.205670i
\(604\) 0 0
\(605\) −12.9506 −0.526519
\(606\) 0 0
\(607\) 10.6263i 0.431310i −0.976470 0.215655i \(-0.930811\pi\)
0.976470 0.215655i \(-0.0691887\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 26.2513i 1.06201i
\(612\) 0 0
\(613\) −23.3019 −0.941157 −0.470578 0.882358i \(-0.655955\pi\)
−0.470578 + 0.882358i \(0.655955\pi\)
\(614\) 0 0
\(615\) 15.3147 1.68111i 0.617549 0.0677890i
\(616\) 0 0
\(617\) 38.6616i 1.55646i 0.627982 + 0.778228i \(0.283881\pi\)
−0.627982 + 0.778228i \(0.716119\pi\)
\(618\) 0 0
\(619\) 49.1755i 1.97653i 0.152743 + 0.988266i \(0.451189\pi\)
−0.152743 + 0.988266i \(0.548811\pi\)
\(620\) 0 0
\(621\) 8.38689 + 24.6462i 0.336554 + 0.989016i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 43.1061 1.72424
\(626\) 0 0
\(627\) 42.6654 4.68343i 1.70389 0.187038i
\(628\) 0 0
\(629\) −8.33683 −0.332411
\(630\) 0 0
\(631\) −18.6538 −0.742597 −0.371298 0.928514i \(-0.621087\pi\)
−0.371298 + 0.928514i \(0.621087\pi\)
\(632\) 0 0
\(633\) −23.1008 + 2.53580i −0.918175 + 0.100789i
\(634\) 0 0
\(635\) 39.3249 1.56056
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.18997 + 23.3551i 0.205312 + 0.923915i
\(640\) 0 0
\(641\) 18.0042i 0.711123i 0.934653 + 0.355561i \(0.115710\pi\)
−0.934653 + 0.355561i \(0.884290\pi\)
\(642\) 0 0
\(643\) 8.31261i 0.327817i 0.986476 + 0.163909i \(0.0524102\pi\)
−0.986476 + 0.163909i \(0.947590\pi\)
\(644\) 0 0
\(645\) 21.7143 2.38360i 0.854998 0.0938540i
\(646\) 0 0
\(647\) −20.9963 −0.825451 −0.412726 0.910855i \(-0.635423\pi\)
−0.412726 + 0.910855i \(0.635423\pi\)
\(648\) 0 0
\(649\) 7.41330i 0.290997i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.2535i 0.440383i −0.975457 0.220191i \(-0.929332\pi\)
0.975457 0.220191i \(-0.0706682\pi\)
\(654\) 0 0
\(655\) 45.5286 1.77895
\(656\) 0 0
\(657\) 9.64581 + 43.4066i 0.376319 + 1.69345i
\(658\) 0 0
\(659\) 30.5790i 1.19119i 0.803286 + 0.595594i \(0.203083\pi\)
−0.803286 + 0.595594i \(0.796917\pi\)
\(660\) 0 0
\(661\) 21.9455i 0.853580i −0.904351 0.426790i \(-0.859644\pi\)
0.904351 0.426790i \(-0.140356\pi\)
\(662\) 0 0
\(663\) 3.49001 + 31.7935i 0.135541 + 1.23476i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.17522 −0.239105
\(668\) 0 0
\(669\) 4.27437 + 38.9389i 0.165257 + 1.50547i
\(670\) 0 0
\(671\) −34.8763 −1.34638
\(672\) 0 0
\(673\) 2.10181 0.0810190 0.0405095 0.999179i \(-0.487102\pi\)
0.0405095 + 0.999179i \(0.487102\pi\)
\(674\) 0 0
\(675\) −54.7156 + 18.6193i −2.10600 + 0.716656i
\(676\) 0 0
\(677\) −22.9306 −0.881293 −0.440646 0.897681i \(-0.645251\pi\)
−0.440646 + 0.897681i \(0.645251\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 22.3102 2.44902i 0.854930 0.0938467i
\(682\) 0 0
\(683\) 48.2273i 1.84537i 0.385560 + 0.922683i \(0.374008\pi\)
−0.385560 + 0.922683i \(0.625992\pi\)
\(684\) 0 0
\(685\) 67.0541i 2.56200i
\(686\) 0 0
\(687\) 0.115985 + 1.05660i 0.00442509 + 0.0403119i
\(688\) 0 0
\(689\) 20.4524 0.779175
\(690\) 0 0
\(691\) 19.3373i 0.735627i −0.929900 0.367813i \(-0.880106\pi\)
0.929900 0.367813i \(-0.119894\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.00364i 0.265663i
\(696\) 0 0
\(697\) 9.12639 0.345687
\(698\) 0 0
\(699\) 1.52858 + 13.9252i 0.0578163 + 0.526699i
\(700\) 0 0
\(701\) 22.3461i 0.844001i 0.906596 + 0.422001i \(0.138672\pi\)
−0.906596 + 0.422001i \(0.861328\pi\)
\(702\) 0 0
\(703\) 13.2958i 0.501460i
\(704\) 0 0
\(705\) 40.4881 4.44442i 1.52487 0.167387i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 26.0294 0.977555 0.488777 0.872409i \(-0.337443\pi\)
0.488777 + 0.872409i \(0.337443\pi\)
\(710\) 0 0
\(711\) 10.8433 2.40959i 0.406654 0.0903666i
\(712\) 0 0
\(713\) 4.68317 0.175386
\(714\) 0 0
\(715\) −67.8827 −2.53867
\(716\) 0 0
\(717\) −4.69562 42.7765i −0.175361 1.59752i
\(718\) 0 0
\(719\) −1.25557 −0.0468250 −0.0234125 0.999726i \(-0.507453\pi\)
−0.0234125 + 0.999726i \(0.507453\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.15943 + 28.7820i 0.117500 + 1.07041i
\(724\) 0 0
\(725\) 13.7093i 0.509149i
\(726\) 0 0
\(727\) 33.5608i 1.24470i −0.782738 0.622351i \(-0.786178\pi\)
0.782738 0.622351i \(-0.213822\pi\)
\(728\) 0 0
\(729\) 21.3958 16.4687i 0.792438 0.609952i
\(730\) 0 0
\(731\) 12.9400 0.478604
\(732\) 0 0
\(733\) 0.0637987i 0.00235646i 0.999999 + 0.00117823i \(0.000375042\pi\)
−0.999999 + 0.00117823i \(0.999625\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29.2699i 1.07817i
\(738\) 0 0
\(739\) −24.8559 −0.914341 −0.457170 0.889379i \(-0.651137\pi\)
−0.457170 + 0.889379i \(0.651137\pi\)
\(740\) 0 0
\(741\) 50.7051 5.56595i 1.86270 0.204470i
\(742\) 0 0
\(743\) 1.14074i 0.0418496i −0.999781 0.0209248i \(-0.993339\pi\)
0.999781 0.0209248i \(-0.00666106\pi\)
\(744\) 0 0
\(745\) 4.80897i 0.176187i
\(746\) 0 0
\(747\) 26.8170 5.95927i 0.981182 0.218038i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 18.3386 0.669184 0.334592 0.942363i \(-0.391401\pi\)
0.334592 + 0.942363i \(0.391401\pi\)
\(752\) 0 0
\(753\) −7.62600 + 0.837115i −0.277907 + 0.0305062i
\(754\) 0 0
\(755\) 2.96818 0.108023
\(756\) 0 0
\(757\) −41.6253 −1.51290 −0.756449 0.654053i \(-0.773067\pi\)
−0.756449 + 0.654053i \(0.773067\pi\)
\(758\) 0 0
\(759\) −32.5350 + 3.57140i −1.18094 + 0.129634i
\(760\) 0 0
\(761\) 17.3337 0.628346 0.314173 0.949366i \(-0.398273\pi\)
0.314173 + 0.949366i \(0.398273\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −48.4451 + 10.7655i −1.75154 + 0.389227i
\(766\) 0 0
\(767\) 8.81022i 0.318119i
\(768\) 0 0
\(769\) 15.7285i 0.567184i 0.958945 + 0.283592i \(0.0915261\pi\)
−0.958945 + 0.283592i \(0.908474\pi\)
\(770\) 0 0
\(771\) −6.09474 + 0.669026i −0.219497 + 0.0240944i
\(772\) 0 0
\(773\) −14.2544 −0.512695 −0.256348 0.966585i \(-0.582519\pi\)
−0.256348 + 0.966585i \(0.582519\pi\)
\(774\) 0 0
\(775\) 10.3968i 0.373465i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.5550i 0.521487i
\(780\) 0 0
\(781\) −30.0786 −1.07630
\(782\) 0 0
\(783\) 2.06316 + 6.06291i 0.0737313 + 0.216671i
\(784\) 0 0
\(785\) 41.7799i 1.49119i
\(786\) 0 0
\(787\) 12.9471i 0.461516i −0.973011 0.230758i \(-0.925879\pi\)
0.973011 0.230758i \(-0.0741206\pi\)
\(788\) 0 0
\(789\) 2.72907 + 24.8614i 0.0971574 + 0.885090i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −41.4482 −1.47187
\(794\) 0 0
\(795\) 3.46266 + 31.5443i 0.122808 + 1.11876i
\(796\) 0 0
\(797\) 21.1678 0.749803 0.374901 0.927065i \(-0.377677\pi\)
0.374901 + 0.927065i \(0.377677\pi\)
\(798\) 0 0
\(799\) 24.1278 0.853580
\(800\) 0 0
\(801\) 38.2819 8.50699i 1.35262 0.300580i
\(802\) 0 0
\(803\) −55.9026 −1.97276
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −5.76834 + 0.633197i −0.203055 + 0.0222896i
\(808\) 0 0
\(809\) 41.6834i 1.46551i −0.680491 0.732756i \(-0.738234\pi\)
0.680491 0.732756i \(-0.261766\pi\)
\(810\) 0 0
\(811\) 31.7652i 1.11543i −0.830033 0.557714i \(-0.811679\pi\)
0.830033 0.557714i \(-0.188321\pi\)
\(812\) 0 0
\(813\) 0.498732 + 4.54338i 0.0174913 + 0.159343i
\(814\) 0 0
\(815\) 92.5333 3.24130
\(816\) 0 0
\(817\) 20.6371i 0.722000i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.1922i 0.495312i 0.968848 + 0.247656i \(0.0796602\pi\)
−0.968848 + 0.247656i \(0.920340\pi\)
\(822\) 0 0
\(823\) 14.2603 0.497084 0.248542 0.968621i \(-0.420049\pi\)
0.248542 + 0.968621i \(0.420049\pi\)
\(824\) 0 0
\(825\) −7.92867 72.2291i −0.276041 2.51469i
\(826\) 0 0
\(827\) 43.8269i 1.52401i −0.647571 0.762006i \(-0.724215\pi\)
0.647571 0.762006i \(-0.275785\pi\)
\(828\) 0 0
\(829\) 19.5526i 0.679090i −0.940590 0.339545i \(-0.889727\pi\)
0.940590 0.339545i \(-0.110273\pi\)
\(830\) 0 0
\(831\) −20.5151 + 2.25196i −0.711661 + 0.0781198i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −39.5162 −1.36752
\(836\) 0 0
\(837\) −1.56466 4.59799i −0.0540825 0.158930i
\(838\) 0 0
\(839\) 41.5510 1.43450 0.717251 0.696815i \(-0.245400\pi\)
0.717251 + 0.696815i \(0.245400\pi\)
\(840\) 0 0
\(841\) 27.4809 0.947617
\(842\) 0 0
\(843\) 4.51807 + 41.1590i 0.155611 + 1.41759i
\(844\) 0 0
\(845\) −28.4746 −0.979557
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 2.76532 + 25.1917i 0.0949057 + 0.864578i
\(850\) 0 0
\(851\) 10.1388i 0.347555i
\(852\) 0 0
\(853\) 17.5344i 0.600367i 0.953882 + 0.300183i \(0.0970478\pi\)
−0.953882 + 0.300183i \(0.902952\pi\)
\(854\) 0 0
\(855\) 17.1690 + 77.2615i 0.587169 + 2.64229i
\(856\) 0 0
\(857\) 19.6428 0.670986 0.335493 0.942043i \(-0.391097\pi\)
0.335493 + 0.942043i \(0.391097\pi\)
\(858\) 0 0
\(859\) 13.4428i 0.458662i −0.973348 0.229331i \(-0.926346\pi\)
0.973348 0.229331i \(-0.0736538\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.5635i 0.768070i 0.923319 + 0.384035i \(0.125466\pi\)
−0.923319 + 0.384035i \(0.874534\pi\)
\(864\) 0 0
\(865\) 64.1161 2.18001
\(866\) 0 0
\(867\) 0.0473560 0.00519832i 0.00160829 0.000176544i
\(868\) 0 0
\(869\) 13.9648i 0.473725i
\(870\) 0 0
\(871\) 34.7854i 1.17866i
\(872\) 0 0
\(873\) −4.59502 20.6778i −0.155518 0.699837i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9.57698 −0.323392 −0.161696 0.986841i \(-0.551696\pi\)
−0.161696 + 0.986841i \(0.551696\pi\)
\(878\) 0 0
\(879\) −39.6852 + 4.35629i −1.33855 + 0.146934i
\(880\) 0 0
\(881\) −4.74822 −0.159971 −0.0799857 0.996796i \(-0.525487\pi\)
−0.0799857 + 0.996796i \(0.525487\pi\)
\(882\) 0 0
\(883\) 36.7930 1.23818 0.619092 0.785318i \(-0.287501\pi\)
0.619092 + 0.785318i \(0.287501\pi\)
\(884\) 0 0
\(885\) −13.5883 + 1.49160i −0.456764 + 0.0501395i
\(886\) 0 0
\(887\) −34.4816 −1.15778 −0.578889 0.815406i \(-0.696514\pi\)
−0.578889 + 0.815406i \(0.696514\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 14.3765 + 30.7500i 0.481630 + 1.03017i
\(892\) 0 0
\(893\) 38.4796i 1.28767i
\(894\) 0 0
\(895\) 8.16761i 0.273013i
\(896\) 0 0
\(897\) −38.6657 + 4.24437i −1.29101 + 0.141716i
\(898\) 0 0
\(899\) 1.15205 0.0384230
\(900\) 0 0
\(901\) 18.7980i 0.626252i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.4703i 1.01287i
\(906\) 0 0
\(907\) −18.6067 −0.617826 −0.308913 0.951090i \(-0.599965\pi\)
−0.308913 + 0.951090i \(0.599965\pi\)
\(908\) 0 0
\(909\) −25.7400 + 5.71994i −0.853742 + 0.189718i
\(910\) 0 0
\(911\) 27.0277i 0.895467i −0.894167 0.447733i \(-0.852231\pi\)
0.894167 0.447733i \(-0.147769\pi\)
\(912\) 0 0
\(913\) 34.5371i 1.14301i
\(914\) 0 0
\(915\) −7.01731 63.9267i −0.231985 2.11335i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 17.6917 0.583594 0.291797 0.956480i \(-0.405747\pi\)
0.291797 + 0.956480i \(0.405747\pi\)
\(920\) 0 0
\(921\) 1.14381 + 10.4200i 0.0376899 + 0.343350i
\(922\) 0 0
\(923\) −35.7465 −1.17661
\(924\) 0 0
\(925\) 22.5087 0.740081
\(926\) 0 0
\(927\) −11.0885 49.8988i −0.364194 1.63889i
\(928\) 0 0
\(929\) −22.7015 −0.744812 −0.372406 0.928070i \(-0.621467\pi\)
−0.372406 + 0.928070i \(0.621467\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 17.3373 1.90314i 0.567599 0.0623059i
\(934\) 0 0
\(935\) 62.3916i 2.04042i
\(936\) 0 0
\(937\) 29.4147i 0.960935i −0.877012 0.480468i \(-0.840467\pi\)
0.877012 0.480468i \(-0.159533\pi\)
\(938\) 0 0
\(939\) −3.50449 31.9255i −0.114365 1.04185i
\(940\) 0 0
\(941\) 41.1024 1.33990 0.669949 0.742407i \(-0.266316\pi\)
0.669949 + 0.742407i \(0.266316\pi\)
\(942\) 0 0
\(943\) 11.0991i 0.361435i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.960702i 0.0312186i 0.999878 + 0.0156093i \(0.00496880\pi\)
−0.999878 + 0.0156093i \(0.995031\pi\)
\(948\) 0 0
\(949\) −66.4366 −2.15662
\(950\) 0 0
\(951\) 4.04305 + 36.8316i 0.131105 + 1.19435i
\(952\) 0 0
\(953\) 14.0678i 0.455702i −0.973696 0.227851i \(-0.926830\pi\)
0.973696 0.227851i \(-0.0731699\pi\)
\(954\) 0 0
\(955\) 89.6392i 2.90066i
\(956\) 0 0
\(957\) −8.00354 + 0.878558i −0.258718 + 0.0283997i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.1263 0.971816
\(962\) 0 0
\(963\) −2.43460 10.9558i −0.0784540 0.353047i
\(964\) 0 0
\(965\) −69.5081 −2.23754
\(966\) 0 0
\(967\) 40.1695 1.29177 0.645883 0.763437i \(-0.276490\pi\)
0.645883 + 0.763437i \(0.276490\pi\)
\(968\) 0 0
\(969\) 5.11572 + 46.6035i 0.164340 + 1.49712i
\(970\) 0 0
\(971\) −49.5568 −1.59035 −0.795177 0.606377i \(-0.792622\pi\)
−0.795177 + 0.606377i \(0.792622\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −9.42270 85.8395i −0.301768 2.74906i
\(976\) 0 0
\(977\) 15.1242i 0.483865i 0.970293 + 0.241932i \(0.0777812\pi\)
−0.970293 + 0.241932i \(0.922219\pi\)
\(978\) 0 0
\(979\) 49.3025i 1.57572i
\(980\) 0 0
\(981\) −41.9283 + 9.31729i −1.33867 + 0.297478i
\(982\) 0 0
\(983\) −28.4908 −0.908715 −0.454358 0.890819i \(-0.650131\pi\)
−0.454358 + 0.890819i \(0.650131\pi\)
\(984\) 0 0
\(985\) 0.0355625i 0.00113312i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15.7370i 0.500408i
\(990\) 0 0
\(991\) 10.2998 0.327183 0.163591 0.986528i \(-0.447692\pi\)
0.163591 + 0.986528i \(0.447692\pi\)
\(992\) 0 0
\(993\) 53.6923 5.89386i 1.70387 0.187036i
\(994\) 0 0
\(995\) 77.8712i 2.46868i
\(996\) 0 0
\(997\) 20.4447i 0.647489i −0.946145 0.323744i \(-0.895058\pi\)
0.946145 0.323744i \(-0.104942\pi\)
\(998\) 0 0
\(999\) −9.95444 + 3.38742i −0.314945 + 0.107173i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.k.b.881.2 yes 24
3.2 odd 2 inner 1176.2.k.b.881.24 yes 24
4.3 odd 2 2352.2.k.j.881.23 24
7.2 even 3 1176.2.u.c.521.15 48
7.3 odd 6 1176.2.u.c.1097.8 48
7.4 even 3 1176.2.u.c.1097.17 48
7.5 odd 6 1176.2.u.c.521.10 48
7.6 odd 2 inner 1176.2.k.b.881.23 yes 24
12.11 even 2 2352.2.k.j.881.1 24
21.2 odd 6 1176.2.u.c.521.8 48
21.5 even 6 1176.2.u.c.521.17 48
21.11 odd 6 1176.2.u.c.1097.10 48
21.17 even 6 1176.2.u.c.1097.15 48
21.20 even 2 inner 1176.2.k.b.881.1 24
28.27 even 2 2352.2.k.j.881.2 24
84.83 odd 2 2352.2.k.j.881.24 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.1 24 21.20 even 2 inner
1176.2.k.b.881.2 yes 24 1.1 even 1 trivial
1176.2.k.b.881.23 yes 24 7.6 odd 2 inner
1176.2.k.b.881.24 yes 24 3.2 odd 2 inner
1176.2.u.c.521.8 48 21.2 odd 6
1176.2.u.c.521.10 48 7.5 odd 6
1176.2.u.c.521.15 48 7.2 even 3
1176.2.u.c.521.17 48 21.5 even 6
1176.2.u.c.1097.8 48 7.3 odd 6
1176.2.u.c.1097.10 48 21.11 odd 6
1176.2.u.c.1097.15 48 21.17 even 6
1176.2.u.c.1097.17 48 7.4 even 3
2352.2.k.j.881.1 24 12.11 even 2
2352.2.k.j.881.2 24 28.27 even 2
2352.2.k.j.881.23 24 4.3 odd 2
2352.2.k.j.881.24 24 84.83 odd 2